
The structure and density of k-product-free sets in
the free semigroup

Freddie Illingworth† Lukas Michel† Alex Scott†

7 July 2023

Abstract

The free semigroup F over a finite alphabet A is the set of all finite words with
letters from A equipped with the operation of concatenation. A subset S of F is
k-product-free if no element of S can be obtained by concatenating k words from S,
and strongly k-product-free if no element of S is a (non-trivial) concatenation of at
most k words from S.

We prove that a k-product-free subset of F has upper Banach density at most
1/ρ(k), where ρ(k) = min{ℓ : ℓ ∤ k − 1}. We also determine the structure of the
extremal k-product-free subsets for all k /∈ {3, 5, 7, 13}; a special case of this proves
a conjecture of Leader, Letzter, Narayanan, and Walters. We further determine the
structure of all strongly k-product-free sets with maximum density. Finally, we
prove that k-product-free subsets of the free group have upper Banach density at
most 1/ρ(k), which confirms a conjecture of Ortega, Rué, and Serra.

1 Introduction

A subset S of a (semi)group G is said to be product-free if x · y /∈ S for all x, y ∈ S. Two
very natural questions present themselves.

Density: How dense can the largest product-free subset of G be?
Structure: What is the structure of the densest product-free subsets of G?

These problems have been extensively studied over the last fifty years. In the fi-
nite abelian case, this culminated in a solution to the density problem by Green
and Ruzsa [GR05] and the structure problem by Balasubramian, Prakash, and Ra-
mana [BPR16]. The finite non-abelian case was first investigated by Babai and Sós [BS85].
This case behaves very differently with the possibility of the largest product-free sub-
sets having vanishing density as shown by the seminal work of Gowers [Gow08]
on quasirandom groups. Recent breakthroughs include the alternating group where
Eberhard [Ebe16] solved the density problem (up to logarithmic factors) and Keevash,
Lifshitz, and Minzer [KLM22] solved the structure problem. We refer the reader to
[Ked09, TV17] for surveys of the area.
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In the infinite non-abelian setting, Leader, Letzter, Narayanan, and Walters [LLNW20]
solved the density problem for a free semigroup1 F on a finite alphabet A with respect
to the measure that assigns weight |A|−n to each word of length n. This is the natural
measure induced by sampling uniformly random words from F and gives total weight
1 to the words of length n. As noted in [LLNW20], the counting measure leads to
degenerate results (in particular, intuitively small product-free sets with density close
to 1). Leader, Letzter, Narayanan, and Walters solved the density problem proving the
following where d∗ is the upper Banach density (see Section 2 for formal definitions).

Theorem 1.1 ([LLNW20]). Let A be a finite set and F be the free semigroup with alphabet A.
If S ⊂ F is product-free, then d∗(S) ⩽ 1/2.

There is a simple class of examples of large product-free subsets of F that show that
1/2 in Theorem 1.1 is best possible. For a non-empty subset Γ ⊂ A the odd-occurrence set
OΓ ⊂ F generated by Γ is the set of words in which the total number of occurrences of
letters from Γ is odd (note that if Γ = A, then OΓ consists of all words of odd length). It
is easy to see that these are product-free with density 1/2. Leader, Letzter, Narayanan,
and Walters conjectured that these are the only examples.

Conjecture 1.2 ([LLNW20]). Let A be a finite set and F be the free semigroup with alphabet
A. If S ⊂ F is product-free and d∗(S) = 1/2, then S ⊂ OΓ for some nonempty subset Γ ⊂ A.

We confirm Conjecture 1.2 and in fact prove a more general result (Theorem 1.4). Calkin
and Erdős [CE96] and Łuczak and Schoen [ŁS97] defined a subset S of a (semi)group
to be k-product-free (k ⩾ 2) if x1 · . . . · xk /∈ S for all x1, . . . , xk ∈ S and to be strongly k-
product-free if it is ℓ-product-free for every ℓ = 2, . . . , k. Ortega, Rué, and Serra extended
Theorem 1.1 to strongly k-product-free sets as well as to the free group.

Theorem 1.3 ([ORS23]). Let k ⩾ 2 be an integer, A be a finite set, and F be the free (semi)group
with alphabet A. If S ⊂ F is strongly k-product-free, then d∗(S) ⩽ 1/k.

Our first main theorem solves the structure problem for free semigroups, describing
the structure of strongly k-product-free sets S ⊂ F with density 1/k. This confirms
Conjecture 1.2. An alternative view of the odd-occurrence set OΓ is as follows: label
each letter in Γ with a 1 and every other letter with a 0 and let the sum of a word be
the sum of the labels of its letter; OΓ is the set of words with odd sum. The natural
generalisation of this to k ⩾ 3 provides strongly k-product-free subsets of F with density
1/k (see Remark 1.5). We prove that these are the only examples.

Theorem 1.4. Let k ⩾ 2 be an integer, A be a finite set, and F be the free semigroup with
alphabet A. If S ⊂ F is strongly k-product-free and d∗(S) = 1/k, then the following holds. It
is possible to label each letter of A with a label in Z/kZ such that S is a subset of the strongly
k-product-free set

T := {w ∈ F : the sum of the labels of letters in w is 1 mod k}.

Remark 1.5. If some prime divides k and every label given to letters in A, then T will
be empty. If there is no such prime, then T will be non-empty by Bezout’s lemma. If T is
non-empty, then d∗(T) = 1/k. Indeed, let α1α2 · · · be an infinite random word where the

1The free semigroup on alphabet A is the set of all finite words whose letters are in A equipped with
the associative operation of concatenation and whose identity is the empty word.
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αi are independent uniformly random letters from A and let Xn be the sum of the labels
of α1, α2, . . . , αn. Then (Xn) is a Markov chain on Z/kZ that is irreducible (since T ̸= ∅).
The uniform distribution π on Z/kZ is stationary for this chain. Let d be the period
of (Xn): by the Markov convergence theorem, for each fixed r ∈ {1, . . . , k − 1}, the
subsequence (Xnd+r) converges to π in distribution, and so the averages |I|−1 ∑n∈I Xn
over long intervals converge to π in distribution. In particular, d∗(T) = π(1) = 1/k.

We now turn to k-product-free sets. In the special case |A| = 1, the free semigroup F is
isomorphic to the non-negative integers under addition. In this case, the term ‘sum-free’
is used in place of ‘product-free’. Calkin and Erdős [CE96] conjectured that a k-sum-free
subset of the non-negative integers has density at most 1/ρ(k) where ρ(k) is

ρ(k) := min{ℓ ∈ Z+ : ℓ ∤ k − 1}.

Note that the integers which are 1 mod ρ(k) form a k-product-free set and so 1/ρ(k)
would be best possible. Łuczak and Schoen [ŁS97] confirmed this conjecture and
also solved the structure problem for non-negative integers. We extend their results
by solving both the density problem (for all k) and the structure problem (provided
k /∈ {3, 5, 7, 13}) for k-product-free subsets of the free semigroup.

Theorem 1.6. Let k ⩾ 2 be an integer, A be a finite set, and F be the free semigroup with
alphabet A. If S ⊂ F is k-product-free, then d∗(S) ⩽ 1/ρ(k).

Theorem 1.7 shows that the structure of the extremal k-product-free sets is very similar
to that of strongly k-product-free sets except everything is modulo ρ(k). See Section 9
for further discussion of the cases when k is 3, 5, 7, or 13.

Theorem 1.7. Let k ⩾ 2 be an integer with k /∈ {3, 5, 7, 13} and ρ = ρ(k). Let A be a finite
set and F be the free semigroup with alphabet A. If S ⊂ F is k-product-free and d∗(S) = 1/ρ,
then the following holds. It is possible to label each letter of A with a label in Z/ρZ such that S
is a subset of the k-product-free set

T := {w ∈ F : the sum of the labels in w is 1 mod ρ}.

Note, just as in Remark 1.5, that if some prime divides ρ and every label given to a
letter in A, then T is empty. Otherwise T is non-empty, k-product-free, and has density
1/ρ(k).

Finally, we consider the free group. Theorem 1.3 solves the density problem for strongly
k-product-free sets. Ortega, Rué, and Serra [ORS23] made a conjecture corresponding
to Calkin and Erdős’s for k-product-free sets. We prove this conjecture.

Theorem 1.8. Let k ⩾ 2 be an integer, A be a finite set, and F be the free group with alphabet
A. If S ⊂ F is k-product-free, then d∗(S) ⩽ 1/ρ(k).

The rest of the paper is structured as follows. In Section 2 we provide the formal
definitions of density. In Section 3 we prove some important technical lemmas and
state our main density result, Theorem 3.5, from which Theorem 1.6 follows. Before
proving Theorem 3.5 we obtain our structural results whose proofs are simpler and
already contain some of the key ideas. The proof of Theorem 1.4 is given in Section 4
and the proof of Theorem 1.7 in Section 5. In Section 6 we build the machinery that we
use to prove Theorem 3.5 in Section 7. In Section 8 we adapt our arguments to the free
group. We finish, in Section 9, with some open problems.
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2 Density

Throughout this paper F will be the free semigroup on a finite alphabet A. To motivate
and provide intuition for the notation we view things from the perspective of a randomly
generated word. Let W = α1α2 · · · be a random infinite word where each αi is an
independent uniformly random letter in A. Taking Wn = α1α2 · · · αn, we may view
(Wn) as a random walk on the infinite |A|-ary tree. We say W hits a set B ⊂ F if the
random walks hits B (equivalently if W has a prefix in B) and W avoids B otherwise. We
equip F with a measure µ satisfying, for every word w ∈ F ,

µ(w) = P(W hits w) = |A|−|w|.

Note that, for B ⊂ F , µ(B) = ∑w∈B µ(w) is the expected number of times that W hits
B. This has a useful corollary. A set C ⊂ F is prefix-free if there are not distinct words
a, b ∈ C where a is a prefix of b. W can hit a prefix-free set at most once.

Observation 2.1. If C ⊂ F is prefix-free, then µ(C) ⩽ 1.

For a positive integer n and a set B ⊂ F the length n layer of B is

B(n) := {w ∈ B : |w| = n},

while, for an interval I ⊂ Z+,

B(I) := {w ∈ B : |w| ∈ I}.

Note that the measure µ is defined so that µ(F (n)) = 1. The density of B on layer n is
|B(n)|/|F (n)| = µ(B(n)), which is the probability that Wn is in B. The density of B on
interval I is

dI(B) :=
µ(B(I))
µ(F (I))

= |I|−1 ∑
n∈I

µ(B(n)).

With these definitions in place, we may give standard notions of density. The upper
asymptotic density of B is

d̄(B) := lim sup
m→∞

d{1,2,...,m}(B) = lim sup
m→∞

m

∑
n=1

µ(B(n))/m.

The upper Banach density of B is

d∗(B) := lim sup
I→∞

dI(B) = lim sup
I→∞

|I|−1 ∑
n∈I

µ(B(n)),

where I is an interval and the notation I → ∞ denotes that both |I| and min I tend
to infinity2. Now d∗(B) ⩾ d̄(B) for any set B and so all of our results also hold for
asymptotic density.

It should be noted that limit superiors are only subadditive (and not additive). In
particular, for disjoint sets A, B ⊂ F we have d∗(A ∪ B) ⩽ d∗(A) + d∗(B) and equality

2The condition min I → ∞ is often omitted from the definition. However, some simple analysis shows
that, whether or not this condition is included, the resulting density is the same.
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may not hold. As an example, the sets

A =
⋃

n∈Z+

F ({(2n − 1)! + 1, (2n − 1)! + 2, . . . , (2n)!}),

B =
⋃

n∈Z+

F ({(2n)! + 1, (2n)! + 2, . . . , (2n + 1)!})

are disjoint and both have density 1.

Despite this, in the group of non-negative integers F = Z+, d∗(B) satisfies some
useful properties. For example, it holds that |dI(x + B)− dI(B)| ⩽ x/|I|. This implies
that d∗(x + B) = d∗(B). Even more importantly, if x1, . . . , xn ∈ Z+ are such that
x1 + B, . . . , xn + B are disjoint, then dI(x1 + B) + · · ·+ dI(xn + B) ⩽ 1, implying that

n · dI(B) ⩽
n

∑
i=1

(
dI(xi + B) +

xi

|I|

)
⩽ 1 +

n

∑
i=1

xi

|I|

and so n · d∗(B) ⩽ 1. Not only can this provide upper bounds on the density of B, but if
we knew that d∗(B) > 1/n, we could conclude that the sets x1 + B, . . . , xn + B cannot all
be disjoint and thereby deduce some structural information about B. Such arguments
were used by Łuczak and Schoen [Łuc95, ŁS97] for their results about sum-free subsets
of the non-negative integers.

If |A| > 1, these arguments no longer work. For example, if w ∈ F , it is easy to see that
d∗(wB) = |A|−|w| · d∗(B) where wB := {wb : b ∈ B}. Also, the fact that w1B, . . . , wnB
are disjoint gives no general upper bound on the density of B. Even if we consider
nested sets B, wB, . . . , wnB, taking B := F \ (wF ) provides an example where these sets
are pairwise disjoint, but d∗(B) = 1 − |A|−|w| which can be arbitrarily close to 1.

We address these issues in the next section. By modifying the density that we consider,
we can ensure that the density is additive. Importantly, the density of the set S ⊂ F
whose upper Banach density we want to bound will not change. Moreover, in certain
situations, we prove that n disjoint nested copies of B imply that the density of B is at
most 1/n. This will be crucial for proving our structural results.

3 Diagonalisation and relative density

Throughout the paper S ⊂ F will be a fixed set whose upper Banach density we wish
to bound (for example, S might be k-product-free). There is a sequence of intervals (Ij)
such that Ij → ∞ and

dIj(S) → d∗(S), as j → ∞.

Let B ⊂ F be another set. The sequence (dIj(B)) is bounded (all terms are in [0, 1]) and
so, by the Bolzano-Weierstrass theorem, has a convergent subsequence. In particular,
by passing to a subsequence of (Ij), we may assume that dIj(S) → d∗(S) and (dIj(B))
converges to some limit that we will call dI∞(B). Given a countable collection of
subsets of F , we may, by a diagonalisation argument, assume there is a subsequence
(Ij) such that dIj(B) → dI∞(B) for every B in the collection where dI∞(S) = d∗(S).
Throughout this paper we will only ever consider countably many sequences and so
this convergence occurs for all sets we consider. These limits, unlike the corresponding

5



upper Banach densities, are additive. Indeed, if sets A and B are disjoint, then dIj(A ∪
B) = dIj(A) + dIj(B) and so dI∞(A ∪ B) = dI∞(A) + dI∞(B). It should be noted that
while dI∞(S) = d∗(S), we only have dI∞(B) ⩽ d∗(B) for the other sets that we consider.

For our structural proofs we will need not only to bound the density of a product-free
set S but also to bound the density of S on subtrees. We now begin to define this.

The product AB of two sets A, B ⊂ F is

AB := {ab : a ∈ A, b ∈ B}

and the set Bk is the product of k copies of B. Note that B is k-product-free exactly if
B ∩ Bk = ∅. A particular important example of a product is wF for a word w ∈ F :
this is exactly the subtree of F consisting of all words starting with w. Similarly BF is
exactly the set of words that have a prefix in B.

For a finite set B ⊂ F we write min B and max B for the length of the shortest and
longest words in B, respectively. Note that if B is finite, then for n ⩾ max B the random
infinite word W hits (BF )(n) if and only if it hits B.

Observation 3.1. If n ⩾ |w|, then µ((wF )(n)) = µ(w). If C ⊂ F is prefix-free and finite,
then µ((CF )(n)) = µ(C) for n ⩾ max C.

Definition 3.2 (relative density). Let w ∈ F and B ⊂ F . For n ⩾ |w|, the relative density
of B in wF on layer n is

|B(n) ∩ wF|
|F (n) ∩ wF| =

µ(B(n) ∩ wF )

µ(F (n) ∩ wF )
=

µ(B(n) ∩ wF )

µ(w)

which is the probability that Wn is in B conditioned on the event that W hits w. If
n < |w|, then we will take the relative density to be 0 by convention.

Furthermore, if I is an interval with min I ⩾ |w|, then the relative density of B in wF on
interval I is

dI
wF (B) :=

µ(B(I) ∩ wF )

µ(F (I) ∩ wF )
= |I|−1µ(w)−1 ∑

n∈I
µ(B(n) ∩ wF ) = µ(w)−1 · dI(B ∩ wF ).

If min I < |w|, then we will take the relative density to be 0 by convention.

Note that if w is the empty word then this relative density is just dI(B).

Consider the sequence of intervals (Ij) given above where dIj(B) → dI∞(B) for every
set B in a countable collection. For each word w ∈ F and each set in the collection, the
sequence (d

Ij
wF (B)) is bounded (all terms are in [0, 1]) and so, by the Bolzano-Weierstrass

theorem, has a convergent subsequence. Since F is countable (it consists of only finite
words) we may, via a diagonalisation argument, pass to a subsequence (Ij) such that,

for every w ∈ F and every B in the countable collection, (d
Ij
wF (B)) converges to some

limit dI∞
wF (B). In conclusion, we may assume throughout the paper that for any set B

we encounter and for all w ∈ F we have

d
Ij
wF (B) → dI∞

wF (B),

where dI∞(B) ⩽ d∗(B) and dI∞(S) = d∗(S) for one fixed set S. As before, these limits
are additive. They satisfy the useful property that we may strip away prefixes.
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Lemma 3.3. If w, v ∈ F , then dI∞
wvF (wB) = dI∞

vF (B).

Proof. Let I be any interval with min I > |wv|. Now

dI
wvF (wB) = |I|−1µ(wv)−1 ∑

n∈I
µ((wB)(n) ∩ wvF ).

Removing the leading w from each word in (wB)(n) ∩ wvF shows that µ((wB)(n) ∩
wvF ) = µ(w) · µ(B(n − |w|) ∩ vF ). Also µ(wv) = µ(w)µ(v) and so

dI
wvF (wB) = |I|−1µ(v)−1 ∑

n∈I−|w|
µ(B(n) ∩ vF ),

where I − |w| is the interval obtained by subtracting |w| from each element of I. Thus

|dI
wvF (wB)− dI

vF (B)| = |I|−1µ(v)−1 ·
∣∣∣∣ ∑
n∈I−|w|

µ(B(n) ∩ vF )− ∑
n∈I

µ(B(n) ∩ vF )

∣∣∣∣
But, for each integer n, µ(B(n) ∩ vF ) ∈ [0, 1] and so

|dI
wvF (wB)− dI

vF (B)| ⩽ |I|−1µ(v)−1 · |w|

Setting I = Ij and taking j to infinity gives the required result.

We are now ready to make an important definition that captures the densest that a set B
can be down a subtree.

Definition 3.4 (sup density). For a set B in the countable collection, the sup density of B
is

dI∞
sup(B) := sup

w∈F
dI∞

wF (B).

Of course, the sup density satisfies dI∞
sup(B) ⩾ dI∞(B) (note that the empty word is in F )

and so dI∞
sup(S) ⩾ d∗(S).

We will prove the following strengthening of Theorems 1.3 and 1.6 in Section 7.

Theorem 3.5. Let k ⩾ 2 be an integer, A be a finite set, and F be the free semigroup with
alphabet A.

(a) If S ⊂ F is strongly k-product-free, then d∗(S) ⩽ 1/k. Moreover, if d∗(S) = 1/k, then
dI∞

sup(S) = 1/k.
(b) If S ⊂ F is k-product-free, then d∗(S) ⩽ 1/ρ(k). Moreover, if d∗(S) = 1/ρ(k), then

dI∞
sup(S) = 1/ρ(k).

This strengthening is needed for our structural results, Theorems 1.4 and 1.7. For
example, if S ⊂ F is strongly k-product-free with d∗(S) = 1/k, then by (a), dI∞(S) =
d∗(S) = dI∞

sup(S). This suggests that S is uniformly distributed down subtrees which is
made precise by the following lemma.

Lemma 3.6. If dI∞(B) = dI∞
sup(B), then dI∞

wF (B) = dI∞(B) for every word w ∈ F .
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Proof. Let ℓ be a non-negative integer and let I be an interval with min I > ℓ. Every
word of length greater than ℓ is in exactly one wF (where w ∈ F (ℓ)). Hence,

dI(B) = ∑
w∈F (ℓ)

dI(B ∩ wF ) = ∑
w∈F (ℓ)

µ(w) · dI
wF (B).

Setting I = Ij and taking j to infinity gives

dI∞(B) = ∑
w∈F (ℓ)

µ(w) · dI∞
wF (B).

Now ∑w∈F (ℓ) µ(w) = µ(F (ℓ)) = 1 and every w ∈ F (ℓ) satisfies dI∞
wF (B) ⩽ dI∞

sup(B) =
dI∞(B). Hence we must have dI∞

wF (B) = dI∞(B) for every w ∈ F (ℓ). The integer ℓ was
arbitrary and so we have the required result.

The next two lemmas are the key technical results for our structural proofs. We remark
that for the non-negative integers (that is, when |A| = 1) they are much more obvious.

Lemma 3.7. Let S ⊂ F be such that dI∞(S) = dI∞
sup(S) > 1/n. Then, for any w1, . . . , wn ∈ F ,

the sets
w1S, w1w2S, . . . , w1w2 · · ·wn−1S, w1w2 · · ·wnS

cannot be pairwise disjoint.

Proof. Assume that these sets are pairwise disjoint. Then, for any word w ∈ F ,

dI∞
wF (w1S) + · · ·+ dI∞

wF (w1 · · ·wnS) = dI∞
wF ((w1S) ∪ · · · ∪ (w1 · · ·wnS)) ⩽ 1.

Choose w = w1 · · ·wn. Applying Lemma 3.3 to each term gives

dI∞
w2···wnF (S) + · · ·+ dI∞

wnF (S) + dI∞
F (S) ⩽ 1.

By Lemma 3.6, each term is dI∞(S) which contradicts dI∞(S) > 1/n, as required.

Lemma 3.8. Let S ⊂ F be such that dI∞(S) = dI∞
sup(S) > 2/(2n − 1). Then, for any

w1, . . . , wn, v1, . . . , vn ∈ F and C ⊂ S, either the sets

w1S, w1w2S, . . . , w1 · · ·wn−1S, w1 · · ·wnC

or the sets
v1S, v1v2S, . . . , v1 · · · vn−1S, v1 · · · vn(S \ C)

are not pairwise disjoint.

Proof. Assume that both collections of sets are pairwise disjoint. Then, as in the proof of
Lemma 3.7,

dI∞
w2···wnF (S) + · · ·+ dI∞

wnF (S) + dI∞
F (C) ⩽ 1

and
dI∞

v2···vnF (S) + · · ·+ dI∞
vnF (S) + dI∞

F (S \ C) ⩽ 1.

Note that dI∞
F (S \ C) = dI∞

F (S)− dI∞
F (C). Applying this and adding the two inequalities,

we get

dI∞
w2···wnF (S) + · · ·+ dI∞

wnF (S) + dI∞
v2···vnF (S) + · · ·+ dI∞

F (S) ⩽ 2.

However, by Lemma 3.6, each term is dI∞(S) which contradicts dI∞(S) > 2/(2n − 1), as
required.
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4 Structure of strongly k-product-free sets

In this section we prove Theorem 1.4 assuming Theorem 3.5. Therefore, let S ⊂ F be
strongly k-product-free satisfying d∗(S) = 1/k. Note, by Theorem 3.5, that dI∞(S) =
1/k = dI∞

sup(S) and so we may and will frequently apply Lemmas 3.7 and 3.8 with
n = k + 1.

We want to show that we can label each letter of A with a label in Z/kZ such that S is a
subset of

T := {a ∈ F : the sum of the labels of letters in a is 1 mod k}.

Assume that each a ∈ F is labelled with this sum. To deduce the structure of S, we
would like to identify these labels for all words a ∈ F . Clearly, everything in S should
be labelled 1. For any other a ∈ F , appending a word from S should increase the label
by 1. So, if a has label ℓ and we append i = −ℓ ∈ Z/kZ words from S to a, we should
get the label 0, and appending one more word from S should give the label 1, which
might itself be a word from S. On the other hand, for any other j ∈ Z/kZ, appending
j + 1 words from S to a should give a label different from 1 and should therefore never
yield a word from S.

Based on this intuition, for i = 0, 1, . . . , k − 1 define

Ti := {a ∈ F : S ∩ aSi+1 ̸= ∅}.

Then, everything in Ti should have the label −i ∈ Z/kZ. So, we expect that S ⊂ Tk−1
and that TiTj ⊂ Ti+j. This is exactly what we will show and which allows us to deduce
the structure of Tk−1, which will be the set T from above.

Remark 4.1. Throughout we will view the indices of the Ti as elements of Z/kZ and, in
particular, all addition of indices is modulo k.

Note that our definition of Ti is slightly arbitrary. Whether we append or prepend
words from S to some a ∈ F , the change in the label of a should always be the same.
So, we could also have defined Ti as the set {a ∈ F : S ∩ Si+1a ̸= ∅}. Fortunately, the
following result tells us that these definitions are equivalent.

Proposition 4.2. For any positive integer r and any a ∈ F ,

S ∩ Sra ̸= ∅ ⇔ S ∩ Sr−1aS ̸= ∅ ⇔ · · · ⇔ S ∩ SaSr−1 ̸= ∅ ⇔ S ∩ aSr ̸= ∅.

Proof. We first prove the case r = 1. Suppose that S ∩ Sa ̸= ∅. Then there is some
x such that x, xa ∈ S. Consider the sets S, xS, x2S, . . . , xk−1S, xk−1aS = xk−2(xa)S. By
Lemma 3.7, these cannot all be pairwise disjoint. Since S is strongly k-product-free and
x ∈ S, the sets S, xS, . . . , xk−1S are pairwise disjoint. Since S is strongly k-product-free
and xa ∈ S, the sets S, xS, . . . , xk−2S, xk−2(xa)S are pairwise disjoint. Thus xk−1S and
xk−1aS are not disjoint and so S ∩ aS ̸= ∅.

Let f : F → F be the reverse map that reverses each word of F (that is, reads them from
right to left). The function f is a measure-preserving involution. Let S = f (S). Now
S is a strongly k-product-free subset of F with d∗(S) = d∗(S) = 1/k. In particular, the
previous paragraph shows that S ∩ Sa ̸= ∅ ⇒ S ∩ aS ̸= ∅. Now, S ∩ Sa = f (S ∩ aS)
and S ∩ aS = f (S ∩ Sa) and so S ∩ aS ̸= ∅ ⇒ S ∩ Sa ̸= ∅ concluding the case r = 1.
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For the general case it suffices to prove that for all non-negative integers i, j: S ∩
Si+1aSj ̸= ∅ ⇔ S ∩ SiaSj+1 ̸= ∅. Suppose that S ∩ Si+1aSj ̸= ∅. Then there is xi ∈ Si

and xj ∈ Sj such that S ∩ Sxiaxj ̸= ∅. Applying the r = 1 case to the word xiaxj shows
that S ∩ xiaxjS ̸= ∅ and so S ∩ SiaSj+1 ̸= ∅. The other direction is analogous.

If the sets T1, . . . , Tk−1 are supposed to correctly identify the labels of all words a ∈ F ,
then every a should be in exactly one of these sets, and S should satisfy S ⊂ Tk−1. This
is proved by the following proposition.

Proposition 4.3. The sets T0, T1, . . . , Tk−1 partition F and S ⊂ Tk−1.

Proof. Let a ∈ F and x ∈ S. Consider the sets S, aS, axS, ax2S, . . . , axk−1S. By
Lemma 3.7, these cannot all be pairwise disjoint. Since S is strongly k-product-free
and x ∈ S, the sets aS, axS, . . . , axk−1S are pairwise disjoint. Hence there is some
r ∈ {0, 1, . . . , k − 1} such that S ∩ axrS ̸= ∅ and so S ∩ aSr+1 ̸= ∅. That is, ∪k−1

r=0 Tr = F .

We next show that the Ti are pairwise disjoint (and so partition F ). Suppose that
a ∈ Ti ∩ Tj where 0 ⩽ i < j ⩽ k − 1. Since a ∈ Ti, S ∩ SaSi ̸= ∅ and so there is x ∈ S
and y ∈ Si such that xay ∈ S. Let

C := {s ∈ S : ays ∈ S} ⊂ S.

Consider the k + 1 sets

S, xS, x2S, . . . , xk−1S, xk−1ay(S \ C).

As S is strongly k-product-free and x ∈ S, the first k of these sets are pairwise disjoint.
Similarly, noting that xk−1ay = xk−2(xay) and xay ∈ S, we have that the last set is
disjoint from each of the first k − 1. Finally, the last two sets are disjoint by the definition
of C. Hence, all k + 1 sets are pairwise disjoint.

Since a ∈ Tj there are z1, . . . , zj+1 ∈ S such that z1 · · · zj+1a ∈ S. Consider the k + 1 sets

S, z1S, z2
1S, . . . , zk−j

1 S, zk−j
1 z2S, . . . , zk−j

1 z2 · · · zjS, zk−j
1 z2 · · · zj+1ayC.

The first k of these sets are pairwise disjoint as S is strongly k-product-free. Similarly,
noting that z1z2 · · · zj+1a ∈ S, the last set is disjoint from each of S, z1S, . . . , zk−j−1

1 S.
Now, by the definition of C, ayC ⊂ S. Using this and product-freeness shows that the
last set is disjoint from each of zk−j

1 S, zk−j
1 z2S, . . . , zk−j

1 z2 · · · zjS. Hence, all k + 1 sets are
pairwise disjoint. This contradicts Lemma 3.8 and so the Ti do partition F .

It remains to show that S ⊂ Tk−1. Since S is strongly k-product-free, for any x ∈ S, the
set S is disjoint from each of xS, xS2, . . . , xSk−1 and so x /∈ T0 ∪ · · · ∪ Tk−2. Since the Ti
partition F , we must have x ∈ Tk−1, as required.

Given these two results, we already know that a ∈ Ti should be labelled by −i ∈ Z/kZ.
Next, we want to show that the label of a product ab should be the sum of the labels of
a and b. We begin by proving that this is true whenever we append a word from S.

Proposition 4.4. The following hold for all j ∈ Z/kZ.

(a) If ax ∈ Tj and x ∈ S, then a ∈ Tj+1.
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(b) Tj+1S ⊂ Tj.

Proof. We first prove (a). Suppose that 0 ⩽ j ⩽ k − 2. We have S ∩ axSj+1 ̸= ∅ and
x ∈ S, so S ∩ aSj+2 ̸= ∅ and so a ∈ Tj+1.

Now suppose that j = k − 1. Consider the sets S, aS, axS, ax2S, . . . , axk−1S. By
Lemma 3.7, these cannot all be pairwise disjoint. Since S is strongly k-product-free and
x ∈ S, the sets aS, axS, . . . , axk−1S are pairwise disjoint. Also, as ax ∈ Tk−1 (and so ax is
not in T0 ∪ T1 ∪ · · · ∪ Tk−2 by Proposition 4.3), S is disjoint from each of axS, ax2S, . . . ,
axk−1S. Thus S and aS are not disjoint and so a ∈ T0, as required.

We now prove (b). Let a ∈ Tj+1 and x ∈ S. Suppose that ax ∈ Ti (such an i exists by
Proposition 4.3). By (a), i + 1 = j + 1 mod k and so i = j mod k, as required.

It is now an easy consequence that the labels of all Ti are very well-behaved with respect
to products.

Proposition 4.5. For all i, j ∈ Z/kZ, TiTj ⊂ Ti+j.

Proof. Let a ∈ Ti and b ∈ Tj. As b ∈ Tj there are x1, x2, . . . , xj+1 ∈ S such that
bx1x2 · · · xj+1 ∈ S. By Proposition 4.4(b),

abx1 · · · xj+1 = a(bx1 · · · xj+1) ∈ Ti−1.

Applying Proposition 4.4(a) j + 1 times, once to remove each xℓ, gives ab ∈ Ti−1+(j+1) =
Ti+j, as required.

Finally, this allows us to complete the proof of Theorem 1.4.

Proof of Theorem 1.4. For each letter α ∈ A, there is, by Proposition 4.3, a unique i ∈
Z/kZ such that α ∈ Ti. Label α with i. By Proposition 4.5, for each i,

Ti = {w ∈ F : the sum of the labels of letters in w is i mod k}.

In particular, by Proposition 4.3,

S ⊂ Tk−1 = {w ∈ F : the sum of the labels of letters in w is − 1 mod k}.

Note that Tk−1 is strongly k-product-free: if w is the concatenation of ℓ words from Tk−1,
then the sum of the labels of letters in w is −ℓ mod k.

To obtain the result given in the statement of Theorem 1.4 (i.e. with 1 mod k instead of
−1 mod k) simply multiply the label of each letter by −1.

5 Structure of k-product-free sets

In this section we prove Theorem 1.7 assuming Theorem 3.5. Let k ⩾ 2 be an integer with
k /∈ {3, 5, 7, 13}, let ρ = ρ(k), and let S ⊂ F be k-product-free satisfying d∗(S) = 1/ρ.
Note, by Theorem 3.5, that dI∞(S) = 1/ρ = dI∞

sup(S) and so we may and will frequently
apply Lemma 3.7 with n = ρ + 1.

We will show that, in fact, S is strongly ρ-product-free and so the result follows from
Theorem 1.4. To this end we make the following definition.
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Definition 5.1. For a set A ⊂ Z+, the set SA ⊂ F is

SA :=
⋂
i∈A

Si,

where we will omit set parentheses so, for example, S1 = S and S1,3 = S ∩ S3.

Since S is k-product-free, S1,k = ∅. It is enough for us to show that S1,2 = S1,3 = · · · =
S1,ρ = ∅ as then S is strongly ρ-product-free. Note that the case k = 2 is immediate and
so we assume that k ⩾ 3 from now on.

We need a quick technical lemma about the size of ρ.

Lemma 5.2. Let k ⩾ 3 be an integer with k /∈ {3, 5, 7, 13} and let ρ = ρ(k). Then

k − 1 ⩾ max{(ρ − t)t(t + 1) : t ∈ {1, 2, . . . , ρ − 1}}. (1)

Proof. By the arithmetic mean-geometric mean inequality, for any t ∈ [0, ρ],

(ρ − t)t(t + 1) = 4(ρ − t) t
2

t+1
2 ⩽ 4

( ρ+1/2
3

)3
= 4/27 · (ρ + 1/2)3.

On the other hand, Lev [Lev03, Lem. 18] proved that, for all positive integers k ⩾ 2,

ρ(k) ⩽ 2 log2 k + 2.

Now, for all k ⩾ 2400,
k − 1 ⩾ 4/27 · (2 log2 k + 5/2)3,

and so (1) holds. Now, if ρ ⩾ 10, then k − 1 ⩾ 5 × 7 × 8 × 9 = 2520 and so (1) holds. We
are left to check the remaining cases.

• If ρ = 2, then the right-hand side of (1) is 2. The smallest k ⩾ 3 with ρ = 2 is 4.
• If ρ = 3, then the right-hand side of (1) is 6. The only k ⩽ 6 with ρ = 3 are 3 and 5.
• If ρ = 4, then the right-hand side of (1) is 12. The only k ⩽ 12 with ρ = 4 is 7.
• If ρ = 5, then the right-hand side of (1) is 24. The only k ⩽ 24 with ρ = 5 is 13.
• ρ is always the power of a prime so there are no k with ρ = 6.
• If ρ = 7, then the right-hand side of (1) is 60. The smallest k with ρ = 7 is 61.
• If ρ = 8, then the right-hand side of (1) is 90. The smallest k with ρ = 8 is 421.
• If ρ = 9, then the right-hand side of (1) is 126. The smallest k with ρ = 9 is 841.

We first show that S1,ρ is empty.

Proposition 5.3. S1,ρ = ∅.

Proof. Suppose that S1,ρ ̸= ∅ and let t ∈ Z+ be maximal with S1,ρ,2ρ−1,...,t(ρ−1)+1 ̸= ∅
where the indices form an arithmetic progression with common difference ρ − 1. Such a
t must exist as k ≡ 1 mod ρ − 1 and S1,k = ∅. Let w ∈ S1,ρ,2ρ−1,...,t(ρ−1)+1.

Taking t = ρ − 1 inside the maximum in (1), we have k − 1 ⩾ ρ(ρ − 1). We split into
two cases based on the size of k.
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First suppose that k− 1 > 2ρ(ρ− 1). Let α ∈ Z+ be minimal such that (α− 1)ρ(ρ− 1) ⩾
k − 1. Note that α ⩾ 4. Write ρ = 2a + b where a = ⌊ρ/2⌋ and b ∈ {0, 1}. Consider the
following sets

S, wρ−1S, wα(ρ−1)S, w(α+1)(ρ−1)S, w2α(ρ−1), w(2α+1)(ρ−1)S . . . ,

w(a−1)α(ρ−1)S, w((a−1)α+1)(ρ−1)S, waα(ρ−1)S, w(aα+b)(ρ−1)S.

We remark that these sets are formed by starting with S and then alternating between
prepending wρ−1 and w(α−1)(ρ−1). Two sets that differ only be a prepending of wρ−1 are
called a pair: the pairs are the first and second sets; the third and fourth sets; . . . . The
number of sets listed is 2a + b + 1 = ρ + 1 and so these cannot all be pairwise disjoint
by Lemma 3.7.

We first show that sets in different pairs are disjoint. If two such sets meet, then
S∩wℓ(ρ−1)S ̸= ∅ for some integer ℓ satisfying α− 1 ⩽ ℓ ⩽ aα+ b. We will show that, for
such an ℓ, wℓ(ρ−1) ∈ Sk−1 which contradicts S1,k = ∅. Since w ∈ S1,ρ,2ρ−1,...,t(ρ−1)+1, we
have wℓ(ρ−1) ∈ Sℓ(ρ−1),(ℓ+1)(ρ−1),...,ℓ(ρ−1)(t(ρ−1)+1) where the indices form an arithmetic
progression with common difference ρ − 1. It suffices to show that k − 1 is in this
arithmetic progression. Since k − 1 is a multiple of ρ − 1, it is enough to show that
ℓ(ρ − 1) ⩽ k − 1 ⩽ ℓ(ρ − 1)(t(ρ − 1) + 1) for all integers ℓ satisfying α − 1 ⩽ ℓ ⩽ aα + b.
Now,

ℓ(ρ − 1)(t(ρ − 1) + 1) ⩾ ℓ(ρ − 1)ρ ⩾ (α − 1)ρ(ρ − 1) ⩾ k − 1

and

ℓ(ρ − 1) ⩽ (aα + b)(ρ − 1) = (aα + ρ − 2a)(ρ − 1)
= a(α − 2)(ρ − 1) + ρ(ρ − 1) ⩽ ρ/2 · (α − 2)(ρ − 1) + ρ(ρ − 1)
= α/2 · ρ(ρ − 1) ⩽ (α − 2)ρ(ρ − 1) < k − 1,

where we used the minimality of α and the fact that α ⩾ 4 in the final and penultimate
inequality respectively.

We second show that sets in the same pair are disjoint which gives the contradiction
required to conclude the case k − 1 > 2ρ(ρ − 1). If two sets in the same pair are
not disjoint, then S ∩ wρ−1S ̸= ∅. But wρ−1 ∈ Sρ−1,2(ρ−1),...,(t(ρ−1)+1)(ρ−1) and so if
S ∩ wρ−1S ̸= ∅, then S1,ρ,2ρ−1,...,(t(ρ−1)+1)(ρ−1)+1 ̸= ∅ which contradicts the maximality
of t.

Second suppose that 2ρ(ρ − 1) ⩾ k − 1 ⩾ ρ(ρ − 1). Consider the the following ρ + 1
sets

S, wρ−1S, w2(ρ−1)S, . . . , wρ(ρ−1)S.

Since t is maximal, consecutive sets are disjoint as in the previous case. If non-
consecutive sets are not disjoint, then S ∩ wℓ(ρ−1)S ̸= ∅ for some integer ℓ satisfying
2 ⩽ ℓ ⩽ ρ. As before, wℓ(ρ−1) ∈ Sℓ(ρ−1),(ℓ+1)(ρ−1),...,ℓ(ρ−1)(t(ρ−1)+1) and so it suffices to
show that ℓ(ρ − 1) ⩽ k − 1 ⩽ ℓ(ρ − 1)(t(ρ − 1) + 1) for such ℓ. This is the case as

ℓ(ρ − 1)(t(ρ − 1) + 1) ⩾ ℓ(ρ − 1)ρ ⩾ 2ρ(ρ − 1) ⩾ k − 1

and
ℓ(ρ − 1) ⩽ ρ(ρ − 1) ⩽ k − 1.

Thus all ρ + 1 sets are disjoint contradicting Lemma 3.7 and so S1,ρ is indeed empty.
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We now show that S1,2, . . . , S1,ρ−1 are all empty.

Proposition 5.4. For all 1 ⩽ d ⩽ ρ − 1, S1,d+1 = ∅.

Proof. We argue via downwards induction on d with the base case d = ρ − 1 given by
Proposition 5.3. Let 1 ⩽ d ⩽ ρ − 2 be largest with S1,d+1 ̸= ∅ and let t ∈ Z+ be maximal
with S1,d+1,2d+1,...,td+1 ̸= ∅. Such a t exists as k ≡ 1 mod d. Let w ∈ S1,d+1,2d+1,...,td+1.

By the definition of ρ, both d and d + 1 divide k − 1. Since d and d + 1 are coprime we
may write k − 1 = αd(d + 1) for some positive integer α. Let s ∈ Z+ be largest such
that ds ⩽ ρ − 1. Write ρ = a(s + 1) + b where a = ⌊ρ/(s + 1)⌋ and b ∈ {0, 1, . . . , s}.
Consider the following ρ + 1 sets

S, wdS, . . . , wsdS, w(α+s)dS, w(α+s)d+dS, . . . , w(α+s)d+sdS,

w2(α+s)dS, . . . , w2(α+s)d+sdS, . . . , wa(α+s)dS, . . . , wa(α+s)d+bdS.

We remark that these sets are formed by starting with S, then prepending wd s times,
prepending wαd, then prepending wd s times, prepending wαd, and so on. We group up
the sets: the 1st through dth sets are in the first group; the (d + 1)th through (2d)th sets
are in the second group; and so on.

We first show that sets in different groups are disjoint. If two such sets meet, then
S ∩ wℓdS ̸= ∅ for some integer ℓ satisfying α ⩽ ℓ ⩽ a(α + s) + b. Now wℓd ∈
Sℓd,(ℓ+1)d,...,ℓd(td+1) and so, since k − 1 is a multiple of d, it suffices to show that ℓd ⩽
k − 1 ⩽ ℓd(td + 1) for all such ℓ. Firstly,

ℓd(td + 1) ⩾ αd(d + 1) = k − 1.

Now,

ℓd ⩽ (a(α + s) + b)d = (a(α + s) + ρ − a(s + 1))d
= (a(α − 1) + ρ)d

and we wish to show this is at most k − 1 = αd(d + 1) and so it is enough to show that
a(α − 1) + ρ ⩽ α(d + 1). By the maximality of s, d(s + 1) ⩾ ρ and so d ⩾ ρ/(s + 1) ⩾ a.
Hence, it suffices to show that d(α − 1) + ρ ⩽ α(d + 1), or equivalently ρ ⩽ α + d. But,
by Lemma 5.2,

αd(d + 1) = k − 1 ⩾ max{(ρ − t)t(t + 1) : t ∈ {1, 2, . . . , ρ − 1}}
⩾ (ρ − d)d(d + 1),

and so we do indeed have ρ ⩽ α + d.

Next we show that sets in the same group are disjoint. If two consecutive sets in the
same group meet, then S ∩ wdS ̸= ∅. But wd ∈ Sd,2d,...,(td+1)d and so if S ∩ wdS ̸= ∅,
then S1,d+1,2d+1,...,(td+1)d+1 ̸= ∅ which contradicts the maximality of t. If two non-
consecutive sets in the same group meet, then S ∩ wℓdS ̸= ∅ for some integer ℓ with
2 ⩽ ℓ ⩽ s. But wℓd ∈ Sℓd and so S1,ℓd+1 ̸= ∅. However, d < 2d ⩽ ℓd ⩽ ds ⩽ ρ − 1 and
so this contradicts the maximality of d.

Hence, all ρ + 1 sets are pairwise disjoint which contradicts Lemma 3.7, as required.

Propositions 5.3 and 5.4 together show that S is strongly ρ-product-free. Theorem 1.7
then follows from Theorem 1.4.
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6 Steeplechases

In this section, we develop some results which will be used in the next section to bound
the density of a (strongly) k-product-free set S and so prove Theorem 3.5. To motivate
our approach, assume that S is strongly 3-product-free. To bound the density of S, we
might hope that dI∞(S) = dI∞(S2) = dI∞(S3). Because all of these sets are disjoint, this
would imply that dI∞(S ∪ S2 ∪ S3) = 3 · dI∞(S) and so dI∞(S) ⩽ 1/3, as required.

If S is evenly distributed, such an argument works. Indeed, note that for all w ∈ S we
have dI∞

wF (S
2) ⩾ dI∞

wF (wS) = dI∞(S), so the relative density of S2 in SF is at least dI∞(S).
If SF covers all of F , this implies that dI∞(S2) ⩾ dI∞(S), and so dI∞(S ∪ S2) ⩾ 2 · dI∞(S).
To include S3 in the union, we can just repeat the argument. For w ∈ S we have
dI∞

wF (S
2 ∪ S3) ⩾ dI∞

wF (w(S ∪ S2)) = dI∞(S ∪ S2) ⩾ 2 · dI∞(S), giving dI∞(S2 ∪ S3) ⩾
2 · dI∞(S) and thus dI∞(S ∪ S2 ∪ S3) ⩾ 3 · dI∞(S), as required.

If S is not evenly distributed, we want to ignore the part of F where S has a very low
density. In the rest, the density of S should be at least dI∞(S) and S should be somewhat
evenly distributed. Within this part, we then want to show that S ∪ S2 has density
2 · dI∞(S) and S ∪ S2 ∪ S3 has density 3 · dI∞(S) to again obtain the sought result.

While the density of S ∪ S2 could be computed as before, this no longer works for
S ∪ S2 ∪ S3. We only know that S ∪ S2 has a high density within a part of F , for example
dI∞

vF (S ∪ S2) ⩾ 2 · dI∞(S) for some v ∈ F . This does not suffice to get a lower bound on
dI∞

wF (S
2 ∪ S3) in the calculation above.

Instead, note that dI∞
wvF (S

2 ∪ S3) ⩾ dI∞
wvF (w(S ∪ S2)) = dI∞

vF (S ∪ S2) ⩾ 2 · dI∞(S) which
tells us that the relative density of S2 ∪ S3 in SvF is at least 2 · dI∞(S). If we could now
show that SvF covers essentially all of SF , this would imply that S2 ∪ S3 has density at
least 2 · dI∞(S) in SF which in turn would suffice to show that dI∞(S) ⩽ 1/3.

The technical arguments in this section are mostly devoted to showing that this is true,
at least up to some small error. The idea is that we partition S into prefix-free sets (Ck)
such that Ck+1 ⊂ CkF . At some point, the measure of Ck will no longer drop. This
means that Ck+1F covers almost all subtrees of CkF .

Now, CkvF will cover a fraction of size |A|−|v| of CkF . We also know that all uncovered
subtrees are covered by Ck+1F . So, Ck+1vF will cover a fraction of size |A|−|v| of the
still uncovered subtrees of CkF , and the remaining subtrees are covered by Ck+2F . By
repeating this argument with Ck+2vF , Ck+3vF , . . . , we can eventually cover almost
all of CkF with

⋃
ℓ⩾k CℓvF . By deleting the first few layers of our partition of S, we

therefore get that SF is covered by SvF , which is what we need.

This motivate the following definition.

Definition 6.1 (steeplechase). An infinite sequence (Ck) of subsets of F is a steeplechase
if, for each positive integer k,

• each Ck is prefix-free and finite,
• every word in Ck+1 has a proper prefix in Ck (in particular, Ck+1F ⊂ CkF ).

Steeplechase (Ck) is spread if max Ck < min Ck+1 for all k and is ε-tight if, for all m, n,
|µ(Cm)− µ(Cn)| ⩽ ε.
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Every steeplechase contains a spread steeplechase. Indeed, note that min Ck ⩾ k, since
every word in Ck has a proper prefix in Ck−1. Let ℓ1 = max C1. Then min Cℓ1+1 > ℓ1 =
max C1. Let ℓ2 = max Cℓ1+1. Then min Cℓ2+1 > max Cℓ1+1. Iteratively doing this gives
a spread steeplechase C1, Cℓ1+1, Cℓ2+1, . . . .

Since Ck is prefix-free, µ(Ck) ∈ [0, 1]. Also, for each k, Ck+1F ⊂ CkF and so the
sequence (µ(Ck)) is non-increasing. In particular, this sequence tends to a limit. Hence
the sequence is Cauchy: for any ε > 0, there is a K such that, for all ℓ, k ⩾ K, |µ(Ck)−
µ(Cℓ)| ⩽ ε. Thus, ignoring the first few Ck gives an ε-tight steeplechase.

In particular, given any steeplechase (Ck) we may, by passing to a subsequence, assume
that (Ck) is both spread and ε-tight.

The following lemma shows that, for any set B ⊂ F , there is a steeplechase that captures
almost all of B.

Lemma 6.2. Let ε > 0 and B ⊂ F . There is an ε-tight spread steeplechase (Ck) such that

• C1 ∪ C2 ∪ · · · ⊂ B,
• for all k and all large n (in terms of k), µ((B \ CkF )(n)) ⩽ ε,
• for all k, µ(Ck) ⩾ dI∞(B)− ε.

Proof. For x ∈ B, let the headcount of x be

h(x) = |{b ∈ B : b is a prefix of x}|.

For each positive integer k, let Dk = {x ∈ B : h(x) = k}. Note that each Dk is prefix-free
and so µ(Dk) ⩽ 1 for all k. Iteratively do the following procedure for each positive
integer k.

1. Let ℓk be such that µ(Dk({ℓk + 1, ℓk + 2, . . .})) ⩽ ε/2k.
2. Let Ck = Dk({1, 2, . . . , ℓk}).
3. Remove (Dk \ Ck)F from B (including from all later Di).

Let B′ be the set remaining at the end of this procedure. Note that in step 3 the
headcounts of words either remain the same or those words are removed from B entirely.
In particular, every word in Ck has a proper prefix in Ck−1. Also, by construction, Ck is
a finite subset of B. Thus (Ck) is a steeplechase and C1 ∪ C2 ∪ · · · ⊂ B.

Fix k and let n > max{ℓ1, . . . , ℓk}. Any word of length n in B′ is not in C1 ∪ · · · ∪ Ck and
so has headcount greater than k and so is in CkF . Thus, B′(n) ⊂ CkF (n). Next note
that B′ is obtained from B by deleting all the (Dt \ Ct)F and so,

µ((B \ CkF )(n)) ⩽ µ((B \ B′)(n)) ⩽ ∑
t

µ((Dt \ Ct)(n)) ⩽ ∑
t

µ(Dt \ Ct) ⩽ ε.

Finally, this implies that µ(B(n)) ⩽ µ(CkF (n)) + ε ⩽ µ(Ck) + ε. Averaging this over
n ∈ Ij and taking j → ∞ gives dI∞(B) ⩽ µ(Ck) + ε.

Hence (Ck) is a steeplechase satisfying all three conditions. As noted above, we may,
by passing to a subsequence, assume that (Ck) is spread and ε-tight. Passing to a
subsequence does not affect the three conditions.

We call the steeplechase (Ck) given by Lemma 6.2 an ε-capturing steeplechase for B.
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Lemma 6.3. Let (Ck) be an ε-tight spread steeplechase. For every w ∈ F there is an N such
that the following holds. If C = C1 ∪ C2 ∪ · · · ∪ CN and n ⩾ max CN + |w|, then

µ((C1F \ CwF )(n)) ⩽ 2ε.

Proof. Let N sufficiently large in terms of |w| and |A| and let n ⩾ max CN + |w|. Now

µ((C1F \ CNF )(n)) = µ((C1F )(n))− µ((CNF )(n)) = µ(C1)− µ(CN) ⩽ ε,

since CNF ⊂ C1F and (Ck) is ε-tight. Hence, it suffices to prove that

µ((CNF \ CwF )(n)) ⩽ ε.

Let X be the following finite prefix-free set

X = {s ∈ CN : s has no prefix in Cw}.

Note that (CNF \ CwF )(n) ⊂ (XF )(n) and so

µ((CNF \ CwF )(n)) ⩽ µ((XF )(n)) = µ(X).

Recall the random infinite word W = α1α2 · · · and corresponding random walk defined
in Section 2. Since X is prefix-free, µ(X) = P(W hits X) and it suffices to show this
probability is at most ε. Let K be the largest integer with 1 + K|w| ⩽ N − |w|. If W hits
X, then W hits CN and so, since (Ck) is a steeplechase, W hits each of C1, C1+|w|, . . . ,
C1+K|w|. Also, W must avoid each of C1w, C1+|w|w, . . . , C1+K|w|w in order to hit X.

We reveal the letters of W one-by-one. We wait until W hits/avoids C1 (this will certainly
be known by the time the length of W is max C1). If W avoids C1, then W avoids X. If
W hits C1, then we reveal the next |w| letters of W and check if they spell w (this has
probability |A|−|w|). If they do, then W avoids X. If they do not, then we wait until W
hits/avoids C1+|w|: note that this has not already happened since (Ck) is spread and
so min C1+|w| ⩾ max C1 + |w|. If W avoids C1+|w|, then W avoids X. If W hits C1+|w|,
then we reveal the next |w| letters of W and check if they spell w (this has probability
|A|−|w|). We continue this procedure with the final check being whether the next |w|
letters of W after it hits C1+K|w| spell w. Note that each check has probability |A|−|w|

and is independent of the previous checks (new letters are involved in each check). If
W hits X, then W must fail each of these spelling checks and so the probability that W
hits X is at most

(1 − |A|−|w|)K+1.

By taking N (and so K) sufficiently large in terms of |w| and |A| we may ensure this is
at most ε, as required.

Before proving our key technical result for our density proofs (Lemma 6.5) we will
need to define the relative density of B on CF . If C ⊂ F is finite and interval I satisfies
min I ⩾ max C, then the relative density of B in CF on interval I is

dI
CF (B) :=

µ(B(I) ∩ CF )

µ(F (I) ∩ CF )
.
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Suppose C is also prefix-free. Then, by Observation 3.1, µ(F (I) ∩ CF ) = |I|µ(C). Also
(cF : c ∈ C) partition CF . In particular,

dI
CF (B) = |I|−1µ(C)−1 ∑

n∈I
µ(B(n) ∩ CF )

= ∑
c∈C

|I|−1µ(C)−1 ∑
n∈I

µ(B(n) ∩ cF )

= ∑
c∈C

µ(c)
µ(C)

· dI
cF (B)

= µ(C)−1 ∑
c∈C

dI(B ∩ cF )

= µ(C)−1 · dI(B ∩ CF ).

For every set B that we consider in this paper and every word c, the sequence d
Ij
cF (B)

converges (to dI∞
cF (B)). Thus the sequence d

Ij
CF (B) converges to a limit dI∞

CF (B). Again,
these limits are additive.

Observation 6.4. Let C ⊂ F be finite and prefix-free. Then

dI∞
CF (B) = ∑

c∈C

µ(c)
µ(C)

· dI∞
cF (B) = µ(C)−1 · dI∞(B ∩ CF ).

Now for the key technical lemma for our density results.

Lemma 6.5. Let ε > 0 and let A, B ⊂ F . If (Ck) is an ε-capturing steeplechase for A with
µ(C1) ⩾ 2ε + ε1/3, then

dI∞
C1F (AB) ⩾ dI∞

sup(B)− 3ε1/3.

Proof. Let w ∈ F be such that

dI∞
wF (B) ⩾ dI∞

sup(B)− ε1/3.

Apply Lemma 6.3 to (Ck) and w to give an N such that letting C = C1 ∪ · · · ∪ CN, if
n ⩾ max CN + |w|, then

µ((C1F \ CwF )(n)) ⩽ 2ε.

We may greedily choose C̃ ⊂ C (starting with shorter words first) such that C̃w is
prefix-free and C̃wF = CwF . Note that

2ε ⩾ µ((C1F \ C̃wF )(n)) ⩾ µ((C1F )(n))− µ((C̃wF )(n))

= µ(C1)− µ(C̃w) ⩾ 2ε + ε1/3 − µ(C̃w)

and so µ(C̃w) ⩾ ε1/3.

Let I be an interval with min I ⩾ max CN + |w| and let X ⊂ F . Note that C̃wF ⊂ C1F
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and so

dI
C1F (X) = |I|−1µ(C1)

−1 ∑
n∈I

µ(X(n) ∩ C1F )

⩾ |I|−1µ(C1)
−1 ∑

n∈I
µ(X(n) ∩ C̃wF )

⩾ |I|−1 ∑
n∈I

µ(X(n) ∩ C̃wF )

µ(C̃w) + 2ε
.

Using the fact that x/(y + 2ε) ⩾ x/y − 2εx/y2 ⩾ x/y − 2ε1/3 for ε > 0, x ∈ [0, 1], and
y ⩾ ε1/3, we have

dI
C1F (X) ⩾ dI

C̃wF (X)− 2ε1/3.

Setting X = AB, I = Ij, and taking j to infinity gives

dI∞
C1F (AB) ⩾ dI∞

C̃wF
(AB)− 2ε1/3. (2)

Now,

dI∞
C̃wF

(AB) = ∑
c∈C̃

µ(c)
µ(C̃)

· dI∞
cwF (AB)

⩾ ∑
c∈C̃

µ(c)
µ(C̃)

· dI∞
cwF (cB)

= ∑
c∈C̃

µ(c)
µ(C̃)

· dI∞
wF (B)

= dI∞
wF (B) ⩾ dI∞

sup(B)− ε1/3,

where the first equality used Observation 6.4, the first inequality used the fact that
c ∈ C̃ ⊂ C ⊂ A, the second equality used Lemma 3.3, and the second inequality is due
to the choice of w. Combining this with (2) gives the required result.

7 Density of (strongly) k-product-free sets

In this section we prove Theorem 3.5, making use of the machinery developed in
the previous section. Part (a) has a simple iterating proof which uses that a strongly
k-product-free S is disjoint from each of S2, S3, . . . , Sk.

Proof of Theorem 3.5(a). Let S ⊂ F be strongly k-product-free and let ε > 0 be suffi-
ciently small. Let (Ck) be an ε-capturing steeplechase for S, as given by Lemma 6.2. If
µ(C1) < 2ε + ε1/3, then d∗(S) = dI∞(S) ⩽ µ(C1) + ε < 3ε + ε1/3 which is less than 1/k.
Otherwise, by Lemma 6.5, dI∞

C1F (S
2) ⩾ dI∞

sup(S)− 3ε1/3. Since S is strongly k-product-
free, S and S2 are disjoint and so

dI∞
C1F (S ∪ S2) ⩾ dI∞

C1F (S) + dI∞
sup(S)− 3ε1/3.

Now, by Observation 6.4,

dI∞
sup(S ∪ S2) ⩾ dI∞

C1F (S ∪ S2) ⩾ dI∞
C1F (S) + dI∞

sup(S)− 3ε1/3,
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and so, by Lemma 6.5,

dI∞
C1F (S

2 ∪ S3) ⩾ dI∞
sup(S ∪ S2)− 3ε1/3 ⩾ dI∞

C1F (S) + dI∞
sup(S)− 6ε1/3.

Hence,

dI∞
sup(S ∪ S2 ∪ S3) ⩾ dI∞

C1F (S ∪ S2 ∪ S3) ⩾ 2dI∞
C1F (S) + dI∞

sup(S)− 6ε1/3.

Iterating this argument gives

1 ⩾ dI∞
sup(S ∪ S2 ∪ · · · ∪ Sk) ⩾ (k − 1)dI∞

C1F (S) + dI∞
sup(S)− 3(k − 1)ε1/3.

But, since (Ck) is ε-capturing for S, dI∞
C1F (S) = µ(C1)

−1 · dI∞(S ∩ C1F ) ⩾ dI∞(S ∩
C1F ) ⩾ dI∞(S)− ε. Hence, (k − 1)dI∞(S) + dI∞

sup(S) ⩽ 1 + (k − 1)ε + 3(k − 1)ε1/3. As ε
is arbitrarily small,

1 ⩾ (k − 1)dI∞(S) + dI∞
sup(S).

But dI∞
sup(S) ⩾ dI∞(S) and so d∗(S) = dI∞(S) ⩽ 1/k. Furthermore, if d∗(S) = 1/k, then

dI∞(S) = 1/k and so dI∞
sup(S) ⩽ 1/k, as required.

The argument for part (b) (k-product-free sets) is more involved. It is not necessary
to keep track of the error term depending on ε (as we eventually take ε to zero). We
introduce some notation to simplify the argument. Write x ≲ y to mean that x ⩽ y+ f (ε)
where the error term f (ε) depends only on k and ε and goes to zero as ε goes to zero (in
all cases f (ε) will be a polynomial in ε1/3).

To improve clarity and motivate the proof we first sketch a proof of Theorem 3.5(b) for
k = 3. For full details see the proof of Proposition 7.1 that follows.

Proof of Theorem 3.5(b) for k = 3. Let S ⊂ F be 3-product-free and let ε > 0 be suffi-
ciently small. Let (Ck) be an ε-capturing steeplechase for S1,2 = S ∩ S2 (recall Defini-
tion 5.1), as given by Lemma 6.2. Since S is 3-product-free, S1,2 is strongly 3-product-free.

We claim that dI∞(S ∩ C1F ) ≲ 1/3 · µ(C1). If µ(C1) < 2ε + ε1/3, then this is immediate.
Otherwise µ(C1) ⩾ 2ε + ε1/3 and so, by Lemma 6.5, dI∞

C1F (S1,2S) ≳ dI∞
sup(S). Since S is

3-product-free, S and S1,2S are disjoint and so

dI∞
sup(S ∪ S1,2S) ⩾ dI∞

C1F (S ∪ S1,2S) ≳ dI∞
C1F (S) + dI∞

sup(S).

Then, by Lemma 6.5,

dI∞
C1F (S1,2S ∪ S2

1,2S) = dI∞
C1F (S1,2(S ∪ S1,2S)) ≳ dI∞

C1F (S) + dI∞
sup(S).

Since S is 3-product-free, S is disjoint from S1,2S ∪ S2
1,2S and so

1 ⩾ dI∞
sup(S ∪ S1,2S ∪ S2

1,2S) ⩾ dI∞
C1F (S ∪ S1,2S ∪ S2

1,2S) ≳ 2dI∞
C1F (S) + dI∞

sup(S).

But dI∞
sup(S) ⩾ dI∞

C1F (S) and so dI∞
C1F (S) ≲ 1/3. Observation 6.4 then gives dI∞(S ∩

C1F ) ≲ 1/3 · µ(C1), as claimed.
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We have bounded the density of S on the part of F where S1,2 is dense. We now bound
the density of S on the rest. Let S′ = S \ (S1,2 ∪ C1F ) and (Dk) be an ε-capturing
steeplechase for S′, as given by Lemma 6.2. By passing to a subsequence we may and
will assume that min D1 > max C1. Since S is 3-product-free and S′ ∩ S2 = ∅, S′ is
strongly 3-product-free.

We claim that dI∞(S′ ∩ D1F ) ≲ 1/3 · µ(D1). If µ(D1) < 2ε + ε1/3, then this is immediate.
Otherwise, by Lemma 6.5, dI∞

D1F (S
′S) ≳ dI∞

sup(S). Now S′ and S′S are disjoint since
S′ ∩ S2 = ∅. Thus

dI∞
sup(S

′ ∪ S′S) ⩾ dI∞
D1F (S

′ ∪ S′S) ≳ dI∞
D1F (S

′) + dI∞
sup(S).

Then, by Lemma 6.5,

dI∞
D1F ((S

′)2 ∪ (S′)2S) = dI∞
D1F (S

′(S′ ∪ S′S)) ≳ dI∞
D1F (S

′) + dI∞
sup(S).

Since S is 3-product-free and S′ ∩ S2 = ∅, S′ is disjoint from (S′)2 ∪ (S′)2S and so

1 ⩾ dI∞
sup(S

′ ∪ (S′)2 ∪ (S′)2S) ⩾ dI∞
D1F (S

′ ∪ (S′)2 ∪ (S′)2S) ≳ 2dI∞
D1F (S

′) + dI∞
sup(S).

But dI∞
sup(S) ⩾ dI∞

sup(S′) ⩾ dI∞
D1F (S

′) and so dI∞
D1F (S

′) ≲ 1/3. Observation 6.4 then gives
dI∞(S′ ∩ D1F ) ≲ 1/3 · µ(D1), as claimed.

By the definition of S′ and since min D1 > max C1, it follows that C1F and D1F are
disjoint (see proof of Proposition 7.1 for more details). In particular, C1 and D1 are
disjoint and their union is prefix-free. Hence µ(C1) + µ(D1) ⩽ 1. Thus,

dI∞(S ∩ C1F ) + dI∞(S′ ∩ D1F ) ≲ 1/3 · (µ(C1) + µ(D1)) ⩽ 1/3.

Since (Ck) and (Dk) are ε-capturing, it follows (see the proof of Claim 7.1.2 below) that
very little of S lies outside (S ∩ C1F ) ∪ (S′ ∩ D1F ). In particular, dI∞(S) ≲ 1/3. Since ε
can be arbitrarily small, we have d∗(S) = dI∞(S) ⩽ 1/3. For the moreover part see the
proof of Proposition 7.1 below.

For general k the argument is a more involved version of the above. We first consider
some SA1 , take some ε-capturing steeplechase, (C(1)

k ) for SA1 and show the density of
S relative to C1F is at most 1/ρ. We then repeat this step for some SA2 , SA3 , . . . . In
future steps we may use the fact that we have dealt with previous SAi . Proposition 7.1
says that if we have chosen a suitable sequence A1, A2, . . . , then we obtain the required
bound on d∗(S), and Proposition 7.2 shows that for each k there is a suitable sequence
of Ai. These combine to complete the proof of Theorem 3.5(b).

Note in the statement below that dAℓ is the sumset

dAℓ := {a1 + · · ·+ ad : a1, . . . , ad ∈ Aℓ}.

Proposition 7.1. Let k ⩾ 2 be an integer and A1, . . . , Am ⊂ N be a sequence of sets with
Am = {1}. Suppose that for all ℓ ∈ [m] there exist positive integers d1, . . . , dρ−1 such that, for
all 1 ⩽ i ⩽ j ⩽ ρ − 1, either

• k ∈ {1} ∪ (1 + (di + di+1 + · · ·+ dj)Aℓ) or
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• Aℓ′ ⊂ {1} ∪ (1 + (di + di+1 + · · ·+ dj)Aℓ) for some 1 ⩽ ℓ′ < ℓ.

If S ⊂ F is k-product-free, then d∗(S) ⩽ 1/ρ. Moreover, if d∗(S) = 1/ρ, then dI∞
sup(S) = 1/ρ.

Proof. Let ε > 0 be sufficiently small. We define the following sets and steeplechases.
Take S(1) := S, R(1) := SA1 ∩ S(1), and let (C(1)

k ) be an ε-capturing steeplechase for R(1),
as given by Lemma 6.2. For ℓ = 2, 3, . . . , m, iteratively do the following:

• Set S(ℓ) := S \ (SA1 ∪ · · · ∪ SAℓ−1 ∪ (C(1)
1 ∪ · · · ∪ C(ℓ−1)

1 )F ) and R(ℓ) := SAℓ
∩ S(ℓ).

• Take (C(ℓ)
k ) to be an ε-capturing steeplechase for R(ℓ). By passing to a subsequence

of the steeplechase we may and will assume that min C(ℓ)
1 > max C(ℓ−1)

1 .

Claim 7.1.1. For each ℓ ∈ [m], dI∞(S(ℓ) ∩ C(ℓ)
1 F ) ≲ 1/ρ · µ(C(ℓ)

1 ).

Proof. Firstly, if µ(C(ℓ)
1 ) < 2ε + ε1/3, then

dI∞(S(ℓ) ∩ C(ℓ)
1 F ) ⩽ dI∞(C(ℓ)

1 F ) = µ(C(ℓ)
1 ) ≲ 1/ρ · µ(C(ℓ)

1 ).

Hence, we may assume from now on that µ(C(ℓ)
1 ) ⩾ 2ε + ε1/3. Consider the sets S(ℓ)

and (R(ℓ))dρ−1S. Note that (R(ℓ))dρ−1 ⊂ Sdρ−1 Aℓ
. Hence, if S(ℓ) and (R(ℓ))dρ−1S meet, then

S(ℓ) ∩ S1+dρ−1 Aℓ
̸= ∅. By the proposition statement, this implies that S(ℓ) ∩ Sk ̸= ∅ or

S(ℓ) ∩ SAℓ′
̸= ∅ (for ℓ′ < ℓ). k-product-freeness rules out the former and the definition

of S(ℓ) the latter. Therefore, S(ℓ) and (R(ℓ))dρ−1S are disjoint and so,

dI∞
sup(S

(ℓ) ∪ (R(ℓ))dρ−1S) ⩾ dI∞

C(ℓ)
1 F

(S(ℓ) ∪ (R(ℓ))dρ−1S)

= dI∞

C(ℓ)
1 F

(S(ℓ)) + dI∞

C(ℓ)
1 F

((R(ℓ))dρ−1S).

Note that (C(ℓ)
k ) is an ε-capturing steeplechase for R(ℓ) and so, by Lemma 6.5,

dI∞
sup(S

(ℓ) ∪ (R(ℓ))dρ−1S) ≳ dI∞

C(ℓ)
1 F

(S(ℓ)) + dI∞
sup(S).

Iterating this procedure, exactly as in the proofs of Theorem 3.5(a) and the k = 3 case
above, gives

1 ⩾ dI∞
sup(S

(ℓ) ∪ (R(ℓ))d1S(ℓ) ∪ · · · ∪ (R(ℓ))d1+···+dρ−2S(ℓ) ∪ (R(ℓ))d1+···+dρ−1S)

≳ (ρ − 1)dI∞

C(ℓ)
1 F

(S(ℓ)) + dI∞
sup(S).

(3)

Now, dI∞
sup(S) ⩾ dI∞

sup(S(ℓ)) ⩾ dI∞

C(ℓ)
1 F

(S(ℓ)) and so dI∞

C(ℓ)
1 F

(S(ℓ)) ≲ 1/ρ. The claim follows

from Observation 6.4.

We next show that very little of S has not been captured by the previous claim.

Claim 7.1.2. For all large n, µ(S(n) \⋃
ℓ(S(ℓ) ∩ C(ℓ)

1 F )) ⩽ mε.

22



Proof. For each ℓ, (C(ℓ)
k ) is an ε-capturing steeplechase for R(ℓ) and so, for all large n,

µ(R(ℓ)(n) \ C(ℓ)
1 F ) ⩽ ε.

Hence, it is enough to show that S \ ⋃
ℓ(S(ℓ) ∩ C(ℓ)

1 F )) ⊂ ⋃
ℓ(R(ℓ) \ C(ℓ)

1 F ). Fix w ∈
S \ ⋃

ℓ(S(ℓ) ∩ C(ℓ)
1 F )). Let ℓ be maximal with w ∈ S(ℓ) (such an ℓ exists as S(1) = S).

Since w ∈ S \⋃
ℓ(S(ℓ) ∩ C(ℓ)

1 F )), we have w /∈ C(ℓ)
1 F . We claim that w ∈ SAℓ

. If ℓ = m,
then this is immediate (SAm = S1 = S). If ℓ < m, then, by the maximality of ℓ, we must
have w ∈ SAℓ

∪ C(ℓ)
1 F and so w ∈ SAℓ

. Thus, w ∈ (SAℓ
∩ S(ℓ)) \ C(ℓ)

1 F = R(ℓ) \ C(ℓ)
1 F ,

as required.

We now note that C(1)
1 F , . . . , C(m)

1 F are pairwise disjoint. If not then some wi ∈ C(i)
1

is a prefix of some wj ∈ C(j)
1 (for i ̸= j). Now, by construction, min C(ℓ)

1 > max C(ℓ−1)
1

for all ℓ and so i < j. On the other hand, wj ∈ C(j)
1 ⊂ R(j) ⊂ S(j) and so wj /∈ C(i)

1 F ,

a contradiction. In particular, C(ℓ)
1 , . . . , C(m)

1 are pairwise disjoint and their union is
prefix-free.

We can now show that d∗(S) ⩽ 1/ρ. Summing Claim 7.1.1 over ℓ gives

dI∞(
⋃
ℓ

(S(ℓ) ∩ C(ℓ)
1 F )) ≲ 1/ρ · µ(C(1)

1 ∪ · · · ∪ C(m)
1 ) ⩽ 1/ρ. (4)

Then, by Claim 7.1.2, we obtain dI∞(S) ≲ 1/ρ. Noting that ε can be arbitrarily small we
have d∗(S) = dI∞(S) ⩽ 1/ρ.

Finally suppose that dI∞(S) = d∗(S) = 1/ρ. We must have ‘equality’ in Claim 7.1.1 and
(4). That is, µ(C(1)

1 ∪ · · · ∪C(m)
1 ) ≳ 1 and dI∞(S(ℓ) ∩C(ℓ)

1 F ) ≳ 1/ρ · µ(C(ℓ)
1 ) for all ℓ ∈ [m].

Take ℓ with µ(C(ℓ)
1 ) ⩾ 1/(2m). Then, by Observation 6.4, dI∞

C(ℓ)
1 F

(S(ℓ)) ≳ 1/ρ. But then

(3) gives dI∞
sup(S) ≲ 1/ρ. Since ε can be arbitrarily small, we have dI∞

sup(S) ⩽ 1/ρ, as
required.

We now show that there is always a sequence of sets satisfying Proposition 7.1. The
sequence chosen here is motivated by the proofs of Propositions 5.3 and 5.4.

Proposition 7.2. For every integer k ⩾ 2 there is a sequence A1, . . . , Am satisfying the
hypothesis of Proposition 7.1.

Proof. We deal with the cases k = 2, 3, 5, 7, 13 first.

• k = 2: take A1 = {1} (with d1 = 1),
• k = 3: take A1 = {1, 2} (with d1 = d2 = 1) and A2 = {1} (with d1 = d2 = 1),
• k = 5: take A1 = {1, 3} (with d1 = d2 = 2) and A2 = {1} (with d1 = d2 = 2),
• k = 7: take

A1 = {1, 3} (with d1 = d2 = d3 = 2),
A2 = {1, 2} (with d1 = d2 = d3 = 1),
A3 = {1, 4} (with d1 = d2 = d3 = 1), and
A4 = {1} (with d1 = d2 = d3 = 1),
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• k = 13: take

A1 = {1, 4} (with d1 = d2 = d3 = d4 = 3),
A2 = {1, 2} (with d1 = d2 = d3 = d4 = 3),
A3 = {1, 3, 5, 7} (with d1 = d2 = d3 = d4 = 1),
A4 = {1, 3} (with d1 = d2 = d3 = d4 = 1),
A5 = {1, 5} (with d1 = d2 = d3 = d4 = 1), and
A6 = {1} (with d1 = d2 = d3 = d4 = 1).

We now turn to k /∈ {2, 3, 5, 7, 13}. For positive integers d and t, let Bd,t := {1, d + 1, 2d +
1, . . . , td + 1}. We construct A1, A2, . . . by taking all the sets Bd,t for 1 ⩽ d ⩽ ρ − 1 and
1 ⩽ t < (k − 1)/d in the order of decreasing d and then decreasing t, and add the set
{1} to the end.

Consider a set Aℓ = Bd,t. We need to show that Aℓ satisfies Proposition 7.1. Let s ∈ Z+

be maximal such that ds ⩽ ρ − 1, and α ∈ Z+ be minimal such that αd(d + 1) ⩾ k − 1.
For 1 ⩽ i ⩽ ρ − 1, define

di =

{
αd if i ≡ 0 mod s + 1 and α ̸= 2,
d otherwise.

For any 1 ⩽ i ⩽ j ⩽ ρ − 1, we have that di + di+1 + · · ·+ dj = βd for some integer β
satisfying 1 ⩽ β ⩽ ρ − 1 + (α − 1)(ρ − 1)/(s + 1). Moreover, by definition of the di,
either β ⩾ α or β ⩽ s. Note that

1 + (di + di+1 + · · ·+ dj)Aℓ = {1 + βd, 1 + (β + 1)d, . . . , 1 + βd(td + 1)}.

If β = 1, then Bd,t+1 ⊂ {1} ∪ (1 + (di + di+1 + · · ·+ dj)Aℓ). Now, either k ∈ Bd,t+1 or
Bd,t+1 = Aℓ′ for some ℓ′ < ℓ and so Aℓ satisfies Proposition 7.1.

If 1 < β ⩽ s, then Bβd,1 ⊂ {1} ∪ (1 + (di + di+1 + · · ·+ dj)Aℓ). Since d < βd ⩽ ds ⩽
ρ − 1, it holds that Bβd,1 = Aℓ′ for some ℓ′ < ℓ and so Aℓ satisfies Proposition 7.1.

If β ⩾ α, we claim that k ∈ 1 + (di + di+1 + · · ·+ dj)Aℓ. Since k − 1 is a multiple of d, it
suffices to show that βd ⩽ k − 1 ⩽ βd(td + 1). Firstly,

βd(td + 1) ⩾ αd(d + 1) ⩾ k − 1.

For the second inequality, if d ⩽ ρ − 2, it holds that αd(d + 1) = k − 1 as observed in
the proof of Proposition 5.4. Furthermore, we have

βd ⩽ (ρ + (α − 1)ρ/(s + 1))d ⩽ (ρ + (α − 1)d)d.

where the second inequality follows from d(s + 1) ⩾ ρ. This is less than k − 1 =
αd(d + 1) if d(α − 1) + ρ ⩽ α(d + 1), which is true for k /∈ {2, 3, 5, 7, 13} as shown in the
proof of Proposition 5.4. On the other hand, if d = ρ − 1, we have

βd ⩽ (d + (α − 1)d/(s + 1))d ⩽ ((α + 1)/2)d2 ⩽ ((α + 1)/2)d(d + 1).

If α ⩾ 3, this is at most (α − 1)d(d + 1) < k − 1 as required. If α ⩽ 2, we can observe
that β ⩽ ρ − 1 to obtain βd ⩽ ρ(ρ − 1) ⩽ k − 1 where the last inequality was shown
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in the proof of Proposition 5.3. In all cases, we have βd ⩽ k − 1 as required. Hence,
k ∈ 1 + (di + di+1 + · · ·+ dj)Aℓ, and so Aℓ satisfies Proposition 7.1.

Finally, for Aℓ = {1}, we can simply pick d1 = · · · = dρ−1 = 1. We then get that
Bj−i+1,1 ⊂ {1} ∪ (1 + (di + di+1 + · · ·+ dj)Aℓ). Since 1 ⩽ j − i + 1 ⩽ ρ − 1, it holds that
Bj−i+1,1 = Aℓ′ for some ℓ′ < ℓ and so Aℓ satisfies Proposition 7.1.

Propositions 7.1 and 7.2 combine to give Theorem 3.5(b) and so we have indeed proved
Theorem 3.5 in this section, as promised.

8 Product-free sets in the free group

We now adapt our methods to the free group and prove Theorem 1.8. Throughout, F
denotes the free group on a finite alphabet A, and S ⊂ F is a k-product-free set whose
density we want to bound. We always assume that all words are in reduced form.
Moreover, AB denotes the product of two sets A, B ⊂ F without cancellation, that is

AB := {w ∈ F : there is a substring decomposition w = ab with a ∈ A and b ∈ B}.

In particular, CF consists of all words with a prefix in C. We equip F with the measure
µ defined as µ(w) = 1/|F(|w|)|. If W = α1α2 · · · is a random infinite word where each
αi+1 is an independent uniformly random letter other than α−1

i , then

µ(w) = P(W hits w) =

{
(2|A|)−1(2|A| − 1)−(|w|−1) if w is not the empty word,
1 otherwise.

As before, for B ⊂ F, µ(B) = ∑w∈B µ(w) is the expected number of times that W hits B.
So, we can make the following observations corresponding to Observations 2.1 and 3.1.

Observation 8.1. If C ⊂ F is prefix-free, then µ(C) ⩽ 1, µ(CF(n)) ⩽ µ(C) for all n, and
µ(CF(n)) = µ(C) if C is finite and n ⩾ max C.

We now define the relative density of subsets of F as follows.

Definition 8.2 (relative density). Let B ⊂ F, and G be a subsemigroup of F with
G(n) ̸= ∅ for all sufficiently large n. If I is an interval, then the relative density of B in G
on interval I is

dI
G(B) :=

µ(B(I) ∩ G)

µ(G(I))
= µ(G(I))−1 ∑

n∈I
µ(B(n) ∩ G).

If G(I) = ∅, we will take the relative density to be 0 by convention, and dI(B) := dI
F(B).

The upper Banach density of B is then d∗(B) = lim supI→∞ dI(B). At this point, we
can again diagonalise to obtain a sequence (Ij) is such that, for every G and B that we

consider in our proofs, (d
Ij
G(B)) converges to some limit dI∞

G (B), and dI∞(S) = d∗(S).
These limits are again additive. Also note that dI

G(B) = dI(B ∩ G)/dI(G) and so
dI∞

G (B) = dI∞(B ∩ G)/dI∞(G) if dI∞(G) > 0. We define sup density as follows.

Definition 8.3 (sup density). For a set B, the sup density of B in G is

dI∞
sup G(B) := sup

w∈G
dI∞

wF∩G(B).
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From now on, let G = Fαβ ⊂ F be the subsemigroup of F consisting of all words starting
with α and ending in β where α, β ∈ A ∪ A−1 and α ̸= β−1. A random sequence
argument shows the following.

Observation 8.4. Let C ⊂ G be finite and prefix-free. Then, for all n ⩾ max C + 2,

µ((CF ∩ G)(n)) ⩾
µ(C)

(2|A| − 1)2 .

In particular, dI∞(wF ∩ G) > 0 for all w ∈ G. As in Lemma 3.3, subtree densities of G
satisfy the property that we may strip away prefixes.

Lemma 8.5. If w, v ∈ G, then dI∞
wvF∩G(wB) = dI∞

vF∩G(B).

Proof. For u ∈ G, note that µ(wu) = a · µ(u) where a = (2|A| − 1)−|w|. So, if X ⊂ G is
finite, then µ(wX) = a · µ(X). Let I be any interval with min I > |wv|. Then

dI
wvF∩G(wB) =

µ((wB)(I) ∩ wvF)
µ((wvF ∩ G)(I))

=
µ(B(I − |w|) ∩ vF)

µ((vF ∩ G)(I − |w|)) .

where we used that wvF ∩ G = w(vF ∩ G). For any X ⊂ G, the fact that µ(X(n)) ∈ [0, 1]
implies that

|µ(X(I))− µ(X(I − |w|))| =
∣∣∣∣∑
n∈I

µ(X(n))− ∑
n∈I−|w|

µ(X(n))
∣∣∣∣ ⩽ |w|.

Therefore,

µ(B(I) ∩ vF)− |w|
µ((vF ∩ G)(I)) + |w| ⩽ dI

wvF∩G(wB) ⩽
µ(B(I) ∩ vF) + |w|

µ((vF ∩ G)(I))− |w| .

Set I = Ij and take j to infinity. From dI∞(vF ∩ G) > 0 it follows µ((vF ∩ G)(Ij)) → ∞.
Hence, both bounds above tend to dI∞

vF∩G(B) and so dI∞
wvF∩G(wB) = dI∞

vF∩G(B).

We can also obtain the following analogue to Observation 6.4.

Observation 8.6. Let C ⊂ G be finite and prefix-free. Then

dI∞
CF∩G(B) = ∑

c∈C

dI∞(cF ∩ G)

dI∞(CF ∩ G)
· dI∞

cF∩G(B) =
dI∞(B ∩ CF)
dI∞(CF ∩ G)

.

Proof. Because dI∞(cF ∩ G) > 0 for all c ∈ C, and therefore also dI∞(CF ∩ G) > 0, it
holds that

dI∞
cF∩G(B) =

dI∞(B ∩ cF)
dI∞(cF ∩ G)

and dI∞
CF∩G(B) =

dI∞(B ∩ CF)
dI∞(CF ∩ G)

.

Since dI∞ is additive, this implies that

dI∞
CF∩G(B) =

dI∞(B ∩ CF)
dI∞(CF ∩ G)

= ∑
c∈C

dI∞(B ∩ cF)
dI∞(CF ∩ G)

= ∑
c∈C

dI∞(cF ∩ G)

dI∞(CF ∩ G)
· dI∞

cF∩G(B).
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Steeplechases in the free group can be defined exactly as for the free semigroup.

Definition 8.7 (steeplechase). An infinite sequence (Ck) of subsets of G is a steeplechase
if, for each positive integer k,

• each Ck is prefix-free and finite,
• every word in Ck+1 has a proper prefix in Ck (in particular, Ck+1F ⊂ CkF).

Steeplechase (Ck) is spread if max Ck < min Ck+1 for all k and is ε-tight if, for all m, n,
|µ(Cm)− µ(Cn)| ⩽ ε.

The following lemma is an analogue to Lemma 6.2.

Lemma 8.8. Let ε > 0 and B ⊂ G. There is an ε-tight spread steeplechase (Ck) such that

• C1 ∪ C2 ∪ · · · ⊂ B,
• for all k and all large n (in terms of k), µ((B \ CkF)(n)) ⩽ ε,
• for all k, µ(Ck)/dI∞(G) ⩾ dI∞

G (B)− ε.

Proof. This is very similar to the proof of Lemma 6.2. For each positive integer k, let
Dk = {x ∈ B : h(x) = k}. Iteratively do the following for each positive integer k.

1. Let ℓk be such that µ(Dk({ℓk + 1, ℓk + 2, . . .})) ⩽ ε · dI∞(G)/2k.
2. Let Ck = Dk({1, 2, . . . , ℓk}).
3. Remove (Dk \ Ck)F from B (including from all later Di).

Then (Ck) is a steeplechase and C1 ∪ C2 ∪ · · · ⊂ B. Fix k and let n > max{ℓ1, . . . , ℓk}.
Then,

µ((B \ CkF)(n)) ⩽ ∑
t

µ(((Dt \ Ct)F)(n)) ⩽ ∑
t

µ(Dt \ Ct) ⩽ ε · dI∞(G) ⩽ ε.

Finally, this implies that µ(B(n)) ⩽ µ(CkF(n)) + ε · dI∞(G) = µ(Ck) + ε · dI∞(G). Aver-
aging this over n ∈ Ij and taking j → ∞ gives dI∞(B) ⩽ µ(Ck) + ε · dI∞(G) and therefore
dI∞

G (B) = dI∞(B)/dI∞(G) ⩽ µ(Ck)/dI∞(G) + ε. By passing to a subsequence, we may
assume that (Ck) is spread and ε-tight.

We call the steeplechase (Ck) given by Lemma 8.8 an ε-capturing steeplechase for B. There
is also an analogue to Lemma 6.3.

Lemma 8.9. Let (Ck) be an ε-tight spread steeplechase. For every w ∈ G there is an N such
that the following holds. If C = C1 ∪ C2 ∪ · · · ∪ CN and n ⩾ max CN + |w|, then

µ(((C1F ∩ G) \ (CwF ∩ G))(n)) ⩽ 2ε.

Proof. Note that (C1F ∩ G) \ (CwF ∩ G) = (C1F \ CwF) ∩ G ⊂ C1F \ CwF, and so it
suffices to show that µ((C1F \ CwF)(n)) ⩽ 2ε.

We can show this exactly as in the proof of Lemma 6.3, we only need W to be the random
walk from the beginning of this section. As a consequence, if W hits Ci, the probability
that the next |w| letters of W spell w is (2|A| − 1)−|w|. Importantly, this uses the fact
that the last letter of a word in Ci is β and the first letter of w is α, and α ̸= β−1.
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Now we can prove the key technical lemma for our density results, corresponding to
Lemma 6.5.

Lemma 8.10. Let ε > 0 and let A, B ⊂ G. If (Ck) is an ε-capturing steeplechase for A with
µ(C1) ⩾ (2|A| − 1)2(2ε + ε1/3), then

dI∞
C1F∩G(AB) ⩾ dI∞

sup G(B)− 3ε1/3.

Proof. Observation 8.4 implies that µ((C1F ∩ G)(n)) ⩾ µ(C1)/(2|A| − 1)2 ⩾ 2ε + ε1/3

for n ⩾ max C1 + 2. We proceed as in the proof of Lemma 6.5. Let w ∈ G be such that

dI∞
wF∩G(B) ⩾ dI∞

sup G(B)− ε1/3.

Apply Lemma 8.9 to (Ck) and w to give an N such that letting C = C1 ∪ · · · ∪ CN, if
n ⩾ max CN + |w|, then µ(((C1F ∩ G) \ (CwF ∩ G))(n)) ⩽ 2ε. We may greedily choose
C̃ ⊂ C such that C̃w is prefix-free and C̃wF = CwF. Note that

2ε ⩾ µ(((C1F ∩ G) \ (C̃wF ∩ G))(n))

⩾ µ((C1F ∩ G)(n))− µ((C̃wF ∩ G)(n))

⩾ 2ε + ε1/3 − µ((C̃wF ∩ G)(n))

and so µ((C̃wF ∩ G)(n)) ⩾ ε1/3 as well as µ((C1F ∩ G)(n)) ⩽ µ((C̃wF ∩ G)(n)) + 2ε.

Let I be an interval with min I ⩾ max CN + |w|, so µ((C̃wF ∩ G)(I)) ⩾ |I|ε1/3 and
µ((C1F ∩ G)(I)) ⩽ µ((C̃wF ∩ G)(I)) + |I|2ε. Let X ⊂ G. Note that C̃wF ⊂ C1F and so

dI
C1F∩G(X) =

µ(X(I) ∩ C1F)
µ((C1F ∩ G)(I))

⩾
µ(X(I) ∩ C̃wF)
µ((C1F ∩ G)(I))

⩾
µ(X(I) ∩ C̃wF)

µ((C̃wF ∩ G)(I)) + |I|2ε
.

Using the fact that x/(y+ |I|2ε) ⩾ x/y− |I|2εx/y2 ⩾ x/y− 2ε1/3 for ε > 0, 0 ⩽ x ⩽ |I|,
and y ⩾ |I|ε1/3, we have

dI
C1F∩G(X) ⩾ dI

C̃wF∩G
(X)− 2ε1/3.

Setting X = AB, I = Ij, and taking j to infinity gives

dI∞
C1F∩G(AB) ⩾ dI∞

C̃wF∩G
(AB)− 2ε1/3. (5)

Now,

dI∞
C̃wF∩G

(AB) = ∑
c∈C̃

dI∞(cwF ∩ G)

dI∞(C̃wF ∩ G)
· dI∞

cwF∩G(AB)

⩾ ∑
c∈C̃

dI∞(cwF ∩ G)

dI∞(C̃wF ∩ G)
· dI∞

cwF∩G(cB)

= ∑
c∈C̃

dI∞(cwF ∩ G)

dI∞(C̃wF ∩ G)
· dI∞

wF∩G(B)

= dI∞
wF∩G(B) ⩾ dI∞

sup G(B)− ε1/3,

where the first equality used Observation 8.6, the first inequality used the fact that
c ∈ C̃ ⊂ C ⊂ A, the second equality used Lemma 8.5, and the second inequality is due
to the choice of w. Combining this with (5) gives the required result.
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At this point, we have recovered all important technical results that we needed to
bound the density of (strongly) k-product-free sets in the free semigroup. We can now
simply use exactly the same arguments as in Section 7. We only need to replace CiF
by CiF ∩ G, µ(Ci) by dI∞(CiF ∩ G), dI∞

sup by dI∞
sup G, and all references by references to the

corresponding results in this section to prove the following analogue of Theorem 3.5.

Theorem 8.11. Let k ⩾ 2 be an integer, A be a finite set, F be the free group with alphabet A,
and G = Fαβ be the subsemigroup of F consisting of all words starting with α and ending with
β where α, β ∈ A ∪A−1 and α ̸= β−1.

(a) If S ⊂ G is strongly k-product-free, then dI∞
G (S) ⩽ 1/k. Moreover, if dI∞

G (S) = 1/k,
then dI∞

sup G(S) = 1/k.

(b) If S ⊂ G is k-product-free, then dI∞
G (S) ⩽ 1/ρ(k). Moreover, if dI∞

G (S) = 1/ρ(k), then
dI∞

sup G(S) = 1/ρ(k).

The arguments from Ortega, Rué, and Serra [ORS23] show that a density bound on
(strongly) k-product-free sets in Fαβ immediately translates to a density bound in F.
Therefore, Theorems 1.3 and 1.8 are immediate corollaries of Theorem 8.11.

9 Open problems

A first natural problem left open is to determine the structure of the extremal k-product-
free sets for k ∈ {3, 5, 7, 13}. For k = 5, 7, 13, we conjecture that the extremal sets are
exactly as in Theorem 1.7. The extremal sets for k = 3 will be slightly more complicated.
Indeed, while 1 + 3Z⩾0 and 2 + 3Z⩾0 are both maximal 3-sum-free subsets of the non-
negative integers of density 1/3, so are both {1, 2}+ 6Z⩾0 and {5, 6}+ 6Z⩾0 (Łuczak
and Schoen [ŁS97] showed that there are no others). We conjecture the corresponding
result holds for the free semigroup.

Conjecture 9.1. Let A be a finite set and F be the free semigroup with alphabet A. If S ⊂ F is
3-product-free and d∗(S) = 1/3, then one of the following hold. Either it is possible to label
each letter of A with a label in Z/3Z such that S is a subset of

{w ∈ F : the sum of the labels of letters in w is 1 mod 3},

or it is possible to label each letter of A with a label in Z/6Z such that S is a subset of

{w ∈ F : the sum of the labels of letters in w is 1, 2 mod 6}.

Łuczak [Łuc95] proved that every sum-free subset of the non-negative integers with
density greater than 2/5 is a subset of the odd integers (Łuczak and Schoen proved
similar results for (strongly) k-sum-free sets). Such strengthenings for subsets of the
free semigroup are false as the constants 1/k in Theorem 1.4 and 1/ρ(k) in Theorem 1.7
cannot be replaced by anything smaller. For example, let k = 2, T be the set of words of
odd length, and x be any word of even length. Let

T′ :={w ∈ T : neither x nor w is a prefix or suffix of the other}
∪ {xwx : xwx has length 1 mod 3}.
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Then T′ is product-free, has density at least 1/2 − 2|A|−|x|, and is not a subset of an
odd-occurrence set (in fact, a set of positive density would need to be removed before
this happens). Nonetheless, T′ is a small perturbation from the odd-occurrence set T.
Hence, it is natural to ask whether there is some form of stability.

Conjecture 9.2. For each δ > 0, is there some ε > 0 such that if S ⊂ F is product-free and
d∗(S) > 1/2 − ε, then there exists an odd-occurrence set OΓ such that d∗(S \ OΓ) < δ?

Theorems 1.4 and 1.7 give the structure of extremal (strongly) k-product-free sets in the
free semigroup. The free group case remains. The simplest open case is the following

Conjecture 9.3. Let A be a finite set and F be the free group with alphabet A. If S ⊂ F is
product-free and d∗(S) = 1/2, then the following holds. It is possible to label each letter of
A∪A−1 with a label in Z/2Z such that the label of α−1 is the negation of the label of α for all
α ∈ A and S is a subset of

T := {w ∈ F : the sum of the labels of letters in w is 1 mod 2}.

For strongly k-product-free we expect the above conjecture to hold with 2 replaced by k.
For k-product-free we expect the behaviour to be the same as for the free semigroup.

We remark that our methods do give some structure. Similar arguments to Section 4
show there is a labelling of all words in the subsemigroup Fαβ (defined in Section 8)
such that the label of a concatenation is the sum of the individual labels and all words in
S ∩ Fαβ have label 1. What is missing is an understanding of how the labellings interact
when letters cancel during concatenation.
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