
A fast numerical algorithm is developed to price European options with
proportional transaction costs using the utility-maximization framework of
Davis (1997). This approach allows option prices to be computed by solving
the investor’s basic portfolio selection problem without insertion of the option
payoff into the terminal value function. The properties of the value function
can then be used to drastically reduce the number of operations needed to
locate the boundaries of the no-transaction region, which leads to very effi-
cient option valuation. The optimization problem is solved numerically for the
case of exponential utility, and comparisons with approximately replicating
strategies reveal tight bounds for option prices even as transaction costs
become large. The computational technique involves a discrete-time Markov
chain approximation to a continuous-time singular stochastic optimal control
problem. A general definition of an option hedging strategy in this framework
is developed. This involves calculating the perturbation to the optimal port-
folio strategy when an option trade is executed.

1. Introduction

This article develops an efficient optimal procedure for computing European
option prices in the presence of transaction costs on trading the underlying stock.
This issue arises because the Black–Scholes (1973) option pricing methodology
relies on perfect replication of the option payoff by a continuously rebalanced
hedging portfolio involving the underlying stock. It is therefore inapplicable in
markets with transaction costs as the hedging costs would be ruinously expensive.

Attempts to circumvent this problem include the early work of Leland (1985)
and Boyle and Vorst (1992), who used a fixed hedging time scale, which is not
necessarily an optimal policy. Furthermore, the pricing bounds become wider
as the hedging error is reduced. Bensaid et al. (1992) replaced the replication
strategy with a super-replicating strategy, in which the hedging portfolio is only
required to dominate, rather than replicate, the option payoff at maturity. For a
call option this method reduces to the trivial strategy of buying the underlying
asset and holding it to maturity, as proven by Soner, Shreve and Cvitanić (1995)
and Cvitanić, Pham and Touzi (1999) following a conjecture of Davis and Clark
(1994). This illustrates a fundamental feature of option hedging under transaction
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costs, namely, that attempting to eliminate all risk results in unrealistically wide
valuation bounds.

Hodges and Neuberger (1989) recognized that an optimal valuation method,
incorporating a utility-maximization objective, is a more viable valuation
programme. By comparing the utility achieved with and without the obligations
of an option contract, they specified reservation bid and asking prices for an
option by requiring that the same utility be achieved whether an option trade has
been entered into or not. This approach was further developed by Davis, Panas
and Zariphopoulou (1993), Clewlow and Hodges (1997) and Constantinides and
Zariphopoulou (1999). Alternative criteria for determining an option hedging
policy include quadratic criteria such as the �-arbitrage approach of Bertsimas,
Kogan and Lo (2001), and local risk minimization, studied by Mercurio and Vorst
(1997) and Lamberton, Pham and Schweizer (1998).

The utility-maximization approach is promising, but one usually has to solve a
formidable singular stochastic optimal control problem, further complicated by
the insertion of the option payoff into the terminal value function. The search for
a more efficient procedure to value options with market frictions, while retaining
the optimality of the utility-maximization approach, is the aim of the present
study.

In this spirit we implement the optimal pricing procedure suggested by Davis
(1997). We develop an associated definition of a hedging strategy implied by the
new method and compute option prices and hedging strategies under proportional
transaction costs. In this approach an investor fixes a “fair” price for an option
by requiring that an infinitesimal diversion of funds into the purchase or sale of
the option has no effect on the investor’s maximum utility. This is essentially a
marginal version of the valuation methods pioneered by Hodges and Neuberger.

Our methodology results in fast computation of option prices within bounds
that are tight, even for large transaction costs. The advance in computation speed
is achieved in two ways. First, the option prices are obtained directly from the
investor’s basic portfolio selection problem, without the presence of the option.
This is a direct consequence of Davis’ (1997) general pricing formula. It allows
us to use properties of the value function and of the optimal trading strategy to
drastically reduce the number of computations needed to locate the boundaries of
the investor’s no-transaction (NT) region. Second, we derive analytically the
boundaries of the NT region one period prior to maturity of the option. Since the
NT region narrows as we move closer to the present time, we obtain natural
bounds on the state space over which the backward-recursive dynamic program-
ming algorithm to locate the NT boundaries must be carried out.

The rest of the article proceeds as follows. In Section 2 we set up a portfolio
selection scenario in which the optimal strategy to maximize expected utility of
wealth at a finite horizon time is sought, both with and without some initial
wealth diverted into the purchase or sale of European options, and we state
Davis’ (1997) general option pricing formula. We formulate a general definition
of an option hedging strategy for such a utility-maximizing investor. In Section 3

Michael Monoyios

www.thejournalofcomputationalfinance.com Journal of Computational Finance

108



we consider a specific market model with transaction costs and present the
dynamic programming solution to the portfolio choice problem. In Section 4 we
specialize to the case of an exponential utility function and develop a numerical
algorithm based on a Markov chain approximation to the continuous-time
dynamic programming problem. In Section 5 we present numerical solutions for
option prices and hedging strategies, and make comparisons with the approxi-
mate replication approach of Leland (1985). Section 6 concludes and suggests
directions for further research. An appendix contains a derivation of a result used
in the implementation of the numerical algorithm.

2. Portfolio selection and option valuation

We utilize a finite time interval [0, T ], where T corresponds to the maturity of a
European option. Consider an investor with concave utility function U, starting
at time t ∈[0, T ] with cash endowment x, and holding y shares of a stock whose
price is S. The investor trades a dynamic portfolio whose value at time u > t is
W π

t,S,x,y(u) when using the trading strategy π and starting in the state (t, S, x, y).
The wealth W π

t,S,x,y(u) consists of X π
t,S,x,y(u) dollars in cash and Y π

t,S,x,y(u) shares
of stock whose price at time u is S(u), so that

(1)W π
t,S,x,y(u) = X π

t,S,x,y(u) + Y π
t,S,x,y(u)S(u)

The investor’s objective is to maximize the expected utility of wealth at time T.
Denote the investor’s maximum utility by

(2)

where Et denotes the expectation operator conditional on the information at
time t. The supremum in (2) is taken over a suitable set of admissable policies;
these are described in the next section, when we specialize to a market with
proportional transaction costs.

Consider the alternative optimization problem that results if a small amount of
the initial wealth is diverted into the purchase or sale of a European option whose
payoff at time T is some non-negative random variable C(S(T )). To be precise, if
the option price at time t is p and an amount of cash δ is diverted at this time into
options, we define

(3)

The superscript “o” denotes that the investor’s portfolio at time T incorporates the
option payoff. The value function in (3) is evaluated for the initial cash endow-
ment x – δ to signify that the funds to buy (or sell, if δ < 0) the options have come
from (or been credited to) the initial wealth. In (2) and (3) the quantities δ and p
would be measurable with respect to the time-t information.

V t S x y p U W T
p

C S Tt t S x y
( )

, , ,( , , , , , ) sup ( ) ( )( )o − = +











−δ δ δ
π δ

πE

V t S x y U W Tt t S x y( , , , ) sup ( ), , ,= ( )[ ]
π

πE
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In Hodges and Neuberger (1989) option pricing bounds were derived by
requiring that the same utility is achieved when an option is traded as when it is
not. Another approach was proposed by Davis (1997). An agent will be willing
to trade the option at a “fair” price, p̂, such that there is a neutral effect on the
investor’s utility if an infinitesimal fraction of the initial wealth is diverted into
the purchase or sale of the option at price p̂. That is, p̂ is given by the solution of

(4)

This results in the pricing formula

(5)

where U ′ is the derivative of U, Vx(t, S, x, y) denotes the partial derivative with
respect to x, and π* denotes the trading strategy that maximizes the expected util-
ity in (2). This is the trading strategy which optimizes a portfolio without options,
and the formula (5) for p̂ shows no dependence on the optimization problem (3)
containing embedded options. This is the key to the fast computation of option
prices with transaction costs.

We write (5) as

(6)

where the function F(t, S, x, y) is defined by

(7)

Davis’ pricing methodology reduces to Black–Scholes pricing in complete, fric-
tionless markets. It has been studied theoretically in various contexts by a number
of authors, including Rabeau (1996), Cvitanić and Karatzas (1996), Karatzas and
Kou (1996), Bensoussan and Julien (2000), Frittelli (2000), Rouge and El Karoui
(2000), Schäl (2000) and Stettner (2000). These works focus mainly on char-
acterizing the martingale pricing measure associated with the fair price p̂, on
connections with no arbitrage, and with the minimal-entropy martingale measure.
The focus of our article is on the numerical implementation of the pricing proce-
dure under proportional transaction costs to illustrate the simplification it affords
in calculating option prices.

An aspect of the utility-based approaches to derivative pricing that merits
further attention is the effect on the underlying asset market of the introduction

F t S x y U W T C S Tt t S x y( , , , ) : ( ) ( ), , ,

*
( )= ′( )[ ]E π
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F t S x y
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=
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p t S x y
U W T C S T

V t S x y

t t S x y
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of an option. Detemple and Selden (1991) show that there are important general
equilibrium effects when options are added to an incomplete market that can
affect the price of the stock. In the above models such effects are implicitly
assumed to be small, and this can be viewed as an approximation to simplify
computation. In the case of the model examined here, the formula in (5) only
involves the optimization problem in the absence of options (because its deriva-
tion involves infinitesimal diversions of wealth into options), and this is a poten-
tial justification for assuming that equilibrium effects are small.

The issue of what is an appropriate utility function and risk-aversion coeffi-
cient when implementing the above methods is an important one. Some method
for calibrating risk aversion is necessary, and one approach is to examine the
proportions of risky to risk-free asset holdings in empirical portfolios since these
are directly related to risk-aversion characteristics. This is an important area for
future research.

2.1 Hedging

As well as finding sensible derivative prices under transaction costs, any feasible
pricing methodology should say something concerning the risk management
of an option position. In the case of zero transaction costs the answer to this
question is automatic, in that the Black–Scholes methodology sets option prices
by a hedging argument. Such comments also apply to imperfectly replicating
approaches like that of Leland (1985), and to quadratic approaches such as the
local risk minimization approach in Lamberton, Pham and Schweizer (1998) or
the �-arbitrage approach of Bertsimas, Kogan and Lo (2001).

In the case of a utility-maximization approach to option pricing, the pricing
problem is first embedded in the portfolio selection problem to determine a price.
Then, if one computes the optimal trading strategy in the presence of the option
trade, it will be altered compared to the situation without the option, with the
adjustment measuring the effect of the option trade. This adjustment will corre-
spond to what is usually meant by an “option hedging strategy”.

Suppose that � options are written at price p̂ given by (5). Then the investor’s
optimal trading strategy will be π†, maximizing

In the absence of the option trade, the investor’s optimal trading strategy is π* to
achieve the supremum in (2). Since the option trade has altered the investor’s
optimal stock trading strategy, a natural definition of the option hedging strategy
is the incremental trades generated by the option trade – that is, the difference
of the trading strategies π† and π*. This motivates the definition which follows
below.

Let an amount δ be paid (or received, for the case when options are written)
to trade options at time t for a given price p. We then write the value function

Et t S x p yU W T C S T, , ˆ , ( ) ( )( )+ −( )[ ]� �π
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in (3) as

(8)

which defines the optimal trading strategy π† for this utility-maximization prob-
lem. If we compare the optimal portfolio in the presence of the option position
with that in the absence of the options, we obtain a measure of the additional
holdings brought about by the option trade, which is a natural candidate for the
option hedging strategy.

DEFINITION 1 The hedging strategy πh for δ ⁄p options traded at time t, each at
price p, is one whose holdings X πh

t,S,x,y(u), Y πh

t,S,x,y(u) at time u ∈[t, T ] satisfy

(9)

(10)

The hedging strategy can be written as πh = π† – π*.

We shall see that the above definition of a hedging strategy is a correct one
when we illustrate its numerical features in Section 5.

3. A market with transaction costs

We consider a market consisting of a risk-free bond and a risky stock whose
prices B(u) and S(u) at time u ∈[0, T ] satisfy, in continuous time,

(11)dB(u) = rB(u)du

(12)dS(u) = S(u)[bdu + σdZ(u)]

where Z = {Z(u), 0 ≤ u ≤ T} is a one-dimensional standard Brownian motion
defined on a complete probability space (Ω,F, P). Denote by F =
{F(u), 0 ≤ u ≤ T} the P-augmentation of the filtration F Z(T ) = σ(Z(u);
0 ≤ u ≤ T ) generated by Z. The constant coefficients r, b, σ represent the risk-free
interest rate, stock growth rate and stock volatility, respectively. The stock is
assumed to pay no dividends. Trading in the stock incurs proportional transaction
costs, such that the purchase of ν shares of stock at price S reduces the wealth
held in the bond by (1 + λ)νS, where λ(0 ≤ λ < 1) represents the proportional
transaction cost rate associated with buying stock. Similarly, the sale of ν shares
of stock increases the wealth in the bond by (1 – µ)νS, where µ (0 ≤ µ < 1)
represents the proportional transaction cost rate associated with selling stock.
In all other respects markets are assumed perfect.

X u X u X u

Y u Y u Y u

t S x y t S x y t S x y

t S x y t S x y t S x y
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We shall also make use of a binomial approximation to the above market
model for numerical computation. The bond and stock prices follow the discrete-
time processes

(13)B(u) + δB(u) ≡ B(u + δu) = exp (r . δu)B(u)

(14)S(u) + δS(u) ≡ S(u + δu) = ωS(u)

where ω is a binomial random variable:

(15)

and δu is a small time interval.
Define (L(u), M(u)), a pair of F-adapted, right-continuous, non-decreasing

processes, such that L(u) (respectively, M(u)) is the cumulative number of shares
of stock bought (respectively, sold) up to time u. Then, in continuous time, the
wealth held in the bond for an investor who begins trading in the state (t, S, x, y)
evolves as

dX(u) ≡ dXL,M
t,S,x,y(u) = rX(u)du – (1 + λ) S(u) dL(u) + (1 – µ) S(u) dM(u)

(16)

The number of shares held follows the process

(17)dY(u) ≡ dYL,M
t,S,x,y(u) = dL(u) – dM(u)

and the wealth of the investor is given by

(18)W(u) ≡ WL,M
t,S,x,y(u) = XL,M

t,S,x,y(u) + YL,M
t,S,x,y(u) S(u)

The pair (L, M) ≡ {(L(u), M(u)), t ≤ u ≤ T} constitutes a trading strategy for an
investor in this financial market who seeks to maximize expected utility of wealth
at time T. We introduce the set S, which defines the solvency region in the absence
of an option trade, as

(19)S = {(S, x, y) ∈R+ × R2x + (1 + λ)Sy ≥ 0, x + (1 – µ)Sy ≥ 0}

A trading strategy (L, M) is said to be admissable (for the problem without
options) if the corresponding holdings satisfy the solvency constraint

(20)(S(u), XL,M
t,S,x,y(u), YL,M

t,S,x,y(u)) ∈S, almost surely, ∀u ∈[t, T ]

For an investor who trades options at time t and then seeks to maximize
expected utility of wealth, the set of admissable trading strategies is altered. For

ω σ δ σ δ= −( ) ±[ ] =exp ,b u u q2 2
1

2
     each with probability 
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example, when a contingent claim is written the work of Soner, Shreve and
Cvitanić (1995) and Levental and Skorohod (1997) shows that, in order to keep
the wealth of the writer non-negative, it is imperative to keep at least one share of
the stock at all trading times. This issue does not enter our pricing methodology
as it only requires us to solve an optimization problem without the derivative
security, though for computing hedging strategies this is not the case.

The value functions V(t, S, x, y) and V (o)(t, S, x, y, δ, p) satisfy the same dynamic
programming equations but with different terminal boundary conditions. The
function F(t,S,x,y) of equation (7) is not necessarily a value function, but it satis-
fies a similar recursive equation with the choice of control (the trading strategy)
determined from the dynamic programming algorithm for V(t, S, x, y).

The boundary condition to be applied at the terminal time T for V(t, S, x, y) is

(21)V(T, S, x, y) = U(x + yS)

where it is assumed that no transaction costs are charged on cashing out the final
portfolio (in keeping with much of the existing literature on transaction costs).
Assuming that costs are charged on liquidating the portfolio, then (21) is replaced
by

(22)V(T, S, x, y) = U(x + c(y, S))

where c(y, S) is the cash value of y shares of stock, each of price S, and is defined
by

(23)

Our results are not qualitatively altered if there are no costs on liquidation.
The terminal boundary condition for the optimization problem involving

options is (with the same remarks as above about liquidation costs)

(24)

while the terminal boundary condition for F(t, S, x, y) is

(25)F(T, S, x, y) = C(S)U ′(x + yS)

3.1 Dynamic programming equations

The dynamic programming equations satisfied by the function V(t, S, x, y) in a
market with proportional transaction costs are presented below. They will be used
in formulating a numerical algorithm in the next section.

V T S x y p U x yS
p
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The state space (t, S, x, y) is split into three distinct regions: the BUY, SELL
and no-transaction (NT) regions, from which it is optimal to buy stock, sell stock
and not to trade, respectively. If the state is in the NT region it drifts, under
the influence of the diffusion driving the stock price, on a surface defined by
Y(u) = constant. If the state is in the BUY or SELL regions, an immediate trans-
action occurs, taking the state to the nearest boundary of the NT region.

In the BUY region the value function remains constant along the path of the
state dictated by the optimal trading strategy, and it therefore satisfies

(26)V(t, S, x, y) = V (t, S, x – S(1 + λ)δL, y + δL) in BUY

where δL, the number of shares bought, can take any positive value up to that
required to take the portfolio to the boundary between the NT and BUY regions.
Allowing δL ↓ 0, (26) becomes

(27)

Similarly, in the SELL region, the value function satisfies

(28)V(t, S, x, y) = V (t, S, x + S(1 – µ)δM, y – δM ) in SELL

where δM represents the number of shares sold. Letting δM ↓ 0, (28) becomes

(29)

Finally, in the NT region, since it is sub-optimal to carry out any stock trades,
for any stock purchase δL or sale δM:

(30)V(t, S, x, y) ≥ V (t, S, x – S(1 + λ)δL, y + δL) in NT

and

(31)V(t, S, x, y) ≥ V (t, S, x + S(1 – µ)δM, y – δM ) in NT

which on expansion imply that the left-hand sides of (27) and (29) are non-
positive and non-negative, respectively, in NT. Bellman’s optimality principle for
dynamic programming gives the value function at time t in terms of its counter-
part at time t + δt as

(32)V(t, S, x, y) = EδtV(t + δt, S + δS, x + δx, y) in NT

where Eδt denotes expectation over the time interval δt. In the limit δt → 0, δS
and δx are given by (12) and (16), respectively (with dL = dM = 0 since we are

∂
∂

− − ∂
∂

=V

y
t S x y S

V

x
t S x y( , , , ) ( ) ( , , , )   1 0µ in SELL

∂
∂

− + ∂
∂

=V

y
t S x y S

V

x
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in the NT region). Applying Itô’s lemma yields the Hamilton–Jacobi–Bellman
equation for the value function in the NT region:

(33)

where the arguments of the value function have been omitted for brevity.
These equations can be condensed into the PDE

(34)

The solution of the optimization problem is obtained by observing that if we
can compute the value function in the NT region along with the boundaries of
this region, we can calculate its value in the BUY and SELL regions using (26)
and (28).

We use the equations (26), (28) and (32) and augment them with the specific
properties of the optimal trading strategy to create a backward-recursive dynamic
programming algorithm. Assume that the stock and bond prices evolve in discrete
time according to (13)–(15). Then the discrete dynamic programming equation is

V(t, S, x, y) = max
(δL,δM)

[EδtV (t + δt, ωS, R(x – S(1 + λ)δL), y + δL ) ,

EδtV(t + δt, ωS, Rx, y),

EδtV (t + δt, ωS, R(x + S(1 – µ)δM), y – δM )] (35)

where R ≡ exp (r . δt) and the maximum is achieved by the first, second or third
terms in (35) when the state (t, S, x, y) is in the BUY, NT and SELL regions,
respectively.

Equation (35) expresses the value function at time t in terms of its counterpart
at t + δt by comparing the three possibilities: buying δL shares and allowing the
stock to diffuse; not trading and allowing the stock to diffuse; or selling δM
shares and allowing the stock to diffuse.

The algorithm is an example of the Markov chain approximation technique for
the numerical solution of continuous-time stochastic control problems pioneered
by Kushner (1990); see also Kushner (1997) for a review of applications in finance.
The state variables and controls are approximated by discrete-time, discrete-state
Markov chains in such a manner that the solution to the discrete problem
converges to the solution of the continuous-time problem. The application here is
to a singular control problem along the lines of Kushner and Martins (1991). For
the optimal portfolio problem studied here, the necessary proofs of convergence
of the discrete-time problem to the continuous one are supplied by Davis, Panas
and Zariphopoulou (1993).

max V SV V SV V r xV bSV S Vy x y x t x S SS− + − − −( ) + + +





=( ) , ( ) ,1 1
1

2
02 2λ µ σ

V rxV bSV S Vt x S SS+ + + =1

2
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To implement the above algorithm we specialize to the case of exponential
utility in the next section.

4. Option prices and hedging strategies under exponential utility

Following Hodges and Neuberger (1989) and Davis, Panas and Zariphopoulou
(1993), we set the investor’s utility function to be the negative exponential

(36)U(W ) = – exp (– αW )

with constant risk-aversion parameter α. With this choice the investor’s optimal
trading strategy becomes independent of the wealth held in the risk-free asset.
The assumption of exponential utility reduces the dimensionality of the opti-
mization problem that we must solve. We defer to a later article the comparison
of option prices generated by alternative choices of the utility function.

For exponential utility, the optimal trading strategy is characterized by a time-
varying NT region with boundaries ζb(t) < ζs(t), where ζ(t) represents the wealth
held in the stock at time t. For logarithmic or power utility, we hypothesize that
the results will be similar to those we present below for exponential utility,
but ζ(t) will correspond to the ratio of wealth held in the stock to that held in
the bond.

Define

(37)H(t, S, y) := V(t, S, 0, y)

then since, with exponential utility, the optimal portfolio through time is inde-
pendent of the wealth held in the bond, we have that

(38)V(t, S, x, y) = H(t, S, y) exp(– αx er (T– t))

The resulting reduction in dimensionality means that the discrete dynamic pro-
gramming algorithm (35) reduces to

H(t, S, y) = max
(δL,δM)

[Eδt H(t + δt, ωS, y + δL) exp (αS(1 + λ)δL . β(t)) ,

Eδt H(t + δt, ωS, y),

Eδt H(t + δt, ωS, y – δM), exp (– αS(1 – µ)δM . β(t))]
(39)

where β(t) = exp (r(T – t)).
For option price computations on a binomial tree, we need the boundaries of

the NT region at each node of the tree. We chracterize these by the number of
shares held at the NT boundaries, and these are therefore functions of t and S
only. Denote them by yb(t, S) and ys(t, S), with yb(t, S) ≤ ys(t, S), and equality
holding only in the case where λ = µ = 0.
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The optimal values of δL and δM, δL* and δM* satisfy

y + δL* = yb(t, S) and δM* = 0, if y < yb(t, S)

δL* = δM* = 0, if yb(t, S) ≤ y ≤ ys(t, S)

δL* = 0 and y – δM* = ys(t, S), if y > ys(t, S) (40)

Applying (40) and (38) to equations (26), (28) and (32), we obtain the follow-
ing representations for H(t, S, y) in the BUY, SELL and NT regions.

If y < yb(t, S), then

(41)H(t, S, y) = H (t, S, yb(t, S )) exp (αS(1 + λ)(yb(t, S ) – y)β(t))

If y > ys(t, S), then

(42)H(t, S, y) = H (t, S, ys(t, S )) exp (– αS(1 – µ)(y – ys(t, S ))β(t))

If yb(t, S) ≤ y ≤ ys(t, S), then

(43)H(t, S, y) = Eδt H(t + δt, ωS, y)

Equations (41)–(43) give the value function H(t, S, y) in the BUY, NT and
SELL regions provided that we know H(t, S, y) at and within the boundaries
yb(t, S) and ys(t, S), along with the location of these boundaries. These are located
by implementing the algorithm in (39) in the manner described below.

We create a large vector to represent possible values of y at each node of the
stock price tree, with discretization step hy. The range of this vector must be large
enough to locate yb(t, S) and ys(t, S) for all (t, S) on the binomial stock price tree.
This is accomplished by deriving analytically the NT boundaries at T – δt, as
shown in the Appendix, and noting that the NT region is wider at this time than at
any preceding time.1 Then the following sequence of steps is performed.

1. Suppose we know the value function at t + δt for all stock prices on the bino-
mial tree at this time and for all values of y in our discrete vector. Then, start-
ing at a time-t node of the stock price tree, (t, S) say, and from the minimum
value of y in this vector, we compare the first and second terms in the maxi-
mization operator of (39) for increasing values of y in steps of hy until the lat-
ter is greater than or equal to the former at, say, yb, which we assume satisfies
yb = yb(t, S), the boundary between the NT and BUY regions at the node (t, S).

2. We continue, comparing the second and third terms in the maximization oper-
ator of (39) for increasing values of y in steps of hy until the latter is greater

Michael Monoyios

www.thejournalofcomputationalfinance.com Journal of Computational Finance

118

1 This was confirmed by solving the problem without this assumption.



than or equal to the former at, say, ys, which we assume satisfies ys = ys(t, S),
the boundary between the NT and SELL regions at the node (t, S).

3. Having located the NT boundaries for the node (t, S), the value function at all
points outside the NT region is determined by assuming that the investor trans-
acts to its boundaries (ie, applying equations (41) and (42)), while the function
in the NT region is found by assuming that the investor does not transact and
applying equation (43).

4. With exponential utility, the NT boundaries at any given time are characterized
solely in terms of the wealth held in the stock.2 Therefore, having located the
boundaries at a single node of the binomial tree at time t, the boundaries at all
other time-t nodes are given trivially. This property is not satisfied by the value
function V (o)(t, S, x, y, δ, p).

To summarize, the algorithm is very efficient because (1) it draws on the
known properties of the value function V(t, S, x, y) under exponential utility and
(2) it restricts the state space over which we carry out the search for the NT
boundaries by limiting the y-vector used to the interval [yb(T – δt, S), ys(T – δt, S)],
which is derived analytically. These features can be exploited for option pricing
because the “fair” pricing methodology only requires the solution of the investor’s
optimal portfolio problem in the absence of options.

As an indication of the efficiency gains from the algorithm proposed in this
article it is instructive to compare the computation times for option prices and
optimal portfolios. For the numerical results under exponential utility presented
in the next section, the solution of the basic portfolio problem without options,
from which the fair price p̂ is computed, takes approximately one-seventh of the
computation time needed to solve the portfolio problem with options. To com-
pute option prices in the latter case one must also conduct a search over different
option prices to find a price which gives the same utility as without options, thus
increasing the computation time still further.

4.1 Option prices

To calculate option prices under exponential utility, the fair pricing formula (6)
becomes

(44)

where

(45)G(t, S, y) ≡ Et[U(W π*
t,S,0,y(T ))C(S(T ))]

using the fact that U ′(w) = – αU(w).

ˆ ( , , )
( , , )

( , , )
( )p t S y

G t S y

H t S y
r T t= − −e
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5. Numerical results

For our numerical results we used the following parameters as a base case: T = 1
year, r = 0.1, b = 0.15, σ = 0.25, α = 0.1, and we took the transaction cost rates
for buying and selling stock to be equal (µ = λ). We used a stock price tree with
at least 50 time steps. We first confirmed some stylized facts about the investor’s
optimal trading strategy without options, which we summarize below and which
verify the robustness of our numerical algorithm. The optimal trading strategy
has the following properties.

1. The boundaries of the NT region lie either side of the optimal portfolio with-
out transaction costs, and the NT region widens with the transaction costs and
as we approach the horizon time T.

2. The NT region boundaries show a hyperbolic dependence on the stock price,
just as in the frictionless markets case, indicating that with exponential utility,
and at a fixed time, the wealth in the stock is constant at the boundaries of the
NT region.

3. An increase in risk aversion narrows the region of no transactions and shifts it
to lower values of the stock holding.
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FIGURE 1 At-the-money call option prices versus initial stock holding.
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Figure 1 shows at-the-money call option prices given by the general option
pricing formula (44) plotted at time zero versus the investor’s initial stock hold-
ing, y, for transaction cost parameters λ = 0.005 and λ = 0.01. The graphs are flat
outside a certain range of y, which corresponds exactly to the width of the NT
region for the particular transaction cost parameter. We see the widening of the
option pricing bounds as the transaction costs are increased. The fair option price
is higher when the investor’s stock inventory is in the BUY region for the basic
portfolio selection problem, then falls as we enter the NT region, and is at its
lowest when the current inventory position is in the investor’s SELL region.
This is intuitively correct since a buyer of shares will value a call option more
highly than someone who wishes to sell stock. Of course, the opposite pattern
is obtained for put options. It is interesting to observe that, depending on the
investor’s initial stock holding, the pricing method can produce a bid or ask price,
or an intermediate price, which reflects the investor’s current preferences for
buying or selling the stock.

Figure 2 shows at-the-money call option prices for two different risk-aversion
parameters. The bid–ask spread is independent of risk aversion, but the range of
values of the initial stock holding for which the fair price lies within the bid–ask
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FIGURE 2 Call option prices for different values of risk-aversion parameter α.
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spread becomes wider and is shifted to a higher value as the risk aversion
increases.

In Table 1 we present call option prices for various strikes and transaction cost
parameters, and for comparison we show the bid and ask prices generated by
Leland’s (1985) approximately replicating strategy, with a revision interval of
δt = 0.02, which corresponds to approximately weekly portfolio rebalancing.
A number of points are worth emphasizing. First, in general, the optimal pricing
approach places tighter bounds on the option price, particularly for large trans-
action costs. The intuition behind this feature is natural: Leland’s strategy insists
on portfolio rebalancing (thus incurring transaction costs) in situations where the
optimal pricing procedure may not. We used a binomial tree with the same time
step as the Leland revision interval to generate the prices in Table 1, which means
that the investor has the opportunity to rehedge as frequently as the Leland
strategy but chooses not to do so.
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TABLE 1 Call bid and ask prices.

Strike Ask price Bid price Leland ask Leland bid

� = 0.005, NT region = [0.3866, 0.5780]
10 6.0471 5.8980 5.9940 5.9610
13 3.5841 3.4503 3.6190 3.4348
15 2.2864 2.1775 2.3869 2.0915
17 1.3419 1.2641 1.4878 1.1481
20 0.5423 0.5048 0.6724 0.3949

� = 0.01, NT region = [0.3499, 0.6197]
10 6.1199 5.8248 6.0187 5.9537
13 3.6476 3.3837 3.7088 3.3458
15 2.3376 2.1212 2.5164 1.9171
17 1.3788 1.2210 1.6336 0.9398
20 0.5613 0.4805 0.8010 0.2470

� = 0.02, NT region = [0.2702, 0.7196]
10 6.2675 5.6716 6.0775 5.9516
13 3.7798 3.2463 3.8807 3.2374
15 2.4475 2.0073 2.7502 1.4800
17 1.4612 1.1361 1.8940 0.3057
20 0.6063 0.4348 1.0401 0.0034 

� = 0.03, NT region = [0.1813, 0.8243]
10 6.4068 5.5242 6.1450 –
13 3.9070 3.1159 4.0421 –
15 2.5556 1.9012 2.9590 –
17 1.5445 1.0589 2.1242 –
20 0.6537 0.3948 1.2592 –

The parameters are T = 1 year, r = 0.1, b = 0.15, σ = 0.25, α = 0.1, S = 15. For λ = 0.03 the Leland bid price
is undefined for a revision interval of δt = 0.02.



The implication of these results is that the investor is prepared to bear more
risk than the Leland strategy allows, and the size of this risk is determined by the
utility function. The only exception to this feature is for options which are deep
in-the-money. In this case Leland’s bounds are tighter. The intuition here is as
follows: for a deep in-the-money option, with very high probability of exercise,
the optimal policy is to be (almost) fully hedged, and this is in accordance with
Leland’s strategy, which is designed to eliminate risk in a Black–Scholes type
manner. Therefore, in these situations Leland’s strategy is optimal and falls
within the spread given by utility maximization.

For very large transaction costs Leland’s strategy fails to produce a bid price
for the option as the effective volatility is no longer a real number. This point has
also been made by Avellaneda and Parás (1994), who provided a solution to this
problem using the notion of imperfectly dominating policies. The optimal pricing
procedure never fails to produce a sensible option price regardless of the level of
transaction costs.

Figure 3 is a plot of the call bid–ask spread specified by the optimal pricing
formula versus the stock price. We have also shown Leland’s bid–ask spread with
a revision interval δt = 0.02, equal to the time step of the binomial tree, and the
Black–Scholes call values. We see how the optimal pricing procedure places
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FIGURE 3 Call option bid–ask values versus stock price
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tighter bounds on the option prices, except for the cases where the option is deep
in-the-money, as before.

In Figure 4 we plot the hedging strategy for a short call position versus the
initial stock price, produced using Definition 1. The dashed curves indicate the
region in which the hedging portfolio is not rebalanced, while the solid curve
is the Black–Scholes delta hedging strategy. The replacement of the unique
Black–Scholes delta by a hedging bandwidth is in accordance with intuition and
with previous results on optimal hedging under transaction costs, such as those in
Hodges and Neuberger (1989) and (for the limiting case of small transaction
costs) Whalley and Wilmott (1997).

6. Conclusions

This article has developed a procedure for optimally valuing options in the pres-
ence of proportional transaction costs. The method involves treating an option
transaction as an alternative investment to optimally trading the underlying stock.
Option prices are determined by requiring that, at the margin, the diversion of
funds into an option trade has no effect on an investor’s achievable utility. Thus,
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FIGURE 4 Short call option hedging strategies versus stock price.
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the option trade is treated as a small perturbation on the investor’s initial portfolio
of assets. The methodology can therefore be extended to situations in which the
basic portfolio contains many assets, including possibly other derivatives.

Tight bounds on option prices are computed by solving a singular stochastic
optimal control problem using an efficient algorithm. We only need to solve the
investor’s fundamental portfolio selection problem to derive option prices, as
opposed to other optimal procedures which require the solution of an optimiza-
tion problem containing an embedded option.

There are a number of directions in which this work could be extended. These
include the pricing of American options with transaction costs, which presents
some interesting problems because one has to compute not only an optimal hedg-
ing strategy but also an optimal exercise policy. This will involve a problem in
singular control with optimal stopping, which has been studied by Davis and
Zervos (1994). There is a further complication for the writer of an option in that
it is not he, but the buyer of the option, who controls the exercise policy. Some
preliminary ideas on this topic have been provided by Davis and Zariphopoulou
(1995).

The approach could also be adapted to deal with stochastic volatility. The
resulting return distribution of the stock price would, in general, exhibit non-zero
skewness and greater kurtosis than the normal distribution, and this would have to
be incorporated into the binomial approximation for the stock price process. One
approach might be to use Edgeworth binomial trees, developed by Rubinstein
(1998) for underlying asset distributions that depart from the lognormal.

This work could be extended to consider different risk preferences, and this
subject is currently under investigation. Optimal portfolios for HARA (hyper-
bolic absolute risk aversion) utility functions are usually determined by selecting
an optimal ratio of wealth in the risky and risk-free assets, as opposed to the
exponential function used in this paper, in which the wealth held in the risky asset
is the important variable. We hypothesize that such patterns would transfer to the
option valuation problem. One could also consider quadratic preferences, such as
the risk-minimization approach of Mercurio and Vorst (1997) and Lamberton,
Pham and Schweizer (1998), or the “�-arbitrage” approach of Bertsimas, Kogan
and Lo (2001), who seek a hedging strategy which minimizes a mean-squared-
error loss function. Although these approaches can be criticized on the ground
that they give the same weighting to downside and upside risk, they do merit
further study. Another possibility is to consider “coherent” measures of risk,
introduced by Artzner et al. (1999) and extended to a dynamic setting by Cvitanić
and Karatzas (1999).

Finally, there is scope for further refinement of the optimization program by
using an alternative to a binomial discretization of the stock price, such as an
implicit finite-difference algorithm on the variational inequality (34). We encoun-
tered no problems in using a binomial tree to implement the method. However,
it may well be the case that an implicit finite-difference method would result in
yet further efficiency gains. This is currently under investigation.

Efficient option pricing with transaction costs

Volume 7/Number 1, Fall 2003 www.thejournalofcomputationalfinance.com

125



Appendix

We derive analytic formulae for the value function H(T – δt, S, y) and the bound-
aries of the NT region yb(T – δt, S), ys(T – δt, S) one time period prior to the final
time T under exponential utility.

In the BUY region (y < yb(T – δt, S)) the Bellman equation (39) for the value
function H(T – δt, S, y) reduces to

(46)

where R = exp (r . δt) and H(T, S, y) = – exp (– αyS).
We write out the above expectation explicitly, differentiate with respect to δL

and set the result to zero. This yields, after some tedious algebra, that the optimal
number of shares to buy, δL*, satisfies

(47)

where ωu and ωd are the two possible realizations of the binomial random vari-
able ω given in (15) (so that q = 1–

2
), and the pseudo-probability q+ is given by

(48)

Inserting the expression for δL* into (46) gives the following representation for
H(T – δt, S, y) in the BUY region:

(49)

We note that the value function’s dependence on y and S enters via the product
yS, the wealth held in the stock, as expected for an exponential utility function.

A similar analysis in the SELL region gives the optimal number of shares to
sell, δM*, as

(50)

where the pseudo-probability q– is given by

(51)

so that the value function in the SELL region is
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(52)

Finally, in the NT region, the value function is given analytically by

(53)H(T – δt, S, y) = – [qexp (– αySωu) + (1 – q) exp (– αySωd)], in NT
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