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Optimal investment and hedging under partial
and inside information

Michael Monoyios

Abstract. This article concerns optimal investment and hedging for agents who must use trading
strategies which are adapted to the filtration generated by asset prices, possibly augmented with
some inside information related to the future evolution of an asset price. The price evolution and
observations are taken to be continuous, so the partial (and, when applicable, inside) information
scenario is characterised by asset price processes with an unknown drift parameter, which is to be
filtered from price observations. With linear observation and signal process dynamics, this is done
with a Kalman–Bucy filter. Using the dual approach to portfolio optimisation, we solve the Merton
optimal investment problem when the agent does not know the drift parameter of the underlying
stock. This is taken to be a random variable with a Gaussian prior distribution, which is updated via
the Kalman filter. This results in a model with a stochastic drift process adapted to the observation
filtration, and which can be treated as a full information problem, yielding an explicit solution. We
also consider the same problem when the agent has noisy knowledge at time zero of the terminal
value of the Brownian motion driving the stock. Using techniques of enlargement of filtration to
accommodate the insider’s additional knowledge, followed by filtering the asset price drift, we are
again able to obtain an explicit solution. Finally we treat an incomplete market hedging problem.
A claim on a non-traded asset is hedged using a correlated traded asset. We summarise the full
information case, then treat the partial information scenario in which the hedger is uncertain of
the true values of the asset price drifts. After filtering, the resulting problem with random drifts
is solved in the case that each asset’s prior distribution has the same variance, resulting in analytic
approximations for the optimal hedging strategy.
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1 Introduction

This article examines some problems of optimal investment, and of optimal hedging
of a contingent claim in an incomplete market, when the agent’s information set is
restricted to stock price observations, possibly augmented by some additional informa-
tion related to the terminal value of a stock price.

In classical models of financial mathematics, one usually specifies a probability
space (Ω,F , P ) equipped with a filtration F = (Ft)0≤t≤T , and then writes down some
stochastic process S = (St)0≤t≤T for an asset price, such that S is adapted to the fil-
tration F. A typical example would be the Black–Scholes (henceforth, BS) model of
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a stock price, following the geometric Brownian motion

dSt = σSt(λdt + dBt), (1.1)

where B is a (P, F)-Brownian motion and the volatility σ > 0 and the Sharpe ratio
λ are assumed to be known constants. Of course, this is a strong assumption that an
agent is assumed to be able to observe the Brownian motion process B, as well as the
stock price process S. We refer to this as a full information scenario. In this case, an
agent uses F-adapted trading strategies in S, a process with known drift and diffusion
coefficients.

We shall frequently relax the full information assumption in this article. We shall
assume that the agent can only observe the stock price process, and not the Brownian
motion B. The agent’s trading strategies must therefore be adapted to the observation
filtration F̂ := (F̂t)0≤t≤T generated by S. This is a partial information scenario. In
recent years there has been a growing research activity in this area, as surveyed by
Pham [28], for instance, who examines some different scenarios to the ones in this
article.

With partial information, the parameter λ would be regarded as an unknown constant
whose value needs to be determined from price data. In principle, one would also
have to apply this philosophy to the volatility σ, but we shall make the approximation
that price observations are continuous, so that σ can be computed from the quadratic
variation [S]t of the stock price, since we have

[S]t = σ

2
S

2
t t, 0 ≤ t ≤ T.

One way to model the uncertainty in our knowledge of the (supposed constant) pa-
rameter λ is to take a so-called Bayesian approach. This means we consider λ to be
an F0-measurable random variable with a given initial distribution (the prior distribu-
tion). The prior distribution initialises the probability law of λ conditional on F̂0, and
this is updated in the light of new price information, that is, as the observation filtration
F̂ evolves. (In the case that λ is some unknown process (λt)0≤t≤T (as opposed to an
unknown constant), then we would consider it to be some F-adapted process such that
its starting value λ0 has a given prior distribution conditional on F̂0.)

This is an example of a filtering problem. In the case of the BS model (1.1), where
we model λ as an F0-measurable random variable, we are interested in computing the
conditional expectation

λ̂t := E

[
λ | F̂t

]
, 0 ≤ t ≤ T.

We shall see that the effect of filtering is that the model (1.1) may be replaced by
a model specified on the filtered probability space (Ω, F̂T , F̂, P ) and written as

dSt = σSt(λ̂tdt + dB̂t),

where B̂ is a (P, F̂)-Brownian motion. This model may now be treated as a full infor-
mation model, since both B̂ and λ̂ are F̂-adapted processes. The price we have paid
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for restoring a full information scenario is that the constant parameter λ has been re-
placed by a random process λ̂. The procedure by which a partial information model
is replaced with a tractable full information model under the observation filtration is
typically only achievable in special circumstances, such as Gaussian prior distributions
and certain linearity properties in the relation between the observable and unobservable
processes.

The rest of the article is as follows. In Section 2, we briefly introduce the innova-
tions process of filtering theory and state the filtering algorithm that we shall use, the
celebrated Kalman–Bucy filter [11]. In Section 3 we use the dual approach to portfolio
optimisation (see Karatzas [13] for example), to solve the Merton problem [19, 20] of
optimal investment, when the drift parameter of the stock must be filtered from price
observations. In Section 4 we solve the Merton problem when the agent is again un-
certain of the stock’s drift, but is assumed to have some additional information in the
form of knowledge of the value of a random variable I, representing noisy information
on the underlying Brownian motion at time T . Further examples of optimal investment
problems with inside information and parameter uncertainty are given in Danilova,
Monoyios and Ng [2]. Finally, in Section 5 we consider the hedging of a claim in an
incomplete market setting under partial information. Specifically, we consider a basis
risk model involving the optimal hedging of a claim on a non-tradeable asset Y using
a traded stock S, correlated with Y , when the hedger is restricted to trading strategies in
S that are adapted to the observation filtration generated by the asset prices. A number
of papers, such as Henderson [8], Monoyios [21, 22] and Musiela and Zariphopoulou
[26], have used exponential indifference valuation methods to hedge the claim in an
optimal manner in a full information scenario. We outline these results before moving
on to the partial information case, where we assume the hedger does not know with cer-
tainty the drifts of S and Y . Analytic approximations for prices and hedging strategies
are given. Further work on this topic can be found in Monoyios [23, 25].

2 Innovations and linear filtering

Filtering problems concern estimating something (in a manner to be made precise
shortly) about an unobserved stochastic process Ξ given observations of a related pro-
cess Λ. The problem was solved for linear systems in continuous time by Kalman
and Bucy [11]. Subsequent work sought generalisations to systems with nonlinear dy-
namics, see Zakai [33] for instance. Kailath [10] developed the so-called innovations
approach to linear filtering, which formulated the problem in the context of martingale
theory. This approach to nonlinear filtering was given a definitive treatment by Fujisaki,
Kallianpur and Kunita [7]. Textbook treatments can be found in Kallianpur [12], Lip-
ster and Shiryaev [16, 17], Rogers and Williams [32], Chapter VI.8, and Fleming and
Rishel [6].

The setting is a probability space (Ω,F , P ) equipped with a filtration F = (Ft)0≤t≤T .
All processes are assumed to be F-adapted. Note that F is not the observation filtration.
Let us call F the background filtration. We consider two processes, both taken to be
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one-dimensional (for simplicity):

• a signal process Ξ = (Ξt)0≤t≤T which is not directly observable;
• an observation process Λ = (Λt)0≤t≤T , which is observable and somehow corre-

lated with Ξ, so that by observing Λ we can say something about the distribution
of Ξ.

Let F̂ := (F̂t)0≤t≤T denote the observation filtration generated by Λ. That is,

F̂t := σ(Λs; 0 ≤ s ≤ t), 0 ≤ t ≤ T.

The filtering problem is to compute the conditional expectation

Ξ̂t := E

[
Ξt | F̂t

]
, 0 ≤ t ≤ T. (2.1)

To proceed further, we specify some particular model for the observation and signal
processes. We shall focus on the linear case where both Λ and Ξ are solutions to linear
stochastic differential equations (SDEs).

2.1 Linear observations and linear signal

Let B = (Bt)0≤t≤T be an F-Brownian motion. We assume the observation process Λ
is of the form

Λt =

∫ t

0

G(s)Ξsds + Bt, 0 ≤ t ≤ T, (linear observation) (2.2)

with G(·) a deterministic function such that E

∫ T
0

G

2(t)Ξ2
t < ∞.

We take the signal process to be of the form

Ξt = Ξ0 +

∫ t

0

A(s)Ξsds +

∫ t

0

C(s)dWs, 0 ≤ t ≤ T, (linear signal)

for deterministic functions A(·), C(·), with W a (P, F)-Brownian motion independent
of the F0-measurable random variable Ξ0, and correlated with B in the observation
model (2.2) according to

[W, B]t = ρt, 0 ≤ t ≤ T, ρ ∈ [−1, 1].

Suppose further that the signal process has a Gaussian initial distribution, Ξ0 ∼ N(μ, v),
independent of B and of W , where N(μ, v) denotes the normal probability law with
mean μ and variance v. The two-dimensional process (Ξ, Λ) is then Gaussian, so the
conditional distribution of Ξt given the sigma-field F̂t will also be normal (and so, in
particular, is completely characterised by its mean and variance), with mean given by
(2.1) and variance

Vt := var
[
Ξt | F̂t

]
= E

[
(Ξt − Ξ̂t)

2 | F̂t
]

= Ξ̂2
t −

(
Ξ̂t

)2

, 0 ≤ t ≤ T.



Investment and hedging under partial information 375

Notice that the initial values are

Ξ̂0 = E

[
Ξ0 | F̂0

]
= EΞ0 = μ,

and
V0 = E

[
(Ξ0 − Ξ̂0)

2 | F̂0

]
= E

[
(Ξ0 − μ)2

]
= var(Ξ0) = v.

The problem then boils down to finding an algorithm for computing the sufficient statis-
tics Ξ̂t, Vt from their initial values Ξ̂0 = μ, V0 = v. For linear systems it turns out that
the conditional variance Vt is a deterministic function of t. Thus, there is in fact only
one sufficient statistic, the conditional mean Ξ̂t, which turns out to satisfies a linear
SDE. This is the celebrated Kalman–Bucy filter, given in Theorem 2.1 shortly.

2.2 Innovations process

Define the F̂-adapted innovations process N = (Nt)0≤t≤T by

Nt := Λt −

∫ t

0

G(s)Ξ̂sds, 0 ≤ t ≤ T.

We recall two crucial properties of the innovations process, which form the bedrock of
filtering theory.

• The innovations process N is an F̂-Brownian motion.
• Every local F̂-martingale M admits a representation of the form

Mt = M0 +

∫ t

0

ΦsdNs, 0 ≤ t ≤ T,

where Φ is F̂-adapted and
∫ T
0

Φ2
tdt < ∞ a.s.

For a proof of the above results, and of the following celebrated result for filtering of
linear systems, see Rogers and Williams [32] or Lipster and Shiryaev [16], for instance.

Theorem 2.1 (One-dimensional Kalman–Bucy filter). On a filtered probability space
(Ω,F , F, P ), with F = (Ft)0≤t≤T , let Ξ = (Ξt)0≤t≤T be an F-adapted signal process
satisfying

dΞt = A(t)Ξtdt + C(t)dWt,

and let Λ = (Λt)0≤t≤T be an F-adapted observation process satisfying

dΛt = G(t)Ξtdt + dBt, Λ0 = 0,

whereW, B are F-Brownian motions with correlation ρ, and the coefficients A(·), C(·),
G(·) are deterministic functions satisfying

∫ T

0

(
|A(t)|+ C

2(t) + G

2(t)
)

dt < ∞.
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Define the observation filtration F̂ := (F̂t)0≤t≤T by

F̂t := σ(Λs; 0 ≤ s ≤ t).

Suppose Ξ0 is an F0-measurable random variable, and that the distribution of Ξ0 is
Gaussian with mean μ and variance v, independent ofW and B. Then the conditional
expectation Ξ̂t := E

[
Ξt | F̂t

]
, for 0 ≤ t ≤ T , satisfies

dΞ̂t = A(t)Ξ̂tdt + [G(t)Vt + ρC(t)] dNt, Ξ̂0 = μ,

where N = (Nt)0≤t≤T is the innovations process, an F̂-Brownian motion satisfying

dNt = dΛt −G(t)Ξ̂tdt,

and Vt = var
[
Ξt | F̂t

]
, for 0 ≤ t ≤ T , is the conditional variance, which is independent

of F̂t and satisfies the deterministic Riccati equation

dVt

dt

= (1− ρ

2)C2(t) + 2
[
A(t) − ρC(t)G(t)

]
Vt −G

2(t)V 2
t , V0 = v.

A multi-dimensional version of the Kalman–Bucy filter can be derived using similar
techniques to the one-dimensional case. See Theorem V.9.2 in Fleming and Rishel [6],
for instance.

3 Optimal investment problems with random drift

3.1 Portfolio optimisation via convex duality

We wish to apply the filtering results in the previous section to portfolio optimisation
and optimal hedging problems when the agent does not know the drift parameters of
the underlying assets. The filtering approach leads to portfolio problems in which
the assets follow SDEs with random drift parameters. The dual approach to portfolio
optimisation is now a classical technique, well suited to such problems. In this section
we recall the main results of portfolio optimisation via convex duality. See Karatzas
[13] for more details and further references.

Consider an agent with a continuous, differentiable, increasing, concave utility func-
tion U : R

+ → R. Define the convex conjugate Ũ : R
+ → R of U by

Ũ(η) := sup
x∈R+

[U(x)− xη], η > 0. (3.1)

Then Ũ is a decreasing, continuously differentiable, convex function given by

Ũ(η) = U (I(η)) − ηI(η), (3.2)

where I is the inverse of U

′. Differentiating (3.2) gives

Ũ

′(η) = −I(η). (3.3)
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We note that the defining duality relation (3.1) is equivalent to the bidual relation

U(x) = inf
η∈R+

[Ũ(η) + xη], x > 0.

We are interested in solving an optimal portfolio problem for an agent in a complete
market with a single stock whose price process is a continuous semimartingale. To be
precise, on an a probability space (Ω,F , P ) equipped with a filtration F = (Ft)0≤t≤T ,
suppose a stock price S = (St)0≤t≤T follows

dSt = σtSt(λtdt + dBt),

where σ = (σt)0≤t≤T and λ = (λt)0≤t≤T are F-adapted processes, and B = (Bt)0≤t≤T
is an F-Brownian motion. For simplicity, we take the interest rate to be zero.

The wealth process X = (Xt)0≤t≤T associated with a self-financing portfolio in-
volving S is given by

dXt = σtθtXt(λtdt + dBt), X0 = x,

where the process θ = (θt)0≤t≤T represents the proportion of wealth placed in the
stock, and constitutes the agent’s trading strategy. Define the set A of admissible trad-
ing strategies as those satisfying

∫ T
0

σ

2
t θ

2
t dt < ∞ a.s. and whose wealth process satis-

fies Xt ≥ 0 a.s. for all t ∈ [0, T ].
The unique martingale measure Q ∼ P on FT is defined by

dQ

dP

= ZT ,

where Z = (Zt)0≤t≤T is the exponential local martingale defined by

Zt := E(−λ · B)t, 0 ≤ t ≤ T.

We assume that λ satisfies the Novikov condition

E exp

(
1

2

∫ T

0

λ

2
tdt

)
< ∞,

so that Z is indeed a martingale and Q is indeed a probability measure equivalent to P .
Under Q, the process B

Q defined by

B

Q
t := Bt +

∫ t

0

λsds, 0 ≤ t ≤ T,

is a Brownian motion. The Q-dynamics of S, X are

dSt = σtStdB

Q
t , dXt = σtθtXtdB

Q
t .

In particular, the solution of the SDE for X , given X0 = x, is

Xt = xE(σθ · BQ)t, 0 ≤ t ≤ T.
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We assume that

E

Q exp

(
1

2

∫ T

0

σ

2
t θ

2
t dt

)
< ∞,

so that X is a Q-martingale, satisfying E

Q
XT = x, or

E

[
ZTXT

]
= x, (3.4)

which we shall regard as a constraint on the terminal wealth XT . This is the founda-
tion of the dual approach to portfolio optimisation, namely to enforce the martingale
constraint on the wealth process.

The basic portfolio problem (the primal problem) is, given X0 = x, to maximise
expected utility of wealth at time T :

u(x) := sup
θ∈A

EU(XT ), (3.5)

subject to (3.4).
The dual value function is ũ : R

+ → R defined by

ũ(η) := EŨ

(
η

dQ

dP

)
, η > 0.

The well-known result on portfolio optimisation via duality for this model is as
follows.

Theorem 3.1. 1. The primal and dual value functions u(x) and ũ(η) are conjugate:
ũ(η) = sup

x∈R+

[u(x)− xη], u(x) = inf
η>0

[ũ(η) + xη],

so that u′(x) = η (equivalently, ũ′(η) = −x);
2. The optimal terminal wealth in (3.5) is X

∗
T satisfying

U

′(X∗
T ) = η

dQ

dP

, equivalently, X

∗
T = I

(
η

dQ

dP

)
.

A proof of this result can be found in Karatzas [13]. The idea behind the proof is to
consider the maximisation of the objective functional EU(XT ) subject to the constraint
E

[
ZTXT

]
= x, via the Lagrangian

L(XT , η) := EU(XT ) + η

(
x− E

[
ZTXT

])
.

The first order condition for an optimum then yields that the optimal terminal wealth
is characterised by

U

′(X∗
T ) = ηZT ⇔ X

∗
T = I (ηZT ) . (3.6)

The value of the multiplier η is needed to fully determine X

∗
T . We substitute (3.6) into

the constraint E

[
ZTX

∗
T

]
= x, so that η is given by

E

[
ZT I(ηZT )

]
= x,

or, using the definition of ũ(η) and (3.3),

ũ

′(η) = −x.

This is precisely the relation we expect to hold when u and ũ are conjugate.
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3.1.1 Duality for incomplete markets

Similar duality theorems have been developed for incomplete market situations, and
also when the agent has a random terminal endowment, possibly in the form of a con-
tingent claim. For the incomplete market case, see the seminal paper by Karatzas et
al. [14] for markets with continuous price processes, and Kramkov and Schachermayer
[15] for the case with general semimartingale price processes. For problems involv-
ing a terminal random endowment in the form of an FT -measurable random variable,
contributions have been made by (among others) Hugonnier and Kramkov [9], Owen
[27] and by Delbaen et al. [5] for an agent with an exponential utility function. We
shall use the results of [5] in Section 5, when we examine the exponential hedging of
a contingent claim in a basis risk model.

For an incomplete market, in which the set M of martingale measures is no longer
a singleton, the significant change is that the dual value function is then defined by

ũ(η) := inf
Q∈M

EŨ

(
η

dQ

dP

)
. (3.7)

The form of the duality theorem for an incomplete market is similar to Theorem 3.1, but
with the unique martingale measure Q of the complete market replaced by the optimal
dual minimiserQ

∗ that achieves the infimum in (3.7). See [13], for instance, for details
in an Itô process setting.

3.2 Optimal investment with Gaussian drift process

We wish to apply filtering theory and the martingale approach to portfolio optimisation
to the classical optimal portfolio problem of Merton [19, 20], in the case that the agent
does not know the drift parameter of the stock. As we shall see, this will involve
a portfolio problem in which the market price of risk of the stock is a Gaussian process.
Hence we first describe the solution to such a problem.

Suppose a stock price S = (St)0≤t≤T follows the process

dSt = σSt(λtdt + dBt),

on a filtered probability space (Ω,F , F = (Ft)0≤t≤T , P ), with B an F-Brownian mo-
tion and λ an F-adapted process following

λt = λ0 +

∫ t

0

wsdBs, wt =
w0

1 + w0t
, 0 ≤ t ≤ T, (3.8)

for constants λ0, w0.
The self-financing wealth process X from trading S is given by

dXt = σθtXt(λtdt + dBt), X0 = x, (3.9)

where the trading strategy θ = (θt)0≤t≤T is the proportion of wealth invested in stock.
We define the set A of admissible strategies as those satisfying

∫ T
0

θ

2
t dt < ∞ almost

surely, such that Xt ≥ 0 almost surely for all t ∈ [0, T ].
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The value function is
u(x) := sup

θ∈A
E

[
U(XT ) | F0

]
(3.10)

where U(x) is the power utility function given by

U(x) =
x

γ

γ

, 0 < γ < 1. (3.11)

Theorem 3.2. Assume that
−1 < w0T <

1− γ

γ

.

Then the value function (3.10) is given by

u(x) =
x

γ

γ

C

1−γ
, (3.12)

where C is given by

C =

(
(1 + w0T )q

1 + qw0T

)1/2

exp

(
−

1

2

q(1 − q)λ2
0T

1 + qw0T

)
, q = −

γ

1− γ

. (3.13)

The optimal trading strategy θ

∗ achieving the supremum in (3.10) is given by

θ

∗
t =

λt

σ(1 − γ)

(
1

1 + qwt(T − t)

)
, 0 ≤ t ≤ T. (3.14)

Proof. Let Q denote the unique martingale measure for this market. The change of
measure martingale Z := (Zt)0≤t≤T is given by

Zt :=
dQ

dP

∣∣∣∣
Ft

= E(−λ · B)t, 0 ≤ t ≤ T,

and satisfies the SDE
dZt = −λtZtdBt, Z0 = 1. (3.15)

Notice that
lim

w0→0
Zt = E(−λ0B)t = exp

(
−λ0Bt −

1

2
λ

2
0t

)
. (3.16)

We may write Zt = f(t, λt) where f : [0, T ]×R→ R
+ is a smooth function, and apply

Itô’s formula along with the SDE (3.8) for λ to give

dZt =
[
ft(t, λt) +

1

2
w2
t fxx(t, λt)

]
dt + wtfx(t, λt)dBt, (3.17)

with subscripts of f denoting partial derivatives. Equating (3.15) and (3.17) yields the
partial differential equations for f :

wtfx(t, x) = −xf(t, x),

ft(t, x) +
1

2
w2
t fxx(t, x) = 0,
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with f(0, ·) = Z0 = 1. The solution to these equations gives Zt in the form

Zt =

(
w0

wt

)1/2

exp

[
−

1

2

(
λ

2
t

wt
−

λ

2
0

w0

)]
, 0 ≤ t ≤ T . (3.18)

Note that this function is actually well-defined even for w0 → 0. It is not hard to check
that (3.18) reduces to (3.16) in the limit w0 → 0.

For power utility, the convex conjugate Ũ of the utility function is given by

Ũ(η) = −
η

q

q

, q = −
γ

1− γ

, η > 0. (3.19)

The dual value function is defined by

ũ(η) := E

[
Ũ(ηZT ) | F0

]
, η > 0.

Using (3.19) we obtain
ũ(η) = −

η

q

q

C,

where
C := E

[
Z

q
T | F0

]
. (3.20)

From Theorem 3.1, the primal and dual value functions are conjugate, which yields
that the primal value function is indeed given by (3.12), with C defined by (3.20). It
therefore remains to show that C is indeed equal to the expression in (3.13) and that
the optimal strategy is given by (3.14).

Once again using Theorem 3.1, the optimal terminal wealth X

∗
T , attained by adopt-

ing the strategy that achieves the supremum in (3.10), is given by

X

∗
T = −Ũ

′(u′(x)ZT ).

Hence, using the form (3.12) for u, we obtain

X

∗
T =

x

C

(ZT )−(1−q)
.

The optimal wealth process X

∗ is a (Q, F)-martingale, so

X

∗
t = E

Q
[
X

∗
T |Ft

]
=

1

Zt
E

[
ZTX

∗
T | Ft

]
=

x

CZt
E

[
Z

q
T |Ft

]
, 0 ≤ t ≤ T. (3.21)

So, to compute explicit formulae for C = E

[
Z

q
T | F0

]
and the optimal wealth process

(from which the optimal trading strategy will be derived), we need to evaluate the
conditional expectation E

[
Z

q
T |Ft

]
, 0 ≤ t ≤ T .

From (3.8), for t ≤ T , and conditional on Ft, λT is normally distributed according
to

Law(λT |Ft) = N(λt, wt − wT ), 0 ≤ t ≤ T.

For a normally distributed random variable Y ∼ N(m, s

2), we have

E exp(cY 2) =
1

√
1− 2cs

2
exp

(
cm

2

1− 2cs

2

)
,
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so that, given the explicit expression (3.18) for Zt, both C and the right-hand side of
(3.21) can be computed in closed form. We find that C is indeed given by (3.13).
Notice that 1 + qw0T > 0 and 1 + w0T > 0 due to the conditions on w0T , thus the
solution is well defined.

For the optimal wealth process, we obtain the formula

X

∗
t = x

(
Ψt

Ψ0

)1/2

exp

(
1

2
(1− q)(Φt − Φ0)

)
, 0 ≤ t ≤ T, (3.22)

where

Ψt :=
wt

1 + qwt(T − t)
, Φt :=

λ

2
t

wt(1 + qwt(T − t))
, 0 ≤ t ≤ T.

To compute the optimal trading strategy θ

∗, we apply the Itô formula to (3.22), using
the SDE for λ and noting that the derivative of wt is given by

dwt
dt

= −w2
t .

We compare the coefficient of dBt in dX

∗
t with that in (3.9) for the case of the optimal

wealth process. This gives (3.14). �

3.2.1 Classical Merton problem

In the limit w0 → 0, the drift of the stock becomes the constant λ0, and Theorem 3.2
gives the solution to the classical full information Merton optimal investment problem
for a stock with constant market price of risk λ0 and volatility σ. In this case it is easy
to check that the value function (3.12) becomes

u(x) =
x

γ

γ

exp

(
1

2

γ

1− γ

λ

2
0T

)
,

and the optimal trading strategy (3.14) becomes

θ

∗
t =

λ0

σ(1 − γ)
, 0 ≤ t ≤ T.

That is, the Merton investor keeps a constant proportion of wealth invested in the stock,
as is well known.

3.3 Merton problem with uncertain drift

We can now solve the Merton problem when the agent has uncertainty over the true
value of the drift parameter. Optimal investment models under partial information have
been considered by many authors. We refer the reader to Rogers [31], Björk, Davis and
Landén [1], and Platen and Runggaldier [30], for example.
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A stock price process S = (St)0≤t≤T follows

dSt = σSt(λdt + dBt), (3.23)

on a complete probability space (Ω,F , P ) equipped with a filtration F := (Ft)0≤t≤T ,
with B = (Bt)0≤t≤T an F-Brownian motion.

Define the process ξ = (ξt)0≤t≤T , by

ξt :=
1

σ

∫ t

0

dSu

Su
= λt + Bt. (3.24)

The process ξ will be considered as the observation process in a filtering framework,
corresponding to noisy observations of λ, with B representing the noise. In a partial
information model with continuous stock price observations, an agent must use F̂-
adapted trading strategies, where where F̂ := (F̂t)0≤t≤T is the observation filtration,
defined by

F̂t := σ(ξs; 0 ≤ s ≤ t) = σ(Ss; 0 ≤ s ≤ t).

Then σ is known from the quadratic variation of S, but λ is an unknown constant, and
hence modelled as an F0-measurable random variable. We assume the distribution of
λ is Gaussian, λ ∼ N(λ0, v0), independent of B.

We are faced with a Kalman–Bucy type filtering problem whose unobservable signal
process is the market price of risk λ. The signal process SDE is

dλ = 0, (3.25)

and the observation process SDE is (3.24).
We apply Theorem 2.1 to the signal process λ in (3.25) and observation process ξ in

(3.24). Then the optimal filter

λ̂t := E

[
λ | F̂t

]
, 0 ≤ t ≤ T,

satisfies
dλ̂t = vtdB̂t, λ̂0 = λ0, (3.26)

where
vt := E

[
(λ− λ̂t)

2|F̂t
]
, 0 ≤ t ≤ T,

is the conditional variance of λ. This satisfies the Riccati equation

dvt
dt

= −v2
t , (3.27)

with initial value v0, so that

vt =
v0

1 + v0t
, 0 ≤ t ≤ T. (3.28)

The process B̂ is an F̂-Brownian motion, the innovations process, satisfying

dB̂t = dξt − λ̂tdt. (3.29)
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Using this in (3.26), the optimal filter can also be written in terms of the observable ξ

as
λ̂t =

λ0 + v0ξt

1 + v0t
, 0 ≤ t ≤ T. (3.30)

The effect of the filtering is that the agent is now investing in a stock with dynamics
given by dSt = σStdξt which, using (3.29), becomes

dSt = σSt(λ̂tdt + dB̂t). (3.31)

Our agent has a power utility function (3.11) and may invest a portion of his wealth in
shares and the remaining wealth in a cash account with zero interest rate (for simplic-
ity). The (F̂-adapted) wealth process X

0 then follows

dX

0
t = σθ

0
tX

0
t (λ̂tdt + dB̂t), X

0
0 = x, (3.32)

where θ

0
t is the proportion of wealth invested in shares at time t ∈ [0, T ], an F̂-adapted

process satisfying
∫ T
0

(
θ

0
t

)2 dt < ∞ almost surely, and such that X

0
t ≥ 0 almost surely

for all t ∈ [0, T ]. Denote by A0 the set of such admissible strategies.
The objective is to maximise expected utility of terminal wealth over the F̂-adapted

admissible strategies. The value function is

u0(x) := sup
θ∈A0

E

[
U(X0

T ) | F̂0

]
.

This may now be treated as a full information problem, with state dynamics given by
(3.32).

We see from equations (3.26), (3.28) and (3.31), that the solution to the partial in-
formation optimal portfolio problem is given by Theorem 3.2, when we replace the
process λ of Theorem 3.2 by λ̂, and replace (wt)0≤t≤T by (vt)0≤t≤T . We have there-
fore proved the following result.

Theorem 3.3 (Merton problem with uncertain drift). In a complete market with stock
price process S given by (3.23), suppose an agent is restricted to using stock price
adapted strategies to maximise expected utility of terminal wealth, with power utility
function given by (3.11). Suppose further that the agent’s prior distribution for λ is
Gaussian, according to

Law(λ | F̂0) = N(λ0, v0),

and assume that
−1 < v0T <

1− γ

γ

.

Then the agent’s value function is given by

u0(x) =
x

γ

γ

C

1−γ
0 .

where

C0 =

[
(1 + v0T )q

1 + qv0T

]1/2

exp

[
−

1

2

q(1− q)λ2
0T

1 + qv0T

]
, q = −

γ

1− γ

.
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The optimal trading strategy is θ

0,∗ = (θ0,∗
t )0≤t≤T , given by

θ

0,∗
t =

λ̂t

σ(1− γ)

(
1

1 + qvt(T − t)

)
, 0 ≤ t ≤ T,

where λ̂ = (λ̂t)0≤t≤T satisfies (3.26) and vt is given by (3.28).

The classical Merton strategy is thus altered in two ways: the constant λ is replaced
by its filtered estimate λ̂t, and the risky asset proportion is decreased by the factor
(1 + qvt(T − t))−1. We note that the more risk averse the investor, the less likely he
is to invest in shares, and as t → T , the optimal strategy gets closer and closer to the
Merton rule.

4 Investment with inside information and drift uncer-
tainty

We again consider the Merton optimal investment problem in which the agent does
not know the stock price drift, but now with the added feature that the agent has some
additional information at time zero, represented by noisy knowledge of the terminal
value BT of the Brownian motion driving the stock. We refer the reader to Danilova,
Monoyios and Ng [2] for further examples, such as when the additional information
involves noisy knowledge of the terminal stock price. The work in this section and
in [2] extends the classical inside information model of Pikovsky and Karatzas [29]
by considering the situation where the insider does not know the stock’s appreciation
rate. The agent must use strategies that are adapted to the stock price filtration, but
enlarged by the additional information. We must therefore utilise a filtering algorithm
which computes the best estimate of the drift, given stock price observations and the
additional information. The usual Kalman–Bucy equations hold in this scenario, but
with modified initial conditions reflecting the additional information.

The market is the same one as in Section 3.3, with a single stock whose price pro-
cess S follows (3.23), on a complete probability space (Ω,F , P ) equipped with a back-
ground filtration F := (Ft)0≤t≤T , with B an F-Brownian motion. We shall again allow
for uncertainty in the value of λ, so consider it to be an F0-measurable random variable.
Once again we take the interest rate to be zero.

As before, we define the observation process ξ = (ξt)0≤t≤T by (3.24), and the
filtration generated by ξ is again denoted by F̂ = (F̂t)0≤t≤T . Since the background
filtration F contains the Brownian filtration and also the sigma-field generated by λ, we
have F̂t ⊆ Ft, for all t ∈ [0, T ].

Also as before, the uncertainty in the F0-measurable random variable λ is modelled
by assuming that its prior distribution conditional on F̂0 is Gaussian, according to

Law(λ | F̂0) = N(λ0, v0), independent of B, (4.1)
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for given constants λ0, v0.1
In contrast to earlier, the utility-maximising agent will not only have access to F̂ in

order to estimate λ and implement an optimal strategy, but will be able to augment F̂

with some additional information, represented by knowledge of a random variable I.
Our procedure in this section is to first enlarge the background filtration F with

the information carried by the random variable I. Denote the enlarged filtration by
F
σ(I) = (F

σ(I)
t )0≤t≤T , with

F
σ(I)
t := Ft ∨ σ(I), 0 ≤ t ≤ T.

By starting with an enlarged background filtration and then considering the optimal
investment problem with uncertain drift, we aim to incorporate the insider’s additional
information in the estimation of the unknown market price of risk λ.

The next step is to write the stock price SDE (3.23) in terms of quantities adapted
to F

σ(I). As F contains the Brownian filtration, we apply classical initial enlargement
results (see, for instance, Mansuy and Yor [18]). There exists an F

σ(I)-adapted process
ν, the information drift, such that the Brownian motion B decomposes according to

Bt := B

I
t +

∫ t

0

νsds, 0 ≤ t ≤ T, (4.2)

where B

I is an F
σ(I)-Brownian motion. We shall characterise the information drift via

Lemma 4.2 shortly.
Using (4.2), the stock price dynamics (3.23) is written in terms of F

σ(I)-adapted
processes, to give

dSt = σSt

(
λ

I
t dt + dB

I
t

)
, (4.3)

where
λ

I
t := λ + νt, 0 ≤ t ≤ T,

is F
σ(I)-adapted. If the insider happened to know the value of λ, then we would in-

terpret (4.3) as his stock price SDE, with a stochastic market price of risk λ

I , on the
filtered probability space (Ω,F

σ(I)
T , F

σ(I)
, P ).

We study a problem where the inside information consists of noisy Brownian inside
information. In other words, we take I to be given by

I := aBT + (1− a)ε, 0 < a < 1, (4.4)

and where ε is a standard normal random variable independent of B and λ.
Define the insider’s observation filtration F̂

σ(I) = (F̂
σ(I)
t )0≤t≤T by

F̂
σ(I)
t := σ(I, ξs; 0 ≤ s ≤ t), 0 ≤ t ≤ T.

We now incorporate the insider’s uncertainty in the knowledge of λ by treating it as an
F
σ(I)
0 -measurable Gaussian random variable with distribution conditional on F̂0 given

1 One way to choose λ0, v0 would be to use past data before time zero to obtain a point estimate of λ, and to use
the distribution of the estimator as the prior, as in Monoyios [23] and Section 5 of this article.
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by (4.1). In this example, λ is independent of I, so its distribution conditional on F̂σ(I)
0

is unaltered from that in (4.1):

Law(λ | F̂
σ(I)
0 ) = Law(λ | F̂0) = N(λ0, v0). (4.5)

Treating λ

I as an unobservable signal process, we shall see that λ

I will satisfy a linear
SDE with respect to F

σ(I). The Kalman–Bucy filter then allows the insider to infer the
conditional expectation

λ̂

I
t := E

[
λ

I
t | F̂

σ(I)
t

]
, 0 ≤ t ≤ T, (4.6)

that is, the best estimate of the signal λ

I based on the insider’s observation filtration
F̂
σ(I), which turns out to be a Gaussian process, fully characterised by the filtering al-

gorithm. The initial condition for the optimal filter incorporates the inside information,
and the SDE for the filter augments this with the stock price observations. This will
convert the partial information model (4.3) to a full information model on the filtered
probability space (Ω, F̂

σ(I)
T , F̂

σ(I)
, P ) with the stock price following

dSt = σSt(λ̂
I
t dt + dB̂

I
t ), (4.7)

where B̂

I is an F̂
σ(I)-Brownian motion. Finally, once we have the full information

model (4.7), we are able to compute the maximum utility via duality.
Denote the agent’s F̂

σ(I)-adapted wealth process by X

I = (XI
t )0≤t≤T , with trading

strategy θ

I = (θIt )0≤t≤T , the proportion of wealth invested in the stock, an F̂
σ(I)-

adapted process satisfying
∫ T
0

(
θ

I
t

)2 dt < ∞ almost surely, such that X

I
t ≥ 0 almost

surely for all t ∈ [0, T ]. Denote by AI the set of such admissible strategies.
The value function for this problem is

uI(x) := sup
θI∈AI

E

[
U(XI

T ) | F̂
σ(I)
0

]
, x > 0, (4.8)

where U is the power utility function (3.11). We emphasise that the objective function
in (4.8) is conditioned on F̂σ(I)

0 .
Define the modulated terminal time Ta by

Ta := T +
(1− a

a

)2

, (4.9)

which will appear in our results. Then the solution to this problem is as follows.

Theorem 4.1. Assume that
T

Ta
− 1 < v0T <

T

Ta
+

1− γ

γ

.

Define the function vI : [0, T ]→ R by

vIt :=
vI0

1 + vI0t
, vI0 := v0 −

1

Ta
, 0 ≤ t ≤ T. (4.10)
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Then the process λ̂

I in (4.6) is given by

λ̂

I
t = λ0 +

I

aTa
+

∫ t

0

vIsdB̂

I
s , 0 ≤ t ≤ T, (4.11)

where I is defined in (4.4) and Ta in (4.9). The value function of the insider with
knowledge of I at time zero is given by

uI(x) =
x

γ

γ

C

1−γ
I , (4.12)

where CI is the F̂I0 -measurable random variable given by

CI =

(
(1 + vI0T )q

1 + qvI0T

)1/2

exp

(
−

1

2

q(1 − q)(λ̂I0)
2
T

1 + qvI0T

)
, q = −

γ

1− γ

.

The insider’s optimal trading strategy is θ

I,∗ = (θI,∗t )0≤t≤T , given by

θ

I,∗
t =

λ̂

I
t

σ(1 − γ)

(
1

1 + qvIt (T − t)

)
, 0 ≤ t ≤ T.

Of course, the value function (4.12) depends explicitly on I, through its dependence
on λ̂

I
0. We note the similarity in the structure of the solution to this problem with that

of the Merton problem with uncertain drift and no inside information. The function vI

plays a similar role to the function v in the conventional partial information problem.
It turns out that vI is related to (but not identical to) the variance of λ

I conditional on
F̂
I , as we shall see.

4.1 Computing the information drift

The first result we need in order to prove Theorem 4.1 is a lemma that gives an explicit
formula for the information drift in (4.2). Recall that we begin with a background filtra-
tion F = (Ft)0≤t≤T that includes the Brownian filtration and the sigma-field generated
by λ. We enlarge F with the information carried by the random variable I . Define,
for a bounded Borel function f : R → R, the process (πt(f))0≤t≤T as the continuous
version of the martingale (E [f(I) | Ft])0≤t≤T :

πt(f) := E [f(I) | Ft] , 0 ≤ t ≤ T.

There then exists a predictable family of measures (μt(dx))0≤t≤T such that

πt(f) =

∫
R

f(x)μt(dx).

For fixed t ∈ [0, T ], the measure μt(dx) is the conditional distribution of I given Ft.
Suppose I is such that there exists a density function g(t, x, y) for each t ∈ [0, T ], and
such that

πt(f) =

∫
R

f(x)μt(dx) =

∫
R

f(x)g(t, x, Bt)dx. (4.13)

The enlargement decomposition formula is given by the following lemma.



Investment and hedging under partial information 389

Lemma 4.2. Suppose that I is continuous random variable with conditional (on Ft)
distribution given by g(t, x, Bt). Assume also that this distribution satisfies the follow-
ing conditions: ∫

R

|gy(t, x, y)| dx <∞,

∫
R

∣∣∣∣gy(t, x, y)

g(t, x, y)

∣∣∣∣ dx <∞,

for a.e. t ∈ [0, T ] and a.e. y ∈ R. Then the F-Brownian motion B decomposes with
respect to the enlarged filtration F

σ(I) according to

Bt = B

I
t +

∫ t

0

νsds, 0 ≤ t ≤ T,

where B

I is an F
σ(I)-Brownian motion. The information drift ν is given by

νt =
gy(t, I, Bt)

g(t, I, Bt)
, 0 ≤ t ≤ T.

Proof. Let f be a test function. Introduce the F-predictable process (π̇t(f))0≤t≤T such
that

πt(f) = Ef(I) +

∫ t

0

π̇s(f)dBs,

which exists by the representation property of Brownian martingales as stochastic in-
tegrals with respect to B. There exists a predictable family of measures (μ̇t(dx))0≤t≤T
such that

π̇t(f) =

∫
R

f(x)μ̇t(dx),

and such that for each t ∈ [0, T ] the measure μ̇t(dx) is absolutely continuous with
respect to μt(dx). Define α(t, x) by

μ̇t(dx) = α(t, x)μt(dx).

Now suppose we have a continuous F-martingale M given by

Mt =

∫ t

0

msdBs, 0 ≤ t ≤ T.

By Theorem 1.6 in Mansuy and Yor [18], there exists an F
σ(I)-local martingale M

I

such that
Mt = M

I
t +

∫ t

0

α(s, I) d[M, B]s,

provided that, almost surely, ∫ t

0

|α(s, I)| d[M, B]s < ∞.

In particular, if
∫ t
0 |α(s, I)| ds <∞ almost surely, then B decomposes as

Bt = B

I
t +

∫ t

0

α(s, I) ds, 0 ≤ t ≤ T,

with B

I an F
σ(I)-Brownian motion.
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From the definition of α(t, x) we have

π̇t(f) =

∫
R

f(x)α(t, x)μt(dx) =

∫
R

f(x)α(t, x)g(t, x, Bt)dx.

Hence,
dπt(f) = π̇t(f)dBt =

(∫
R

f(x)α(t, x)g(t, x, Bt)dx

)
dBt,

so that
d[π(f), M ]t =

(∫
R

f(x)α(t, x)g(t, x, Bt)dx

)
d[B, M ]t. (4.14)

But from the defining representation (4.13), the right-hand side of which is a smooth
function of Bt, the Itô formula gives

d[π(f), M ]t =

(∫
R

f(x)gy(t, x, Bt)dx

)
d[B, M ]t, (4.15)

and comparing (4.14) with (4.15) yields the result. �

Proof of Theorem 4.1. For I given by (4.4), the conditional distribution of I given Ft,
for t ≤ T , is

N(aBt, a
2(T − t) + (1− a)2) = N(aBt, a

2(Ta − t)),

where Ta is defined in (4.9). Hence the conditional density is

g(t, x, Bt) =
1

a

√
2π(Ta − t)

exp

[
−

1

2

(x− aBt)
2

a

2(Ta − t)

]
.

So by Lemma 4.2, the information drift is

νt =
I − aBt

a(Ta − t)
, 0 ≤ t ≤ T. (4.16)

Using the information drift in (4.16) we write the stock price SDE (3.23) in terms of
F
σ(I)-adapted processes, to obtain (4.3), where the F

σ(I)-adapted market price of risk
λ

I is given by

λ

I
t := λ + νt = λ +

I − aBt

a(Ta − t)
=: h(t, Bt), 0 ≤ t ≤ T,

and where h : [0, T ]× R → R is defined by

h(t, x) := λ +
I − ax

a(Ta − t)
.

Applying the Itô’s formula and using dBt = νtdt + dB

I
t , we obtain

dλ

I
t = −

1

Ta − t

dB

I
t , λ

I
0 = λ +

I

aTa
. (4.17)
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With ξ being the returns process in (3.24), we have

dξt = λ

I
tdt + dB

I
t . (4.18)

We now regard λ as an unknown constant, and hence a random variable, whose dis-
tribution conditional on F̂σ(I)

0 is given by (4.5). Then we regard (λIt )0≤t≤T as an un-
observable signal process following (4.17), and ξ as an observation process following
(4.18), in a filtering framework to estimate of λ

I
t conditional on F̂σ(I)

t .
Using (4.5), we can write down the initial distribution of λ

I
0 given F̂σ(I)

0 :

Law(λI0|F̂
σ(I)
0 ) = Law

(
λ +

I

aTa

∣∣∣∣ F̂σ(I)
0

)
= N

(
λ0 +

I

aTa
, v0

)
.

This defines the prior distribution of the signal process λ

I . Of course, since I is F̂σ(I)
0 -

measurable, it does not contribute to the initial variance.
The Kalman–Bucy filter, Theorem 2.1, is directly applicable, and yields that the

optimal filter
λ̂

I
t := E

[
λ

I
t | F̂

σ(I)
t

]
, 0 ≤ t ≤ T,

satisfies the SDE

dλ̂

I
t =

(
V

I
t −

1

Ta − t

)
dB̂

I
t , λ̂

I
0 = λ0 +

I

aTa
, (4.19)

where B̂

I is the innovations process, an F̂
σ(I)-Brownian motion defined by

B̂

I
t := ξt −

∫ t

0

λ̂

I
sds, 0 ≤ t ≤ T, (4.20)

and V

I
t is the conditional variance of λ

I
t :

V

I
t := E

[ (
λ

I
t − λ̂

I
t

)2
∣∣∣ F̂σ(I)

t

]
, 0 ≤ t ≤ T,

which satisfies
dV

I
t

dt

=
2

Ta − t

V

I
t −

(
V

I
t

)2
, V

I
0 = v0.

If we define
vIt := V

I
t −

1

Ta − t

, 0 ≤ t ≤ T,

then (4.19) becomes
dλ̂

I
t = vIt dB̂

I
t , λ̂

I
0 = λ0 +

I

aTa
. (4.21)

Note that (4.21) is of the same form as (3.8) with wt replaced by vIt and with Bt

replaced by B̂

I
t . Indeed, vIt plays the role of an ‘effective variance’, satisfying the

Riccati equation (3.27), with a modified initial condition:

dvIt
dt

= −
(
vIt

)2
, vI0 = v0 −

1

Ta
.
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The solution to this equation is then given by (4.10), and the solution to (4.21) is then
(4.11).

Using (4.20) in the SDE (4.21), the optimal filter may also be written explicitly in
terms of the observable ξ, as

λ̂

I
t =

λ̂

I
0 + vI0ξt

1 + vI0t
, 0 ≤ t ≤ T.

This is of the same form as (3.30), with λ0 replaced by λ̂

I
0 and v0 replaced by vI0.

The effect of the filtering is that the agent is now investing in a stock with dynamics
given by dSt = σStdξt which, using (4.20), becomes (4.7). The F̂

σ(I)-adapted wealth
process X

I then follows

dX

I
t = σθ

I
tX

I
t (λ̂

I
t dt + dB̂

I
t ), X

I
0 = x,

where θ

I is the F̂
σ(I)-adapted trading strategy. The theorem then follows immediately

from making the replacements

w → vI , λ→ λ̂

I
,

in Theorem 3.2. �

It can be shown that the additional information increases the insider’s utility over
the regular agent: see [2] for this and other effects of the inside information.

5 Optimal hedging of basis risk with partial informa-
tion

In this section we analyse the hedging of a contingent claim in a basis risk model,
a tractable example of an incomplete market, first under a full information assump-
tion, and then under a partial information scenario. Basis risk models involve a claim
on a non-traded asset, which is hedged using a correlated traded asset. They were
first studied systematically by Davis [4] (whose preprint on the subject originated in
2000) who used a dual approach to derive approximations for indifference prices. Sub-
sequently, Henderson [8], and Musiela and Zariphopoulou [26] derived an expectation
representation (given in Theorem 5.3) for the value function of the utility maximisation
problem involving a random endowment of the claim. This was used by Monoyios [21]
to derive accurate analytic approximations for indifference prices and hedging strate-
gies. In simulation experiments, Monoyios showed that exponential indifference hedg-
ing could outperform the BS approximation of taking the traded asset as a good proxy
for the non-traded asset. Unfortunately, the utility-based hedge requires knowledge of
the drift parameters of the assets. These are hard to estimate accurately, as shown by
Rogers [31] and Monoyios [22], who showed that drift parameter mis-estimation could
ruin the effectiveness of the optimal hedge. Finally, in [23, 25] Monoyios developed
a filtering algorithm to deal with the drift parameter uncertainty, and showed that with
this added ingredient, utility-based hedging was indeed effective, even in the face of
parameter uncertainty. We shall describe some of these results in this section.
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5.1 Basis risk model: full information case

In a full information model, the setting is a filtered probability space (Ω,F , F :=
(Ft)0≤t≤T , P ), where the filtration F is the P -augmentation of that generated by a two-
dimensional Brownian motion (B, B

⊥). A traded stock price S := (St)0≤t≤T follows
a log-Brownian process given by

dSt = σSt(λdt + dBt) =: σStdξt, (5.1)

where σ > 0 and λ are known constants. For simplicity, the interest rate is taken to be
zero. The process ξ in (5.1) defined by dξt := λdt + dBt will subsequently play a role
as one component of an observation process in a partial information model, when λ

will be treated as a random variable rather than as a known constant.
A non-traded asset price Y := (Yt)0≤t≤T follows the correlated log-Brownian mo-

tion

dYt = βYt(θdt + dWt) =: βYtdζt, (5.2)

with β > 0 and θ known constants. The Brownian motion W is correlated with B

according to

[B, W ]t = ρt, W = ρB +
√

1− ρ

2
B

⊥
, ρ ∈ [−1, 1],

and the process ζ, given by dζt := θdt + dWt, will act as the second component of an
observation process in a partial information model, when θ will be considered a random
variable. We shall henceforth refer to the Sharpe ratios λ (respectively, θ) as the drift
of S (respectively, Y ), for brevity.

A European contingent claim pays the non-negative random variable h(YT ) at time
T , where h : R

+ → R
+. In what follows we shall consider utility maximisation

problems with the additional random terminal endowment nh(YT ), for n ∈ R. We
assume the random endowment nh(YT ) is continuous and bounded below, with finite
expectation under any martingale measure.

An agent may trade the stock in a self-financing fashion, leading to the portfolio
wealth process X = (Xt)0≤t≤T satisfying

dXt = σπt(λdt + dBt),

where π := (πt)0≤t≤T is the wealth in the stock, representing the agent’s trading strat-
egy, satisfying

∫ T
0

π

2
t dt <∞ almost surely.

5.1.1 Perfect correlation case

This market is incomplete for |ρ| �= 1. If the correlation is perfect, however, the market
becomes complete and perfect hedging is possible, as we now show.

The minimal martingale measure Q

M has density process with respect to P given
by

dQ

M

dP

∣∣∣∣
Ft

= E (−λ · B)t , 0 ≤ t ≤ T.
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Under Q

M , (S, Y ) follow

dSt = σStdB

QM

t ,

dYt = β (θ − ρλ)Ytdt + βYtdW

QM

t , (5.3)

where B

QM

, W

QM are correlated Brownian motions under Q

M . The stock price S is
a local Q

M -martingale, but this is not the case for the non-traded asset, unless we have
the perfect correlation case, ρ = 1. In this case Y is effectively a traded asset (as Yt is
then a deterministic function of St), so the Q

M -drift of Y vanishes. Therefore, given
σ, β, when ρ = 1 the Sharpe ratios λ, θ are equal:

θ = λ.

In this case the market becomes complete, and perfect hedging is possible. It is easy to
show that with ρ = 1, so that W = B, we have

Yt = Y0

(
St

S0

)β/σ
e

ct
, c =

1

2
σβ

(
1−

β

σ

)
.

Let the claim price process be v(t, Yt), 0 ≤ t ≤ T , where v : [0, T ] × R
+ → R

+ is
smooth enough to apply the Itô formula, so that

dv(t, Yt) =
[
vt(t, Yt) +AY v(t, Yt)

]
dt + βYtvy(t, Yt)dWt,

where AY is the generator of the process Y in (5.2). The replication conditions are

Xt = v(t, Yt), 0 ≤ t ≤ T, dXt = dv(t, Yt).

Standard arguments then show that to perfectly hedge the claim one must hold Δt

shares of S at t ∈ [0, T ], given by

Δt =
β

σ

Yt

St

∂v

∂y

(t, Yt), 0 ≤ t ≤ T, (5.4)

and the claim pricing function v(t, y) satisfies

vt(t, y) + β(θ − λ)yvy(t, y) +
1

2
β

2
y

2
vyy(t, y) = 0, v(T, y) = h(y).

But with ρ = 1, θ = λ, so we get the BS partial differential equation (PDE), and hence

v(t, Yt) = BS(t, Yt), 0 ≤ t ≤ T,

where BS(t, y) denotes the BS option pricing formula at time t, with underlying asset
price y.

Therefore, a position in n claims is hedged by Δ
(BS)
t units of S at t ∈ [0, T ], where

Δ
(BS)
t = −n

β

σ

Yt

St

∂

∂y

BS(t, Yt; β), 0 ≤ t ≤ T, (5.5)

and where BS(t, y; β) denotes the BS formula at time t for underlying asset price y and
volatility β. From our perspective, the salient feature of (5.5) is that the perfect hedge
does not require knowledge of the values of the drifts λ, θ.



Investment and hedging under partial information 395

5.1.2 Incomplete case

Now suppose the correlation is not perfect, so that the market is incomplete. We embed
the problem in a utility maximisation framework in a manner that is by now classical.
Let the agent have risk preferences expressed via the exponential utility function

U(x) = − exp(−αx), x ∈ R, α > 0.

The agent maximises expected utility of terminal wealth at time T , with a random
endowment of n units of claim payoff:

J(t, x, y; π) = E

[
U(XT + nh(YT )) |Xt = x, Yt = y

]
.

The value function is u

(n)(t, x, y) ≡ u(t, x, y), defined by

u(t, x, y) := sup
π∈A

J(t, x, y; π), u(T, x, y) = U(x + nh(y)), (5.6)

whereA is the set of admissible strategies. This is composed of S-integrable processes
whose gains process is a Q-martingale for any martingale measure with finite relative
entropy with respect to P . Denote the optimal trading strategy that achieves the supre-
mum in (5.6) by π

∗ ≡ π

∗,n, and denote the optimal wealth process by X

∗ ≡ X

∗,n.
The following definitions of utility-based price and hedging strategy are now stan-

dard.

Definition 5.1 (Indifference price). The indifference price per claim at t ∈ [0, T ], given
Xt = x, Yt = y, is p(t, x, y) ≡ p

(n)(t, x, y), defined by

u

(n)(t, x− np

(n)(t, x, y), y) = u

(0)(t, x, y).

We allow for possible dependence on t, x, y of p

(n) in the above definition, but with
exponential preferences it turns out that there is no dependence on x.

Definition 5.2 (Optimal hedging strategy). The optimal hedging strategy for n units of
the claim is π

H := (πHt )0≤t≤T given by

π

H
t := π

∗,n
t − π

∗,0
t , 0 ≤ t ≤ T.

We have the following representation for the value function and indifference price.

Theorem 5.3. The value function u

(n) and indifference price p

(n), given Xt = x, Yt =
y for t ∈ [0, T ], are given by

u

(n)(t, x, y) = −e

−αx− 1

2
λ2(T−t) [F (t, Yt)]

1/(1−ρ2)
,

F (t, y) = E

QM [
exp

(
−α(1− ρ

2)nh(YT )
)∣∣

Yt = y

]
, (5.7)

p

(n)(t, y) = −
1

α(1− ρ

2)n
log F (t, y). (5.8)
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Proof. The Hamilton–Jacobi–Bellman (HJB) equation for the value function u

(n) is

u

(n)
t + σ sup

π

(
λπu

(n)
x +

1

2
σπ

2
u

(n)
xx + ρβπyu

(n)
xy

)
+AY u

(n) = 0.

Performing the maximisation gives the optimal feedback control as Π∗,n(t, x, y), where
the function Π∗,n : [0, T ]× R× R

+ is given by

Π∗,n(t, x, y) := −

(
λu

(n)
x + ρβyu

(n)
xy

σu

(n)
xx

)
. (5.9)

The optimal trading strategy π

∗,n is then given by π

∗,n
t = Π∗(t, X∗

t , Yt). Substituting
the optimal Markov control back into the Bellman equation gives the HJB PDE

u

(n)
t +AY u

(n) −

(
λu

(n)
x + ρβyu

(n)
xy

)2

2u

(n)
xx

= 0.

The function F (t, y) in (5.7) satisfies the linear PDE

Ft + β(θ − ρλ)Fy +
1

2
β

2
y

2
Fyy = 0, F (T, y) = exp(−α(1 − ρ

2)nh(y)),

by virtue of the Feynman–Kac theorem. It is then straightforward to verify that u

(n) as
given in the theorem solves the above HJB equation, and the definition of the indiffer-
ence price gives the formula (5.8). �

This leads to the following representation for the optimal hedging strategy.

Theorem 5.4. The optimal hedging strategy for a position in n claims is to hold ΔH
t

shares at t ∈ [0, T ], given by

ΔH
t = −nρ

β

σ

Yt

St

∂p

(n)

∂y

(t, Yt), 0 ≤ t ≤ T. (5.10)

Proof. From Theorem 5.3 the value function may be written in terms of the indiffer-
ence price as

u

(n)(t, x, y) = − exp
(
− α(x + np

(n)(t, y))−
1

2
λ

2(T − t)
)

. (5.11)

The optimal trading strategy is π

∗,n
t = Π∗(t, X∗

t , Yt), where the function Π∗,n(t, x, y)
is given in (5.9), in terms of derivatives of the value function. Using (5.11) we obtain

π

∗,n
t =

λ− ραnβYtp
(n)
y (t, Yt)

ασ

, 0 ≤ t ≤ T.

The optimal trading strategy for the problem with no claims, π

∗,0
t is obtained trivially

by setting n = 0 in this result, and then applying Definition 5.2 proves the theorem. �
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Notice that, given the PDE satisfied by F , the indifference pricing function p(t, y) ≡
p

(n)(t, y) satisfies

pt + β(θ − ρλ)ypy +
1

2
β

2
y

2
pyy −

1

2
β

2
y

2
αn(1 − ρ

2)(py)
2 = 0.

So for ρ = 1, in which case θ = λ, the claim price then satisfies the BS PDE and we
recover the perfect delta hedge (5.4).

In [21, 22] the hedging strategy in (5.10) is shown to be superior to the BS-style
hedge (5.5), in terms of the terminal hedging error distribution produced by selling the
claim at the appropriate price (the indifference price or the BS price) and investing the
proceeds in the corresponding hedging portfolio. But from (5.3) we see that the expo-
nential hedge requires knowledge of λ, θ, which are impossible to estimate accurately
(see Rogers [31] or Monoyios [22]). This can ruin the effectiveness of indifference
hedging, as shown in [22]. It is therefore dubious to draw any meaningful conclu-
sions on the effectiveness of utility-based hedging in this model without relaxing the
assumption that the agent knows the true values of the drifts.

5.2 Partial information case

Now we assume the hedger does not know the values of the return parameters λ, θ, so
these are considered to be random variables. Equivalently, the agent cannot observe
the Brownian motions B, W driving the asset prices, so is required to use strategies
adapted to the observation filtration F̂ generated by asset returns.

5.2.1 Choice of prior

We take the the two-dimensional random variable

Ξ :=

(
λ

θ

)

to have a Gaussian distribution which will be updated as the agent attempts to filter the
values of the drifts from asset observations during the hedging interval [0, T ].

The choice of Gaussian prior is motivated by the idea that the agent has some past
observations of S, Y before time zero, uses these to obtain classical point estimates of
the drifts, and the joint distribution of the estimators is used as the prior in a Bayesian
framework. Ultimately, in order to obtain explicit solutions, we shall assume that the
agent uses observations before time zero of equal length for both assets. In setting
the prior this way, we make the approximation that the asset price observations are
continuous, so that σ, β, ρ are known from the quadratic variation and co-variation of
S, Y . This is because our goal here is to focus on the severest problem of drift parameter
uncertainty.

So, consider, for the moment, an observer with data for S over a time interval of
length tS , and for Y over a window of length tY , who considers λ and θ as constants,
and records the returns dSt/St and dYt/Yt in order to estimate the values of the drifts.
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An unbiased estimator of λ is λ̄(tS) given by

λ̄(tS) =
1

tS

∫ t0+tS

t0

dSu

σSu
= λ +

Bt0+tS

tS
∼ N

(
λ,

1

tS

)
.

The estimator of λ is normally distributed, with a similar computation for the estimator
of θ. The estimator, (λ̄, θ̄), of the (supposed constant) vector (λ, θ) is bivariate normal.
Defining v0 := 1/tS and w0 := 1/tY it is easily checked that

(
λ̄

θ̄

)
∼ N(M, C0),

where the mean vector M and covariance matrix C0 are given by

M =

(
λ

θ

)
, C0 =

(
v0 ρ min(v0, w0)

ρ min(v0, w0) w0

)
. (5.12)

With this in mind, we shall suppose that (λ, θ), now considered as a random variable,
is bivariate normal according to

λ ∼ N(λ0, v0), θ ∼ N(θ0, w0), cov(λ, θ) = c0 := ρ min(v0, w0),

for some chosen values λ0, θ0, typically obtained from past data prior to time zero.
This distribution will be updated via subsequent observations of

ξt :=
1

σ

∫ t

0

dSu

Su
= λt + Bt, ζt :=

1

β

∫ t

0

dYu

Yu
= θt + Wt,

over the hedging interval [0, T ].

5.2.2 Two-dimensional Kalman–Bucy filter

We are firmly within the realm of a two-dimensional Kalman filtering problem, which
we treat as follows. Define the observation filtration by

F̂ := (F̂t)0≤t≤T , F̂t = σ(ξs, ζs; 0 ≤ s ≤ t).

The observation process, Λ, and unobservable signal process, Ξ, are defined by

Λ :=

(
ξt

ζt

)
0≤t≤T

, Ξ :=

(
λ

θ

)
,

satisfying the stochastic differential equations

dΛt = Ξdt +

(
1 0

ρ

√
1− ρ

2

)
d
(

Bt

B

⊥
t

)
, dΞ =

(
0

0

)
.
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The optimal filter is Ξ̂t := E

[
Ξ | F̂t

]
, 0 ≤ t ≤ T , a two-dimensional process defining

the best estimates of λ and θ given observations up to time t ∈ [0, T ]:

Ξ̂t ≡

(
λ̂t

θ̂t

)
:=

(
E

[
λ | F̂t

]
E

[
θ | F̂t

]),

(
λ̂0

θ̂0

)
=

(
λ0

θ0

)
. (5.13)

The solution to this filtering problem converts the partial information model to a full
information model with random drifts, given in the following proposition. To avoid
a proliferation of symbols, we abuse notation and write λ̂t ≡ λ̂(t, St) and θ̂ ≡ θ̂(t, Yt)

for processes λ̂, θ̂ that will turn out to be functions of time and current asset price.

Proposition 5.5. The partial information model is equivalent to a full information
model in which the asset price dynamics in the observation filtration F̂ are

dSt = σSt(λ̂tdt + dB̂t), (5.14)

dYt = βYt(θ̂tdt + dŴt), (5.15)

where B̂, Ŵ are F̂-Brownian motions with correlation ρ, and the random drifts λ̂, θ̂ are
F̂-adapted processes.
If λ and θ have common initial variance v0, then λ̂, θ̂ are given by(

λ̂t

θ̂t

)
=

(
λ0

θ0

)
+

∫ t

0

vs

(
dB̂s

dŴs

)
, 0 ≤ t ≤ T, (5.16)

where (vt)0≤t≤T is the deterministic function

vt :=
v0

1 + v0t
, 0 ≤ t ≤ T.

Equivalently, λ̂, θ̂ are given as functions of time and current asset price by

λ̂t = λ̂(t, St) =
λ0 + v0ξt

1 + v0t
, θ̂t = θ̂(t, Yt) =

θ0 + v0ζt

1 + v0t
, (5.17)

with

ξt =
1

σ

log

(
St

S0

)
+

1

2
σt, ζt =

1

β

log

(
Yt

Y0

)
+

1

2
βt. (5.18)

Proof. Using a two-dimensional Kalman–Bucy filter (see, for example, Theorem V.9.2
in Fleming and Rishel [6]), Ξ̂ satisfies the stochastic differential equation

dΞ̂t = Ct

(
DD

T
)−1

(dΛt − Ξ̂tdt) =: Ct

(
DD

T
)−1

dNt, (5.19)

where (Nt)0≤t≤T is the innovations process, defined by

Nt := Λt −

∫ t

0

Ξ̂sds =

(
ξt −

∫ t
0

λ̂sds

ζt −
∫ t
0

θ̂sds

)
=:

(
B̂t

Ŵt

)
, (5.20)
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and B̂, Ŵ are F̂-Brownian motions with correlation ρ. The deterministic matrix func-
tion Ct is the conditional variance-covariance matrix defined by

Ct := E

[
(Ξ− Ξ̂t)(Ξ − Ξ̂t)

T
∣∣∣ F̂t] = E

[
(Ξ− Ξ̂t)(Ξ − Ξ̂t)

T
]
,

(T denoting transpose) where the last equality follows because the error Ξ − Ξ̂t is
independent of F̂t (Theorem V.9.2 in [6] again).

Using (5.20), and writing dSt in terms of dξt, as in (5.1), gives the dynamics (5.14)
of S in the observation filtration; (5.15) is established similarly.

The matrix C = (Ct)0≤t≤T satisfies the Riccati equation

dCt

dt

= −Ct

(
DD

T
)−1

Ct,

with C0 given in (5.12). Then Rt := C

−1
t satisfies the Lyapunov equation

dRt

dt

=
(
DD

T
)−1

.

Define the elements of the conditional covariance matrix by

Ct =:

(
vt ct

ct wt

)
.

Then the filtering equation (5.19) is a pair of coupled stochastic differential equations:(
dλ̂t

dθ̂t

)
=

1

1− ρ

2

(
vt − ρct ct − ρvt

ct − ρwt wt − ρct

)(
dξt − λ̂tdt

dζt − θ̂tdt

)

=
1

1− ρ

2

(
vt − ρct ct − ρvt

ct − ρwt wt − ρct

)(
dB̂t

dŴt

)
.

Solving the Lyapunov equation yields three equations for vt, wt, ct:

vt
vtwt − c2

t

−
v0

v0w0 − c2
0

=
t

1− ρ

2
,

wt
vtwt − c2

t

−
w0

v0w0 − c2
0

=
t

1− ρ

2
, (5.21)

ct
vtwt − c2

t

−
c0

v0w0 − c2
0

=
ρt

1− ρ

2
,

where we have written c0 ≡ ρ min(v0, w0) for brevity.
Now make the simplification w0 = v0. From the discussion in Section 5.2.1, we see

that this corresponds to using past observations over the same length of time, tS = tY ,
for both S and Y in fixing the prior. Then c0 = ρv0, and the solution to the system of
equations (5.21) gives the entries of the matrix Ct as

vt =
v0

1 + v0t
, wt = vt, ct = ρvt.
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With this simplification, the equation for the optimal filter simplifies to
(

dλ̂t

dθ̂t

)
= vt

(
dξt − λ̂tdt

dζt − θ̂tdt

)
= vt

(
dB̂t

dŴt

)
,

which, along with the initial condition in (5.13), yields (5.16) and (5.17).
Finally, the expressions in (5.18) for ξt, ζt follow directly from the solutions of (5.1)

and (5.2) for S and Y . �

Armed with Proposition 5.5 we may now treat the model as a full information model
with random drift parameters (λ̂t, θ̂t), and this is done in the next section.

5.2.3 Optimal hedging with random drifts

On the stochastic basis (Ω, F̂T , F̂, P ), the wealth process associated with trading strat-
egy π := (πt)0≤t≤T , an F̂-adapted process satisfying

∫ T
0 π

2
t dt < ∞ a.s., is X =

(Xt)0≤t≤T , satisfying
dXt = σπt(λ̂tdt + dB̂t). (5.22)

The class M of local martingale measures for this model consists of measures Q

with density processes defined by

Zt :=
dQ

dP

∣∣∣∣
bFt

= E(−λ̂ · B̂ − ψ · B̂⊥)t, 0 ≤ t ≤ T, (5.23)

for integrands ψ satisfying
∫ t
0 ψ

2
sds < ∞ a.s., for all t ∈ [0, T ] (it is not hard to show

that
∫ t
0

λ̂

2
sds < ∞, 0 ≤ t ≤ T ). For ψ = 0 we obtain the minimal martingale measure

Q

M .
Under Q ∈ M, (B̂Q

, B̂

⊥,Q) is two-dimensional Brownian motion, where

dB̂

Q
t := dB̂

Q
t + λ̂tdt, dB̂

⊥,Q
t := dB̂

⊥
t + ψtdt,

and the asset prices and random drifts satisfy

dSt = σStdB̂

Q
t ,

dYt = βYt[(θ̂t − ρλ̂t −
√

1− ρ

2
ψt)dt + dŴ

Q
t ],

dλ̂t = vt[−λ̂tdt + dB̂

Q
t ],

dθ̂t = vt[−(ρλ̂t +
√

1− ρ

2
ψt)dt + dŴ

Q
t ],

(5.24)

where Ŵ

Q = ρB̂

Q +
√

1− ρ

2
B̂

⊥,Q.
The relative entropy between Q ∈M and P is defined by

H(Q, P ) := E

[
dQ

dP

log
dQ

dP

]

= E

Q

[
−

∫ T

0

λ̂tdB̂

Q
t −

∫ T

0

ψtdB̂

⊥,Q
t +

1

2

∫ T

0

(
λ̂

2
t + ψ

2
t

)
dt

]
.
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Using the Q-dynamics of λ̂t it is straightforward to establish that E

Q
∫ t
0

λ̂

2
sds <∞ for

all t ∈ [0, T ]. If, in addition, we have the integrability condition

E

Q

∫ t

0

ψ

2
sds < ∞, 0 ≤ t ≤ T, (5.25)

then

H(Q, P ) = E

Q

[
1

2

∫ T

0

(
λ̂

2
t + ψ

2
t

)
dt

]
< ∞. (5.26)

In this case we write Q ∈ Mf , where Mf denotes the set of martingale measures Q

with finite relative entropy with respect to P , and we define H(Q, P ) := ∞ otherwise.
From (5.26) we note that the minimal entropy measure Q

E is characterised by

H(QE
, P ) = E

QE

[
1

2

∫ T

0

λ̂

2
tdt

]
,

corresponding to ψ ≡ 0 in (5.26). This means that the minimal martingale measure
and the minimal entropy measure in this model coincide: Q

E = Q

M .
For an initial time t ∈ [0, T ], we define the conditional entropy between Q ∈ M and

P by

Ht(Q, P ) := E

[
ZT

Zt
log

(
ZT

Zt

)∣∣∣∣ F̂t
]

, 0 ≤ t ≤ T, (5.27)

satisfying H0(Q, P ) ≡ H(Q, P ). Provided the integrability condition (5.25) is satis-
fied, then

Ht(Q, P ) = E

Q

[
1

2

∫ T

t

(
λ̂

2
u + ψ

2
u

)
du

∣∣∣∣∣ F̂t
]

,

and we define Ht(Q, P ) := ∞ otherwise. In particular, therefore, recalling that λ̂t ≡

λ̂(t, St) is a smooth and Lipschitz function of time and current stock price, and that
the Q-dynamics of λ̂t do not depend on ψt for any Q ∈ M, the minimal conditional
entropy (Ht(Q

E
, P ))0≤t≤T will be a deterministic function of time and stock price,

given by Ht(Q
E

, P ) ≡ H

E(t, St) for a C

1,2([0, T ]× R
+) function H

E defined by

H

E(t, s) := E

QE

[
1

2

∫ T

t

λ̂

2(u, Su)du

∣∣∣∣∣St = s

]
. (5.28)

5.2.4 The primal problem

We use an exponential utility function, U(x) = − exp(−αx), x ∈ R, α > 0. The
primal value function u

(n) is defined as the maximum expected utility of wealth at T

from trading S and receiving n units of the claim on Y , when starting at time t ∈ [0, T ]:

u

(n)(t, x, s, y) := sup
π∈A

E

[
U(XT + nh(YT )) |Xt = x, St = s, Yt = y

]
, (5.29)
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where A denotes the set of admissible trading strategies. The dynamics of the state
variables X, S, Y are given by (5.22) and (5.14, 5.15). For starting time zero we write
u

(n)(x) ≡ u

(n)(0, x, ·, ·).
The set of admissible strategies is defined as follows. Denote by Δ := π/S be the

adapted S-integrable process for the number of shares held. The space of permitted
strategies is

A = {Δ : (Δ · S) is a (Q, F̂)-martingale for all Q ∈Mf},

where (Δ · S)t =
∫ t
0

ΔudSu is the gain from trading over [0, t], t ∈ [0, T ].
Denote the optimal trading strategy by π

∗ ≡ π

∗,n, and the optimal wealth process by
X

∗ ≡ X

∗,n. The utility-based price p

(n) and optimal hedge for a position in n claims
are defined along the lines of Definitions 5.1 and 5.2. The indifference price per claim
at t ∈ [0, T ], given Xt = x, St = s, Yt = y, is p

(n) given by

u

(n)(t, x− np

(n)(t, x, s, y), s, y) = u

(0)(t, x, s).

The optimal hedging strategy is to hold (ΔH
t )0≤t≤T shares of stock at time t, where

ΔH
t St =: π

H
t St, and π

H :=
(
π

H
t

)
0≤t≤T

, is defined by

π

H
t := π

∗,n
t − π

∗,0
t , 0 ≤ t ≤ T. (5.30)

It is well known that with exponential utility the indifference price is independent of
the initial cash wealth x, so we shall write p

(n)(t, x, s, y) ≡ p

(n)(t, s, y) from now on.
For small positions in the claim (or, equivalently, for small risk aversion), we shall

later approximate the indifference price by the marginal utility-based price introduced
by Davis [3]. This is the indifference price for infinitesimal diversions of funds into
the purchase or sale of claims, and is equivalent (as is well-known, see for example
Monoyios [24]) to the limit of the indifference price as n→ 0.

Definition 5.6 (Marginal price). The marginal utility-based price of the claim at t ∈
[0, T ] is p̂(t, s, y) defined by

p̂(t, s, y) := lim
n→0

p

(n)(t, s, y).

It is well known that with exponential utility the marginal price is also equivalent
to the limit of the indifference price as risk aversion goes to zero. Under appropriate
conditions (satisfied in this model) it is given by the expectation of the payoff under
the optimal measure of the dual problem without the claim. For exponential utility
this measure is the minimal entropy measure Q

E and, as we have already seen, in our
model Q

E = Q

M , giving the representation p̂(t, s, y) = E

QM [
h(YT ) |St = s, Yt = y

]
,

as we shall see in the next section.

5.2.5 Dual problem and optimal hedge

We attack the primal utility maximisation problem (5.29) using classical duality results.
For a problem with the random terminal endowment of a European claim, and with
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exponential utility, as in this paper, Delbaen et al. [5] establish the required duality
relations between the primal and dual problems in a semimartingale setting. We shall
use these results below to establish a simple algebraic relation (Lemma 5.7) between
the primal value function and the indifference price, which we shall then exploit to
derive the representation for the optimal hedging strategy.

The dual problem with starting time zero has value function defined by

ũ

(n)(η) := inf
Q∈M

E

[
Ũ(ηZT ) + ηZTnh(YT )

]
,

where Z is the density process in (5.23) and Ũ is the convex conjugate of the utility
function. For exponential utility Ũ is given by

Ũ(η) =
η

α

[
log

(
η

α

)
− 1

]
.

Hence the dual value function has the well-known entropic representation

ũ

(n)(η) = Ũ(η) +
η

α

inf
Q∈M

[
H(Q, P ) + αnE

Q
h(YT )

]
.

Denoting the dual minimiser that attains the above infimum by Q

∗,n, we observe that
Q

∗,n ∈Mf .
For a starting time t ∈ [0, T ] the dual value function is defined by

ũ

(n)(t, η, s, y) := inf
Q∈M

E

[
Ũ

(
η

ZT

Zt

)
+ η

ZT

Zt
nh(YT )

∣∣∣∣ St = s, Yt = y

]
, (5.31)

and we write ũ

(n)(η) ≡ ũ

(n)(0, η, ·, ·).

Lemma 5.7. The primal value function and indifference price are related by

u

(n)(t, x, s, y) = u

(0)(t, x, s) exp
(
−αnp

(n)(t, s, y)
)

, (5.32)

where the value function without the claim is given by

u

(0)(t, x, s) = − exp
(
−αx−H

E(t, s)
)
, (5.33)

and H

E(t, s) is the conditional minimal entropy function defined in (5.28).

Proof. For brevity, we give the proof for t = 0. The proof for a general starting time
follows similar lines, and we make some comments on how to adapt the following
argument for that case at the end of the proof.

The fundamental duality linking the primal and dual problems in Delbaen et al. [5]
implies that the value functions u

(n)(x) and ũ

(n)(η) are conjugate:

ũ

(n)(η) = sup
x∈R

[u(n)(x)− xη], u

(n)(x) = inf
η>0

[ũ(n)(η) + xη].

The value of η attaining the above infimum is η

∗, given by ũ

(n)
η (η∗) = −x, so that

u

(n)(x) = ũ

(n)(η∗) + xη

∗
,
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which translates to

u

(n)(x) = − exp

(
−αx− inf

Q∈M

[
H(Q, P ) + αnE

Q
h(YT )

])
. (5.34)

So, in particular,
u

(0)(x) = − exp
[
−αx−H(QE

, P )
]
, (5.35)

where Q

E is the minimal entropy measure: Q

E = Q

∗,0.
Combining the dual representations (5.34) and (5.35) for the primal problems with

and without the claim, with the definition of the indifference price, gives the dual rep-
resentation for the utility-based price in the form

p

(n) =
1

αn

[
inf
Q∈M

[
H(Q, P ) + αnE

Q
h(YT )

]
−H(QE

, P )

]
, (5.36)

which is the representation found in Delbaen et al. [5], modified slightly as we have
a random endowment of n claims ([5] considered the case n = −1).

In particular, for n → 0 or α → 0, we obtain the marginal price of Davis [3]:

p̂ := lim
n→0

p

(n) = E

QE

h(YT ) = E

QM

h(YT ), (5.37)

the last equality following from the equality of Q

M and Q

E, as implied by (5.26).
From (5.34)–(5.36), the relation between the primal value functions and indifference

price then follows immediately, as

u

(n)(x) = − exp
(
−αx−H(QE

, P )− αnp

(n)
)

= u

(0)(x) exp
(
−αnp

(n)
)

.

Similarly, a corresponding relation for a starting time t ∈ [0, T ] may also be derived.
This is achieved using the definition (5.31) of the dual value function for an initial time
t ∈ [0, T ], the conjugacy of u

(n)(t, x, s, y) and ũ

(n)(t, η, s, y) and the definitions (5.27)
and (5.28) of the conditional entropy and conditional minimal entropy. �

Using Lemma 5.7 we obtain the following representation for the optimal hedging
strategy associated with the indifference price. In what follows we assume that the
indifference price is a suitably smooth function of (t, s, y), so that (given Lemma 5.7)
we may assume the primal value function is smooth enough to be a classical solution of
the associated Hamilton–Jacobi–Bellman (HJB) equation. This smoothness property
is confirmed in [23].

Theorem 5.8. The optimal hedge for a position in n claims is to hold ΔH
t units of S

at t ∈ [0, T ], where

ΔH
t = −n

(
p

(n)
s (t, St, Yt) + ρ

β

σ

Yt

St
p

(n)
y (t, St, Yt)

)
.
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Remark 5.9. We note the extra term in the hedging formula compared with the cor-
responding full information result (5.10). The drift parameter uncertainty results in
additional risk, manifested as dependence of the indifference price on the stock price,
and hence the derivative with respect to the stock price appears in the theorem.

Proof. The HJB equation associated with the primal the value function is

u

(n)
t + max

π
AX,S,Y u

(n) = 0,

where AX,S,Y is the generator of (X, S, Y ) under P . Performing the maximisation
over π yields the optimal Markov control as π

∗,n
t = π

∗,n(t, X∗,n
t , St, Yt), where

π

∗,n(t, x, s, y) = −

(
λ̂u

(n)
x + σsu

(n)
xs + ρβyu

(n)
xy

σu

(n)
xx

)
,

and where the arguments of the functions on the right-hand side are omitted for brevity.
For the case n = 0 there is no dependence on y in the value function u

(0), and we have
π

∗,0
t = π

∗,0(t, X∗,0
t , St), where

π

∗,0(t, x, s) = −

(
λ̂u

(0)
x + σsu

(0)
xs

σu

(0)
xx

)
.

Applying the definition (5.30) of the optimal hedging strategy along with the represen-
tations (5.32) and (5.33) from Lemma 5.7 for the value functions, gives the result. �

5.2.6 Stochastic control representation of the indifference price

Using the expression (5.26) for the relative entropy between measures in Q ∈ Mf and
P in the dual representation (5.36) of p

(n), we obtain the indifference price of the claim
at time zero as the value function of a control problem:

p

(n) = inf
ψ

E

Q

[
1

2αn

∫ T

0

ψ

2
t dt + h(YT )

]
,

to be minimised over control processes (ψt)0≤t≤T , such that Q ∈ Mf . Of course, we
need only consider measures with finite relative entropy since a martingale measure
with H(Q, P ) = ∞ will not attain the infimum in (5.36). The dynamics for S, Y are
given in the system of equations (5.24). Equivalently, since λ̂, θ̂ may be expressed as
functions of time and current asset price by (5.17), we may write the state dynamics of
the control problem for the indifference price as

dSt = σStdB̂

Q
t ,

dYt = βYt[(θ̂(t, Yt)− ρλ̂(t, St)−
√

1− ρ

2
ψt)dt + dŴ

Q
t ].

Adopting a dynamic programming approach, we consider a starting time t ∈ [0, T ].
Then we have

p

(n)(t, s, y) = inf
ψ

E

Q

[
1

2αn

∫ T

t

ψ

2
udu + h(YT )

∣∣∣∣∣ St = s, Yt = y

]
.
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The HJB dynamic programming PDE associated with p

(n)(t, s, y) is

p

(n)
t +AQ

M

S,Y p

(n) + inf
ψ

[
1

2αn

ψ

2 − β

√
1− ρ

2
ψyp

(n)
y

]
= 0, p(T, s, y) = h(y),

where AQ
M

S,Y is the generator of (S, Y ) under the minimal measure:

AQ
M

S,Y f(t, s, y) = β(θ̂(t, y)− ρλ̂(t, s))yfy +
1

2
s

s
fss +

1

2
β

2
y

2
fyy + ρσβsyfsy .

Performing the minimisation in the HJB equation, the optimal Markov control is ψ

∗,n
t ≡

ψ

∗,n(t, St, Yt), where

ψ

∗,n(t, s, y) = αn

√
1− ρ

2
βyp

(n)
y (t, s, y),

and note that ψ

∗,0 = 0. Substituting back into the HJB equation, we find that p

(n)

solves the semi-linear PDE

p

(n)
t +AQ

M

S,Y p

(n) −
1

2
αn(1− ρ

2)β2
y

2
(
p

(n)
y

)2
= 0, p

(n)(T, s, y) = h(y).

We note that for n = 0 this becomes a linear PDE for the marginal price p̂, so that by
the Feynman–Kac theorem we have

p̂(t, s, y) = E

QM

t,s,yh(YT ), (5.38)

consistent with the general result (5.37). We shall see that in this case the marginal
price is given by a BS-type formula.

5.2.7 Analytic approximation for the indifference price

To obtain analytic results we approximate the indifference price by the marginal price
in (5.38). The marginal price (and hence the associated trading strategy) can be com-
puted in analytic form since, under Q

M , log YT is Gaussian. We have the following
result.

Proposition 5.10. Under Q

M , conditional on St = s, Yt = y, log YT ∼ N(m, Σ2),
wherem ≡ m(t, s, y) and Σ2 ≡ Σ2(t) are given by

m(t, s, y) = log y + β

(
θ̂(t, y)− ρλ̂(t, s)−

1

2
β

)
(T − t)

Σ2(t) =
[
1 + (1− ρ

2)vt(T − t)
]
β

2(T − t) .

Proof. This is established by computing the SDEs for Y and for θ̂t − ρλ̂t under Q

M .
Indeed, applying the Itô formula to log Yt under Q

M , we obtain, for t < T ,

log YT = log Yt + β

∫ T

t

(
θ̂u − ρλ̂u

)
du−

1

2
β

2(T − t) + β

∫ T

t

dŴ

QM

u , (5.39)
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where Ŵ

QM is a Brownian motion under Q

M . The dynamics of θ̂t − ρλ̂t under Q

M

are
d(θ̂t − ρλ̂t) =

√
1− ρ

2vtdB̂

⊥,QM

t ,

where B̂

⊥,QM is a Q

M -Brownian motion perpendicular to that driving the stock, related
to Ŵ

QM by Ŵ

QM

= ρB̂

QM

+
√

1− ρ

2
B̂

⊥,QM , and where B̂

QM is the Brownian
motion driving S. Hence, for u > t, after changing the order of integration in a double
integral, we obtain

∫ T

t

(
θ̂u − ρλ̂u

)
du =

(
θ̂t − ρλ̂t

)
(T − t) +

√
1− ρ

2

∫ T

t

vu(T − u)dB̂

⊥,QM

u .

This can be inserted into (5.39) to yield the desired result. �

We are thus able to obtain BS-style formulae for the price and hedge. For a put op-
tion of strike K we easily obtain the following explicit formulae for the marginal price
and the associated optimal hedging strategy, where Φ denotes the standard cumulative
normal distribution function.

Corollary 5.11. Withm and Σ as in Proposition 5.10, define b ≡ b(t, s, y) by

m = log y + b−
1

2
Σ2

.

Then the marginal price at time t ∈ [0, T ] of a put option with payoff (K − YT )+ is
p̂(t, St, Yt), where

p̂(t, s, y) = KΦ(−d1 + Σ)− ye

bΦ(−d1),

d1 =
1

Σ

[
log

(
y

K

)
+ b +

1

2
Σ2

]
.

The optimal hedging strategy given by Theorem 5.8 with p̂ as an approximation to the
indifference price is Δ̂t ≡ Δ̂(t, St, Yt), where

Δ̂(t, s, y) = nρ

β

σ

y

s

e

bΦ(−d1).

In [23] these results are used to conduct a simulation study of the effectiveness of the
optimal hedge under partial information (that is, with Bayesian learning about the drift
parameters of the assets), compared with the BS-style hedge and the optimal hedge
without learning. The results show that optimal hedging combined with a filtering
algorithm to deal with drift parameter uncertainty can indeed give improved hedging
performance over methods which take S as a perfect proxy for Y , and over methods
which do not incorporate learning via filtering.
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