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ANTÓNIO GIRÃO, KEVIN HENDREY, FREDDIE ILLINGWORTH, FLORIAN LEHNER,
LUKAS MICHEL, MICHAEL SAVERY, AND RAPHAEL STEINER

Abstract. Scott and Seymour conjectured the existence of a function f : N → N such that,
for every graph G and tournament T on the same vertex set, χ(G) ⩾ f(k) implies that
χ(G[N+

T (v)]) ⩾ k for some vertex v. In this note we disprove this conjecture even if v is
replaced by a vertex set of size O(log |V (G)|). As a consequence, we answer in the negative
a question of Harutyunyan, Le, Thomassé, and Wu concerning the corresponding statement
where the graph G is replaced by another tournament, and disprove a related conjecture
of Nguyen, Scott, and Seymour. We also show that the setting where chromatic number is
replaced by degeneracy exhibits a quite different behaviour.

1. Introduction

The question of what structures must appear in graphs of large chromatic number is one
of the most fundamental in modern graph theory. One obvious reason for a graph to have
high chromatic number is the presence of a large clique, but constructions from the 1940s
and 50s of, for example, Tutte [Des54] and Zykov [Zyk49] demonstrate the existence of
triangle-free graphs of arbitrarily large chromatic number. In particular, there are graphs
with arbitrarily large chromatic number in which every neighbourhood is independent (and
hence 1-colourable).

Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour, and Thomassé [BCC+13]
conjectured that the analogous phenomenon does not occur in tournaments. This was
confirmed recently in a beautiful paper of Harutyunyan, Le, Thomassé, and Wu [HLTW19] in
which they showed that for every k there exists an f(k) such that every tournament with
chromatic number1 at least f(k) contains a vertex v such that χ(T [N+(v)]) ⩾ k.

Separately, Scott and Seymour [SS16] (see also [HLTW19, Conj. 7]) conjectured a similar
result for a graph and a tournament on the same vertex set.

Conjecture 1 (Scott and Seymour). For every positive integer k there exists a χ such that,
for every graph G with χ(G) ⩾ χ and every tournament T on the same vertex set, there is a
vertex v such that χ(G[N+

T (v)]) ⩾ k.

This conjecture is supported by the observation [SS16] that the statement holds when
chromatic number is replaced by fractional chromatic number (see Section 4 for more details).
The main result of this note is a disproof of Conjecture 1 for k ⩾ 3. In fact, we prove
something stronger: G and T may be chosen such that the out-neighbourhood2 of any set of

size at most log |V (T )|
2χ2 is bipartite.

Theorem 2. For every positive integer χ there are arbitrarily large N for which there is a
graph G and a tournament T on the same N -vertex set such that χ(G) = χ and, for every set

U of at most logN
2χ2 vertices, χ(G[N+

T (U)]) ⩽ 2.
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1The chromatic number , χ(T ), of a tournament T is the least k for which there is a partition of V (T ) into
k parts each of which induces a transitive (acyclic) subtournament of T .

2The out-neighbourhood , N+(S), of a set S is
⋃

v∈S N+(v). This might contain vertices of S.
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We will show that G can in fact be taken to be triangle-free which will be useful for our
proof of Corollary 3. We make two remarks concerning the optimality of Theorem 2.

• It is not possible to replace 2 by 1 in the bound on the chromatic number of the
out-neighbourhood, even when U consists of a single vertex. Indeed, suppose that
G[N+

T (v)] is independent for every vertex v. Let xy be an edge of G. No out-
neighbourhood of a vertex of T can contain both x and y, so {x, y} dominates T . But
then G is 3-colourable: one colour for each of N+

T (x) and N+
T (y), and a final colour

for whichever of x and y has not been coloured.
• The bound on the size of U is very close to being best possible. Let S be a dominating
set of T of size at most ⌈log2N⌉ (such a set can be constructed greedily). Then N+(S)
contains all vertices of G except perhaps one and so, for any 0 ⩽ ℓ ⩽ χ− 2, there is
some U ⊆ S of size at most ⌈log2(N)/⌊χ−2

ℓ ⌋⌉ with χ(G[N+
T (U)]) > ℓ.

Theorem 2 has the following corollary, which resolves in a strong sense a question of
Harutyunyan, Le, Thomassé, and Wu [HLTW19] concerning the analogous problem for two
tournaments on the same vertex set.

Corollary 3. For every positive integer χ there are arbitrarily large N for which there are
tournaments T1 and T2 on the same N -vertex set such that χ(T1) = χ and, for every set U of

at most logN
8χ2 vertices, χ(T1[N

+
T2
(U)]) ⩽ 2.

In turn, Corollary 3 has the following immediate consequence which disproves a conjecture
of Nguyen, Scott, and Seymour [NSS23, 3.4].

Corollary 4. For every positive integer χ there are arbitrarily large N for which there is an
N-vertex tournament T and disjoint subsets A,B ⊆ V (T ) such that χ(T [A]), χ(T [B]) ⩾ χ

and the following holds. For all A′ ⊆ A and B′ ⊆ B of size at most logN
32χ2 , both χ(A∩N+(B′))

and χ(B ∩N+(A′)) are at most 2.

Finally, we include two results for the setting where chromatic number is replaced by
degeneracy (or equivalently maximum average degree). Since every graph of high chromatic
number has high degeneracy, Theorem 2 shows that for every positive integer d there is a
graph G and a tournament T on the same vertex set such that the degeneracy of G is at least
d, but the subgraph of G induced on each out-neighbourhood of T is bipartite. Our next result
strengthens this statement by ensuring that the graph induced on the out-neighbourhood is
1-degenerate.

Proposition 5. For every positive integer k, there is a k-regular graph G and a tournament
T on the same vertex set such that G[N+

T (v)] is a forest for every vertex v.

Despite this result, and in contrast to Theorem 2, if G has high degeneracy and T is a
tournament on the same vertex set, then there is a two-vertex set whose out-neighbourhood
has high degeneracy.

Theorem 6. For every positive integer k, every graph G with degeneracy at least 12k, and
every tournament T on the same vertex set, there exist vertices x, y such that G[N+({x, y})]
has degeneracy at least k − 1.

2. Proofs of the main theorems

In this section we present the proof of Theorem 2. Our construction is based on the classical
Schrijver graphs [Sch78].

Definition 7. Let k ⩾ 1 and n ⩾ 2k be integers. The Kneser graph KG(n, k) is the graph

whose vertex set is
([n]
k

)
and in which two distinct sets S1, S2 ∈

([n]
k

)
are adjacent if and only

if S1 ∩S2 = ∅. The Schrijver graph SG(n, k) is the induced subgraph of KG(n, k) whose vertex
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set consists of all stable sets in
([n]
k

)
. Here, a set S ∈

([n]
k

)
is called stable if it does not include

two cyclically consecutive3 elements of [n].

Kneser [Kne55] conjectured that the chromatic number of KG(n, k) is n − 2k + 2. This
conjecture remained open for two decades and was first proved by Lovász [Lov78] using
homotopy theory (see also Bárány [Bár78] and Greene [Gre02] for very short proofs). Shortly
afterwards, Schrijver [Sch78] introduced the graphs SG(n, k) and proved that SG(n, k) is
vertex-critical with chromatic number χ(SG(n, k)) = χ(KG(n, k)) = n− 2k + 2.

To prove Theorem 2, we will show that for every integer χ ⩾ 3 and every sufficiently large
integer k there exists a tournament T on the same vertex set as SG(2k + χ− 2, k) such that
for every U ⊆ V (T ) which is sufficiently small, the out-neighbourhood of U in T induces
a bipartite subgraph of SG(2k + χ − 2, k). As χ(SG(2k + χ − 2, k)) = χ, this will prove
Theorem 2.

In constructing our tournament, we rely on the following combinatorial statement which
follows directly from the existence of tournaments with high domination number.

Lemma 8. For every positive integer t there is some n0 such that for all integers n ⩾ n0

there exists a function f :
(
[n]
t

)
→ 2[n] with the following two properties:

• for every A,B ∈
(
[n]
t

)
, at least one of A ∩ f(B) and B ∩ f(A) is empty, and

• for every collection (Ai)i∈I of at most logn
2t sets from

(
[n]
t

)
,⋂

i∈I
f(Ai) ̸= ∅.

Proof. By a classical result of Erdős [Erd63] (see [GS71] for an explicit construction), for every
sufficiently large n there is an n-vertex tournament in which every set of at most log(n)/2
vertices is dominated by a vertex outside the set. Let n be large enough that this result holds
and that log(n)/2 ⩾ t, and let T be the corresponding tournament. Identify V (T ) with [n]

and, for A ∈
(
[n]
t

)
, define f(A) as

f(A) := {v ∈ [n] \A : v dominates A}.

We claim f satisfies the two properties of the lemma statement. Firstly, let A,B ∈
(
[n]
t

)
and suppose for a contradiction that A ∩ f(B) and B ∩ f(A) are both non-empty. Then
there is some a ∈ A \ B that dominates B and some b ∈ B \ A that dominates A. This
implies that a and b are distinct, and the edge between them is oriented in both directions,

which is a contradiction. Next, let (Ai)i∈I be a collection of at most logn
2t sets from

(
[n]
t

)
. Let

A =
⋃

i∈I Ai which is a set of size at most log(n)/2. By the definition of T some vertex x ̸∈ A
dominates A, but then x ∈

⋂
i∈I f(Ai), as required. □

Before giving the proof of Theorem 2, let us fix the following notation: for a set S ∈
([n]
k

)
,

we denote by gap(S) the set of “left-elements” of cyclically consecutive pairs of [n] that are
disjoint from S. Concretely, r ∈ gap(S) if and only if {r, r + 1} ∩ S = ∅, where addition is
to be understood modulo n (that is, n + 1 is identified with 1). Pause to note that every
stable set S ⊆ [n] of size k (that is, every vertex of the Schrijver graph SG(n, k)) satisfies

|gap(S)| = n−2k. Every S ∈
([n]
k

)
can be recovered from gap(S) and so |V (SG(n, k))| ⩽

(
n

n−2k

)
.

Proof of Theorem 2. The result is trivial for χ ⩽ 2, so let χ ⩾ 3 be an integer, t := χ − 2,
and n0 be as given by Lemma 8. Pick some positive integer k > t such that 2k + t ⩾ n0, set
n := 2k + t, and set G := SG(n, k). Note that G is triangle-free, has chromatic number χ and,

for any S ∈ V (SG(n, k)), gap(S) ∈
(
[n]
t

)
. Hence, N := |V (SG(n, k))| ⩽

(
n
t

)
⩽ nt.

Let f :
(
[n]
t

)
→ 2[n] be the function from Lemma 8. Define a directed graph D on the

same vertex set as G that has a directed edge from a vertex S1 to a vertex S2 if and only
if f(gap(S1)) ∩ gap(S2) = ∅. Note, by the first property of f guaranteed by Lemma 8, that

3By this we mean a pair i, i+ 1 where 1 ⩽ i < n or the pair n, 1.
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any two distinct vertices of D are connected by an arc in at least one of the two possible
directions. Hence, there exists a spanning subdigraph T of D which is a tournament.

Let U be any set of at most logN
2χ2 ⩽ logN

2t2
⩽ logn

2t vertices. To finish the proof we will

show that the out-neighbourhood N+
D (U) induces a bipartite subgraph of G (and hence the

same is true for the out-neighbourhood N+
T (U) ⊆ N+

D (U) in T ). Write U = {S1, . . . , S|U |}.
By the second property of f guaranteed by Lemma 8, there is some r ∈ [n] common to
all the f(gap(Si)). By the definition of D, any S ∈ N+

D (U) satisfies r /∈ gap(S) and so
S ∩ {r, r + 1} ̸= ∅. Colouring all the vertices in the out-neighbourhood that include the
element r with one colour and all the remaining vertices (which necessarily contain r + 1)
with another colour provides a proper 2-colouring of G[N+

D (S)]. This concludes the proof of
the theorem. □

We can convert the graph G from Theorem 2 to a tournament: pick any linear order on
the vertices of G and construct a tournament T1 whose back-edge graph is G. We will show
that χ(G) and χ(T1) are closely related, and thus prove Corollary 3.

Proof of Corollary 3. Let K := 2χ and n be sufficiently large. By Theorem 2 there is a
triangle-free graph G with chromatic number K and a tournament T on the same N -vertex
set such that, for every set U of at most logN

8χ2 vertices, χ(G[N+
T (U)]) ⩽ 2. Let (V (G),≺) be

a linear order and define a tournament T1 with vertex set V (G) as follows: there is an arc
from vertex u to vertex v in T1 if either v ≺ u and uv ∈ E(G) or u ≺ v and uv /∈ E(G). We
further set T2 := T and claim that the pair (T1, T2) of tournaments satisfies the statement of
the corollary.

Let W ⊆ V (G) be any set of vertices where T1[W ] is transitive. Note that if v1v2v3 is a
path in G (so v1v3 /∈ E(G) by triangle-freeness) and v1 ≺ v2 ≺ v3, then v1v2v3 is a cyclic
triangle in T1 and so v1, v2, v3 are not all in W . In particular, the partition W = W1 ∪W2

where

W1 := {w ∈ W : there is w′ ∈ W such that w′ ≺ w and w′w ∈ E(G)},
W2 := {w ∈ W : there is no w′ ∈ W such that w′ ≺ w and w′w ∈ E(G)},

gives a proper 2-colouring of the vertices of G[W ]. Since this holds for any W where T1[W ] is
transitive, we have χ(T1) ⩾ χ(G)/2 = χ.

To finish the proof, consider any set U of at most logN
8χ2 = logN

2K2 vertices. Note that

G[N+
T (U)] = G[N+

T2
(U)] is bipartite. Let I1, I2 be two disjoint independent sets in G such

that I1 ∪ I2 = N+
T2
(U). Now consider any two vertices u, v ∈ Ij for some j ∈ {1, 2} and note

that since uv /∈ E(G), there is an arc from u to v in T1 if and only if u ≺ v. Hence T1[I1] and
T1[I2] are transitive tournaments and so χ(T1[N

+
T2
(U)]) ⩽ 2. □

To prove Corollary 4, we can now take the two tournaments T1 and T2 from Corollary 3
and combine them appropriately: we simply orient the edges within A and B according to T1,
and the edges between A and B according to T2.

Proof of Corollary 4. Let χ be a positive integer. By Corollary 3, for arbitrarily large N
there exist tournaments T1 and T2 on the same N -vertex set V with χ(T1) = 2χ and

χ(T1[N
+
T2
(U)]) ⩽ 2 for every U ⊆ V of size at most logN

32χ2 . Partition V into sets A and B such

that χ(T1[A]), χ(T1[B]) ⩾ χ, then construct a new tournament T on V by orienting the edge
between u, v ∈ V to agree with T1 if u, v ∈ A or u, v ∈ B, and orienting it to agree with T2

otherwise. It is not difficult to see that T satisfies the conditions of the corollary. □

3. Degeneracy

In this section we consider the setting in which degeneracy replaces chromatic number. We
first show that there is a tournament on the vertex set of the k-dimensional hypercube
such that each out-neighbourhood induces a forest in the hypercube, proving Proposition 5.
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Therefore, having high degeneracy does not imply that some out-neighbourhood has high
degeneracy.

Proof of Proposition 5. For each k, let Gk be the hypercube on 2k vertices. We will ac-
tually prove something stronger than Proposition 5, namely that the closed in- and out-
neighbourhoods4 Gk[N

−
T [v]] and Gk[N

+
T [v]] are both forests for every vertex v ∈ V (Gk). We

proceed by induction on k. For k = 1 the result is immediate, so given k ⩾ 1 let Tk be a
tournament on V (Gk) with the desired property. We will view Gk+1 as the union of two
copies of Gk, say G1

k and G2
k, connected via the matching consisting of all edges of the form

x1x2, where x1 ∈ V (G1
k) and x2 ∈ V (G2

k) denote the copies of a vertex x ∈ V (Gk). For each

S ⊆ V (Gk), we will write S(1) and S(2) for the corresponding sets of vertices in G1
k and G2

k
respectively.

Now define a tournament Tk+1 on vertex set V (Gk+1) as follows. First orient the edges
within each of V (G1

k) and V (G2
k) according to Tk, in the canonical way. Then for each

x ∈ V (Gk), orient every edge between x1 and N−
Tk
[x]

(2)
away from x1 and every edge between

x1 and N+
Tk
(x)

(2)
towards x1. This completes the construction of Tk+1. Observe that for each

x ∈ V (Gk), the edges between x2 and N−
Tk
(x)

(2)
are oriented away from x2 and the edges

between x2 and N+
Tk
[x]

(2)
are oriented towards x2.

Let x ∈ V (Gk) and note that N+
Tk+1

[x1] = N+
Tk
[x]

(1)∪N−
Tk
[x]

(2)
. By the induction hypothesis,

N+
Tk
[x] and N−

Tk
[x] both induce forests in Gk, so N+

Tk
[x]

(1)
and N−

Tk
[x]

(2)
do the same in Gk+1.

Since there is exactly one edge in Gk+1 between these two sets, namely x1x2, the graph
Gk+1[N

+
Tk+1

[x1]] is acyclic. Analogous arguments show that Gk+1[N
−
Tk+1

[x1]], Gk+1[N
+
Tk+1

[x2]],

and Gk+1[N
−
Tk+1

[x2]] are all acyclic too. Since every vertex of Gk+1 is of the form x1 or x2 for

some x ∈ V (Gk), this completes the proof. □

However, we will now show that, unlike with chromatic number, having high degeneracy
implies that there are two vertices x and y such that the out-neighbourhood of {x, y} has
high degeneracy.

Proof of Theorem 6. Let H be a bipartite subgraph of G with δ(H) ⩾ 6k and let A ∪B be
a bipartition of H with |A| ⩾ |B|. Define T1 = T [A] and T2 = T [B]. Pick x ∈ A satisfying
|N+

T1
[x]| ⩾ |A|/2 and define A′ = N+

T1
[x]. Now let H1 = H[A′, B]. It can be shown using

linear programming duality that every tournament has a probability distribution on its vertex
set which assigns weight at least 1/2 to every closed in-neighbourhood (see [FR95, Sec. 1.2]).
Let w be such a probability distribution for T2. Take a random vertex y ∈ B according
to w and note that P(u ∈ N+

T2
[y]) ⩾ 1/2 for every u ∈ B. Let H2 = H1[A

′, N+
T2
[y]] so

that for every e ∈ E(H1), P[e ∈ E(H2)] ⩾ 1/2. We have E[e(H2)] ⩾ e(H1)/2 ⩾ 3k|A′| ⩾
k(|A′|+ |B|), from which it follows, since |N+

T2
[y]| ⩽ |B|, that there exists y ∈ B such that

e(H2) ⩾ k|V (H2)|. Removing x and y from H2, we obtain a subgraph G′ of G[N+
T ({x, y})]

with e(G′) ⩾ (k − 2)|V (G′)|. Thus G′, and therefore also G[N+({x, y})], has degeneracy
greater than k − 2. □

4. Fractional chromatic number

We remind the reader that a graph G has fractional chromatic number χf (G) ⩽ r if and
only if there is a probability distribution on the independent sets of G such that the random
independent set I obtained and every vertex v satisfy P(v ∈ I) ⩾ 1/r. In this section we
demonstrate that the modified version of Conjecture 1 in which chromatic number is replaced

4The closed in-neighbourhood of a vertex v in tournament T is N−
T [v] := {v} ∪ N−

T (v). The closed
out-neighbourhood is defined analogously.
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by fractional chromatic number is true, as observed by Scott and Seymour [SS16] without
proof.

Theorem 9. For c ⩾ 1, let G be a graph and T be a tournament on the same vertex set such
that χf (G[N+

T (v)]) ⩽ c for every vertex v. Then χf (G) ⩽ 2(c+ 1).

Proof. Let w be a probability distribution on the vertex set of T that assigns weight at least
1/2 to every closed in-neighbourhood. For each vertex v, since χf (G[N+

T (v)]) ⩽ c, there is a

random independent set Iv of G[N+
T (v)] such that P(u ∈ Iv) ⩾ 1/c for every u ∈ N+

T (v).
We sample a random independent set I of G as follows. First pick a vertex v according to

w. Then with probability 1/(c+ 1) take I = {v} and with probability c/(c+ 1) take I = Iv.
Note that, for any vertex u, if v ∈ N−[u], then u ∈ I with probability at least 1/(c + 1).
Hence, by the defining property of w, P(u ∈ I) ⩾ 1/(2c+ 2) and so χf (G) ⩽ 2(c+ 1). □

5. Closing remarks

We have been unable to determine whether high chromatic number forces an out-neighbourhood
with high degeneracy, and we would be interested to know if this is the case.

Question 10. Does there exist, for each integer d, an integer χ such that for every graph G
with χ(G) ⩾ χ and every tournament T on the same vertex set, there is a vertex v for which
G[N+

T (v)] has degeneracy at least d?

We do, however, suspect that this is true for d = 2, that is, it should be possible to force
some out-neighbourhood to contain a cycle.

Conjecture 11. For every graph G with sufficiently large chromatic number, and every
tournament T on the same vertex set, there exists a vertex v such that G[N+

T (v)] contains a
cycle.

We have shown that for certain very structured tournaments T there are graphs on the
same vertex set with large chromatic number, in which every out-neighbourhood of T induces
a bipartite subgraph. We conjecture that (with high probability) we cannot replace T with a
random tournament.

Conjecture 12. For every positive integer k, there exists a χ such that if T is the uniformly
random tournament on vertex set [N ], then with high probability (as N → ∞), for every graph
G on [N ] with χ(G) ⩾ χ there is a vertex v ∈ [N ] for which G[N+

T (v)] ⩾ k.

Finally, as remarked after the statement of Theorem 2, if χ(G) ⩾ χ, then there is a
collection of at most ⌈log2(N)/⌊χ/2−1⌋⌉ out-neighbourhoods whose union induces a subgraph
of chromatic number at least 3. It would be interesting to know if o(log(N)/χ) (as χ → ∞)
out-neighbourhoods suffice here. In particular, we conjecture the following.

Conjecture 13. There exists f(N) satisfying f(N) = o(logN) such that for every N -vertex
graph G with χ(G) ⩾ f(N), and every tournament T on the same vertex set, there is a vertex
v for which χ(G[N+

T (v)]) ⩾ 3.
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[Lov78] László Lovász (Nov. 1978). Kneser’s conjecture, chromatic number, and homotopy. Journal of

Combinatorial Theory, Series A 25(3), 319–324.
[NSS23] Tung Nguyen, Alex Scott, and Paul Seymour (Jun. 2023). Some results and problems on

tournament structure. arXiv:2306.02364.
[Sch78] Alexander Schrijver (1978). Vertex-critical subgraphs of Kneser graphs. Nieuw Archief voor

Wiskunde 26(3), 454–461.
[SS16] Alex Scott and Paul Seymour (Mar. 2016). Open problems for the Barbados Graph The-

ory Workshop 2016, problem 1. url: https://web.math.princeton.edu/~pds/barbados2016/

openproblems.html. Accessed on 18 May 2023.
[Zyk49] A. Zykov (1949). On some properties of linear complexes (in Russian). Matematicheskǐı Sbornik
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