PHYSICAL REVIEW D

VOLUME 40, NUMBER 10

15 NOVEMBER 1989
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A new perturbative scheme has recently been applied to a supersymmetric quantum-field-theory
model in which no conventional means for doing analytic calculations existed. We develop an alter-
native technique and find that it allows a very easy demonstration of the supersymmetric results:

ground-state energy density E =0, and fermion-boson mass ratio R =1.

Moreover, unlike other

techniques, our method can be applied to models with spontaneous supersymmetry breaking, for
which we illustrate the broken-supersymmetry results E#0 and R##1.

I. INTERPOLATING LAGRANGIANS

There has been much interest recently in artificial per-
turbative techniques for quantum field theories. The first
of these techniques' ~° involves writing a scalar interac-
tion ¢% as ¢! 7 and calculating the Green’s functions
as a power series in the parameter §. This perturbation
expansion yields a Lagrangian which is logarithmic in the
fields, and we refer to it as the logarithmic expansion
method (LEM). The latest technique”® writes an interac-
tion S as 85 +(1—8)S,, where S, is a free action, and the
theory is again solved in powers of 5. Both techniques in-
terpolate between a free theory at §=0, and the theory it
is intended to solve (§=1), but the second technique re-
lies on linear (as opposed to logarithmic) interpolation.

In two recent papers”!? the LEM was used to analyze
a two-dimensional supersymmetric field theory, with the
Euclidean-space Lagrangian

=1(3¢ )2+ 14idy+1gS" ($)Pyp+ 1g?[S($)]?

where 9 is a Majorana spmor The authors of Refs. 9 and
10 took S(¢)=(¢>)"1"5"2 giving

L=13¢)+LPidp+Lg(1+8)($>)1° 2
+%g2(¢2)(1+8) .

(1.1)

(1.2)

It is known’ that some models of this type exhibit

spontaneous supersymmetry breaking, while others do
not. For example, a ¢*ip+4° theory has an unbroken
symmetry, while in a ¢+ ¢* theory the supersymmetry
is spontaneously broken (as manifested by the ground-
state energy being nonzero), because ¢ is not a positive
operator. However, as explained in Ref. 9, setting §=1
in (1.2) yields a |¢|Jp+¢* interaction, rather than
dYPp+¢*. One therefore expects the Lagrangian in (1.2)
to exhibit unbroken supersymmetry for all values of 8.
This was demonstrated in Refs. 9 and 10 by solving the
theory in powers of 6.

In this paper we explore the possibility of using a linear
interpolation in (1.1). For if we put

S(P)=56¢>—A(1—38)¢ (1.3)

40

in (1.1), where A is an arbitrary dimensionless parameter,
we obtain

=1(3¢)7+ 18 A + 1Py — ;gAY
+18(—2+8)gA%¢*+ Ldg APy

+8(—1 +8)g2k¢4+%82g2¢6+%8g¢2fb'¢ . (14
This Lagrangian can now be analyzed in powers of &
using conventional Feynman perturbation theory. We
note that for =0 we obtain a massive free theory, while
for =1 we obtain
L=13¢)+1didp+ 1g7¢°+ 1g 6’ Py (1.5)
which is the same as the Lagrangian in (1.2) with §=2.
We therefore expect the theory in (1.4) to possess unbro-
ken supersymmetry. This will be demonstrated in Sec. II,
up to order &2.

We also see that the parameter A is not present in (1.5).
However, solving the theory in (1.4) as a 8 series yields
physical quantities with a nontrivial A dependence, even
for 8=1. In Ref. 5 it is shown how to fix A when a nu-
merical result is required.

It was also pointed out in Ref. 9 that a perturbatlve ex-
pansion in powers of g of the models in (1.2) is not fruitful
because it is plagued by infrared divergences, and that
this was one reason for resorting to the complicated
machinery of the LEM. We see from (1.4) that we can
carry out a straightforward perturbative expansion in
powers of §, because of the mass terms that the linear in-
terpolation (1.3) has introduced.

A further desirable feature of the linear interpolation
approach is that we can extend it to include models in
which the supersymmetry is spontaneously broken. If we
put

S(P)=8¢*—A(1—8)¢ (1.6)
n (1.1), we obtain
L=1(3¢)>+1g°A2¢* + L4idp— Lg Ay
+18(—2+8)g*A%¢* + Ldg APy
+8(—1+8)g°A¢> + L8%g%¢* +8g Yy . (1.7
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The ¢¢) term is a hint that this model will exhibit su-
persymmetry breaking, as manifested by the ground-state
energy density being nonzero, and by the fermion and bo-
son masses being unequal. We shall demonstrate how an
expansion in 8 can show this, up to order 82, in Sec. II1I.

II. A LINEAR INTERPOLATING LAGRANGIAN
WITH UNBROKEN SUPERSYMMETRY

In this section we analyze the Lagrangian in (1.4) in
‘powers of 6. The Feynman rules are shown in Fig. 1. We
shall evaluate the ground-state energy density E, and the
fermion-boson mass ratio R, to order 82, to show the su-
persymmetric results E=0 and R =1.

A. Calculation of the ground-state energy density E

The ground-state energy density E is given by minus
the sum of the connected vacuum graphs. The Feynman
graphs contributing to E at order 8 are shown in Fig. 2.
Evaluating each graph in Euclidean space yields

—385g2A[A(0)]?, (2.1a)
—58g2A2A(0) , (2.1b)
—1(—28+8%)g%A%A(0) , 2.1¢)
PROPAGATORS:
. 1
boson line S N —
P +87 )
fermion line _’; I—A
> -8
VERTICES: N ,
6-boson vertex N E E 4 -3605°g°
4 AN
Ve N\
AN 7
AN 7/ s 9
4-boson vertex X -24(-5+ 8T)E7A
/s \
7 AN
2-boson vertex e ——— —(-28+ 6%1g°0"
_ 7/
P2P ¢ vertex 4 658
N
N .
2-fermion vertex -8
—_———

FIG. 1. Feynman rules for the supersymmetric Lagrangian .
in (1.4).
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FIG. 2. Feynman diagrams which contribute, to first order in
8, to the ground-state energy density E of the theory in (1.4).

—3(—8+82)g2A[A0)]?,
— £8%7[A0)]°,

(2.1d)
(2.1e)

where A(O) represents the closed-loop boson propagator.
In coordinate space the propagator for the boson is

— -2 42 1 :
Alx)=(2m) fd pmexp(lp-x) (2.2)
while the propagator for the fermion is
AF(x)=(2ﬂ')_2fd2p exp(ip-x)
=(d—gA)A(x) . (2.3)

Summing (2.1a)—(2.1e) to order § yields zero, implying
E =0. Supersymmetry is thus unbroken to first order in
8.

To order &%, the graphs which contribute to E are
those of Figs. 2 and 3. (There are more two-vertex
graphs besides those shown in Fig. 3, but they are all of
order &° or higher.) The contribution of each diagram in
Fig. 3 is as follows:

38%g[A(0)P—128%g* %, , (2.4a)
98%g A A0, , (2.4b)
28%g2[A(0)P—98%g A A0) ], , (2.4¢)
36%g2A[A(0) > —68%g*APA(O), , (2.44d)
3(—282+8%)g*A*A0)1, , (2.4e)
36(—8%+8%)g A A0) ], , (2.4f)
18%gA2A(0)— 8% AT, (2.4g)
1482 —483+8%)g AT, (2.4h)
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6(28%—38%+8Yg*A3A0)1, , (2.4i)
12(82—283+8%)g* 1, , (2.4j)
36(8%—28%+8%)g*A[A0) ), , (2.4k)
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where

= [dx[Ax)]*. (2.4)

To obtain the expressmns in (2.4) in the form shown,
we made use of the identity!'®

Trfd2x[A(x)]"AF(x)KF(x)exp(—ip-x)=——;%[A(O)]"+l

—+

2
n+1

Summing (2.1a)-(2.1e) with (2.4a)-(2.4k) to order &
gives zero, so that supersymmetry remains unbroken
through second order in 8.

B. Calculation of the Fermion-boson mass ratio R

To evaluate the boson or fermion mass of the theory in
(1.4) we must calculate the one-particle-irreducible
Green’s functions with two external boson or two exter-
nal fermion lines, respectively (i.e., the boson and fermion
self-energies).

The full boson propagator D (p) is given by

1
Dip)=————7, (2.6)
_ P pr+g A —Il(p)
where II(p) is the boson self-energy. The full fermion
propagator S (p) is given by
S(p)=—>t——, @.7)
r—[gA+32(p)]

where 2(p) is the fermion self-energy.

() (o) (f)

i) (8}

FIG. 3. Graphs which contribute to E in second order, for
the theory in (1.4).

2
292, _P 2 S
(n+2)g*A%+ S fd x[A(x)]" T2exp(—ip-x) .

(2.5)

To order 8, the Feynman diagrams which contribute to
II(p) are shown in Fig. 4. The contribution from each of
these graphs is

—(—28+8%)gA?, (2.8a)
—12(—58+8%gAA(0) (2.8b)
—458%g[A(0)]?, (2.8c¢)
—68g2AA(0) . (2.8d)
Summing (2.8a)—-(2.8d) to order § yields
L(p)os)=28g A%+ 68g AA(0) . (2.9)

Then, using (2.6), we deduce that to order & the mass

squared of the boson is
m2=g2A\*—28g*A?—68g*AA(0) . (2.10

The Feynman graphs which contribute in first order to
the fermion self-energy Z(p) are shown in Fig. 5. We
evaluate them to give

Then (2.7) implies that, to order 8, the fermion mass is
m,=g\—8gA—38gA(0) . (2.12)

Comparing (2.10) and (2.12), we see that, to order 9,
the ratio

m

which confirms the supposition that (1.4) has unbroken

——— -
1 1
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() )

FIG. 4. Graphs which contribute to the boson self-energy to
first order in 8, for the theory in (1.4).
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(a)

FIG. 5. Graphs which contribute to the fermion self-energy
to first order in 8, for the theory in (1.4).

supersymmetry to first order in 8.

To order &, the graphs which contribute to the boson
two-point function are those in Figs. 4 and 6. The contri-
butions from the diagrams in Fig. 6 are

185%¢*[A(0))*—(548% “A>+68%¢*p )5 , , (2.14a)
188%¢?[A(0)]*—368%g*A%A(0)I, , (2.14b)
68%g2AA(0)— 128%g*A°I, (2.14c)
72(—8*+8%)g*A*A0)I, , (2.14d)
12(282—383+84)g*A°I, (2.14¢)
96(5°—28°+58g A, , | (2.14D)
144(82—283+8)g*A*A0)1, , (2.14g)
where

Ikyp=fdzx[A(x)]kexp(—ip-x) . (2.14h)

Summing (2.8a)—(2.8d) with (2.14a)—(2.14g) to order &2
gives I1(p). If we write
(p)= A(p>)p*+B(p?) , (2.15)

where the explicit p? factor appears in (2.14a), then to or-
der 82 the mass squared of the boson is given by the zero
of

p2+g A\t —B(p?)+g2A 24 (p?) . (2.16)

Evaluating (2.16) to order 8% reveals that the mass
squared of the boson is given by the zero of

p2+g2A2—(26—8%)g A2 —6(5—8%)g 2AA(0)
+98%g2[A(0)]*—128%g *A°T, —368%g *A2A(0)I,

—488%¢ N, . (2.17)
(@ (b) (c)
el N €
(Y] (e) (3]
I'x\l

(g)

FIG. 6. Two-vertex graphs contributing to the boson self-
energy for the theory in (1.4).
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FIG. 7. Two-vertex graphs contributing to the fermion self-
energy to order 82 for the theory in (1.4).

To evaluate the fermion self-energy =(p) to order 8% we
use the Feynman diagrams in Figs. 5 and 7. The contri-
butions from the graphs in Fig. 7 are

188%g3AA(0), | (2.18a)
—188%g°Al; , —68%¢°pI; , , (2.18b)
3(—282+8%)g3\, (2.18¢)
36(—82+8%)g AA(0)I, . (2.184d)

Adding (2.11) to (2.18a)—(2.18d), evaluated to order 82,
gives 2(p). Writing

S(p)=a(p>)p+b(p?),

then using (2.7) and the fact that g = —p? in Euclidean
space, we find that to order 8 the mass squared of the
fermion is given by the zero of

(2.19)

PROPAGATORS:
boson line —_—— I o
>_ p2 +.62 AZ
fermion line —— !
P-g2
VERTICES:
N 7/
AN Ve
4-boson vertex x -12 ngz
/7 N
7/ AN
1
1
]
3-boson vertex /*\ -6(-5+8%)g°2
Ve AN
/ N
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@ §& vertex >-——' -258
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FIG. 8. Feynman rules for Lagrangian in (1.7).
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FIG. 9. Diagrams contributing to the ground-state energy
density E of the theory in (1.7), to first order in 8.

pi+g At +2gAb(pH)+[b(p2) ]2 +2g°A%a(p?) . (2.20)
On evaluating (2.20) we recover (2.17), so that
m
my

to order 82 for the theory in (1.4). We conclude, there-
fore, that the § expansion allows a categorical demonstra-
tion of unbroken supersymmetry for the theory in (1.4).

III. AN INTERPOLATING ACTION
WITH BROKEN SUPERSYMMETRY

A. Calculation of the ground-state energy density E

The Feynman rules for the Lagrangian in (1.7) are
shown in Fig. 8. We evaluate the diagrams in Fig. 9,
which contribute to the ground-state energy density E to
order 8. The graphs of Fig. 9 yield

—8g2\2A0) , ‘ (3.1a)
—1(—28+8%)g?A%A(0) , (3.1b)
—38%g2[A0)]*. (3.1¢)

Summing (3.1a)-(3.1c) to order & yields zero, so we
must conclude that supersymmetry is unbroken to first
order in 8. This result can be traced to the fact that only
the two-boson and two-fermion vertices contribute to E
at order 8, so that we are effectively dealing with the La-
grangian

@ (b) ©)

(g)

FIG. 10. Graphs which contribute to E in second order, for
the theory in (1.7).

FIG. 11. Feynman graphs contributing to the order-6 boson
self-energy of the theory in (1.7).

L=1(3¢)+1(1—28)g°A?¢* + L4iBYp— 1(1—8)g Ay
(3.2

which is manifestly supersymmetric. We must proceed to
higher orders in 8 to see if symmetry breaking occurs.

To evaluate E to order 8° we add the diagrams in Fig.
10 to those in Fig. 9. The contributions of the graphs in
Fig. 10 are

528 [A(0)]2—38%g\, , (3.3a)
28%g* A A0V, , (3.3b)
6(—82+8%)g* A A0, , (3.3¢)
18%g7AA(0)—8%g AT, (3.3d)
1482 —48°+8*g*\'I, (3.3¢)
3(82—28°+8Yg*\°1, , (3.30
2(8%—28%+8Yg A [A0) T, . (3.3g)
Summing (3.1a)—-(3.1c) with (3.3a)—(3.3g) yields
—E=—18¢?[A(0)]*+18%*A’[ A(0)]*I,#0 (3.4)

signifying that spontaneous supersymmetry breaking
occurs in second order in the theory in (1.7), but not in
first order.

B. Calculation of the fermion-boson mass ratio R

To order 8, we evaluate the boson and fermion self-
energies for the theory in (1.7) from the graphs in Figs. 11
and 12, respectively. The diagrams in Fig. 11 yield the
result that to first order the boson mass squared is

mi=g*\*—28g\% . (3.5)
Figure 12 gives the fermion mass as
m,;=gA—08gh . (3.6)

From (3.5) and (3.6), we see that to order 8, the ratio

(3.7

which confirms our earlier result of unbroken supersym-
metry to order 8 for the theory in (1.7).

<@

FIG. 12. Fermion self-energy graph of the theory in (1.7), to
order 5.
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(a) (b)

FIG. 13. Two-vertex graphs of order 82, contributing to the
boson self-energy of the theory in (1.7).

To evaluate the boson two-point function IT(p) to order
8%, we add the diagrams in Fig. 13 to those in Fig. 11.
(All other two-vertex graphs with two external boson
lines are at least of order 6°.) The contributions of the
graphs in Fig. 13 are

45%g*A(0)—(88%¢*A*+28% % p I, , ,
18(82—28°+38%)g*AI, , .

(3.8a)
(3.8b)

Following the same procedure as in Sec. II B, we find
that to order 8% the mass squared of the boson of the
theory in (1.7) is given by the zero of

pP+g?A?—(28—5%)g°A%+28%¢*A(0)— 128%¢*A’I, , .
(3.9)

We now evaluate the fermion self-energy =(p) to order
8% by adding the contribution of Fig. 14 to that of Fig. 12.
The contribution of Fig. 14 is

—28%¢%pI, ,—48%¢°AI, , . (3.10)

Then we find that the mass squared of the fermion is

M. MONOYIOS
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FIG. 14. The order-8° contribution to the fermion self-energy
of the theory in (1.7).

given by the zero of

pitgAr—(26—8%)g A2 —128%¢ A\, , . (3.11)
Comparing (3.9) and (3.11) we see that the ratio
my
R=—"1 (3.12)
my

to order 82, which confirms the result of broken super-
symmetry at second order for the theory in (1.7).

We may conclude by saying that a linear interpolating
action and a perturbative expansion in an artificial pa-
rameter § allows a simple analysis of possible spontane-
ous supersymmetry breaking in models of the type shown
in (1.2).
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