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Abstract

We say that a family of permutations t-shatters a set if it induces at least t distinct
permutations on that set. What is the minimum number fk(n, t) of permutations
of {1, . . . , n} that t-shatter all subsets of size k? For t ⩽ 2, fk(n, t) = Θ(1). Spencer
showed that fk(n, t) = Θ(log log n) for 3 ⩽ t ⩽ k and fk(n, k!) = Θ(log n). In 1996,
Füredi asked whether partial shattering with permutations must always fall into
one of these three regimes. Johnson and Wickes recently settled the case k = 3
affirmatively and proved that fk(n, t) = Θ(log n) for t > 2(k − 1)!.

We give a surprising negative answer to the question of Füredi by showing that
a fourth regime exists for k ⩾ 4. We establish that fk(n, t) = Θ(

√
log n) for certain

values of t and prove that this is the only other regime when k = 4. We also show
that fk(n, t) = Θ(log n) for t > 2k−1. This greatly narrows the range of t for which
the asymptotic behaviour of fk(n, t) is unknown.

1 Introduction

A family P of permutations of [n] = {1, . . . , n} shatters a set X ⊆ [n] if the permutations
of P induce every possible permutation on the elements of X. Shattering families of
permutations were first studied by Spencer [12] who asked the following question.

What is the smallest family of permutations of [n] that shatters all subsets of
a fixed size k?

Spencer [12] showed that such families have size Θ(log n), with subsequent work
improving the constant of the lower bound [6, 5, 9].

A natural refinement of this problem is to consider partial shattering. For t ⩾ 1, we
say that a family P t-shatters a set X if P induces at least t distinct permutations on X.
Let fk(n, t) be the minimum number of permutations of [n] that t-shatter all subsets
of size k. From above we know that fk(n, k!) = Θ(log n), and monotone permutations
can be used to prove that fk(n, t) = t for t ⩽ 2. Moreover, an argument of Hajnal
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and Spencer [12] shows that fk(n, t) = Θ(log log n) for 3 ⩽ t ⩽ k.1 Therefore, the
asymptotic behaviour of fk(n, t) falls into at least three distinct regimes.

In 1996, Füredi [5] asked whether these might be the only possible regimes, even
in a much more general version of partial shattering. Let S be a family of sets of
permutations of [k]. Then, a family P of permutations of [n] is S-mixing if for every
subset X ⊆ [n] of size k, the set of permutations that P induces on X is a member of S .
Moreover, S is monotone if for all S ∈ S and S ⊆ T we have T ∈ S . If S is the family of
sets with at least t permutations of [k], then S is monotone and S-mixing families are
exactly those families that t-shatter all subsets of size k.

Even in this more general S-mixing framework, the minimum size of an S-mixing
family in all previously known cases was in one of the three regimes Θ(1), Θ(log log n),
and Θ(log n). This prompted Füredi [5] to ask the following question.

Question 1.1 (Füredi, 1996). If S is a monotone family of sets of permutations of [k], is the
minimum size of an S-mixing family either Θ(1), Θ(log log n), or Θ(log n)?

Johnson and Wickes [7] recently made progress on this question for fk(n, t). They
showed that fk(n, t) = Θ(log n) for t > 2(k − 1)!. Together with the previously known
asymptotics, this yields the following partial classification.

Theorem 1.2 (Johnson, Wickes, 2023). Let k ⩾ 3 be an integer. Then,

fk(n, t) =


t for t ⩽ 2,
Θ(log log n) for 3 ⩽ t ⩽ k,
Θ(log n) for 2(k − 1)! < t ⩽ k!.

Moreover, Johnson and Wickes [7] settled the case k = 3 completely by additionally
proving that f3(n, 4) = Θ(log log n). Given these results, they reiterated Füredi’s
question and asked specifically whether fk(n, t) must always fall into one of the three
regimes Θ(1), Θ(log log n), and Θ(log n) [1, 7].

We answer the questions of Füredi and of Johnson and Wickes negatively. For k ⩾ 4,
we show that a fourth regime exists with fk(n, t) = Θ(

√
log n). More generally, we

improve the partial classification of the asymptotic behaviour of fk(n, t) as follows.

Theorem 1.3. Let k ⩾ 4 be an integer. Then,

fk(n, t) =


t for t ⩽ 2,
Θ(log log n) for 3 ⩽ t ⩽ 2⌈log2 k⌉,
Θ(

√
log n) for 2⌈log2 k⌉ < t ⩽ min{2k, 2⌈log2 k⌉ + 4},

Θ(log n) for 2k−1 < t ⩽ k!.

For k = 4, this settles the asymptotic behaviour of f4(n, t) completely as all values of t
are covered. However, if k is large, there is still an exponential gap between the regime
Θ(

√
log n) and Θ(log n).

1Spencer [12] considered the slightly different problem of determining the minimum number of
permutations such that for every subset X ⊆ [n] of size k and every element x ∈ X, there is a permutation
where x is the largest element of X. Johnson and Wickes [7] observed that this transfers to fk(n, t).
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Theorem 1.3 is based on a series of new lower and upper bounds on fk(n, t). First, we
show that the lower bound fk(n, t) = Ω(log n) holds for a wider range of values of t.

Theorem 1.4. Let k ⩾ 3 and t > 2k−1. Then, fk(n, t) = Ω(log n).

The main observation for this result is that for any small family P of permutations
of [n], we can construct two large subsets A, B ⊆ [n] that are ordered in the following
sense: for each permutation of P either all elements of A are smaller than all elements
of B, or all elements of B are smaller than all elements of A. By recursively constructing
ordered sets in A, we find a subset of size k that is only 2k−1-shattered by P .

For smaller values of t, we provide a new lower bound of the form Ω(
√

log n).

Theorem 1.5. Let k ⩾ 3 and t > 2⌈log2 k⌉. Then, fk(n, t) = Ω(
√

log n).

The proof of this result is inspired by the proof of Theorem 1.4. However, instead of
only constructing ordered sets in A, we recursively construct ordered sets both in A
and in B. We then use a Ramsey-theoretic argument about vertex-coloured binary trees
to find a subset of size k that is only 2⌈log k⌉-shattered.

We note that the lower bound on t in Theorem 1.5 cannot be replaced by anything
smaller. Indeed, a careful analysis of the construction of Hajnal and Spencer [12] shows
that fk(n, t) = Θ(log log n) for 3 ⩽ t ⩽ 2⌈log2 k⌉. We provide an equivalent construction
which proves this and which serves as a motivating example for what follows.

Theorem 1.6. Let k ⩾ 3 and t ⩽ 2⌈log2 k⌉. Then, fk(n, t) = O(log log n).

Our construction identifies [n] with [2]d for d = log2 n. Then, we consider lexicographic
permutations of [2]d which are premutations where the order of x, y ∈ [2]d only depends
on the values xi and yi for the first position i with xi ̸= yi. We show that an appropriate
choice of these permutations ensures that all subsets of size k are 2⌈log2 k⌉-shattered.

Finally, for k ⩾ 4, we show that there exist t > 2⌈log2 k⌉ with fk(n, t) = O(
√

log n).
Together with Theorem 1.5, this establishes the existence of a fourth regime for fk(n, t).

Theorem 1.7. Let k ⩾ 4 and t ⩽ min{2k, 2⌈log2 k⌉ + 4}. Then, fk(n, t) = O(
√

log n).

This result is proved similar to Theorem 1.6, but we identify [n] with [2d]d for d =√
log2 n. Then, most subsets of size k are 2k-shattered by lexicographic permutations,

and the remaining subsets have a very specific structure. We exploit this structure and
add a few more permutations which ensure that all subsets of size k are t-shattered.

We remark that partial shattering with permutations is quite different to partial shat-
tering with sets. A family F of subsets of [n] shatters a set X ⊆ [n] if for every subset
Y ⊆ X there exists F ∈ F with F ∩ X = Y, and F t-shatters X if for at least t distinct
subsets Y ⊆ X there exists F ∈ F with F ∩ X = Y. The study of shattering families
of sets dates back to the seminal works of Sauer [10], Shelah [11], and Vapnik and
Chervonenkis [13].

As for permutations, Kleitman and Spencer [8] showed that the minimum number of
subsets of [n] that shatter all subsets of size k is Θ(log n). However, in the case of partial
shattering, the family {∅, [n]} 2-shatters all subsets of size k, and every family that
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3-shatters all subsets of size k already needs Ω(log n) sets.2 Therefore, partial shattering
with sets only has the two regimes Θ(1) and Θ(log n).

The rest of the paper is structured as follows. In Section 2 we prove the lower bounds
of Theorems 1.4 and 1.5. Afterwards, in Section 3, we prove the upper bounds of
Theorems 1.6 and 1.7. We finish with some open problems in Section 4.

Notation. Throughout the paper, a permutation ρ of a set X is a total order of the
elements of X. We denote this order by <ρ. Note that if Y ⊆ X, then ρ induces a
permutation on Y. If ρ is a permutation of A ∪ B, we write A <ρ B if for all a ∈ A and
b ∈ B we have a <ρ b.

2 Lower bounds

To prove lower bounds for fk(n, t), we first need to define the concept of ordered sets.
Let P be a family of permutations of a set X. Then, we say that a pair of disjoint subsets
A, B ⊆ X is P-ordered if for each permutation ρ ∈ P either A <ρ B or B <ρ A. The
following result shows that any set contains large P-ordered subsets.

Lemma 2.1. Let X be a set and let P be a family of m permutations of X. Then, there exists a
P-ordered pair A, B ⊆ X with min{|A|, |B|} ⩾ ⌊|X|/2m+1⌋.

Proof. Let P = {ρ1, ρ2, . . . , ρm} and define Pi = {ρ1, ρ2, . . . , ρi}. We inductively con-
struct a Pi-ordered pair Ai, Bi ⊆ X with |Ai| = |Bi| ⩾ ⌊|X|/2i+1⌋. For i = 0, we choose
A0, B0 ⊆ X as two disjoint subsets of size ⌊|X|/2⌋.

Now suppose we have constructed Ai and Bi. Let ℓ = |Ai| = |Bi| ⩾ ⌊|X|/2i+1⌋ and
consider the subset L of the ℓ largest elements of Ai ∪ Bi under <ρi+1 . Note that either
|L ∩ Ai| ⩾ ℓ/2 or |L ∩ Bi| ⩾ ℓ/2. Without loss of generality, assume that |L ∩ Ai| ⩾ ℓ/2.

Set Ai+1 = L ∩ Ai and Bi+1 = Bi \ L. Since b <ρi+1 a for all a ∈ Ai+1 and b ∈ Bi+1,
the pair (Ai+1, Bi+1) is Pi+1-ordered. We also have |Ai+1| ⩾ ℓ/2 ⩾ ⌊|X|/2i+2⌋ and
|Bi+1| = ℓ− |L ∩ Bi| = ℓ− (ℓ− |L ∩ Ai|) = |Ai+1|, as required.

For i = m, the pair (Am, Bm) is P-ordered with min{|Am|, |Bm|} ⩾ ⌊|X|/2m+1⌋.

Using P-ordered pairs, we can prove Theorem 1.4. For this, we construct a sequence
of nested P-ordered pairs Ai, Bi ⊆ Ai−1 for i ∈ [k], where A0 = [n]. Then, if we pick
an element xi ∈ Bi for each i ∈ [k], the fact that all pairs are P-ordered implies that
{x1, . . . , xk} is only 2k−1-shattered by P , as required.

Proof of Theorem 1.4. Let t > 2k−1. We claim that fk(n, t) > (log2 n)/k − 1. Indeed,
suppose that P is a family of m permutations of [n] with m ⩽ (log2 n)/k − 1, and so
n ⩾ 2k(m+1). We show that there is a subset of size k that is not t-shattered by P .

2If n ⩾ k · 2|F |, one of the intersections
⋂

F∈F AF with AF ∈ {F, [n] \ F} must have size at least k, and
any subset X ⊆ ⋂

F∈F AF of size k satisfies F ∩ X ∈ {∅, X} for all F ∈ F .
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To do so, we inductively construct a sequence of P-ordered pairs as follows. Start
with A0 = [n]. Then, for i = 1, . . . , k, apply Lemma 2.1 to Ai−1 to obtain a P-ordered
pair Ai, Bi ⊆ Ai−1 with min{|Ai|, |Bi|} ⩾ ⌊|Ai−1|/2m+1⌋. Note that this implies that
min{|Ai|, |Bi|} ⩾ ⌊n/2i(m+1)⌋ ⩾ ⌊n/2k(m+1)⌋ ⩾ 1, and so Ai and Bi are non-empty.

For each i ∈ [k], pick xi ∈ Bi. We claim that P does not t-shatter the set {x1, . . . , xk}.
Indeed, let i ∈ [k − 1]. Note that xj ∈ Ai for all j > i. Since (Ai, Bi) is P-ordered,
it follows that for each permutation ρ ∈ P we either have xi <ρ {xi+1, . . . , xk} or
{xi+1, . . . , xk} <ρ xi. This provides two choices for the position of xi relative to
{xi+1, . . . , xk}. Moreover, given such a choice for each i ∈ [k − 1], this uniquely deter-
mines the permutation that ρ induces on {x1, . . . , xk}. Hence, P induces at most 2k−1

permutations on {x1, . . . , xk}, and therefore does not t-shatter {x1, . . . , xk}.

To prove Theorem 1.5, we will construct a complete binary tree of nested P-ordered
pairs. Namely, for each P-ordered pair (A, B) that we obtain, we recursively construct
new P-ordered pairs in each of A and B.

This is useful for the following reason. Suppose that k = 4, (A, B) is a P-ordered pair,
and two P-ordered pairs A′, B′ ⊆ A and A′′, B′′ ⊆ B in the tree are synchronised in the
sense that for all ρ ∈ P we have A′ <ρ B′ if and only if A′′ <ρ B′′. Pick x1 ∈ A′, x2 ∈ B′,
x3 ∈ A′′, and x4 ∈ B′′. Then, since (A, B) is P-ordered, we have {x1, x2} <ρ {x3, x4}
or {x3, x4} <ρ {x1, x2} for all ρ ∈ P , and since (A′, B′) and (A′′, B′′) are synchronised,
we have x1 <ρ x2 if and only if x3 <ρ x4. This implies that P induces at most 4
permutations on {x1, x2, x3, x4} which is less than 2k−1 = 8.

To find synchronised P-ordered pairs, we use a Ramsey-theoretic argument about
vertex-coloured binary trees. For that, we need to introduce some terminology. A
binary tree T rooted at a vertex r is a tree where r has degree 0 or 2 and every other
vertex has degree 1 or 3. A leaf of T is a vertex of degree at most 1. The layer of T at
height h is the set Nh(r) ⊆ V(T) of those vertices at graph distance exactly h from r.
For a vertex v ∈ Nh(r), its children are its neighbours in Nh+1(r), and if v ̸= r then its
parent is its neighbour in Nh−1(r). Clearly, |Nh(r)| ⩽ 2h. If there exists some h such
that |Nh(r)| = 2h and |Nh+1(r)| = 0, then T is a complete binary tree of height h.

Let S be a second binary tree with root q. A subdivision of S in T is an injective map
φ : V(S) → V(T) such that for all vertices v ∈ V(S) \ {q} with parent p, φ(v) is
contained in the subtree of T rooted at φ(p). If the vertices of T are coloured (not
necessarily properly), we say that the layers of the subdivision are monochromatic if
φ(Nh(q)) is monochromatic for all h. We often identify V(S) with φ(V(S)).

In our proof, T will be a complete binary tree whose vertices correspond to nested
P-ordered pairs, and we colour the vertices of T in such a way that monochromatic
layers correspond to collections of synchronised P-ordered pairs. Then, if we find
a subdivision of a complete binary tree of height ⌈log2 k⌉ in T with monochromatic
layers, we can pick one element from each of its leaves to obtain a set of size k that is
only 2⌈log2 k⌉-shattered by P , as required.

To do this, we need to find such subdivisions in large vertex-coloured complete binary
trees. For all integers c ⩾ 1 and h ⩾ 0, let g(c, h) be the smallest integer such that
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every complete binary tree of height g(c, h) whose vertices are coloured with c colours
contains a subdivision of a complete binary tree of height h with monochromatic layers.
We prove the following upper bound on g(c, h).

Lemma 2.2. For all integers c ⩾ 1 and h ⩾ 0 we have g(c, h) ⩽ h⌈log2(c
h−1 + 1)⌉.

Proof. We proceed by induction on h. If h = 0, a complete binary tree of height h is a
single vertex, and so g(c, 0) = 0.

If h ⩾ 1, let d = ⌈log2(c
h−1 + 1)⌉ and let T be a complete binary tree with root r and

height d + g(c, h − 1) that is coloured with c colours. For each vertex v ∈ Nd(r), the
subtree of T rooted at v has height g(c, h − 1) and must therefore contain a subdivision
Sv of a complete binary tree of height h − 1 with monochromatic layers. Since such
subdivisions admit at most ch−1 valid colourings and |Nd(r)| = 2d ⩾ ch−1 + 1, there
must be two subdivisions Su and Sv whose colourings coincide. Then, the subdivision
formed by Su, Sv, and the lowest common ancestor of u and v is a subdivision of a
complete binary tree of height h with monochromatic layers.

Therefore, we get that

g(c, h) ⩽ d + g(c, h − 1) ⩽ d + (h − 1)⌈log2(c
h−2 + 1)⌉ ⩽ h⌈log2(c

h−1 + 1)⌉.

Using the strategy outlined above, we now prove our lower bound for t > 2⌈log2 k⌉.

Proof of Theorem 1.5. Let h = ⌈log2 k⌉ and t > 2h. We claim fk(n, t) >
√

log2 n/h − 1.
Indeed, suppose that P is a family of m permutations of [n] with m ⩽

√
log2 n/h − 1,

and so using Lemma 2.2 we get log2 n ⩾ h2(m + 1)2 ⩾ g(2m, h)(m + 1). We show that
there is a subset of size k that is not t-shattered by P .

Consider a complete binary tree T of height g(2m, h). We associate to each vertex v
of T a set Xv ⊆ [n] and a P-ordered pair Av, Bv ⊆ Xv as follows. For the root r of
T, let Xr = [n] and let Ar, Br ⊆ Xr be a P-ordered pair given by Lemma 2.1. Then,
for a vertex v of T with P-ordered pair (Av, Bv) and children v1 and v2, let Xv1 = Av
and Xv2 = Bv, and let Av1 , Bv1 ⊆ Xv1 and Av2 , Bv2 ⊆ Xv2 be P-ordered pairs given by
Lemma 2.1. This implies that |Xw| ⩾ ⌊n/2g(2m,h)(m+1)⌋ ⩾ 1 for every w ∈ V(T), and so
Xw is non-empty.

Colour each vertex v ∈ V(T) with a colour cv as follows. For ρ ∈ P , let

cv(ρ) =

{
1 if Av <ρ Bv,
0 if Bv <ρ Av.

Since (Av, Bv) is P-ordered, this is well-defined. This colours each vertex of T with one
of 2m colours. By Lemma 2.2, T admits a subdivision of a complete binary tree S of
height h with monochromatic layers. Let q be the root of S.

For each leaf ℓ of S, pick yℓ ∈ Xℓ, and let Y = {yℓ : ℓ ∈ NS
h (q)} be the set of all of these

elements. Note that |Y| = 2h ⩾ k. We claim that Y is not t-shattered. Indeed, consider
the colouring that a fixed permutation ρ ∈ P induces on the first h layers NS

<h(q) of S
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by assigning cv(ρ) to each v ∈ NS
<h(q). Since each layer of S is monochromatic, this

colours NS
<h(q) with one of at most 2h distinct colourings (accross all ρ ∈ P).

Now, for any two distinct leaves ℓ, ℓ′ ∈ NS
h (q), the lowest common ancestor v ∈ NS

<h(q)
of ℓ and ℓ′ satisfies yℓ ∈ Av and yℓ′ ∈ Bv (or vice versa). Then, if cv(ρ) = 1, we have
Av <ρ Bv and so yℓ <ρ yℓ′ , and if cv(ρ) = 0 we have Bv <ρ Av and so yℓ′ <ρ yℓ. Thus,
the colours cv(ρ) for the vertices v ∈ NS

<h(q) uniquely determine the permutation that
ρ induces on Y. Since there are at most 2h distinct colourings of NS

<h(q), it follows that
P induces at most 2h permutations on Y, and therefore does not t-shatter Y.

3 Upper bounds

To prove our upper bounds on fk(n, t), we use lexicographic permutations. Identify
[n] with a subset of [b]d where b ⩾ 2 and d ⩾ ⌈logb n⌉ and define a lex-permutation
ρ of [b]d to be a permutation that is constructed as follows. For each i ∈ [d], pick a
permutation ρi of [b]. Then, for distinct x, y ∈ [b]d, set x <ρ y if and only if xi <ρi yi
where i = i(x, y) = min{i ∈ [d] : xi ̸= yi}. That is, the relative order of x and y in ρ is
entirely determined by the first position where x and y differ. It is easy to check that <ρ

is a total order, and so ρ is a permutation.

We say that a family of permutations P of [b]d is k-lex-shattering if it is a family of
lex-permutations such that the following holds. Let I ⊆ [d] be a subset of size at most
k, and for each i ∈ I fix a permutation σi of a subset Yi ⊆ [b] of size at most k. Then,
there exists a permutation ρ ∈ P such that ρi induces σi on Yi for all i ∈ I . We will later
show that k-lex-shattering families 2⌈log2 k⌉-shatter every subset of size k. However, we
first have to show that small k-lex-shattering families exist.

Lemma 3.1. For k ⩾ 1, there exists a k-lex-shattering family of [b]d with size O(log(bd)).

Proof. By Theorem 1.2, there is a family Q of permutations of [bd] with size O(log(bd))
that shatters every subset of size k2. For each τ ∈ Q, construct a lex-permutation ρτ

such that ρτ
i is the permutation that τ induces on (i − 1)b + [b] = {(i − 1)b + 1, . . . , ib}.

We claim that P = {ρτ : τ ∈ Q} is k-lex-shattering.

Indeed, let I ⊆ [d] have size at most k, and for every i ∈ I let σi be a permutation of
a subset Yi ⊆ [b] of size at most k. Since Q shatters the set

⋃
i∈I((i − 1)b + Yi), there

exists a permutation τ ∈ Q which induces σi on (i − 1)b + Yi for all i ∈ I . This implies
that ρτ

i induces σi on Yi for all i ∈ I .

To determine the permutations that a k-lex-shattering family P induces on a subset
X, consider the lexicographic structure of X. Let i(X) = inf{i(x, y) : x, y ∈ X} be
the first position where two elements of X differ, and let S(X) = {xi(X) : x ∈ X}
denote the slice of X at that position if i(X) < ∞. This partitions X into the subsets
Xs = {x ∈ X : xi(X) = s} for s ∈ S(X). Note that the sets Xs are pairwise P-ordered
and that their relative order in a permutation ρ ∈ P is determined by the permutation
that ρi(X) induces on S(X). We will denote this permutation by ρ(X).
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If we partition a set Xs in the same way, this yields a partition of Xs into P-ordered
sets whose relative order is determined by ρ(Xs). Continuing recursively like this, it
follows that the order that ρ induces on X is determined by the permutations ρ(Y) for
Y ⊆ X. This is captured by the following lemma.

Lemma 3.2. Let ρ be a lex-permutation of [b]d and let X ⊆ [b]d. Then, the permutation that ρ
induces on X is uniquely determined by the set of permutations ρ(Y) for Y ⊆ X.

Proof. Let x, y ∈ X and i = i(x, y). Then, Y = {x, y} ⊆ X and ρ(Y) is the permutation
that ρi induces on S(Y) = {xi, yi}. This implies that x <ρ y if and only if xi <ρi yi
which in turn is equivalent to xi <ρ(Y) yi. So, the permutation that ρ induces on X is
determined by the set of permutations ρ(Y) for Y ⊆ X.

Conversely, suppose that ρ and τ are lex-permutations with ρ(Y) ̸= τ(Y) for some
Y ⊆ X. Let i = i(Y). Since ρ(Y) ̸= τ(Y), there must exist x, y ∈ Y with i(x, y) = i such
that xi <ρ(Y) yi and yi <τ(Y) xi (or vice versa). As above, this is equivalent to x <ρ y
and y <τ x, and so ρ and τ induce different permutations on X.

Next, we deduce a lower bound on the number of permutations that P induces on X.
Let I(X) = {i(Y) : Y ⊆ X and i(Y) < ∞}. We rely on the following oberservation.

Lemma 3.3. Let P be a k-lex-shattering family of permutations of [b]d and let X ⊆ [b]d

be a subset of size k. For each i ∈ I(X), let Yi ⊆ X be such that i(Yi) = i. Then, X is
(∏i∈I(X)|S(Yi)|!)-shattered by P .

Proof. We claim that |I(X)| < k. Indeed, write < for the standard lexicographic order
on [b]d, so x < y if and only if xi < yi where i = i(x, y). Note that if x, y, z ∈ [b]d satisfy
x < y < z, then i(x, z) = min{i(x, y), i(y, z)}. Therefore, if we write X = {x1, . . . , xk}
with x1 < · · · < xk, this implies that I(X) = {i(xℓ, xℓ+1) : ℓ ∈ [k − 1]}, and so
|I(X)| ⩽ k − 1 as claimed.

Since P is k-lex-shattering, it follows that if σi is a permutation of S(Yi) for every
i ∈ I(X), then there is a permutation ρ ∈ P with ρ(Yi) = σi for all i ∈ I(X). By
Lemma 3.2, each choice of the permutations σi induces a different permutation on X,
and so X is (∏i∈I(X)|S(Yi)|!)-shattered by P .

To maximise this product, consider again the decomposition of X into its lexicographic
structure from above. Suppose that we only pick the largest set Xs whenever we
recursively continue the decomposition, and let the sets obtained during this process
be the sets Yi. Then, we will show that ∏i∈I |S(Yi)|! ⩾ 2⌈log2 k⌉, and so every set of size
k is 2⌈log2 k⌉-shattered by P . This suffices to prove Theorem 1.6.

For Theorem 1.7, we will additionally infer some structural information about X
whenever X is not 2k-shattered by P . Later, this information will allow us to add
more permutations to P which ensure that X is t-shattered for some t > 2⌈log2 k⌉.
Overall, we obtain the following lemma.

Lemma 3.4. Let P be a k-lex-shattering family of permutations of [b]d, and let h = ⌈log2 k⌉.
Then, P is a family that 2h-shatters all subsets of [b]d of size k. Moreover, if X ⊆ [b]d is a subset
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of size k that P does not 2k-shatter, then the set I(X) has size h, all Y ⊆ X with i(Y) < ∞
satisfy |S(Y)| = 2, and all Y, Z ⊆ X with i(Y) = i(Z) < ∞ satisfy S(Y) = S(Z).

Proof. Let X ⊆ [b]d be a subset of size k and let I = I(X).

Claim 3.5. There exist sets Yi ⊆ X with i(Yi) = i for each i ∈ I such that ∏i∈I |S(Yi)| ⩾ k.

Proof. We prove by induction on j that for all 0 ⩽ j ⩽ d there exist sets Yi ⊆ X
with i(Yi) = i for each i ∈ I ∩ [j] and a subset Z ⊆ X which satisfy i(Z) > j and
|Z| · ∏i∈I∩[j]|S(Yi)| ⩾ k. Applying this with j = d proves the claim.

For j = 0, let Z = X. Now suppose we have constructed such sets for j − 1. If i(Z) > j,
the same sets work for j, where we choose any Yj ⊆ X with i(Yj) = j if j ∈ I .

Otherwise, i(Z) = j. Let Yj = Z, and for every s ∈ S(Z) let Zs = {z ∈ Z : zj = s}. Pick
s ∈ S(Z) such that |Zs| ⩾ |Z|/|S(Z)|. Note that i(Zs) > j and |Zs| · ∏i∈I∩[j]|S(Yi)| ⩾
(|Z|/|S(Z)|) · ∏i∈I∩[j−1]|S(Yi)| · |S(Z)| ⩾ k. So we have constructed the sets for j. ■

For all i ∈ I , let Yi ⊆ X be a set with i(Yi) = i that maximises |S(Yi)|. By Claim 3.5,
∏i∈I |S(Yi)| ⩾ k, and by Lemma 3.3 P induces at least ∏i∈I |S(Yi)|! permutations on X.
If |S(Yi)| ⩾ 3 for some i ∈ I , then ∏i∈I |S(Yi)|! ⩾ 2 ∏i∈I |S(Yi)| ⩾ 2k ⩾ 2h. Otherwise,
|S(Yi)| = 2 for all i ∈ I . Then, since 2|I| = ∏i∈I |S(Yi)| ⩾ k, we have |I| ⩾ h and so
∏i∈I |S(Yi)|! = 2|I| ⩾ 2h. This shows that X is 2h-shattered.

Moreover, if X is not 2k-shattered, these arguments imply that |S(Yi)| = 2 for all i ∈ I
and |I| = h. Suppose that for some j ∈ I there exists a set Z ⊆ X with i(Z) = j and
S(Yj) ̸= S(Z). Then, by the maximality of Yj, |S(Z)| = 2 and so |S(Yj) ∩ S(Z)| ⩽ 1. In
particular, for any pair of permutations σ of S(Yj) and τ of S(Z), there is a permutation
σj of S(Yj) ∪ S(Z) that induces σ on S(Yj) and τ on S(Z). By the same argument as in
the proof of Lemma 3.3, it follows that P induces at least |S(Z)|! · ∏i∈I |S(Yi)|! ⩾ 2k
permutations on X. This contradicts the fact that X is not 2k-shattered.

With b = 2 and d = ⌈log2 n⌉, Theorem 1.6 is an immediate consequence of Lemmas 3.1
and 3.4. We remark that while the description of our construction differs significantly
from that of Spencer [12], these constructions are essentially equivalent.

To prove Theorem 1.7, start with a k-lex-shattering family P . By Lemma 3.4, most
subsets of size k are 2k-shattered by P , and even if a subset X is not 2k-shattered, it
is nevertheless 2⌈log2 k⌉-shattered and it has a very specific structure. We exploit this
structure by adding new permutations to P which induce at least four additional
permutation on X and thereby ensure that X is (2⌈log2 k⌉ + 4)-shattered.

To do so, we add a constant number of new permutations for each position i ∈ [d]. Let <
and > denote the standard and reverse permutations of [b].3 Then, for all σ, τ ∈ {<,>},
let πi,σ,τ be the permutation of [b]d with x <πi,σ,τ y if and only if either xi <σ yi, or

3That is, for x, y ∈ [b] set x << y if and only if x < y, and x <> y if and only if x > y.
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xi = yi and xi(x,y) <τ yi(x,y). That is, πi,σ,τ first sorts according to position i and only
afterwards behaves like a lex-permutation. Define

Qi = {πi,σ,τ : σ, τ ∈ {<,>}}.

If X is not 2k-shattered, we show that for an appropriate i ∈ [d] the permutations of Qi
induce four additional permutations on X, as required.

Proof of Theorem 1.7. Let b = 2d, d = ⌈
√

log2 n⌉, and h = ⌈log2 k⌉. By Lemma 3.1, there
exists a k-lex-shattering family P of [b]d with size O(

√
log n). Define R = P ∪⋃

i∈[d] Qi

and note that R has size O(
√

log n).

We claim that every subset X ⊆ [b]d of size k is min{2k, 2h + 4}-shattered by R. Indeed,
suppose that X is not 2k-shattered by P . Then, by Lemma 3.4, we know that the set
I(X) has size h, all Y ⊆ X with i(Y) < ∞ satisfy |S(Y)| = 2, and all Y, Z ⊆ X with
i(Y) = i(Z) < ∞ satisfy S(Y) = S(Z).

Write X = {x1, . . . , xk} with x1 < · · · < xk. Note that i(xℓ, xℓ+1) ∈ I(X) for all
ℓ ∈ [k − 1]. Since k ⩾ 4, one can check that k − 1 > h = |I(X)|. So there must exist
1 ⩽ ℓ < m < k with i(xℓ, xℓ+1) = i(xm, xm+1). Let i = i(xℓ, xℓ+1) and j = i(xℓ+1, xm).

If j ⩾ i, then i(xℓ+1, xm+1) = i and i(xℓ, xm+1) = i. So, Y = {xℓ, xℓ+1, xm+1} ⊆ X
satisfies |S(Y)| = 3. This contradicts the fact that all Y ⊆ X with i(Y) < ∞ satisfy
|S(Y)| = 2. Therefore, j < i. In particular, (xℓ)j = (xℓ+1)j < (xm)j = (xm+1)j, and so
({xℓ, xℓ+1}, {xm, xm+1}) is P-ordered.

Note that i({xℓ, xℓ+1}) = i = i({xm, xm+1}). Since all Y, Z ⊆ X with i(Y) = i(Z) < ∞
satisfy S(Y) = S(Z), we must therefore have (xℓ)i = (xm)i < (xℓ+1)i = (xm+1)i, and
so ({xℓ, xm}, {xℓ+1, xm+1}) is Qi-ordered.

In particular, P and Qi induce different permutations on X. Moreover, note that
{xℓ, xℓ+1, xm, xm+1} is 4-shattered by Qi. Since Lemma 3.4 implies that X is 2h-shattered
by P , it follows that X is (2h + 4)-shattered by R.

4 Open Problems

In this paper, we have shown that at least four regimes exist for the asymptotic be-
haviour of fk(n, t) when k ⩾ 4, and we narrowed the range of values of t for which
the asymptotic behaviour is unknown. The main open problem is to determine the
asymptotic behaviour of fk(n, t) for k ⩾ 5 and min{2k, 2⌈log2 k⌉ + 4} < t ⩽ 2k−1. The
following remains possible.

Question 4.1. For all integers k and t, is the asymptotic behaviour of fk(n, t) either Θ(1),
Θ(log log n), Θ(

√
log n), or Θ(log n)?

We conjecture that Theorem 1.4 determines the entire range of values of t that satisfy
fk(n, t) = Θ(log n).

Conjecture 4.2. Let k ⩾ 3 and t ⩽ 2k−1. Then, fk(n, t) = o(log n).
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Since we did not try to optimise the upper bound on t in Theorem 1.7, we believe that
constructions similar to ours could prove that fk(n, t) = o(log n) for a larger range of
values of t. However, they seem to be far away from reaching t = 2k−1.

In this context it seems important to mention the following inspiration for our approach
that comes from the Erdős-Gyárfás problem [4]. If P is a family of permutations of [n],
assign a colour cx,y to every pair x, y ∈ [n] as follows. For ρ ∈ P , let

cx,y(ρ) =

{
1 if x <ρ y,
0 otherwise.

This colouring uses 2|P| colours, and if a subset X ⊆ [n] of size k spans at most
ℓ colours, then P induces at most 2ℓ permutations on X. We implicitely used this
approach to prove Theorems 1.4 and 1.5. Unfortunately, the converse does not hold: X
can simultaneously span at least ℓ colours and fail to be 2ℓ-shattered by P .

Nevertheless, Eichhorn and Mubayi [3] gave a colouring of Kn with 2Θ(
√

log n) colours
such that all subsets of size k span at least ℓ = 2⌈log2 k⌉ − 2 colours. This inspired our
construction for Theorem 1.7, even if our construction does not 2ℓ-shatter all subsets of
size k. Note that Conlon, Fox, Lee, and Sudakov [2] gave a colouring of Kn with 2o(log n)

colours such that all subsets of size k span at least k − 1 colours. We hope that these
colourings could inspire further progress towards better upper bounds on fk(n, t).
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