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Abstract

An e+cient algorithm is developed to price European options in the presence of proportional
transaction costs, using the optimal portfolio framework of Davis (in: Dempster, M.A.H., Pliska,
S.R. (Eds.), Mathematics of Derivative Securities. Cambridge University Press, Cambridge, UK).
A fair option price is determined by requiring that an in6nitesimal diversion of funds into the
purchase or sale of options has a neutral e7ect on achievable utility. This results in a general
option pricing formula, in which option prices are computed from the solution of the investor’s
basic portfolio selection problem, without the need to solve a more complex optimisation prob-
lem involving the insertion of the option payo7 into the terminal value function. Option prices
are computed numerically using a Markov chain approximation to the continuous time singular
stochastic optimal control problem, for the case of exponential utility. Comparisons with ap-
proximately replicating strategies are made. The method results in a uniquely speci6ed option
price for every initial holding of stock, and the price lies within bounds which are tight even
as transaction costs become large. A general de6nition of an option hedging strategy for a util-
ity maximising investor is developed. This involves calculating the perturbation to the optimal
portfolio strategy when an option trade is executed.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The celebrated Black and Scholes (1973) option pricing methodology is not ap-
plicable in the presence of transaction costs on trading the underlying stock. This is
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because it relies on the implementation of a continuously rebalanced portfolio strategy
(to replicate the option payo7) that would be excessively costly in the face of any
market frictions. Since perfect replication is not possible it is necessary to look for
alternative criteria to determine fair valued derivative prices and, if possible, hedging
strategies. There is an unavoidable trade-o7 between the transaction costs incurred in
portfolio rebalancing and the tightness of the valuation bounds. Reducing the hedging
error generally incurs large transaction costs and results in unrealistically wide val-
uation bounds. The question arises as to what is the optimal valuation and hedging
policy, consistent with an investor’s risk management objectives.
A number of methods have been suggested to solve this problem. The natural alter-

native to continuous hedging policies for options is to introduce a discrete timescale
in which transactions take place. This is the course taken by Leland (1985) and Boyle
and Vorst (1992). Both these models result in Black–Scholes type formulae for bounds
on the value of the option, with an adjusted volatility which depends directly on the
exogenously speci6ed revision frequency. The hedging error is reduced if portfolio re-
balancing occurs more frequently, but the pricing bounds become much wider. More-
over, restricting the form of the hedging strategy to portfolio rebalancing at 6xed time
intervals may not always be the optimum method of managing the risk from an option
trade.
Bensaid et al. (1992), Edirisinghe et al. (1993) and Boyle and Tan (1994) replaced

the replication strategy with a “super-replicating strategy” in which the hedging portfo-
lio is only required to dominate, rather than replicate, the option payo7 at maturity. In
a discrete-time setting it can sometimes be cheaper to dominate a contingent claim than
to replicate it. However, as conjectured by Davis and Clark (1994) and subsequently
proven by Soner et al. (1995) and CvitaniJc et al. (1999), in the continuous-time limit
the cheapest super-replicating strategy for a European call option is the trivial strategy
of buying one share of the underlying stock and holding it to maturity. This illustrates a
fundamental feature of option hedging under transaction costs, namely that eliminating
all risk results in unrealistically wide valuation bounds.
Hodges and Neuberger (1989) recognised that a valuation method which incorporates

some element of optimality, in the form of the agent’s utility maximisation objective,
is perhaps the most promising path to follow in designing e7ective option hedging
policies. This point was also made by Dumas and Luciano (1991). By comparing the
utility achieved with and without the obligations of an option contract, Hodges and
Neuberger speci6ed reservation bid and asking prices for an option by requiring that
the same utility is achieved whether an option trade has been entered into or not. This
approach was further developed by Davis et al. (1993), Clewlow and Hodges (1997),
Constantinides and Zariphopoulou (1999) and Musiela and Zariphopoulou (2001). Al-
ternative criteria for determining an option hedging policy include quadratic criteria
such as local risk minimisation, studied by Mercurio and Vorst (1997) and Lamberton
et al. (1998), and minimisation of “shortfall risk”, developed by FNollmer and Leukert
(2000).
Davis (1997) suggested a utility maximisation approach to valuing options in a gen-

eral situation in which replication is either impossible or unfavourable. Davis derived
a general option pricing formula for a “fair” option value, determined by balancing
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the marginal utility from diverting an in6nitesimal fraction of the initial wealth into
the options market with that from refraining from trading options and instead investing
optimally in the underlying asset market.
In this paper we numerically study the optimal pricing procedure suggested by Davis

(1997). We develop an associated de6nition of a hedging strategy implied by the
new method, and compute option prices and hedging strategies under proportional
transaction costs. Davis’ formula, which is reminiscent of a classical representative
agent asset pricing formula, has not (until now) been tested numerically to see what
implications it has for option values and hedging strategies in the presence of market
frictions. Karatzas and Kou (1996) have applied this approach in frictionless markets to
the situation in which there are constraints on the investor’s portfolio choices, whereas
we consider markets that are otherwise complete, but option replication is rendered
unfavourable by trading costs.
Our numerical results indicate that the new methodology inherits realistic and ap-

pealing features from the solution of the investor’s basic portfolio selection problem.
The presence of frictions in a 6nancial market qualitatively changes the nature of the
optimal trading strategy, in that it speci6es a region of the portfolio state space in
which it is optimal not to transact, whilst outside this region the optimal action is to
either buy or sell the risky asset. When the investor’s portfolio holdings lie outside the
no-transaction region, the derived option value is either the optimal bid or ask price.
Alternatively, if the agent’s stock-bond holdings lie within the no-transaction region,
then the option value lies strictly within the bid-ask spread, and is uniquely speci6ed
given the initial portfolio holdings. Trading an option at any price within the optimal
bid-ask interval results in a negligible e7ect on the investor’s utility. However, trading
at a price outside the bid-ask interval drastically reduces (or increases, if the investor is
on the favourable side of the trade) the achievable utility compared with the scenario
in which an option is not traded.
We also make comparisons with the replication approach of Leland (1985). In gen-

eral, we 6nd that the optimal valuation method produces much tighter bounds on option
prices than can be obtained by any strategy which attempts to eliminate risk by repli-
cation, and this e7ect is most marked for large transaction costs. In essence, the option
trader is able to incorporate some risk in his options portfolio, which is unavoidable
in the face of market frictions.
The pricing methodology has the desirable feature that one only has to solve the

investor’s basic portfolio selection problem to price options. This is in contrast to
previous attempts to embed the pricing problem in a utility maximisation framework,
which require the solution of a much more di+cult optimisation problem involving the
credit or debit of an option payo7 to the investor’s portfolio at the option maturity date.
We develop an e+cient algorithm to price options in our framework using a Markov
chain approximation technique of the type pioneered by Kushner (1990).

The paper is organised as follows. In Section 2 we set up a portfolio selection
scenario, in which the optimal strategy to maximise expected utility of wealth at a
6nite horizon time is sought. We also formulate the alternative optimisation problem
which results if a small amount of the initial wealth is diverted into the purchase or
sale of European options. We illustrate the various ways that such stochastic optimal
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control problems can be used to specify an option price, and we state Davis’ (1997)
general option pricing formula. Then we give a general de6nition of an option hedging
strategy for a utility maximising investor who has the choice of diverting some initial
wealth into the options market. In Section 3 we consider a speci6c market model with
transaction costs. We illustrate the properties of the solution to the portfolio choice
problem, and of Davis’ pricing formula. In Section 4 we specialise to the case of an
exponential utility function, and develop an e+cient numerical option pricing algorithm.
In Section 5 we present numerical solutions for option prices and hedging strategies.
Section 6 concludes and suggests directions for further research. An Appendix contains
a derivation of some results used in the implementation of our numerical algorithm.

2. Portfolio selection and option valuation

We shall utilise a 6nite time interval [0; T ], where T will correspond to the maturity
of a European option. Consider an investor with concave utility function U , starting at
time t ∈ [0; T ] with cash endowment x, and holding y shares of a stock whose price
is S. The investor trades a dynamic portfolio whose value at time u¿ t is W�

t;S;x;y(u)
when he or she uses the trading strategy � and starts in the state (t; S; x; y). The wealth
W�

t;S;x;y(u) consists of X �
t;S;x;y(u) dollars in cash and Y �

t;S;x;y(u) shares of stock, whose
price at time u is S(u), so that

W�
t;S;x;y(u) = X �

t;S;x;y(u) + Y �
t;S;x;y(u)S(u): (1)

The investor’s objective is to maximise expected utility of wealth at time T . We as-
sume that the investor does not consume any wealth, which is a reasonable assumption
for a trader in a 6nancial institution. Denote the investor’s maximum utility by

V (t; S; x; y) = sup
�
Et[U (W�

t;S;x;y(T ))]; (2)

where Et denotes the expectation operator conditional on the time-t information. The
supremum in (2) is taken over a suitable set of admissible policies, to be described in
the next section, when we specialise to a market with proportional transaction costs.
Consider the alternative optimisation problem which results if a small amount of the

initial wealth is diverted into the purchase or sale of a European option whose payo7
at time T is some non-negative random variable C(S(T )). To be precise, if the option
price at time t is p and an amount of cash � is diverted at this time into options, we
de6ne

V (o)(t; S; x − �; y; �; p) = sup
�
Et
[
U

(
W�

t;S;x−�;y(T ) +
�
P

C(S(T ))
)]

: (3)

The “o” superscript denotes that the investor’s portfolio at time T incorporates the
option payo7. The value function in (3) is evaluated for the initial cash endowment
x − � to signify that the funds to buy (or sell, if �¡ 0) the options have come from
(or been credited to) the initial wealth. The value function for initial cash x is

V (o)(t; S; x; y; �; p) = sup
�
Et
[
U

(
W�

t;S;x;y(T ) +
�
P

C(S(T ))
)]

; (4)
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namely the maximum utility that is achieved if the investor’s account is credited with
the payo7 of �=p options at time T , without any corresponding adjustment to the initial
cash position. In (2)–(4) the quantities � and p would be measurable with respect to
the time-t information.
Clearly V (o)(t; S; x; y; 0; ·) = V (t; S; x; y), and the reader will note the dependence in

(3) on the volume of option contracts traded. There are a number of ways that the
above optimisation problems can be used to specify valuation bounds or a price for
the option. A reservation writing price pw(t; s; x; y) for the initial holdings (x; y) is
de6ned as the minimum value at which the investor is prepared to write the claim,
and so satis6es

V (o)(t; S; x + pw(t; S; x; y); y;−pw(t; S; x; y); pw(t; S; x; y)) = V (t; S; x; y); (5)

since the same utility is achieved when selling the option for pw(t; S; x; y) as is achieved
by not writing the option. We further de6ne the universal reservation writing price
Tpw(t; S) as the maximum of reservation write prices across all initial holdings (x; y).
Therefore Tpw(t; S) satis6es

V (o)(t; S; x + Tpw(t; S); y;− Tpw(t; S); Tpw(t; S))¿V (t; S; x; y): (6)

Inequality (6) guarantees that the writer will be willing to write the option at any
price higher than Tpw(t; S), independently of his current portfolio position.
Similarly, a reservation buying price pb(t; S; x; y) for the initial holdings (x; y) is

V (o)(t; S; x − pb(t; S; x; y); y; pb(t; S; x; y); pb(t; S; x; y)) = V (t; S; x; y): (7)

The universal reservation buying price pb(t; S) is the minimum of reservation buying
prices across all initial holdings, and so satis6es

V (o)(t; S; x − pb(t; S); y; pb(t; S); pb(t; S))¿V (t; S; x; y): (8)

As pointed out by Constantinides and Zariphopoulou (1999), transaction prices of
the option must lie in the interval [pb; Tpw]. For, if an option trader writes the option
for a price p¿ Tpw then the buyer is acting suboptimally, as he could have found a
willing writer of the option at a price as low as Tpw. Likewise, if a transaction occurs
at a price p¡pb, then the writer is acting suboptimally.
Hodges and Neuberger (1989) initiated the above approach to 6nding option valua-

tion bounds. They considered the special case of a risk-neutral world where the stock
return rate is equal to the riskless interest rate. In this case, and in the absence of any
option transaction, the investor would choose not to invest in the stock at all. There-
fore, when an option is written or purchased, the optimal trading strategy speci6ed by
(5) or (7) would consist of the incremental trades generated by the option transaction,
i.e. the option hedging strategy. Hodges and Neuberger also restricted their model to
the case where the agent’s initial holdings in stock and cash are zero. Their method
is an ingenious way of focusing attention on the hedging issue. In this paper we relax
their assumptions to allow for a richer interaction between the hedging strategy and
the agent’s initial portfolio. Davis et al. (1993) and Constantinides and Zariphopoulou
(1999) have also considered the issue of 6nding reservation prices for European op-
tions, without the assumption of risk-neutrality, and the latter derive analytic bounds
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on option values by embedding the pricing problem in an in6nite horizon portfolio
selection framework.
One way of determining a unique price for an option under market imperfections

was proposed by Davis (1997). Davis suggests that an agent will be willing to trade
the option at a “fair” price p̂, such that there is a neutral e7ect on the investor’s utility
if an in6nitesimal fraction of the initial wealth is diverted into the purchase or sale of
the option at price p̂. That is, p̂ is given by the solution of

@V (o)

@�
(t; S; x − �; y; �; p̂)

∣∣∣∣
�=0

= 0: (9)

This results in the pricing formula

p̂(t; S; x; y) =
Et[U ′(W�∗

t; S; x;y(T ))C(S(T ))]

Vx(t; S; x; y)
; (10)

where U ′ is the derivative of U , Vx(t; S; x; y) denotes the partial derivative with respect
to x, and �∗ denotes the trading strategy which maximises the expected utility in (2).
This is the trading strategy which optimises a portfolio without options, and the formula
(10) for p̂ shows no dependence on the optimisation problems (3) and (4) containing
embedded options.
The formula in (10) is the central subject of investigation in this article. Its form is

reminiscent of a classical representative agent asset pricing formula (see, for example,
Du+e, 1996). Our goal is to see how (10) translates into numerical evaluations of
option prices under transaction costs. It is evident from (10) that, at the price p̂, the
investor is balancing the marginal gain from diverting wealth into options with that
from refraining from option trading and instead investing optimally in the stock market.
We write (10) as

p̂(t; S; x; y) =
F(t; S; x; y)
Vx(t; S; x; y)

; (11)

where the function F(t; S; x; y) is de6ned by

F(t; S; x; y) := Et[U ′(W�∗
t; S; x;y(T ))C(S(T ))]: (12)

Because the optimal wealth vector in (12) and (2) are the same, one only needs
to solve the investor’s basic portfolio selection problem to calculate F(t; S; x; y) and
p̂(t; S; x; y). When transaction costs are charged on trading the stock this is a highly
nontrivial simpli6cation of the option pricing problem compared to the “reservation
price” approach of (5)–(8), because the latter requires the solution of the optimisation
problem with the option payo7 for a large range of possible option prices.

Remark 1. In the absence of transaction costs the prices pw, pb and p̂ all reduce to
the Black–Scholes option price.

2.1. Hedging

As well as 6nding sensible derivative prices under transaction costs, any feasible pric-
ing methodology should say something concerning the risk management of an option
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position. In the case of zero transaction costs the answer to this question is automatic,
in that the Black–Scholes methodology sets option prices by a hedging argument. Such
comments also apply to imperfectly replicating approaches like that of Leland (1985),
to quadratic, approaches like the local risk minimisation approach in Lamberton et al.
(1998), and to minimisation of shortfall risk as developed by FNollmer and Leukert
(2000).
In the case of a utility maximisation approach to option pricing, the situation is

somewhat di7erent, in that the pricing problem is 6rst embedded into the utility max-
imisation problem to determine a price according to one of the above methods. Then
one computes the optimal trading strategy in the presence of the option trade, which
will be altered compared to the situation without the option, with the adjustment mea-
suring the e7ect of the option trade. This adjustment will correspond to what is usually
meant by an “option hedging strategy”.
Suppose � options are written at price p̂ given by (10). Then the investor’s optimal

trading strategy will be �† maximising

Et[U (W�
t;S;x+�p̂;y(T )− �C(S(T )))]:

In the absence of the option trade, the investor’s optimal trading strategy is �∗ to
achieve the supremum in (2). Since the option trade has altered the investor’s opti-
mal stock trading strategy, a natural de6nition of the “option hedging strategy” is the
incremental trades generated by the option trade, that is, the di7erence of the trading
strategies �† and �∗. This motivates the de6nition which follows below.
Let an amount � be paid (or received, for the case when options are written) to

trade options at time t for a given price p. We then write the value function in (3) as

V (o)(t; S; x − �; y; �; p) = Et
[
U

(
W�†

t; S; x−�;y(T ) +
�
p
C(S(T ))

)]
; (13)

which de6nes the optimal trading strategy �† for this utility maximisation problem. If
we compare the optimal portfolio in the presence of the option position with that in
the absence of the options, we obtain a measure of the additional holdings brought
about by the option trade, which is a natural candidate for the option hedging strategy.

De�nition 1. The hedging strategy �h for �=p options traded at time t, each at price
p, is one whose holding X �h

t; S; x;y(u), Y
�h

t; S; x;y(u) at time u∈ [t; T ] satisfy

X �h

t; S; x;y(u) = X �†
t; S; x;y(u)− X �∗

t; S; x;y(u); (14)

Y �h

t; S; x;y(u) = Y �†
t; S; x;y(u)− Y �∗

t; S; x;y(u): (15)

The hedging strategy can be written as �h = �† − �∗.

In practice, a utility maximising investor would simply calculate an optimal trading
strategy �† including the option trade, and would not directly calculate the hedging
strategy �h. Nevertheless, we shall see that the above de6nition of a hedging strategy
is a correct one, when we illustrate its features in our numerical results.
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3. A market with transaction costs

We consider a market consisting of a riskless bond and a risky stock whose prices
B(u) and S(u) at time u∈ [0; T ] satisfy, in continuous time

dB(u) = rB(u) du; (16)

dS(u) = S(u)[b du+ � dZ(u)]; (17)

where Z = {Z(u); 06 u6T} is a one-dimensional standard Brownian motion de-
6ned on a complete probability space (�;F;P). Denote by F = {F(u); 06 u6T}
the P-augmentation of the 6ltration FZ(T )=�(Z(u); 06 u6T ) generated by Z . The
constant coe+cients r, b, � represent the riskless interest rate, stock growth rate, and
stock volatility, respectively. The stock is assumed to pay no dividends. Trading in the
stock incurs proportional transaction costs, such that the purchase of  shares of stock
at price S reduces the wealth held in the bond by (1+!) S, where ! (06 !¡ 1) rep-
resents the proportional transaction cost rate associated with buying stock. Similarly,
the sale of  shares of stock increases the wealth in the bond by (1 − ") S, where
" (06 "¡ 1) represents the proportional transaction cost rate associated with selling
stock. In all other respects assume markets are “perfect”. Securities are in6nitely divis-
ible, the volatility � is known, there is no limit on borrowing or lending at the same
riskless rate, and there are no taxes or constraints on short selling with full use of the
proceeds.
We shall also make use of a binomial approximation of the above market model

(using a Cox et al. (1979) stock price tree, as modi6ed by He (1990)), for numerically
computing option prices and hedging strategies. The bond and stock prices follow the
discrete time processes

B(u) + �B(u) ≡ B(u+ �u) = exp(r:�u)B(u); (18)

S(u) + �S(u) ≡ S(u+ �u) = !S(u); (19)

where ! is a binomial random variable:

!= exp[(b− �2=2)�u± �
√
�u]; each with probability q= 1

2 ; (20)

and �u is a small time interval.
De6ne (L(u); M (u)), a pair of F-adapted, right-continuous, non-decreasing processes,

such that L(u) (respectively, M (u)) is the cumulative number of shares of stock bought
(respectively, sold) up to time u. Then in continuous time the wealth held in the bond,
for an investor who begins trading in the state (t; S; x; y), evolves as

dX (u) ≡ dX L;M
t;S;x;y(u) = rX (u) du− (1 + !)S(u) dL(u) + (1− ")S(u) dM (u): (21)

The number of shares held follows the process

dY (u) ≡ dY L;M
t;S;x;y(u) = dL(u)− dM (u); (22)

and the wealth of the investor is given by

W (u) ≡ WL;M
t;S;x;y(u) = X L;M

t;S;x;y(u) + Y L;M
t;S;x;y(u)S(u): (23)
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The pair (L;M) ≡ {(L(u); M (u)); t6 u6T} constitutes a trading strategy for an
investor in this 6nancial market, who seeks to maximise expected utility of wealth at
time T . We introduce the set S, which de6nes the solvency region in the absence of
an option trade, as

S= {(S; x; y)∈R+ × R2|x + (1 + !)Sy¿ 0; x + (1− ")Sy¿ 0}: (24)

A trading strategy (L;M) is said to be admissible (for the problem without options) if
the corresponding holdings satisfy the solvency constraint

(S(u); X L;M
t;S; x;y(u); Y

L;M
t;S; x;y(u))∈S; almost surely; ∀u∈ [t; T ]: (25)

For an investor who trades options at time t and then seeks to maximise expected
utility of wealth the set of admissable trading strategies is altered. For example, when
writing a contingent claim, the work of Soner et al. (1995) and Levental and Skorohod
(1997) shows that, in order to keep the wealth of the writer non-negative, it is imper-
ative to keep at least one share of the stock at all trading times. This issue does not
enter our pricing methodology as it only requires us to solve an optimisation problem
without the derivative security, though for computing hedging strategies this is not the
case.
The value functions V (t; S; x; y), and V (o)(t; S; x; y; �; p) will satisfy the same dynamic

programming equations, but with di7erent terminal boundary conditions. The function
F(t; S; x; y) of Eq. (12) is not necessarily a value function, but satis6es a similar re-
cursive equation with the choice of control (the trading strategy) determined from the
dynamic programming algorithm for V (t; S; x; y).
The boundary equation to be applied at the terminal time T for V (t; S; x; y) is

V (T; S; x; y) = U (x + yS); (26)

where it is assumed that there are no transaction costs charged on cashing out the
6nal portfolio (in keeping with much of the existing literature on transaction costs).
Assuming that costs are charged on liquidating the portfolio then (26) is replaced by

V (T; S; x; y) = U (x + c(y; S)); (27)

where c(y; S) is the cash value of y shares of stock, each of price S, and is de6ned
by

c(y; S) =

{
(1 + !)yS; if y¡ 0;

(1 + ")yS; if y¿ 0:
(28)

Our results are not qualitatively altered if there are no costs on liquidation. (The sit-
uation in a multi-asset market may be di7erent, and we refer the reader to Kabanov
(1999), who discusses hedging and liquidation of a multi-asset portfolio under trans-
action costs by introducing a general preference ordering for portfolios.)
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The terminal boundary condition for the optimisation problem involving options is
(with the same remarks as above about liquidation costs)

V (o)(T; S; x; y; �; p) = U
(
x + yS +

�
p

C(S)
)

; (29)

whilst the terminal boundary condition for F(t; S; x; y) is

F(T; S; x; y) = C(S)U ′(x + yS): (30)

3.1. Dynamic programming equations

The dynamic programming equations satis6ed by the function V (t; S; x; y) in a mar-
ket with proportional transaction costs have been derived by Hodges and Neuberger
(1989) and Davis et al. (1993). We present these equations below along with a simple
(and 6nancially intuitive) justi6cation, and we describe the investor’s optimal trading
strategy. We highlight how the characteristics of the value function V (t; S; x; y) and the
associated optimal portfolio strategy impinge on the investor’s option valuation and
hedging policy.
The investor’s optimal strategy at any state (t; S; x; y) is as follows. The state space

(t; S; x; y) is split into three distinct regions: the BUY, SELL and no transaction (NT)
regions, from which it is optimal to buy stock, sell stock and not to trade, respectively.
Moreover, with proportional transaction costs, the optimal trade when outside the NT
region is to transact to the nearest boundary of the NT region. The optimal strategy can
be summarised as minimal trading to keep the portfolio in the NT region. We denote
the boundaries between the NT region and the BUY and SELL regions by yb and ys,
respectively. In general, yb and ys will be functions of (t; S; x), and will represent the
number of shares held at the NT boundaries. If the state is in the NT region it drifts
under the inWuence of the di7usion driving the stock price, on a surface de6ned by
Y (u)= constant. If the state is in the BUY or SELL regions, an immediate transaction
occurs taking the state to the nearest boundary of the NT region.
In the BUY region the value function remains constant along the path of the state

dictated by the optimal trading strategy, and therefore satis6es

V (t; S; x; y) = V (t; S; x − S(1 + !)�L; y + �L) in BUY; (31)

where �L, the number of shares bought, can take any positive value up to the one
required to take the portfolio to yb. Allowing �L ↓ 0, (31) becomes

@V
@y

(t; S; x; y)− (1 + !)S
@V
@x

(t; S; x; y) = 0 in BUY: (32)

Eq. (32) indicates that in the BUY region the marginal utilities of the risky and riskless
assets are in the ratio (1+!)S, the cost of purchasing one share of the stock. It de6nes
a direction in the state space in which the value function is constant in the BUY region.
Such properties of the value function will carry over to the investor’s option valuation
and hedging strategy. Speci6cally, the general option pricing formula (10) yields an
option price which does not vary with the investor’s initial portfolio outside the NT
region.
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Similarly, in the SELL region, the value function satis6es

V (t; S; x; y) = V (t; S; x + S(1− ")�M; y − �M) in SELL; (33)

where �M represents the number of shares sold. Letting �M ↓ 0, (33) becomes
@V
@y

(t; S; x; y)− (1− ")S
@V
@x

(t; S; x; y) = 0 in SELL: (34)

Eqs. (32) and (34) are the well known “value matching” conditions satis6ed by the
value function of (2). (See, for example, Dixit (1991), Dumas (1991, 1992), Dumas
and Luciano (1991), or the exposition by Harrison (1985) of the theory of optimally
regulated Brownian motion.) They hold throughout the BUY and SELL regions, and
(of course) at the boundaries yb; ys, regardless of whether these are chosen optimally
or not.
Finally, in the NT region, since it is sub-optimal to carry out any stock trades, for

any stock purchase �L or sale �M :

V (t; S; x; y)¿V (t; S; x − S(1 + !)�L; y + �L) in NT (35)

and

V (t; S; x; y)¿V (t; S; x + S(1− ")�M; y − �M); in NT; (36)

which on expansion imply that the left hand sides of (32) and (34) are non-positive
and non-negative, respectively, in NT. Bellman’s optimality principle for dynamic pro-
gramming gives the value function at time t in terms of its counterpart at time t + �t
as

V (t; S; x; y) = E�tV (t + �t; S + �S; x + �x; y) in NT; (37)

where E�t denotes expectation over the time interval �t. In the limit �t → 0, �S and
�x are given by (17) and (21), respectively (with dL = dM = 0 since we are in the
NT region). Applying Itô’s lemma yields the Hamilton–Jacobi–Bellman equation for
the value function in the NT region:

Vt + rxVx + bSVS + 1
2 �2S2VSS = 0 in NT; (38)

where the arguments of the value function have been omitted for brevity.
These equations can be condensed into the PDE

max
[
Vy − (1 + !)SVx;−(Vy − (1− ")SVx; Vt + rxVx + bSVs +

1
2
�2S2VSS

]
= 0:

(39)

The solution of the optimisation problem is obtained by observing that if we can
compute the value function in the NT region along with the boundaries of this region,
then we can calculate its value in the BUY and SELL regions using (31) and (33).
A closed form solution for the value function V (t; S; x; y) is elusive. This feature is

(notoriously) common to models with transaction costs. Constantinides (1986), Davis
and Norman (1990), Dumas and Luciano (1991) and Shreve and Soner (1994) do 6nd,
in the in6nite-horizon (and hence, time independent) case, for HARA utility functions,
an analytic form for the value function. However, the boundaries of the NT region
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must still be located numerically. We shall, therefore, in our 6nite-horizon problem, go
directly to the development of a numerical dynamic programming algorithm to obtain
option prices and hedging strategies.
We use Eqs. (31), (33) and (37), and augment them with the speci6c properties

of the optimal trading strategy to create a backward recursive dynamic programming
algorithm. This yields the value function at time t, provided it is known at time t+�t,
along with the location of the NT boundaries. Assume that the stock and bond prices
evolve in discrete time according to (18)–(20). Then the discrete dynamic programming
equation is

V (t; S; x; y) = max
(�L;�M)

[E�tV (t + �t; !S; R(x − S(1 + !)�L); y + �L);

E�tV (t + �t; !S; Rx; y);

E�tV (t + �t; !S; R(x + S(1− ")�M); y − �M)]; (40)

where R= exp(r:�t) and the maximum is achieved by the 6rst, second or third terms
in (40) when the state (t; S; x; y) is in the BUY, NT and SELL regions, respectively.
Eq. (40) expresses the value function at time t in terms of its counterpart at t + �t

by comparing the three possibilities: (i) buying �L shares and allowing the stock to
di7use or (ii) not trading and allowing the stock to di7use or (iii) selling �M shares
and allowing the stock to di7use.
The algorithm is an example of the Markov chain approximation technique for

the numerical solution of continuous time stochastic control problems, pioneered by
Kushner (1990); see also Kushner (1997) for a review of applications in 6nance. The
state variables and controls are approximated by discrete-time, discrete-state Markov
chains, in such a manner that the solution to the discrete problem converges to the
solution of the continuous-time problem. The application here is to a singular control
problem, along the lines of Kushner and Martins (1991). For the optimal portfolio
problem studied here, the necessary proofs of convergence of the discrete time prob-
lem to the continuous one are supplied by Davis et al. (1993), who proved that the
value function V (t; S; x; y) is a viscosity solution of the variational inequality (39).
To implement the above algorithm we specialise to the case of exponential utility

in the next section.

4. Option prices and hedging strategies under exponential utility

Following Hodges and Neuberger (1989) and Davis et al. (1993) we set the in-
vestor’s utility function to be the negative exponential:

U (W ) =−exp(−)W ); (41)

with constant risk aversion parameter ). With this choice the investor’s optimal trading
strategy becomes independent of the wealth held in the riskless asset. The assumption
of exponential utility is made primarily to reduce the dimensionality of the optimi-
sation problems that we must solve, as our goal is to compute numerical estimates
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of the option prices and hedging strategies implied by the general option pricing for-
mula (10). We defer to a later article the comparison of option prices generated by
alternative choices of the utility function. For example, with HARA utility functions,
such as logarithmic or power utility, the optimal trading strategy is characterised by a
time-varying no-transaction region with boundaries *b(t)¡*s(t), where *(t) represents
the ratio of wealth held in the stock to that held in the bond at time t. We hypothesise
that the results for option prices will be similar to those we present below for expo-
nential utility, but the relevant state-space variable will be *(t) instead of the amount
of money invested in the stock.
Below we show how the optimisation problem for V (t; S; x; y) simpli6es under ex-

ponential utility.
De6ne

H (t; S; y) := V (t; S; 0; y); (42)

then since, with exponential utility, the optimal portfolio through time is independent
of the wealth held in the bond, we have that

V (t; S; x; y) = H (t; S; y) exp(−)xer(T−t)): (43)

The resulting reduction in dimensionality means that the discrete dynamic program-
ming algorithm (40) reduces to

H (t; S; y) = max
(�L;�M)

[E�tH (t + �t; !S; y + �L) exp()S(1 + !)�L:-(t));

E�tH (t + �t; !S; y);

E�tH (t + �t; !S; y − �M)exp(−)S(1− ")�M:-(t))]; (44)

where -(t) = exp(r(T − t)).
For exponential utility, the boundaries of the NT region become functions of t and S

only. Denote them by yb(t; S) and ys(t; S), with yb(t; S)6ys(t; S), and equality holding
only in the case where != " = 0.
The optimal values of �L and �M; �L∗ and �M∗ satisfy

y + �L∗ = yb(t; S) and �M∗ = 0 if y¡yb(t; S)

�L∗ = �M∗ = 0 if yb(t; S)6y6ys(t; S)

�L∗ = 0 and y − �M∗ = ys(t; S) if y¿ys(t; S):

(45)

Applying (45) and (43) to Eqs. (31), (33) and (37), we also obtain the following
representation for H (t; S; y) in the BUY, SELL and NT regions.
If y¡yb(t; S), then

H (t; S; y) = H (t; S; yb(t; S)) exp()S(1 + !)(yb(t; S)− y)-(t)): (46)

If y¿ys(t; S), then

H (t; S; y) = H (t; S; ys(t; S)) exp(−)S(1− ")(y − ys(t; S))-(t)): (47)
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If yb(t; S)6y6ys(t; S), then

H (t; S; y) = E�tH (t + �t; !S; y): (48)

Eqs. (46)–(48) give the value function H (t; S; y) in the BUY, NT and SELL regions,
provided we know H (t; S; y) at and within the boundaries yb(t; S) and ys(t; S), along
with the location of these boundaries. These are located by implementing the algorithm
in (44) in the manner described below.
We create a large vector to represent possible values of y at each node of the

stock-price tree, with discretisation step hy. The range of this vector must be large
enough to locate yb(t; S) and ys(t; S) for all (t; S) on the binomial stock-price tree.
This can be accomplished by deriving analytically the NT boundaries at T − �t (see
Appendix A for this derivation), and noting that the NT region is wider at this time
than at any preceding time. Then the following sequence of steps is performed.

1. Suppose we know the value function at t + �t for all stock prices on the binomial
tree at this time, and for all values of y in our discrete vector. Then starting at a
time-t node of the stock-price tree, (t; S) say, and from the minimum value of y
in this vector, we compare the 6rst and second terms in the maximisation operator
of (44) for increasing values of y in steps of hy, until the latter is greater than or
equal to the former, at say yb, which we assume satis6es yb=yb(t; S), the boundary
between the NT and BUY regions at the node (t; S).

2. We continue, comparing the second and third terms in the maximisation operator
of (44) for increasing values of y in steps of hy, until the latter is greater than or
equal to the former, at say ys, which we assume satis6es ys =ys(t; S), the boundary
between the NT and SELL regions at the node (t; S).

3. Having located the boundaries of the NT region at the node (t; S), the value func-
tion at all points outside this region is determined by assuming the investor trans-
acts to its boundaries (i.e. applying Eqs. (46) and (47)), whilst the function in
the NT region is found by assuming the investor does not transact, and applying
Eq. (48).

We further enhance the speed of the above algorithm for V (t; S; x; y) because, for
exponential utility, the NT boundaries at any time are characterised by the wealth held
in the stock being constant. (This was con6rmed by solving the problem without this
assumption.) Therefore, having located the boundaries at a single node of the binomial
tree at time t, the boundaries at all other time-t nodes are given easily. This property
is not satis6ed by the value function V (O)(t; S; x; y; �; p).
The other noteworthy feature of our algorithm is the fact that the y-vector we use

is bounded to the interval [yb(T − �t; S); ys(T − �t; S)], the NT boundaries one period
prior to the option expiry. This allows us to restrict the state space over which we
carry out the search for the NT boundaries at all earlier times, and makes for fast,
accurate computation. These features can be exploited for option pricing because the
“fair” pricing methodology only requires the solution of the investor’s optimal portfolio
problem in the absence of options.
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4.1. Option prices

To calculate option prices, under exponential utility, the fair pricing formula (11)
becomes

p̂(t; S; y) = e−r(T−t) G(t; S; y)
H (t; S; y)

; (49)

where

G(t; S; y) = Et[U (W�∗
t; S;0;y(T ))C(S(T ))]; (50)

using the fact that U ′(w) =−)U (w).

4.2. E9ect of option trading on utility

To compare the investor’s maximum utility with and without the diversion of funds
into an option trade, we must compare, in general, the quantities V (o)(t; S; x−�; y; �; p)
with V (t; S; x; y). With exponential utility this becomes a comparison of

H (o)(t; S; y; �; p) exp()�-(t)) with H (t; S; y); (51)

where H (o)(t; S; y; �; p) is de6ned by

H (o)(t; S; y; �; P) ≡ V (o)(t; S; 0; y; �; p): (52)

5. Numerical results

For our numerical results we used the following parameters as a base case: T=1 year,
r = 0:1, b= 0:15, � = 0:25, )= 0:1, and we took the transaction cost rates for buying
and selling stock to be equal (" = !). We used a stock-price tree with at least 50
timesteps. First we con6rmed some stylised facts about the investor’s optimal trading
strategy without options, which we summarise below, and which verify the robustness
of our numerical algorithm. The optimal trading strategy has the following properties.

1. The boundaries of the NT region lie either side of the optimal portfolio without
transaction costs, and the NT region widens with the transaction costs.

2. The NT region boundaries show a hyperbolic dependence versus the stock price,
just as in the frictionless markets case, indicating that with exponential utility, and
at a 6xed time, the wealth in the stock is constant at the boundaries of the NT
region.

3. As we approach the horizon time T the NT region widens considerably. This is
as expected, indicating that portfolio rebalancing becomes less advantageous as the
time to expiry lessens. This feature carries over to the hedging strategy for an option
position.

4. An increase in risk aversion narrows the region of no transactions and shifts it to
lower values of the stock holding.



904 M. Monoyios / Journal of Economic Dynamics & Control 28 (2004) 889–913

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
2.1

2.15

2.2

2.25

2.3

2.35

Number of Shares

O
p
tio

n
 P

ri
ce

Call Option Prices versus Initial Stock Holding

Black-Scholes price

lambda = 0.005

lambda = 0.01

Fig. 1. At-the-money call option prices versus initial stock holding. The parameters are T = 1 year, r = 0:1,
b = 0:15, � = 0:25, ) = 0:1, S = K = 15, ! = 0:01 and 0.005.

Fig. 1 shows at-the-money call option prices given by the general option pricing
formula (49), plotted at time zero versus the investor’s initial stock holding, y, for
transaction cost parameters !=0:005 and !=0:01. The graphs are Wat outside a certain
range of y, which corresponds exactly with the width of the NT region for the particular
transaction cost parameter. We see the widening of the option pricing bounds as the
transaction costs are increased. The fair option price is higher when the investor’s stock
inventory is in the BUY region for the basic portfolio selection problem, then falls as
we enter the NT region, and is at its lowest when the current inventory position is
in the investor’s SELL region. This is intuitively correct, since a buyer of shares will
value a call option more highly than someone who wishes to sell stock. Of course, the
opposite pattern is obtained for put options.

5.1. The e9ect on utility of trading options

We analyse the case of the investor writing a call option at price pw, the maximum
price in Fig. 1, which we label the “fair asking price”. If we compare H (o)(t; S; n;
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−pw ; pw) exp(−)pw-(t)) with H (t; S; y) (making the comparison in (51) with �=−pw

and p = pw), we 6nd that the investor’s utility is virtually unchanged by the option
sale. However, trading an option at a price outside the bid-ask spread always results
in a reduction in utility (if one buys above the asking price or sells below the bid
price) or an increase in utility (if one sells above the asking price or buys below the
bid price).
To quantify the above points, in Fig. 2 (upper graph) we have plotted the di7erence

between the investor’s maximum utility when selling one call option at the fair asking
price and the maximum utility in the absence of the option sale. If the investor starts
out with a low stock inventory (i.e. he would, acting optimally, buy shares) then selling
a call option reduces his utility (albeit by a small amount). At some value, y∗, of the
initial stock holding y, the investor 6nds his utility is unchanged by the diversion of
funds into the option transaction, and for y¿y∗ the utility is increased by the sale
of the option. The increase in utility reaches a maximum, then tails o7 toward zero
for large values of y, reWecting the fact that when the investor wishes to sell large
amounts of stock, selling a call option increases utility, but this e7ect diminishes as
the initial stock holding increases. For all values of y, the percentage change in utility
is bounded and small, as shown in the lower graph. Similar observations hold for any
trade of an option within the “fair” bid-ask spread.
To summarise, the fair price given by the general option pricing formula is essentially

a reservation price. A nice feature of the pricing method used in this paper is that the
option pricing bounds can be found by solving the investor’s basic portfolio selection
problem, and without having to solve the more complicated problem involving the
purchase or sale of options.
Fig. 3 shows at the money call option prices for two di7erent risk aversion parame-

ters. The bid-ask spread is independent of risk aversion, but the range of values of the
initial stock holding for which the fair price lies within the bid-ask spread becomes
narrower and is shifted to a lower value, as the risk aversion increases.
In Table 1 we present call option prices for various strikes and transaction cost

parameters, and for comparison we show the bid and ask prices generated by Leland’s
(1985) approximately replicating strategy, with a revision interval of �t = 0:02, which
corresponds to approximately weekly portfolio rebalancing. A number of points are
worth emphasising. First, in general, the optimal pricing approach places tighter bounds
on the option price (except for options that are deep in-the-money, the intuition for
which is given below), particularly for large transaction costs. The intuition behind
this feature is natural: Leland’s strategy insists on portfolio rebalancing (thus incurring
transaction costs) in situations where the optimal pricing procedure may not. We used
a binomial tree with the same time step as the Leland revision interval to generate the
prices in Table 1, which means that the investor has the opportunity to rehedge as
frequently as the Leland strategy, but chooses not to do so.
The implication of these results is that the investor is prepared to bear more risk

than the Leland strategy allows, and the size of this risk is determined by the utility
function. The only exception to this feature is for options which are deep in-the-money.
In this case Leland’s bounds are tighter. The intuition here is as follows: for a deep
in the money option, with very high probability of exercise, the optimal policy is



906 M. Monoyios / Journal of Economic Dynamics & Control 28 (2004) 889–913

0 0.5 1 1.5 2 2.5 3
- 3.5

- 3

- 2.5

- 2

- 1.5

- 1

- 0.5

0

0.5

1

1.5
x 10

-3 Effect on Utility if Selling a Call Option at Asking Price

Number of Shares

(U
til

ity
 w

ith
 O

p
tio

n
 S

a
le

)-
(U

til
ity

 w
ith

o
u

t 
O

p
tio

n
 S

a
le

)

0 0.5 1 1.5 2 2.5 3
0.99

0.995

1

1.005

Number of Shares

(U
til

ity
 w

ith
 O

p
tio

n
 S

a
le

)/
(U

til
ity

 w
ith

o
u

t 
O

p
tio

n
 S

a
le

)

Utility with Option Sale as Percentage of Utility without Option

Fig. 2. The upper graph shows the di7erence between the investor’s maximum utility when selling a call
option at the “fair” asking price and the maximum utility without selling the option. The lower graph plots
the utility with the option sale as a fraction of the utility without the option sale. The parameters are
T = 1 year, r = 0:1, b = 0:15, � = 0:25, ) = 0:1, S = K = 15, ! = 0:005 and p̂ = pw = 2:2864.

to be (almost) fully hedged, and this is in accordance with Leland’s strategy, which
is designed to eliminate risk in a Black–Scholes type manner. Therefore, in these
situations, Leland’s strategy is optimal and falls within the spread given by utility
maximisation.
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For very large transaction costs Leland’s strategy fails to produce a bid price for the
option, as the e7ective volatility is no longer a real number. This point has also been
made by Avellaneda and ParJas (1994), who provided a solution to this problem using
the notion of imperfectly dominating policies. The optimal pricing procedure never
fails to produce a sensible option price, regardless of the level of transaction costs.
Fig. 4 shows a plot of the call bid-ask spread speci6ed by the optimal pricing

formula, versus the stock price. We have also shown Leland’s bid-ask spread with a
revision interval �t =0:02, equal to the time step of the binomial tree, and the Black–
Scholes call values. We see how the optimal pricing procedure places tighter bounds
on the option prices, except for the cases where the option is deep in the money, as
before.
In Fig. 5 we plot the hedging strategy for a short call position versus the initial

stock price, produced-using De6nition 1. The dashed curves indicate the region in
which the hedging portfolio is not rebalanced, whilst the solid curve is the Black–
Scholes delta hedging strategy. The replacement of the unique Black–Scholes delta
by a hedging bandwidth is in accordance with intuition and with previous results on
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Table 1
Call bid and ask prices

Strike Ask Price Bid Price Leland Ask Leland Bid

! = 0:005, NT Region = [0:3866; 0:5780]
10 6.0471 5.8980 5.9940 5.9610
13 3.5841 3.4503 3.6190 3.4348
15 2.2864 2.1775 2.3869 2.0915
17 1.3419 1.2641 1.4878 1.1481
20 0.5423 0.5048 0.6724 0.3949

! = 0:01, NT Region = [0:3499; 0:6197]
10 6.1199 5.8248 6.0187 5.9537
13 3.6476 3.3837 3.7088 3.3458
15 2.3376 2.1212 2.5164 1.9171
17 1.3788 1.2210 1.6336 0.9398
20 0.5613 0.4805 0.8010 0.2470

! = 0:02, NT Region = [0:2702; 0:7196]
10 6.2675 5.6716 6.0775 5.9516
13 3.7798 3.2463 3.8807 3.2374
15 2.4475 2.0073 2.7502 1.4800
17 1.4612 1.1361 1.8940 0.3057
20 0.6063 0.4348 1.0401 0.0034

! = 0:03, NT Region = [0:1813; 0:8243]
10 6.4068 5.5242 6.1450 —
13 3.9070 3.1159 4.0421 —
15 2.5556 1.9012 2.9590 —
17 1.5445 1.0589 2.1242 —
20 0.6537 0.3948 1.2592 —

The parameters are T = 1 year, r = 0:1, b= 0:15, � = 0:25, )= 0:1, S = 15. For != 0:03 the Leland bid
price is unde6ned for a revision interval of �t = 0:02.

optimal hedging under transaction costs, such as Hodges and Neuberger (1989) and
(for the limiting case of small transaction costs) Whalley and Wilmott (1997).

6. Conclusions and suggestions

This paper has developed a procedure for optimally valuing options in the presence
of proportional transaction costs. The method involves treating an option transaction as
an alternative investment to optimally trading the underlying stock. Option prices are
determined by requiring that, at the margin, the diversion of funds into an option trade
has no e7ect on an investor’s achievable utility. Thus, the option trade is treated as
a small perturbation on the investor’s initial portfolio of assets. The methodology can
therefore be extended to situations in which the basic portfolio contains many assets,
including possibly other derivatives.
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Option prices are computed by solving a singular stochastic optimal control problem
via an e+cient algorithm. We only need to solve the investor’s fundamental portfolio
selection problem to derive option prices, as opposed to other optimal procedures which
require the solution of an optimisation problem containing an embedded option. The
method is therefore a relatively tractable way of producing optimal pricing bounds.
The method places tight bounds on option prices and generates prices which can lie

anywhere within these bounds, depending on the investor’s initial holding of stock. The
investor’s utility is hardly a7ected when trading options at the optimal prices, whereas
trading outside the bounds can lead to a drastic loss in utility.
The 6nal conclusion is that a general approach to option pricing in the presence

of transaction costs should be based on an optimal portfolio approach. Approximate
replication schemes work well for small levels of transaction costs and are useful
because they can lead to closed form approximate solutions, but they cannot cope with
larger values of transaction costs. In these cases the optimal models outperform them
as the frequency of trading is reduced.
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Fig. 5. Short call option hedging strategies versus stock price. The call was sold at the “fair” asking price,
and the other parameters are T =1 year, r=0:1, b=0:15, �=0:25, )=0:1, K =15, !=0:005. The dashed
curve indicates the region in which portfolio rebalancing does not take place, whilst the solid curve is the
Black–Scholes delta.

There are a number of directions in which this work could be extended:
American options. The pricing of American options with transaction costs presents

some interesting problems because one not only has to compute an optimal hedging
strategy, but also an optimal exercise policy. This will involve a problem in singular
control with optimal stopping, which has been studied by Davis and Zervos (1994).
There is a further complication for the writer of an option in that it is not he, but the
buyer of the option, who controls the exercise policy. Some preliminary ideas on this
topic have been provided by Davis and Zariphopoulou (1995).
Equilibrium. The option pricing method described in this paper selects a “fair” price

within a closed interval provided by the reservation buying and selling prices. It there-
fore gives some hope of providing a framework in which the buyer and seller of an
option might agree on a price.
Di9erent preferences. An analysis of how the risk preferences of the investor a7ect

option prices would be interesting. Optimal portfolios for HARA utility functions are
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usually determined by selecting an optimal ratio of wealth in the risky and riskless
assets, as opposed to the exponential function used in this paper, in which the wealth
held in the risky asset is the important variable. We hypothesise that such patterns
would transfer to the option valuation problem. One could also consider quadratic
preferences, such as risk minimisation, as in Mercurio and Vorst (1997) or Lamberton
et al. (1998). A further possibility is to consider “coherent” measures of risk, introduced
by Artzner et al. (1999), and extended to a dynamic setting by and CvitaniJc and
Karatzas (1999). One example of such a risk measure is provided by the “shortfall
risk” minimisation of FNollmer and Leukert (2000). In general, the interaction between
agents’ preferences and option prices in incomplete markets is a fertile area for future
research, and recent papers addressing this topic include Rouge and El Karoui (2000),
Barrieu and El Karoui (2002) and Musiela and Zariphopoulou (2001).
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Appendix A

We derive analytic formulae for the value function H (T−�t; S; y) and the boundaries
of the NT region yb(T − �t; S); ys(T − �t; S), one time period prior to the 6nal time
T , under exponential utility.
In the BUY region (y¡yb(T − �t; S)) the Bellman equation (44) for the value

function H (T − �t; S; y) reduces to

H (T − �t; S; y) = max
�L
E�tH (T; !S; y + �L) exp()RS(1 + !)�L); in BUY (A.1)

where R= exp(r:�t) and H (T; S; y) =−exp(−)yS).
We write out the above expectation explicitly, di7erentiate with respect to �L, and

set the result to zero. This yields, after some tedious algebra, that the optimal number
of shares to buy, �L∗, satis6es

y + �L∗ ≡ yb(T − �t; S) =
1

)S(!u − !d)
log

(
q(1− q+)
(1− q)q+

)
; (A.2)

where !u and !d are the two possible realisations of the binomial random variable !
given in (20), (so that q= 1

2), and the pseudo-probability q+ is given by

q+ =
R(1 + !)− !d

!u − !d
: (A.3)

Inserting the expression for �L∗ into (A.1) gives the following representation for
H (T − �t; S; y) in the BUY region:

H (T − �t; S; y) =−exp(−)yRS(1 + !))
(

q
q+

)q+ ( 1− q
1− q+

)(1−q+)

; in BUY

(A.4)
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A similar analysis in the SELL region gives the optimal number of shares to sell,
�M∗, as

y − �M∗ = ys(T − �t; S) =
1

)S(!u − !d)
log

(
q(1− q−)
(1− q)q−

)
; (A.5)

where the pseudo-probability q− is given by

q− =
R(1− ")− !d

!u − !d
; (A.6)

so that the value function in the SELL region is

H (T − �t; S; y) =−exp(−)yRS(1− "))
(

q
q−

)q− (
1− q
1− q−

)(1−q−)

; in SELL:

(A.7)

Finally, in the NT region, the value function is given analytically by

H (T − �t; S; y) =−[q exp(−)yS!u) + (1− q) exp(−)yS!d)]; in NT: (A.8)
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