STABILITY OF THE EPSTEIN-ZIN PROBLEM
MICHAEL MONOYIOS AND OLEKSII MOSTOVYT

ABSTRACT. We investigate the stability of the Epstein-Zin problem with
respect to small distortions in the dynamics of the traded securities. We
work in incomplete market model settings, where our parametrization
of perturbations allows for joint distortions in returns and volatility of
the risky assets and the interest rate. Considering empirically the most
relevant specifications of risk aversion and elasticity of intertemporal
substitution, we provide a condition that guarantees the convexity of
the domain of the underlying problem and results in the existence and
uniqueness of a solution to it. Then, we prove the convergence of the
optimal consumption streams, the associated wealth processes, the in-
direct utility processes, and the value functions in the limit when the

model perturbations vanish.

1. INTRODUCTION

Recursive utilities of Epstein-Zin type allow for the incorporation of future
consumption choice into preferences. In the discrete-time environment, this
topic goes back to [KP78] and [EZ89], whereas in continuous-time stochastic
settings, it was originally investigated in [DE92]. These utilities allowed
for the resolution of several asset pricing puzzles; see the introduction to
[Xinl7a] for an overview of this topic. The Epstein-Zin problem remains
an active research area. Thus, recently, explicit solutions are characterized
in [Xinl7al], [KSS17], and [MX18]; for the results in infinite time horizon
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settings, we refer to [HHJ21a], [HHJ21b|, and [AH21a]; a finite yet random
horizon is considered in [AH21D].

The continuous-time counterpart of a recursive utility is also known as
a stochastic differential utility. Two constants govern its parametrization.
One is the usual risk aversion, and the other is an elasticity of intertemporal
substitution (EIS) that specifies the willingness to interchange consumption
over time. As pointed out in [Xinl7a, Remark 2.1, p. 231], the empirically
most relevant case corresponds to the relative risk aversion v > 1 and the
elasticity of intertemporal substitution (EIS) ¢ > 1.

The notion of the well-posedness of a mathematical problem goes back
to Hadamard [Had02], and it comprises the following three properties for a
solution to a given problem to hold: existence, uniqueness, and continuous
dependence on the initial data, where the last property is loosely known as
stability. While the existence and uniqueness results (and various charac-
terizations of the solution) for the Epstein-Zin problem are established in
the papers mentioned above, the questions of stability in the context of this
problem, to the best of our knowledge, have not been answered before.

An additional motivation for studying stability comes from the fact that
in many cases, for example, in the factor model considered in [KSS17], the
explicit solution ceases to exist under general perturbations of the model
parameters, where such perturbations can be associated with a procedure of
calibration. In this case, it is important to understand whether the outputs
of the problem, such as the optimal consumption, the optimal wealth pro-
cess, the indirect utility process, and the value function, differ only slightly
from the solution to the unperturbed problem admitting an explicit solu-
tion.

In the case of the more traditional additive utility, which corresponds to
a particular case of the Epstein-Zin problem (v = i, in the present nota-
tions), the questions of stability are studied more, and historically, and they
have also followed establishing the existence and uniqueness results. The re-
sults on the stability of the outputs to the optimal investment problem with
respect to various perturbations and in varying formulations are contained
in [JN04], [CRO7], [KZ11], [Xini7b], [VSI18], and [Mos21], among others.
These works do not establish any stability to BSDEs result, in contrast to
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the present paper, as the analysis of the stability of the optimal investment
problem in many formulations relies on different techniques, despite the
BSDE-base approach pioneered in [HIMO05]. Thus, compared to the papers
on the stability of the traditional utility maximization in various formula-
tions mentioned in this paragraph, we rely on the analysis of BSDE and
establish related approximation and stability results in the present work.

In view of the previously listed works, one can argue that the literature
on the Epstein-Zin problem does not contain its stability analysis. The aim
of the present paper is to give insight into this problem, and thus, here,
we investigate the stability of the Epstein-Zin problem with respect to per-
turbations of the dynamics of the traded securities. Our parametrization of
perturbations allows us to include joint or separate distortions of the interest
rate as well as of the return and volatility of the risky assets. We consider
the above-described case when both the relative risk aversion and EIS ex-
ceed one. Our analysis is performed under a weak no-arbitrage condition, no
unbounded profit with bounded risk (NUPBR) introduced in [KK07], which
still allows for the meaningful structure of the underlying problem.

Our results include a sufficient condition for the convexity of the domain
of the primal problem and for the existence and uniqueness of the optimizer
to this problem. This condition can be stated as non-emptiness of the dual
domain, that is, the existence of a state price density satisfying an integra-
bility condition, which guarantees a unique solution of class D to the dual
BSDE, see Lemma[2.1] We also show the convergence of the value functions,
the optimal consumption streams, the associated wealth processes, and the
indirect utility processes as perturbations vanish.

One of the difficulties in the analysis involves establishing stability-type
estimates for the solutions to BSDEs with an unbounded terminal condi-
tion and non-Lipschitz generator, with respect to particular perturbations
of both the terminal condition and the generator. Here, we establishe a ucp
convergence result for the family of solutions to such BSDEs, see Lemma
m Further, it is crucial for the proof to show the strict r(and stronger than
strict) concavity of the rvalue function, in a sense Lemma All these es-
timates are needed to establish the convergence of the optimal consumption

streams, whereas the convergence of the value functions relies on conjugacy
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results from [MXI18§| and on a particular construction of the nearly optimal
consumption streams also combined with localization.

The remainder of this paper is organized as follows: in Section [2] we
specify the model; Section [3| contains the main results. In Section [4, we
discuss the integrability condition on the perturbations, and the proofs are

given in Section

2. MODEL

2.1. Market. Let (Q, (]:t)te[o,T] , F, IP’) be a complete stochastic basis, where
T € (0,00) is the time horizon, Fy is the completion of the trivial o-field,
(Ft)iepo,r) is the augmented filtration generated by a (k + n)-dimensional
Brownian motion B = (I/V, WJ-), where W represents the first £ components
and W the remaining n components. For an R"*"-valued F"W-adapted pro-
cess p taking values in R"** and for an R™"-valued adapted processE| pt
J_)T

satisfying pp! + p*(p = I, xn, the n-dimensional identity matrix, we set

we ::/ deWs+/ prdWi.
0 0

We consider a family of markets parametrized by € € (—¢gq,eg) for some
g0 > 0. Thus, for a fixed ¢, the traded assets are (S0, ..., S5"), where S
is the price process of the riskless asset and (S!,...,S%") are the prices of

the risky assets. Their evolution is given by

n
as;® = sp0riat, asyt = Spt( (rf+pt) de+ Y opHawpd |
j=1

ie{l,...,n},

(2.1)

where the processes r¢ > 0, u*, and 0% are F"-adapted processes such
that the integrals in are well-defined and such that of is invertible,
t €[0,T], P-a.s..

In particular, our parametrization of perturbations allows us to include

the following cases:

1Through process p, one, in particular, can include stochastic volatility-type models as
in [KSS17, Section 4]. We note that the model in [KSS17] allows for an explicit solution to
the Epstein-Zin problem via Hamilton-Jacobi-Bellman equations, and under perturbations

of the model parameters, the structure allowing for explicit solutions can be lost.
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e Perturbations of the drift s only. This corresponds to setting ¢ = r°,

and 0% = g% for every i,j € {1,...,n}.

e Perturbations of the volatility ¢ only.

e Similarly, we can consider perturbations of the interest rate only. In
many works in mathematical finance, the riskless asset is assumed to
be constant-valued. While this gives the correct structure to many
problems of mathematical finance, having non-zero interest rates can
also be significant and leads to extra technicalities.

e Perturbations of the numéraire, where the parametrization of such
perturbations can follow the ones in [Mos20].

e Combinations of perturbations above.

2.2. The Epstein-Zin problem. For every ¢ € (—&g,¢9), let

e = (7['670, . ,71'5’”) be an S°-integrable R™*!-valued process representing
the proportions of the total wealth invested in the respective assets, thus,
satisfying ri y = 1, t € [0,T]. Let ¢® be a nonnegative progressively
measurablellz)gocess representing the consumption rate in the e-th market.
Let # be a deterministic consumption clock given by k; =t + 1;7y(t), t €
[0, T]. We specify the dynamics of the wealth process X &7%¢% associated with
consumption-investment pair (7%, ¢) and starting from an initial wealth z
as follows

n €,1
E‘,’L’ dSt

e,mE,ct e,me,c®
(2.2) dX; =X, 7rt e
=0 t

—cidry, X§=m.

We call a consumption process ¢© admissible from x > 0 for the e-th market,
if there exists an S®-integrable process 7€, such that zn: my = 1, t €10,7],
and the associated wealth process in is nonnegatlix_/g, P-a.s.. We denote
the family of admissible consumptions from x > 0 in the e-th market by
A(zx,e), € € (—e0,€0)-

An agent, starting with an initial capital x > 0, invests and consumes in
the market in a way to maximize his or her expected utility with Epstein-Zin
preferences. With § > 0 representing the discount rate, 0 < v # 1 being
the relative risk aversion, and 0 < 1 # 1 specifying the elasticity of inter-

temporal substitution (EIS), one can define the Epstein-Zin aggregator f
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via

_1
c1 ¥
1—

(2.3) flc,u) =9 ((1- v)u)l_% —d00u, ¢>0 and (1—7v)u>0,

1
P
where 6 := (1 —~)/ (1 — %) Given the bequest utility Ur(c) = ¢!=7/ (1 —5),
¢ > 0, the Epstein-Zin utility for a nonnegative consumption stream c is a
process (Uf)c(o 7], which satisfies the BSDE

(2.4) Ui =F; [UT(cT) + /tTf(cs, Ug)ds] , telo,T],

where E; is E | - |F¢]. Sufficient conditions for the existence of U¢ for a given
c are contained in [MX18| Proposition 2.1].

The agent aims to maximize his or her Epstein-Zin utility at time zero
over all admissible strategies, that is
(2.5) sup Ug, (x,e) € (0,00) x (—e0,¢€0) -

cEA(z.)

This formulation, however, does not guarantee that for a given ¢ € A(z,¢),
U¢ in is well-defined. As pointed out in [MX18, Remark 2.2], one
needs some mild integrability properties on the elements of A(z,¢), (z,¢) €
(0,00) x (—¢e0,€0). Below, we provide some insights on this issue. For this,

we need to introduce the state price densities.

2.3. State price density processes. The family of state price density

processes is defined as

D(y,e) :={D >0:Dy=y,DX*™° +/ Dgcsdrs
0

(2.6) is a supermartingale for every c € A(l,¢e)},

(y,€) € (0,00) x (—€0,€0),
where (7, ¢) is the investment-consumption pair, such that X=™¢ in ({2.2))

is nonnegative. Thus, one can see that the family of minimal state price

densities
en D (= [ras- [ (o7 ) am?). ce e,
0 0

is well-defined, where £ denotes the stochastic exponential. In particular,
since, for every €, the set of state price densities is non-empty, and this also

applies to the set of supermartingale deflators, this precludes the arbitrage
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opportunities in the sense of unbounded profit with bounded risk (UPBR)
introduced in [KKO07], we also refer to [KK2I, Chapter 2] for its multiple

equivalent characterizations. In other words,
(2.8) NUPBR holds for every e € (—¢, €p).

For the BSDE characterizations, as in [Xinl7a], it is important to restrict
the admissible consumptions to the ones that are also integrable in a sense

made precise below. Thus, one can define
~ T 1—1
(2.9) A(z,€) := {c € A(z,e): E [/ Cs “’ds] < oo}.
0

Formally, in [Xinl7a], also E [clew] < oo is imposed. However, for every
constant § > 0, a consumption plan satisfying ¢y > 0 satisfies E [cp};q < 00.
In particular, the plans such that E [clT*'y] = oo correspond to small values
of ¢r, and thus are suboptimal. By setting the associate U¢ = —oo for every
¢ such that E [C;w_7:| = 00, one can rule them out. If all consumption plans
allow for E [c%,,_v} = 00, then intuitively, the problem is degenerate. This,
however, does not happen if the interest rate r* > 0, in which case constant-
valued consumptions are admissible and integrable in the sense above.

Having ruled out the possibility of E [c%p_w] = oo for all consumption
plans, as in the paragraph above, one can provide a sufficient condition
for E [fOT cii’ds] < 00 to hold for every ¢ € A(z,¢e). It is related to a
characterization via the reverse Holder inequality in the spirit of [Nutl0)
Proposition 4.5] and [Kaz94].

The following lemma provides a sufficient condition for A(z,e) = A(x,¢€).

Lemma 2.1. Let € € (—¢gg,e0) be fized and suppose that there exists D €
D(1,¢), such that

(2.10) E [/OT Di_‘/’ds} < 0.

Then, we have

(2.11) A(z,e) = A(z,e), = >0.
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Proof. Let us fix € € (—eg,£0). Then, for every D € D(1,¢), along the lines
of [Mos15l, Proposition 4.2], one can show that

T
(2.12) E {/ Dscsds] <1, foreveryce A(l,¢).
0

Next, let us consider D € D(1,¢), satisfying (2.10|). Then, for an arbitrary
c € A(1,¢), using Holder’s inequality, we get
1 -1
ds
1

T _1 T 1_ -1
E / cs Yds| =E / cs YDy YD
0 0

T 1*% T )
< CE [/ Dscsds] ]E[/ D;—wds] < 00,
0 0

for some constant C' € (0, 00), where the last inequality follows from (12.10))

1—1
and (2.12)). Therefore, E [ fOT e 9%y wds] < 00, and we conclude that ¢ €

<=
Pl

A(l,e).
([

As pointed out in [MXI8, Remark 2.2], instead of verifying the integra-
bility conditions in , it is enough to check for the optimal consumption
stream, c*, that the associated U¢ exists and is of class (D). A similar
argument can be provided for the dual problem below.

With the integrability conditions in , one can restate (2.5)) as

(2.13) u(z,e) = sup U§, (x,e) € (0,00) X (—€0,€0)-
CE.Z(:E,E)
We call u - the value function and U%®#) - the value process if &(z, ) is an

optimizer in (2.13)) for a given pair (z,e) € (0, 00) X (—&g, ), provided that

such an optimizer exists. Next, following [MX18], let us define

1-9
(2.14) g(d,v) := 6% d ((1- 7)1})1_% —d60v, d>0, (1—~)v>0,

-1
and a function V7, the convex conjugate of Up, which is given by

!
(2.15) Vr(d) == ——d >, d>0.
L=n
Next, for a given pair (y,e) € (0,00) x (—€9,e0) and D € D(y,¢e), one

defines the Epstein-Zin stochastic differential dual for D to be a process VP
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satisfying the BSDE
T
D 1l .p
(2.16) V© =E, [VT(DT) +/ g <D877V; >ds} , tel0,T].
t

Sufficient conditions for the existence of VP are presented in [MXIS8|, Propo-

sition 2.5]. We state the family of the dual minimization problems as

2.17 inf VP, (y,¢) € (0,00) x (—€0,€0) .
(2.17) pnf Vo (y,€) € (0,00) x (—¢0,0)

Similarly to (2.13)), to ensure that for a given state price density D, VP is
well-defined, one needs some integrability conditions, and following [MX18§|,

Proposition 2.5], one can set
" T
(2.18) D(y,¢e) = {D €D(y,e): E [/ D;wds]} < o0.
0

E
Technically in [MX18], Proposition 2.5], it is also required that E {DT ] <

oo, which however holds in our settings for every state price density, by
an application of Holder’s inequality, as 7771 € (0,1), and since D (under

nonnegative interests rates) is a supermartingale. This allows us to restate

ETD o

(219) ’U(y,E) = lllf ‘/ODv (y,&‘) € (07 OO) X (_50750) .
DeD(ye)

We conclude this section by pointing out that, by (2.10)), if 75(1,8) # 0,
then A(1,e) = A(1,e), and thus, the convexity of A(1,e) holds. Thus, for
every £ € (—ep,€p), the non-emptiness of the dual feasible set implies the

convexity of the primal domain.

3. MAIN RESULTS

3.1. Model assumptions. We will need two assumptions. To ensure that
the dual problem ([2.19)) is non-degenerate in a neighborhood of ¢ = 0, we

impose the following assumption.
Assumption 3.1. For every € € (—eg, £0), D(1,¢) # 0.

The second assumption allows for the additional structure for the base

model corresponding to € = 0.
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Assumption 3.2. Let z > 0 be fixed and suppose that, for ¢ = 0, a
conjugacy relation in the following sense holds:
(3.1) u(,0) = min (v(7,0) + x7) = v(y.0) + .

¥
for some y > 0. Further, assume that, for ¢ = 0, there exist optimizers
&(x,0) to (2.13) and D(y,0) to (2.19), such that U= and VP®0 are of

class D.

Sufficient conditions for Assumption Sufficient conditions for
are contained in [MX18| Section 3]. Explicit solutions are contained [Xinl7a,
Theorem 2.14], see also [KSS17], where optimal strategies are obtained in
Markovian settings. To be more precise, [KSS17] contains the explicit solu-
tion for the primal problem , and the optimal state price density could
be identified via the utility gradient approach, following e.g., [DS94].

Y > 1,

Proposition 3.3. [MX18, Theorem 3.6] Suppose that vy > 1,
(00)_1 10 are

—1
or yip < 1, ¢ < 1 and the processes 19, (u°)T (((TO)T>
bounded. Then (3.1) holds.

For models with unbounded market price of risk, we refer to [MXI18|
Section 3.4] for the exact conditions that guarantee Assumption In
a Markov setting, we refer to [KSS17, Theorem 5.1|, where, in the one-
dimensional stock prices process and a factor model for the dynamics of both
riskless and risky assets, boundedness of u® and r° as well as boundedness
away from 0 and oo of 0, guarantee that [MX18, Theorem 3.6] applies.

To analyze the behavior of the primal and dual problems under pertur-
bations, we introduce a family of R"”-dimensional processes \*, defined by

(3.2)
%= (00)7) " (00— 00 i) teDT] e e (~e0.z0).

We also set R := (R',..., R"), where

n
(3.3) AR} = p%'dt + > o™ dW?, Ry =0, ie{l,...,n},
j=1
Along the lines of [Mos20], let us introduce the family of processes N¢,
e € (—ep,€0), given via
(3.4)
dN®, = Nf ((r) —r§)dt — X{dR), t€[0,T], N§=1, &€ (—eo,e0).
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We recall that  is given by r; =t +1;7(t), t € [0,7T]. Let LO(dk x P) be
the linear space of (equivalence classes of) real-valued measurable processes
on the stochastic basis (2, F, (F1)icp,7], P) equipped with the topology of

convergence in measure (dx x P).

3.2. Stability theorems. The first theorem establishes convergence of the

value functions.

Theorem 3.4. Let x > 0 be fixed, v > 1 and v > 1 in . Let
us further suppose that Assumptions and hold and for every e €
(—e0,€0), 0° is invertible, \* appearing in 18 R-integrable and il_rg% N¢ =
1, in measure (dk x P).

Then for every € € (—eq,€0), we have

(i) the value functions are finite-valued, that is
(3.5) u(z,e) €R and wv(z,e) €R, (z,e) € (0,00) X (—€0,€0);

(ii) the value functions converge

(3.6) el e) = u(@,0), x>0,
(3.7) i v(y'e) =v(y,0), y>0;

(iii) for every (z,e) € (0,00) X (—eq,€0), there exists a unique optimizer to
@13).

Remark 3.5. For the problem in ([2.13]), a condition of the finiteness of the
value functions condition is typically imposed. In the present settings, as
we deal with non-positive value functions u(z,e) finiteness from above (by

zero) holds. For the finiteness from below,

(3.8) u(x,e) > —o0, (x,e) € (0,00) X (—e0,¢€0),

rwe remark that this also holds as 0 > 0, and thus ¢ = TLH is an admissible
consumption for the initial wealth x, for which one can use comparison
results for BSDEs to show that the value function is finite-valued. Similar
arguments can be employed to show the finiteness of v(y,¢), as it is also

bounded by zero from above, and by (u(1,¢) —y) from below.
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The next theorem addresses the convergence of the optimizers. The as-
sumptions of Theorem ensure that for every (z,¢) € (0,00) X (—eg, £0),
there exists a unique ¢(z,¢), such that u(z,e) = Ug(x’e), and that u(zx,e) is
finite-valued for every such (z,¢). To prove convergence of the optimizers,

we need to ensure finiteness for the value processes in the sense below.

Theorem 3.6. Let x > 0 be fized. Let the conditions of Theorem [5.4) hold
and suppose that there exists € > 0, such that

€SS SUP (. ¢)e B,/ (0,0) C(&: €) € LO(dkxP), ess inf(; c)e B, (0,0) Ue®) e LY (drxP),

where B.:(0,0) is a Buclidean ball of radius €' in R2.
We then have that

(3.9) lim ¢z, ¢e) = ¢(z,0),

(z,e)—(x,0)

where the convergence is in measure (dx x P).

Let us recall that under the conditions of Theorem [3.4] the existence and
uniqueness of the optimizer to follows from Theorem item (477).
Let us also recall that, for a given nonnegative consumption stream c, U¢
was defined in (2.4).The following theorem establishes the convergence of

the indirect utility processes.

Theorem 3.7. Let x > 0 be fixed. Then, under the conditions of Theorem

we have
lim U = g0 ucp.

(2 ,€)—(x,0)

Next, for a fixed z > 0 and € = 0, let y > 0 be as in Assumption and
suppose that the dual minimizer has the form
(3.10)

t _ ~
Di(y,0) = Cexp < / Ouf (Gula,0),U77) ds> 0cf (22,00, U7*Y), te(0,7)
0
for some constant C' > 0 and
(3.11) Xa(x’o)ﬁ(y,O) +/ ﬁs(y,O)Es(x,O)dns is a martingale,
0

where X9 is the wealth process starting from z financing ¢(z,0) (given

by (2.2) at ¢ = 0). We note that sufficient conditions for (3.10)) and (3.11))

are similar to the ones for Assumption [3.2) to hold; see the discussion after
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Assumption In particular, both and hold if the market
price of risk (u°)" ((O‘O)T> o (0‘0)_1 10 process is bounded as well as v > 1
and ¥ > 1. Then, the conditions of [MXI8, Theorem 3.6, p. 1002], apply
and [MX18, Corollary 3.7, p. 1002] implies and . Furthermore,
representation for the optimal state-price density goes back to [DS94]

and is known as the utility gradient approach.

Theorem 3.8. Let x > 0 be fired. Let the assumptions of Theorem
(3.10), and (3.11) hold. Then, lim X)) = X0 ip measure

(2’ ,e)—(z,0)
(dk x P), where X 2) is any wealth process financing ¢(x',€) starting from
the initial capital ' in the market where the traded assets are given by .
Furthermore, if lim N¢ = 1, ucp, then lim X8 = XA@0)  yep.
e—0 (z',e)—(z,0)
4. ON THE INTEGRABILITY CONDITION ON PERTURBATIONS

Let us revisit Assumption For a fixed ¢ € (—eg,&0), in order for
5(1,6) # (), where 75(1,5) are defined in ([2.18)), there must exist a super-
martingale state price density D° € D(1,¢), such that

(4.1) E [/()T(Dg)l—lﬂds} < 0.

The natural candidate for (4.1)) to hold is to check whether the minimal
state price density given by (12.7)) satisfies the integrability condition (4.1).
Another sufficient condition for Assumption [3.1] to hold is given by

T R 1—
B[ (Dwon:) s <o e e
0

where lA)S(y, 0) is the dual minimizer at (y,0), which exists by Assumption
and N°¢ are given by . Condition is the only integrability con-
dition needed on the perturbations to ensure that the dual domain incorpo-
rating the additional integrability for perturbed models is non-empty, that
is: 5(1, g) # (), for € # 0. Perhaps the most surprising feature in our analysis
(at least for the authors) was that other than (4.1)), no further integrability
needs to be imposed. This can be explained as follows, where the key is in
the utility maximization considerations. It is well-known that for the ex-
pected utility maximization from terminal wealth, the key role is played by

the finiteness of the value functions, see [KS99|, where the finiteness of the
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primal value function (from above) is assumed, and [KS03], where the finite-
ness of the dual value function (from above) is required. To be more precise,
both conditions require the value functions to be less than oo (in [KS99,
Theorem 2.2], under the asymptotic elasticity). In [Mos15], the finiteness of
both primal and dual value functions (from below and above) is introduced
and proven to be necessary and sufficient for the standard assertions of the
utility maximization theory in the case of additive and stochastic utility.
In the present setting, in view of the choice of the parameters v > 1
and 1 > 1, we obtain that the associated value function is negative-valued.
This follows from the analysis of the associated BSDEs as in rLemma
In particular, the base model exhibits a finiteness conditions for both the
primal and dual value functions. For the perturbed models, as v and ¥ do
not change, we still obtain that the primal value function is negative-valued,
and the dual one too. Here, the primal gives a lower bound for the dual
via the conjugacy relations. Thus the blow-up to oo is not possible under
perturbations of the models. In turn, the blow-up to —oo is also not possible,
as is a mazimization problem, and thus finiteness of the base model
guarantees that we do not have a blow-up as long as the processes N¢’s
appearing in are well-defined, and without any further integrability
conditions needed on this family. This situation can be compared to the
counterexample in [Mos20], where blow-up does happen for a particular
form of perturbations, as the utility function there can take positive values.
The connection between the last two paragraphs can be further illustrated
by the case of v = i (going outside the scope of the analysis in this paper).
Then the problem reduces to the one with an additive utility, given
by
[ [ g e
-y

In this case, and with v > 1, the value function is negative-valued, and so is

the dual one, thus precluding the blow-up to co. The blow-up to —oo is not
possible by the feasibility of the constant-valued consumptions, which also

gives a lower bound for the dual problem.

5. PROOFS

5.1. Preliminary Results. We begin with the following structural lemma.
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Lemma 5.1. Let the conditions of Theorem[3.] hold, let x > 0 be fized, and
y > 0 be given through (3.1)). Then, for every e € (—eg,e0), we have

1
¢ =¢(z,0)— € A(z,e), x>0,

(5.1) o NE
Df: = D(y,0)N® € D(y,e), y>0,

where ¢(x,0) and ﬁ(y, 0) are the optimizers, fore =0, to (2.13) and (2.19),
respectively.

Proof. First, we observe that for every ¢ € (—eg,€p), the process N¢ is pro-
gressively measurable by [KS98, Proposition 1.13, p. 5]. Now, the assertion

of the lemma follows from It6’s lemma. O

Let us introduce some notations used in this section’s remaining part.

e Let S? be the space of one-dimensional continuous adapted processes

sup |Yi]?| < oc.

(Y2)iejo,r) such that E
t€[0,T]

e Let S®=<{Y 8% || sup |Vi|l|oo < 0 ¢.
te[0,7)

e Let M? denote the space of predictable multidimensional processes
(Z)seo.1> such that E [ i |Zt12dt} < .

With f given in ({2.3)), let us consider the BSDE

1—
Cr
1 _

Y T T
(52)  Up=1t +/ f(cs,Ug)ds—/ Z°dB,, tel0,T).
t t

Next, with the transformation
(5.3) (Y,Z) = e "1 —y)(U*, 2, te[0,T],

we obtain a BSDE for (Y, Z) of the form

T T
(5.4) Yt:emc;u/ F(s,cS,YS)ds—/ Z.dB,, tel0,T],
t t

1 1

where, for 0 < 0, F(t,z,y) := 60e Oz _iy -3 < 0 is monotonically de-

creasing in y.

Lemma 5.2. Under the conditions of Theorem[3.4, for every (z,¢) € (0, 00)x

(—¢€0,€0), u(z,€) and v(z,€) are finite-valued.
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Proof. Let us fix (z,¢) € (0,00) X (—€0,&0). From Lemma we deduce
that g/c\(x,())% € A(z,e). Therefore, for a fixed m > 1,

z

(5.5) c= 21y <E(x,0)

T+ om

1
Ne

> Am e A(z,e).

In particular, we have

E[(cr)*™7] < oo.

1

1—1
Next, with F¥(t,c;,y) := 60e~%¢, “(|y| Ak)' "o (note that the process c is

bounded from above by m here), let us consider

T T
v = e—chlTu/ Fk(s,cs,Ysk)ds—/ zkdB,, te0,T], keN.
t t

This is a BSDE with a Lipschitz generator and a bounded terminal condition.
Therefore, by [CE12, Theorem 5.1], this BSDE admits a unique solution
(Yk ZF) € §? x M2. Furthermore, as c in is bounded away from 0
and oo, we have % < lef < C, for some constant C' > 0. As, additionally,
F* is non-positive-valued, using the comparison result for BSDEs [Par99,
Theorem 2.4, p. 517], one can show that Y* takes values in [0, C]. Therefore,
with ¢ in and the associated Y given via , for every k > C,
FF(t,c;,Y*) = F(t,c;, Y*), t €[0,T], P-a.s.. As aresult, (Y,Z) := (Y*, ZF)
is a solution to (for ¢ given in (5.5))).
Changing variables back to (U¢, Z€), that is from , and with
66t

1—~

(Utcvzf) = (}/tht)v te [OvT]’

one can show that this pair satisfies and further, following the proof of
[Xinl7a, Proposition 2.2], that U€ satisfies , U*¢ is non-positive-valued
and is bounded away from —oo. Asin , we take the supremum over all
admissible consumptions, u(z,e) > U§ (for c as above). Next, also similarly
to the proof of [Xinl7al Proposition 2.2] and relying on the localization
technique from [BHOG], one can see that for every admissible consumption,
U§ < 0. We conclude that u(z,¢) < 0 and is finite-valued for every ¢ €
(—e0,€0). Now, by [MXI18 Theorem 2.7], v(z,&) > u(z,e) — xz, (x,2) €
(0,00)%, and thus v(z, ¢) is bounded away from —oo. Furthermore, similarly
to showing that u(z,e) < 0, one can show that v(z,e) < 0. We conclude
that v(z,e) is finite-valued. O
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Lemma 5.3. Let © > 0 be fized. Then, under the conditions of Theorem

we have

5.6 liminf wu(a’,e) > u(x,0).
(56) Jmint u(@'.¢) > u(z.0)

Proof. Let us fix & > 0 and let ¢(x,0) be the optimizer to (2.13) at (z,0),
which belongs to /T(a:, 0), as this results from Assumption Let (xg,er),
k € N, be a sequence which converges to (z,0) and such that

(5.7) klglgo u(zg, ) = (x}}gl_i}?aio)u(x',e).

For ¢ = ¢(x,0), let us consider the BSDE (5.4 (which is related to
via (5.3)). As, by Assumption U¢ is of class D, one can show (see
the discussion in [MXI8, Remark 2.2]) that ¢ € A(z,0). Furthermore, as
established in the proof of [Xinl7al Proposition 2.2], r(for v,% > 1) (5.4
admits a unique solution (Y, Z), such that Y is continuous, strictly positive,
and of class D, with fOT |Zi|?dt < oo, P-a.s.. Moreover, U¢ := e‘thtﬁ,
t € [0,T7], satisfies and . Next, using the approximation procedure
as in step 2 of the proof of [Xinl7al Proposition 2.2], one can show that

there exists ng € N, such that
6/
(5.8) Yy — Yol < 3 > ny,
where Y™ solves
T T
Y= (el ) /\n+/ F(s,cs,YV)ds —/ Z"dB,, te[0,T).
t t

The latter BSDE admits a solution (Y, Z") € S x M?, where using
the comparison argument, one can show that 0 < Y™ < n, and Y" =]
lim Y™™ n € N, where Y™™ solves

m—0o0

(5.9)
T T

Y = (e T e Y An / F™(s,cs, Y"™)ds — / ZM™MdB,, t€[0,T],
t t

1—1
with F'™(t, ¢q,y) = 00~ (c, ¥ Am)(Jy| A m)l_%. Likewise, one can show
that 0 < Y™™ < n. Therefore, for m > n, we obtain

1—-1
F™(t, e, Y,"™) = 596—5t(ct S m) (YA m)1—%
(5.10)

=

1
= (596_&(Ct1 S Am) (Y™ .
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For every n € N, one can show that lim sup |Y;* —Y,”™| = 0 in proba-
m— 00 tE[O,T}

bility P, and thus, we deduce that there exists m/(n) € N, such that

/

(5.11) Yo — Y < %, neN, m>m'(n).
It follows from Lemma that the process ¥ = ¢(z,0) 5 € Alz, ex).
Next, for every M; > 0, My > 0 the process ¢ defined as Ef = xf’l ﬁl \Y,
M

cf AN Mo, t € [0,T), satisfies &* € .,Z(:r:k, er). Now let us consider the sequence
of BSDEs
(5.12)

T T
V) = 7007 (k)1 +/ F(s,ck,YF)ds —/ ZtdB,, te[0,T], keN.
t

s Lso
t

[CE12, Theorem 5.1] ensures that there exists a unique solution to BSDE
(15.12), (Yk, Zk) € 82 x M2. Further, by replacing F with F* as in the pre-
vious step, and using the comparison for BSDEs (with Lipschitz generator)
results, see, e.g., [Par99, Theorem 2.4|, we deduce that the first component
of the solution is in §*.

Let us consider and . These are BSDEs with bounded terminal
conditions and Lipschitz generators. Therefore, the stability of BSDEs, as
in [CE15, Theorem 19.1.6, p. 472], implies that, for some n satisfying
and for m = n(m) satisfying , one can first pick M7 and My and then
ko, such that

/
(5.13) YE - v < % k> ko.
Comparing (5.8)), (5.11)), and (5.13]), we deduce that

YF —Yo| <€, k> k.

Therefore, as & € A(zy, ), via (5.3), we obtain

Y/k Y, / ’
liminf u(zy, e) > lim inf —2 0 < u(z,0) — ﬁ
-7

> — -
k—00 k=oo 1—7y — 1—v |1—1]|
Consequently, as &' is arbitrary, via (5.7)), we deduce that (5.6)) holds.

O

The next lemma establishes a result similar to Lemma [5.3 for the dual
value function. The proof is similar to the proof of Lemma so we only

outline the main steps.
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Lemma 5.4. Under the conditions of Theorem we have
(5.14) limsup v(y',e) <wv(y,0).
(y',e)=(y,0)
Proof. Let us consider a sequence (yx,ex), k € N, convergent to (y,0) and

such that

lim v(yg,ex) = limsup v(y,0).
hyee (') (,0)

By Assumption for every k € N, there Dk € ﬁ(l,ek), that is, INDk, such
that

T ~
(5.15) E [/ (Df)l_‘”ds} <oo, keN.
0
Let us set
DF = (1—(=1VegA 1))%13(%0)]\75’“ +(=1Vep Al)yDF, keN.

Then, as N — 1, in measure (dx x P), by the assumption of Theorem
we deduce that D¥ — D(y,0), in measure (dx x P). Moreover, it follows
from (5.15]), and since 1—¢ < 0, that DF ¢ ﬁ(yk,ek), k € N. Next, applying
the approximation procedure entirely similarly to Lemma [5.3] we obtain the

assertion of the lemma. 4

We now show the concavity of Ug§ in ¢ in the following sense, which is

closely related to the notion of strong concavity.

Lemma 5.5. Let us suppose that ¢ and ¢ are in U Az, e)
(z,e)€(0,00) X (—€0,e0)
and are such that

1
(5.16) (de xP) || =" =6, d+" < 5] >4, for some d > 0.

Further, let us suppose that for a given constant A € (0,1), we have

ci=2 +(1-N" € U Az, e).

(z,e)€(0,00) X (—€0,€0)

Then, there exists a constant 7 > 0, such that

(5.17) AUS + (1= NUS + 7 < US.
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Proof. Let us show that
(5.18) AYS + (1= NYS —no <Y,

where Y'’s satisfy with respective ¢’s and 7 is some positive constant.
As the generator of Y is not jointly concave in (¢,Y, Z), with p := 1 — i,
following [XinI7a], one can set

(Y,Z) = 219 <Yé, ;yé—lz> .
Then Y satisfies
(5.19)

CP T Cé) 1 Z2 T
Y, = e 9T L 4 / (56—55 + (0 — 1)5> ds — / ZsdBs, te€[0,T),
P t p 2 Y, ¢

where the generator is jointly concave in (¢, Y,Z) when 6 < 1.
For Y and Y”, let AY := AY' 4+ (1 — \)Y”, Ac:= X + (1 — \)’, and
AZ := N2+ (1 — N\)Z". We observe that

AY = (pAY)? and AZ:=(1—~)(pAY)' ' AZ,
satisfy

T _1
AYtZ(pAYT)9+/ (807 (Acy)” = (1= 7)4)) AYS 7ds
t

T
—/ AZdBs, te(0,T],
t

where

66761‘,
Ay =— ((Ace)? = Mc)P = (1 = A)(c))")

2 /2 12
+5(9—1)<Azt e RIIEPE: t) >0,

(5.20)

AY, Y YV
as both terms on the right-hand side are nonnegative by the joint concav-
ity of the generator to (5.19). Additionally, the function z — 2P, = > 0
is strictly concave. Therefore, on {c, + ¢/ < L1 |¢} — ¢/| > £}, we have
((Act)P = A(cy)? — (1 = N)(¢])P) > 41, for some constant d; > 0, which de-
pends only on € and A in the statement of the lemma (also on p =1 — i,
but v is fixed throughout the paper). Similarly, we obtain
6T
pe AYT S (ACT)p - 611{C/T+C/7/1<l

<olep—crlze}”
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Therefore, for some constant do > 0, we have

(5.21) AYr > e " (Aer) ™ + 021y o1,

| —cf|>e}-

It follows from (5.20) and (5.21)), that (AY, AZ) is a supersolution to

T T
YtAC — 6_59T(ACT)1_7 +/ F(s, Acs, YsAc)ds — / ZSACst7 t €0,T].
¢ ¢

1
Setting & = —(1 — y)AtAYtl 9t e [0,T), & := AYy — Y2¢, we observe

that & > 0, t € [0,7], and, moreover, for some constant 31 > 0, we have

=

~ 1—
ft Z 51A}/% l{cl"!‘C;ngJC;_Cg'Za}’ t € [O,T),

(5.22)
§r 2 02y yonct o —e>ey-
We stress here that (51 and 2 depend only on A and ¢ in the statement of
the lemma.
Further, let us define n; := AY; — Y2 and (; := AZ; — ZP°, t € [0,T],
we deduce that
(5.23)

1

T
e = €T + / { (5‘96_68(A08)p - (1 - W)At> AY:el_g - F(S, ACS? Y;AC)} ds
t
T
- [ as.
t

1
(596*58(&8)1’ (1- 'y)At) AY,) 77— F(s, Acs, YA

Let us rewrite the latter generator as

_1
= — (1 - AAY, 7+ F(s, Acy, AY,) — F(s, Acy, YA).

Setting oy = LlbAceAY) FtAcY, )l{m;éo}, t € [0,T], we can rewrite

Ns
as

T T
m = &+ / (cusms + €5)ds — / ¢, dB,,
t t

With Ty := exp (fg asds>, we get

= —Et [FT£T+ / 6T, ds]

In particular, at ¢t = 0, we get

(5.24) w=E[rrer+ | ' 60| = B(T0) .
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As both AY and Y¢ are finite-valued, I' > 0. Next, as from (5.39) and
(5-24), we deduce the strict positivity of Uy (by the strict comparison and

(5.16)) that
(5.25) AYy — Y£¢ =19 > 0.

Moreover, as in [Xinl7al equation (A.6), p. 247|, we get
(5.26) AY; < AYE + (1= NY, teo,T], P-as.

Combining ([5.25)) and (5.26)), we deduce that

AYE + (1= VY5 2 AYy 2 Y3 + 1,

and thus (5.18) holds, which, via (5.3)) and [XinI7a, Proposition 2.2], implies
(5.17), where 7 = 7701. O

We will need the following technical lemma.

Lemma 5.6. Let x > 0 be fized. Under the conditions of Theorem [3.6, let

ek, k € N, be a sequence or real numbers converging to zero. Let us set

(5.27)
, 1
MM o TG (2,0)—AM, te[0,T], keN, & >0, M>0.

x+ N;*
Then, for every k € N, there exist §'(k), M(k), such that for

(5.28) &= PV EME) - p e N,
the associated solutions to (5.4) satisfy

lim Y% = YE(”"’O), TUCP.

k—00
Proof. First, we observe that ¢® € A(z,e;), & € N. Fixing an & > 0,

rutilizing the argument from the proof of [Xinl7a., Proposition 2.2], one can
first show that there exists n’ € N, such that

/
(5.29) P| sup [V — Y00 > 2
t€[0,T)] 3

where Y™ is the first component of the solution to
T T
Y = (e (@p(a, 0))' )/\n+/ F(s, (z, 0),1;,”)ds—/ Z0dB., t € [0,
t ¢

Further rfollowing the proof of [Xinl7al, Proposition 2.2], one can show that
(Y™, Z") € 8 x M? to the BSDE above exists and is unique. Furthermore,
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via the comparison result, see, e.g., [Par99, Theorem 2.4], we deduce that
0<Y"*"<n,and YY" =] lim Y™™ m € N, where Y™™ solves

m—00

T
Y = (T @ 0) ) At [ (s,2(,0), Y ds
t
(5.30) .
—/ Z"™dB,, te0,T),
t

1—1
where F™(t,c;,y) = 60e % (c, ¥ Am)(|ly| A m)lfé. Here, by comparison,

we have 0 < Y™™ < n. As a result, for m > n, we get

1—-1
F™(t, e, Y,"™) = 506“”(@ S m) (YA m)1—$
(5.31)

1—-1
= 60e e, VA m)(Y}"’m)l_é.

Further, as we can show that, for every n € N, we have lim sup |Y” —
M= 40,7

Y,"™| = 0 in probability P. Therefore, we conclude that there exists m/(n),
such that

5,
< 3 ™ >m/(n).

/
(5.32) P sup V-V > S
te[0,7) 3

Next, for ¢#9M given by (5.27), k € N, & > 0, and M > 0, let us consider
the following family of BSDEs

(5.33)

T

— k8 M _ ’ _ ’ — k,6' M

th —e EQT(C],;’(; ,M)l 'y+/ F (S’Cl;,é ’Mvifsc )dS
t

T
—/ ZFIMaB, te[0,7T], keN, & >0 M>0.
t

By [CE12, Theorem 5.1], for every choice of k,d’, M, there exists a unique
solution to , (Yck’él’NI,Zk"s/’M> € 8% x M2, Further, by replacing
F with F* as in , and using the comparison for BSDEs results as in
[Par99, Theorem 2.4], we deduce that the first component of the solution is
in 8.

Let us consider and . These are BSDEs with bounded termi-

nal conditions and Lipschitz generators. Therefore, for a given n satisfying
(5.29) and m satisfying (5.30)), [CEL5, Theorem 19.1.6, p. 472]) allows to
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pick &' and M and then kg, such that

/ / /
(5.34) Plsup [V —vPm >S5 <S k> ke
t€[0,T] 3 3

Comparing (5.29), , and (5.34), we deduce that
P | sup D_/tck’a M Yta(x’o)| >e| <€, k> ko
te[0,7

As ¢ is arbitrary, we deduce that there exists ¢*, k € N, as in (5.28)), for

which the assertion of this lemma holds. O
5.2. Proofs of the main theorems.

Proof of Theorem[3.]]. First, we observe that (3.5)) follows from Lemma

Next, from Lemma [5.3] we get

(5.35) liminf w(z',e) > u(z,0).

(z',£)—(z,0)
Applying Lemma [5.4] we obtain
(5.36) v(y,0) + 2y > limsup (v(y,¢e) + xy’).
(¥6)—=(,0)
Now, using [MX18, Theorem 2.7], we have

(5.37) limsup (v(y',e) + 2'y') > limsupu(z’,e), 2’ >0.
(y'.e)=(y,0) e—0

From the assumption of the theorem (equation (3.1])), we deduce

(5.38) u(z,0) = v(y,0) + zy.

Combining (5.35)), (5.36), (5.37), and ([5.38)), we conclude

uw(z,0) < liminf wu(2',e) < limsup u(7',¢)

(',&)—=(x,0) (z' €)= (,0)
< limsup (v(y,e) +2'y) < v(y,0) + zy = u(z,0).
(2" ,e)—(z,0)

Therefore, all inequalities above are equalities, and we get (3.6]). Next, from
(5.38), (5.36)), (5.37), and (5.35)), we obtain

u(z,0) = v(y,0) + 2y > limsup (v(y,e) +zy)

(y/ﬁs)_}(yvo)
> liminf (v(y/,e) +2y’) > liminf wu(x,e) > u(zx,0).
N (y’ﬁ)—>(y70)( o) +2y) (y',€)—(y,0) () (.0)

Therefore, all inequalities above are actually equalities. This implies (3.7]).
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Finally, the existence and uniqueness of the optimizers follows from Lemma
and convexity and closedness in LO(dx x P) of the set A(z,¢), (z,¢) €
(0,00) x (—&0,0), note that the convexity of A(z,e), (z,£) € (0,00) X
(—¢€0,€0), follows from Assumption and Lemma

O

Proof of Theorem[3.6, Step 1. Assume by contradiction that the assertion
of this theorem, that is (3.9)), fails. Then, there exists § > 0, such that
limsup(dk x P) [|c(z",e") — ¢(x,0)| > §] > 6.

n—o0

As ﬁ, n € N, converges to 1, in measure (dx x P), consequently ﬁ,
n € N, is bounded in LO(dx x P). Next, following (2.8)) and the argument
in [Mos15, Proposition 4.2], one can see that the set A(1,0) is bounded in

L%(dk x P). Therefore, since ’c\(m”,sn)ngn € A(z",0), by possibly passing

to smaller §, we deduce that

~ ~ 1
c(x™e") —e(x,0)—

lim sup(drx xP) [ Ner

n—oo

1 1
> 6, Ba",e") + 2w, 0) 1 < 5} > 5.

With ¢, k € N, as in (5.28) (in Lemma , by passing to even smaller 9,

we get

1
(5.39)  limsup(dk x P) [|E(m”,€”) —c" >4, ¢z ")+ " < 5] > 0.
n—oo
Let us set
1 n
(5.40) " ::§|E(a?n,an)+?:ﬂ] GA(:C ;x,es"), n €N

Furthermore, one can show that " € A (ﬂ%,e"), as for every t € [0,7],

we have

1—
_1 1
(@) v = (2 @ (", ") +’c‘?|>

1 1 1
< max (G(a",e"), &)V < @@ e) TV + (@),

and at maturity, we have

1. o 1\
@ = (gl a) < (e

595—1—6”67

and thus, ¢"’s satisfy both integrability conditions in the definition of A’s

n .
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Step 2. Let us use Lemma [5.5| along a subsequence from Step I that we
do not relabel and such that

1
lim (dk x P) |[e(z", ™) =" > 6, c(a™, ")+ " < —| > 4.

n—oo 5

In the argument below, the notations from the proof of Lemma/5.5|are used.
For

(5.41) n" :=E[T"") kr], neN,
one can show thatf]
1y 2 exp (a0 [ @' (av2) s
for some constant a > 0 (and where # < 0 and rAY™ is as in the proof of
Lemma corresponding to ¢ = ¢(z",&"), ¢’ =", and A = 1.)

Next, from Lemma [5.6] along a subsequence, which we do not relabel, we

have

lim sup ‘Yfk - Yta(z’o)‘ =0, P-as.
k=00 tel0,1]

Further, Y<="¢") is bounded from above by a real-valued process, by the

c(x™,e™)

assumption of this theorem.Therefore, as AY" < %Yt + %an, t e
[0,T], P-a.s., by the proof of Lemma we deduce that

t
1y = o (o0 [ (@) Havz) s )
(5.42) °
1 b n n = n
> exp <a6’/ (Cs(a™, ™) + M) v (Y 4y e )éds) .
0

From the assumptions of this theorem and Lemma |5.6) we obtain that

(5.43) lminfIT? = T®° >0, tel0,T], P-as.

n—oo

Let us consider the sequence ", n € N. Following the proof of Lemma [5.5

(see (5.39)), we observe that
(5-44) & 2 0 (AY) T Lz (an en) i, auan enyrap<ty EE[0T),
and

(5.45) {p > 021

{|er(@nen)—en|>6, er(zmen)+en<3}

2 The lower bounds on a™’s are obtained through estimates on the slopes of F'.
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where constant 6; > 0 and § > 0 depend on § appearing in ([5.39) only. As
AY > Z%Ytzn, t € [0,T], P-a.s., by the argument in Lemma m we have

1 -n ]. <l
(5.46) liminf (AY;") > liminf V7" = VY >0, t € [0, 7], P-as..

n—00 n—oo 2 20 t

By the Dunford-Pettis compactness criterion (see, e.g., [KS98, p. 26]),
there exists a weakly (in L!(drx x P)) convergent subsequence of £" A 1,
n € N, whose limit is denoted by £°°. In view of , , and ,
we have (drk x P)[¢> > 0] > 0.

Let us pass to this subsequence that we do not relabel again. The
non-negativity of I'¢" (by the construction above) allows invoking Fatou’s

lemma, which implies that

liminf E [(T"™(£" A 1)) - k7]

n—oo

— Tim inf (E [(fOO(g" A1) - HT:| +E [((F” — T A 1)) : HT:|)

n—oo

>E [([¢%) - wr] >0,
as (dr x P)[€® > 0] > 0 and I'™® > 0, (dk X P) — a.e., as well as

lim E [(f‘”(g" A1) - KT:| —E [(f‘x’f“’) : RT} :

n—o0

by the weak convergence in L' (dx x P) (here we recall that I'’s take values in
[0,1] as @ < 0), by Fatou’s lemma (here, I'*°*(¢™ A 1) is bounded from below

by —1) and (5.43)), we have
lim inf E [((r” T (e A 1)) . /ﬁ:T] > 0.

n—oo

We conclude that
(5.47) hgglorgfn > 0.

Step 3. For ¢, n € N, defined in Step 1 (see (5.40))), let us consider the

subsequence from Step 2. By Lemma [5.5] we have
(5.48) liminf US" > liminf 1u(ajn e") + EUCTL +n"
' n—oo 0 T nsoo \ 2 ’ 90 ’
where 7" = ,Y"—:Ll and 7™ are given in (5.41)). It follows from Lemma that

(5.49) lim US" = u(z,0).

n—oo
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On the other hand, as " € j(ﬂ%,en), we get
n
(5.50) US <u (x ;x5"> .

By Theorem we have

(5.51) liminf u(z", ") = u(z,0).

n—o0

Therefore, in (5.48)), via (5.49), (5.50)), and (5.51)), we conclude that

n—o0 n—oo n—o0

an 1 1
u(z,0) > liminf US > liminf <2u(a:”,5") + 5(]5 + 7]”) > u(z,0)+lim inf 7",

. . . . . . —Nn . . . 77"
which is impossible, as hnn_l> 1Oréf 0= hnn_1> 1£f 75 >0 by (5.47]).
O

Proof of Theorem[3.7. Let us recall that, for a given nonnegative consump-
tion stream ¢, U¢ was defined in and Y€ in . The proof of Theorem
is entirely similar to the proof of Lemma It relies on the truncation
and the stability of BSDEs result as in [CE15, Theorem 19.1.6, p. 472], so

that we can show that

lim Y = ye@0)  yep and lim U = ga@0)  yep.
(z',)—(z,0) (z',)—(z,0)
We omit further details for brevity. O

Proof of Theorem[3.8 Let us consider a sequence (zn,e,), n € N, conver-
gent to (z,0). Without loss of generality, we will suppose that z,, > 0 and

en € (—€0,€0), n € N. Let us denote

X" = XC@nen) - N = N =G(ap,e,), neN, D= l/j(y,O),
and set
(5.52) D" :=DN", L":= a:ln <X”D" + /0. Dgc?d/i8> .

Then, by Lemma D™ € D(y,e,) and thus L™, n € N, is a sequence of
nonnegative supermartingales. Since (dx xP)- lim ¢" = ¢(x,0) by Theorem
n—oo
and (dk x P)- lim D™ = D by (5.52) and the assumption that (dk x
n—oo

P)- hn’(l) N¢ = 1, we pass to a subsequence, which we do not relabel and
E—
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suppose that li_)rn D"c" = D¢(x,0), (ds x P)-a.e.. Therefore, using Fatou’s
n o]

lemma, we get

n—o0

T T

(5.53) liminf/ D?C?dHSZ/ Dgcs(z,0)drs, P-as..
0 0

Let us further set

(5.54) L:= % <XE(””70)D + / DSES(:L',O)d/iS> .
0

The optimality of ¢(x,0) implies that X;(x,O) =0, P-a.s., as it is optimal to

consume everything that is left at maturity. Likewise, the optimality of ¢”
implies that X7 = 0, P-a.s., for every n € N. Therefore, ([5.52)), , and

(5.54) result in
(5.55) liminf L > Lp, P-as..
n—oo
From the respective definitions of L™, n € N, and L, we conclude that
(5.56) Lg =Dyg=Lyp, neN.

Let us recapitulate that L™, n € N, are nonnegative cadlag supermartingales
and L is a nonnegative cadlag martingale satisfying (5.55) and (5.56)). Let
us consider a probability measure R, whose density is % = MLr  Thep

1+Lo
n 1+L7
R ~ P, and, under R, L° = ( t)
’ ’ » L +Le Jyero,1)

martingales. Consequently, from (5.55) and (5.56[), we conclude that 11++LLn ,
n € N, satisfies

n € N, are nonnegative super-

1+ LG 1+ L%
+ Y—1 and lim T 1, P-as
1+ Lo n—oo 1 4+ Lo
Therefore, applying [Karl3, Lemma 2.11] (under R), we deduce that
li L 1
Jim Z—— =1 uep,
and thus
(5.57) lim L" =L, wucp.
n—oo

Consequently, and in particular, passing to another subsequence, which
we do not relabel, we get
T T
(5.58) lim Dlcldrks = / Dgcs(x,0)drs, P-as..
0

n—o0 0
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Next, similarly to (5.53)), for every t € [0,T], we deduce that

T
(5.59) lirginf/ Dlcldrs > / Dgcs(x,0)drs, P-aus.,
n—oo t
and
t ¢
(5.60) liminf/ D’;c?d/@sZ/ Dgcs(z,0)drs, P-as..

Therefore, from (5.58)) and (5.59), we get

t T T
lim Sup/ D?cdrs = limsup </ Dicydrgs — / D?cgdﬁs>
n—o0 0 n—o0 0 t

¢
S/ Dgcs(x,0)drs, P-aus..
0

In turn, (5.60) and (5.61)) imply that

¢
(5.62) lim Dlcldks = / Dgcs(x,0)drs, P-a.s.,

n—oo 0

(5.61)

where the last equality holds for every ¢ € [0,7]. As the processes fo D?cldks,
n € N, and fo Dgcy(x,0)dks, are cddldg monotone, from ((5.62)), we get

t
/ Dlcldks — / Dgcs(z,0)dks
0

Finally, as D™’s and D are strictly positive and (dk x P)- lim D" = D,

n—oo

from (5.57) and (5.63)), using [Dur05, Thoerem 1.6.2, p. 46|, we deduce
that X" = w, n € N, converges to X0 = L)y DS%(I’O)d'{S in
measure (dx x P). If ?_r}r(l) N¢ = 1, ucp, then, similarly, from (5.52)), (5.57),
and , using [Dur05, Thoerem 1.6.2, p. 46], we conclude that

(5.63) lim sup

=0, P-as..
=90 4e[0,T]

lim X" = X0 ycep.

n—oo
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