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Malliavin Calculus Method for Asymptotic Expansion of Dual Control Problems∗

Michael Monoyios†

Abstract. We develop a technique based on Malliavin–Bismut calculus ideas, for asymptotic expansion of dual
control problems arising in connection with exponential indifference valuation of claims, and with
minimization of relative entropy, in incomplete markets. The problems involve optimization of a
functional of Brownian paths on Wiener space, with the paths perturbed by a drift involving the
control. In addition there is a penalty term in which the control features quadratically. The drift
perturbation is interpreted as a measure change using the Girsanov theorem, leading to a form of
the integration-by-parts formula in which a directional derivative on Wiener space is computed.
This allows for asymptotic analysis of the control problem. Applications to incomplete Itô process
markets are given, in which indifference prices are approximated in the low risk aversion limit. We
also give an application to identifying the minimal entropy martingale measure as a perturbation to
the minimal martingale measure in stochastic volatility models.

Key words. Malliavin calculus, stochastic control, indifference pricing, relative entropy, asymptotic expansion

AMS subject classifications. 60H07, 93E20, 91G80

DOI. 10.1137/120892441

1. Introduction. In this article we use an approach to Malliavin calculus, pioneered by
Bismut [6], in which perturbations to Brownian paths on Wiener space are interpreted as mea-
sure changes via the Girsanov theorem, to derive asymptotic expansions for certain entropy-
weighted stochastic control problems. These problems typically arise from the dual to invest-
ment and indifference pricing problems under exponential utility.

In the dual approach to investment and hedging problems in incomplete markets, op-
timization problems over trading strategies are converted to optimizations over probability
measures. For example, in exponential indifference pricing of a European claim with payoff
F , the dual control representation of the indifference price is to maximize the expectation of
the payoff subject to an entropic penalty involving the risk aversion α (as we show in Lemma
4.8). In an Itô process setting, the optimization over measures leads to a problem in which
the control is a drift perturbation to a multidimensional Brownian motion. This leads us to
consider control problems of the form (with ‖ · ‖ denoting the Euclidean norm)

(1.1) sup
ϕ

E

[
F

(
W + ε

∫ ·

0
ϕs ds

)
− 1

2

∫ T

0
‖ϕt‖2 dt

]
.

The random variable F (W + ε
∫ ·
0 ϕs ds) is a functional of the paths of a drift-perturbed mul-

tidimensional Brownian motion W + ε
∫ ·
0 ϕs ds, where ε is a small parameter and ϕ is some
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MALLIAVIN ASYMPTOTIC EXPANSIONS 885

adapted control process. Such a dependence typically arises because F depends on a state
variable X(ε) which is a perturbed process following

(1.2) dX
(ε)
t = at dt+ bt( dWt + εϕt dt),

with a, b adapted processes.
The idea behind our approach is to view the drift εϕ in (1.1) or (1.2) as a perturbation to

Brownian paths on Wiener space. For ε = 0 the optimal control is zero, and we suppose that
the optimal control for small ε will be a perturbation around zero. Ideas of Malliavin calculus
arise in differentiating the objective function of the control problem with respect to ε at ε = 0.
This uses Bismut’s [6] approach to the stochastic calculus of variations, which exploits the
Girsanov theorem to translate a drift adjustment into a measure change, in order to perform
differentiation on path space. Ultimately, this leads to an asymptotic expansion for the value
function, valid for small ε. In the financial application to indifference pricing, ε2 = α, so one
obtains small risk aversion asymptotics. Similar ideas arise in entropy minimization problems,
which are the dual to pure investment problems with exponential utility, and we illustrate an
example of this in a stochastic volatility model, in which the small parameter is 1 − ρ2, ρ
being the correlation between the stock and its volatility. The power of this approach is that
we can obtain results in non-Markovian models and for quite general path-dependent payoffs.

Entropy-weighted control problems have been treated using variational principles by Boué
and Dupuis [7] (we thank a referee for pointing out this work to us), with a view to applications
in large deviations theory. The result in [7] is a representation of the form

(1.3) − logE[e−g(W )] = inf
v
E

[
1

2

∫ T

0
‖vs‖2 ds+ g

(
W +

∫ ·

0
vs ds

)]
.

Bierkens and Kappen [5] develop the methods in [7] further and obtain formulae for the
optimal control in (1.3) as a Malliavin derivative of the functional g(W ). These papers are in
a similar spirit to ours in sharing a variational point of view. It would be interesting to see
whether future work could relate the results in [7, 5] to ours.

Utility-based valuation techniques rarely lead to explicit solutions, and this motivates the
interest in approximate solutions. The idea of using Malliavin calculus methods in asymp-
totic indifference pricing is due to Davis [10]. Davis used the approach in a two-dimensional
constant parameter basis risk model, with a traded and a nontraded asset following correlated
geometric Brownian motions, and for a European claim depending only on the final value of
the nontraded asset price. In this model, it turns out that partial differential equation (PDE)
techniques, based on a Cole–Hopf transform applied to the the Hamilton–Jacobi–Bellman
equation of the underlying utility maximization problem (see Zariphopoulou [42], Henderson
[18], and Monoyios [30]), lead to a closed form nonlinear expectation representation for the
indifference price. The asymptotic expansion obtained by Davis [10] can therefore also be ob-
tained by applying a Taylor expansion to the nonlinear expectation representation, as carried
out in Monoyios [29, 32]. For this reason, perhaps, the technique developed by Davis has not
been further exploited.

In higher-dimensional models, and in almost all models with random parameters, the
aforementioned Cole–Hopf transform does not work. Indifference prices and their risk-aversionD
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886 MICHAEL MONOYIOS

asymptotics have been analyzed via other methods, notably by backward stochastic differential
equation (BSDE) and bounded-mean-oscillation (BMO) martingale methods (see Mania and
Schweizer [28] and Kallsen and Rheinländer [23]) for bounded claims. Monoyios [33] derived
small risk aversion valuation and hedging results via PDE techniques in a random parameter
basis risk model generated by incomplete information on asset drifts. Delbaen et al. [11] and
Stricker [40] used arguments based on a Fenchel inequality to derive the zero risk aversion
limit of the indifference price. Recently, Henderson and Liang [19] have used BSDE and PDE
techniques to derive indifference price approximations, of a nature different from ours, in a
multidimensional nontraded asset model.

The techniques in this paper are different. We resurrect the method suggested by Davis
[10]. The first contribution is to show that this technique can be significantly generalized,
to cover multidimensional Itô process markets, with no Markov structure required, and for
claims which can be quite general functionals of the paths of the asset prices. In doing this
we elucidate the precise relation with Malliavin calculus. The second contribution is to derive
a representation (Proposition 3.3) for the optimal control in problems of the form (1.1), using
variational techniques on Wiener space. This is used in verifying the correct structure of our
asymptotic expansion.

The third contribution is to establish a dual stochastic control representation (Lemma
4.8) of the indifference price process in a semimartingale model. This result seems to be
the most compact representation possible. We apply the Malliavin asymptotic method to
this control problem in an Itô process setting, and derive the general form of the small risk
aversion asymptotic expansion of an exponential indifference price, recovering the well-known
connection between small risk aversion exponential indifference valuation and quadratic risk
minimization. Examples are given of multiasset basis risk models and of stochastic correlation
in basis risk. Finally, we show how the technique can be applied to identify the minimal entropy
martingale measure (MEMM) Q0 ≡ QE as a perturbation to the minimal martingale measure
QM in a stochastic volatility model, when the stock and volatility are highly correlated.

Other types of asymptotic expansion for marginal utility-based prices, in terms of a small
holding of claims, have been obtained by Kramkov and Ŝırbu [25] and by Kallsen, Muhle-
Karbe, and Vierthauer [22]. These works use utility functions defined on the positive half-line,
in contrast to the exponential utility function used in this paper. In stochastic volatility mod-
els, Sircar and Zariphopoulou [39] obtain asymptotic expansions for exponential indifference
prices using the fast mean-reversion property of the volatility process. This approach has been
significantly exploited in many scenarios (see Fouque et al. [14]) and is of a nature different
from our approach.

Malliavin calculus has found applications in other areas of mathematical finance, such
as insider trading [20], to computation of sensitivity parameters [15], and to other forms
of asymptotic expansion [3], involving sensitivity with respect to initial conditions, or with
respect to parameters in asset price dynamics, or to parameters appearing in an expectation,
as opposed to a control.

The rest of the paper is organized as follows. In section 2 we prove a version of the Malliavin
integration-by-parts formula on Wiener space (Lemma 2.2), giving a directional derivative of
a Brownian functional. In section 3 this is used to derive our asymptotic expansion (Theorem
3.1). We use variational methods to characterize the optimal control (Proposition 3.3), whichD

ow
nl

oa
de

d 
01

/0
4/

14
 to

 1
29

.6
7.

18
7.

65
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MALLIAVIN ASYMPTOTIC EXPANSIONS 887

helps us characterize the error term in the approximation. The interplay between directional
derivatives on Wiener space, the Malliavin derivative, and perturbation analysis is exemplified
in this section. In section 4 we derive, in a locally bounded semimartingale model, the dual
stochastic control representation of the indifference price process (Lemma 4.8) that forms
the basis of the financial control problems we are interested in. In section 5 we apply the
asymptotic analysis of indifference valuation in an Itô process setting. In section 6 we give
examples of approximate indifference valuation in some basis risk models, and we show how the
MEMM can be identified as a perturbation to the minimal martingale measure in a stochastic
volatility model.

2. Directional derivatives of Brownian functionals on Wiener space. In this section
we consider perturbations to Brownian paths, and the ensuing directional derivatives, on
Wiener space. This is Bismut’s approach [6] to Malliavin calculus, and it will be used in
asymptotic analysis of control problems in the next section. In this approach, one deduces
a certain invariance principle (see (2.17)) by using the Girsanov theorem to translate a drift
perturbation to a Brownian motion into a change of probability measure. This approach is
discussed in section IV.41 of Rogers and Williams [36] and Appendix E of Karatzas and Shreve
[24]. Nualart [34] is a general treatise on Malliavin calculus.

The setting uses the canonical basis (Ω,F ,F := (Ft)0≤t≤T ,P), on which we define an
m-dimensional Brownian motion W . So, Ω = C0([0, T ];R

m), the Banach space of continu-
ous functions ω : [0, T ] → Rm null at zero, equipped with the supremum norm ‖ω(t)‖∞ :=
supt∈[0,T ] ‖ω(t)‖, P is Wiener measure, and (Wt(ω) := ω(t))t∈[0,T ] is m-dimensional Brownian
motion with natural filtration F. Malliavin calculus is conventionally introduced with refer-
ence to the Hilbert space H = L2([0, T ],B([0, T ]),Leb;Rm) (we write H = L2([0, T ];Rm) for

brevity). An element h ∈ H is a function h : [0, T ] → Rm, with norm ‖h‖2H =
∫ T
0 ‖ht‖2 dt <∞.

Then the Wiener integral W(h), defined by

W(h) :=

m∑
i=1

∫ T

0
hit dW

i
t ≡

∫ T

0
ht · dWt ≡ (h ·W )T ,

is an isonormal Gaussian process. That is, the linear isometry W : H → L2[(Ω,F ,P);R] is
such thatW = (W(h))h∈H is a centered family of Gaussian random variables with E[W(h)] = 0
and

E[W(h)W(g)] = 〈h, g〉H =

∫ T

0
ht · gt dt =

m∑
i=1

∫ T

0
hitg

i
t dt.

For ϕ ∈ H = L2([0, T ];Rm), the Cameron–Martin subspace CM ⊂ Ω = C0([0, T ];R
m) is

composed of absolutely continuous functions Φ : [0, T ] → Rm with square-integrable derivative
ϕ. That is,

Φt :=

∫ t

0
ϕs ds,

∫ t

0
‖ϕs‖2 ds <∞, 0 ≤ t ≤ T.

One transports the Hilbert space structure of H to CM by defining

〈Φ,Ψ〉CM := 〈ϕ,ψ〉H =

∫ T

0
ϕt · ψt dt, Ψ :=

∫ ·

0
ψs ds,
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888 MICHAEL MONOYIOS

so CM is isomorphic to H. If F is Malliavin differentiable, then there exists an H-valued
random variable, and hence a measurable (but not necessarily adapted) process (DtF )t∈[0,T ],
such that for Φ ∈ CM we have the integration-by-parts formula

E[〈DF, h〉H ] = E[FW(h)],

or

(2.1) E

[∫ T

0
DtF · ϕt dt

]
= E

[
F

∫ T

0
ϕt · dWt

]
,

and 〈DF, h〉H has properties of a directional derivative. This will be transparent in the Bismut
approach to Malliavin calculus, which we outline below.

2.1. The Bismut approach. Bismut [6] developed an alternative version of the stochastic
calculus of variations, in which the left-hand side of (2.1) is a directional derivative on Wiener
space, and which allows for ϕ to be a previsible process.

We have a square-integrable functional F (W ) of the Brownian paths W , that is, an FT -
measurable map F : Ω → R satisfying

(2.2) E[F 2(W )] <∞.

Let Φ ∈ C1
0([0, T ];R

m) ⊂ Ω, with Φ :=
∫ ·
0 ϕs ds for some previsible process ϕ. We are

interested in defining a directional derivative of F in the direction Φ.
The first variation (or Gâteaux variation) δF (W ; Φ) of F at W ∈ Ω in the direction Φ is

the limit, if it exists, given by

δF (W ; Φ) := lim
ε→0

1

ε
[F (W + εΦ)− F (W )] =

d

dε
[F (W + εΦ)]|ε=0 .

(See Luenberger [27, Chapter 7] or Wouk [41, Chapter 12] for more on this and other notions
of differentiation of nonlinear maps in Banach spaces.) The first variation is homogeneous in
the perturbation Φ: δF (W ; cΦ) = cδF (W ; Φ) for c ∈ R. We are interested in the case when
F is such that the first variation is also linear in Φ. To this end, we impose the following
conditions on F , similar to those used in Appendix E of Karatzas and Shreve [24].

Assumption 2.1.
(i) F satisfies square-integrability condition (2.2).
(ii) There exist a nonnegative Brownian functional k satisfying E[k2(W )] < ∞ and a

function g : [0,∞) → [0,∞) satisfying lim supε↓0(g(ε)/ε) <∞ such that, forW,Φ ∈ Ω,

(2.3) |F (W +Φ)− F (W )| ≤ k(W )g(‖Φ‖∞).

(iii) There exists a kernel ∂F (ω; ·) ≡ ∂F (W ; ·) : Ω → M, where M is the set of m-
dimensional finite Borel measures on [0, T ], such that, for each Φ ∈ C1

0 ([0, T ];R
m) ⊂ Ω,

we have

(2.4) lim
ε→0

1

ε
[F (W + εΦ)− F (W )] =

∫ T

0
Φt · ∂F (W ; dt) for almost all W ∈ Ω.

D
ow

nl
oa

de
d 

01
/0

4/
14

 to
 1

29
.6

7.
18

7.
65

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MALLIAVIN ASYMPTOTIC EXPANSIONS 889

Note, in particular, that (2.4) implies

(2.5) F (W + εΦ) = F (W ) + ε

∫ T

0
Φt · ∂F (W ; dt) + o(|ε|‖Φ‖∞).

Using Φ =
∫ ·
0 ϕs ds on the right-hand side of (2.4), we may integrate by parts to obtain the

equivalent form

(2.6) lim
ε→0

1

ε

[
F

(
W + ε

∫ ·

0
ϕs ds

)
− F (W )

]
=

∫ T

0
∂F (W ; (t, T ]) · ϕt dt.

In particular, we then have the analogue of (2.5):

(2.7) F

(
W + ε

∫ ·

0
ϕs ds

)
= F (W ) + ε

∫ T

0
∂F (W ; (t, T ]) · ϕt dt+ o(|ε|‖ϕ‖∞).

Rogers and Williams [36, section IV.41] make the observation that the condition (2.4) in
Assumption 2.1 is automatically satisfied if F is Fréchet differentiable with bounded derivative,
and in that case ∂F ≡ F ′, where the Fréchet derivative F ′(W ; ·) is a bounded linear functional
on Ω (that is, a measure with finite total variation, an element of the dual space Ω′). But
there are functionals where differentiability fails but (2.4) holds ([36, section IV.41] has such
examples).

Our particular interest will be in the functional E[F (W+εΦ)] and the associated variation

lim
ε→0

1

ε
E[F (W + εΦ)− F (W )] =

d

dε
E[F (W + εΦ)]|ε=0 .

It turns out that one can make sense of this limit, resulting in a version of the integration-
by-parts formula (2.1) which holds regardless of whether F is Malliavin differentiable. This is
given in Lemma 2.2 below.

2.1.1. The Clark formula. The classical result of Clark [8] relates the kernel ∂F to the

progressively measurable integrand ψ (satisfying E[
∫ T
0 ‖ψt‖2 dt] < ∞) in the martingale rep-

resentation of F (W ):

(2.8) F (W ) = E[F (W )] +

∫ T

0
ψt · dWt.

The Clark formula gives ψ as the predictable projection of the measurable (but not necessarily
adapted) process (∂F (W ; (t, T ]))0≤t≤T . In other words,

(2.9) ψt = E[∂F (W ; (t, T ])|Ft], 0 ≤ t ≤ T.

This result is proven in Appendix E of Karatzas and Shreve [24] and in section IV.41 of Rogers
and Williams [36], using methods similar to those that we shall employ in the proof of Lemma
2.2.

Lemma 2.2 (directional derivative on Wiener space). Let F ≡ F (W ) be a functional of the
Brownian paths W on the Banach space Ω = C0([0, T ];R

m) satisfying Assumption 2.1. Let ϕD
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890 MICHAEL MONOYIOS

be a bounded previsible process, with Φ ∈ C1
0([0, T ];R

m) ⊂ Ω defined by Φ :=
∫ ·
0 ϕs ds. Then

the map ε→ E[F (W + εΦ)] is differentiable, with derivative

(2.10)
d

dε
E[F (W + εΦ)]|ε=0 = E [F (W )(ϕ ·W )T ] .

Moreover, if ϕ = cϕ̃ for some fixed ϕ̃ and c ∈ R, then

(2.11) E[F (W + εΦ)− F (W )− εF (W )(ϕ ·W )T ] ∼ O(c2ε2).

A form of Lemma 2.2 appears in Davis [10, Lemma 3] in a one-dimensional setup, with a
functional dependent only on the final value of a diffusion. Fournié et al. [15] have results of a
similar nature in the context of perturbations arising from variations in the drift or diffusion
coefficients of Markov SDEs (see, for instance, Proposition 3.1 in [15]).

To prove Lemma 2.2 we will need the following property of exponential martingales.

Lemma 2.3. For a bounded previsible process ϕ and ε ∈ R, define the exponential martingale

(2.12) M
(ε)
t := E(−εϕ ·W )t := exp

(
−ε
∫ t

0
ϕs · dWs − 1

2
ε2
∫ t

0
‖ϕs‖2 ds

)
, 0 ≤ t ≤ T.

Then we have

(2.13) lim
ε→0

E

[∫ t

0
(1−M (ε)

s )2 ds

]
= 0, 0 ≤ t ≤ T,

and

(2.14)
1

ε
(1−M

(ε)
t ) → (ϕ ·W )t, in L2, as ε→ 0, for every t ∈ [0, T ].

Proof. Since ϕ is bounded, Novikov’s criterion is satisfied and M (ε) is a martingale. Using
the representation

(2.15) M
(ε)
t = 1− ε

∫ t

0
M (ε)

s ϕs · dWs, 0 ≤ t ≤ T,

the stochastic integral is a martingale and we have

(2.16) E

[∫ t

0
(M (ε)

s )2‖ϕs‖2 ds
]
<∞, 0 ≤ t ≤ T.

Using (2.15) along with the Itô isometry, we have, for any t ∈ [0, T ],

E

[∫ t

0
(1−M (ε)

s )2 ds

]
= ε2E

[∫ t

0

∫ s

0
(M (ε)

u )2‖ϕu‖2 duds
]
.

By (2.16), the expectation on the right-hand side is finite for any value of ε. Hence, letting
ε→ 0 we obtain (2.13).D
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Using (2.15) and the Itô isometry once again, we compute, for any t ∈ [0, T ],

E

[(
1

ε

(
1−M

(ε)
t

)
− (ϕ ·W )t

)2
]
= E

[∫ t

0
(1−M (ε)

s )2‖ϕs‖2 ds
]
,

which, using (2.13) and the fact that ϕ is bounded, converges to zero as ε→ 0, and this gives
(2.14).

Proof of Lemma 2.2. We use a version of arguments found in some proofs of the Clark
representation formula (see, for instance, Appendix E of Karatzas and Shreve [24] or the proof
of Theorem IV.41.9 in Rogers and Williams [36]).

For ε ∈ R and ϕ previsible and bounded, define the probability measure P(ε) by

dP(ε)

dP
=M

(ε)
T ,

whereM (ε) is the exponential martingale defined in (2.12). By the Girsanov theorem, W +εΦ
is Brownian motion under P(ε), so that with E(ε) denoting expectation under P(ε),

(2.17) E[F (W )] = E(ε) [F (W + εΦ)] = E[M
(ε)
T F (W + εΦ)].

This invariance principle underlies Bismut’s approach to Malliavin calculus.
Rewrite (2.17) as

(2.18)

E

[
F (W + εΦ)− F (W )

ε

]
= E

[
1−M

(ε)
T

ε
F (W )

]
+ E

[
F (W + εΦ)− F (W )

ε
(1−M

(ε)
T )

]
.

We differentiate E[F (W + εΦ)] with respect to ε at ε = 0 by considering what happens when
we let ε→ 0 in (2.18). To this end, subtract E[F (W )(ϕ ·W )T ] from both sides to compute

E

[
1

ε
(F (W + εΦ)− F (W ))− F (W )(ϕ ·W )T

]
= E

[(
1−M

(ε)
T

ε
− (ϕ ·W )T

)
F (W )

]
+ E

[
F (W + εΦ)− F (W )

ε
(1−M

(ε)
T )

]
.(2.19)

Now take the limit ε → 0 in (2.19). Using conditions (i) and (ii) in Assumption 2.1, the
dominated convergence theorem, and the Cauchy–Schwarz inequality, the last term on the
right-hand side is bounded by

E[k(W )(g(|ε|‖Φ‖∞)/|ε|)|1 −M
(ε)
T |] ≤ K(E[(1−M

(ε)
T )2])1/2 for some constant K,

which converges to zero as ε→ 0, because of (2.13).
Next consider the first term on the right-hand side of (2.19). Using the square integrability

of F and the Cauchy–Schwarz inequality, we have(
E

[(
1−M

(ε)
T

ε
− (ϕ ·W )T

)
F (W )

])2

≤ KE

⎡⎣(1−M
(ε)
T

ε
− (ϕ ·W )T

)2
⎤⎦
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for some constant K. This converges to zero as ε→ 0 when using (2.14). Thus the right-hand
side, and hence the left-hand side, of (2.19) converges to zero as ε → 0 and this establishes
(2.10), the first part of the lemma.

To establish (2.11), we apply the same arguments to (2.19) multiplied by ε. We have

E [F (W + εΦ)− F (W )− εF (W )(ϕ ·W )T ]

= E

[(
1−M

(ε)
T − ε(ϕ ·W )T

)
F (W )

]
+ E

[
(F (W + εΦ)− F (W ))(1−M

(ε)
T )
]
.

We examine how each of the terms on the right-hand side scales for small ε and ϕ = cϕ̃. Using
the representation (2.15), the second term satisfies

E

[
(F (W + εΦ)− F (W ))(1−M

(ε)
T )
]
≤ εE

[
k(W )g(|ε|‖Φ‖∞)

∣∣∣∣∫ T

0
M

(ε)
t ϕt · dWt

∣∣∣∣] ,
and so for ϕ = cϕ̃ this term is of O(c2ε2), when invoking the properties of g(·) in Assumption
2.1(ii). For the first term, using the representation (2.15) for ϕ = cϕ̃, we have

E

[(
1−M

(ε)
T − ε(ϕ ·W )T

)
F (W )

]
= c2ε2E

[
F (W )

∫ T

0

1

cε
(M

(ε)
t − 1)ϕ̃t · dWt

]
,

which is of O(c2ε2), when using (2.14). Hence (2.11) is established.
Remark 2.4. The boundedness condition on ϕ in Lemma 2.2 can be relaxed. A Novikov

condition on εϕ would suffice, so that the stochastic exponentialM (ε) in (2.12) is a martingale.
This remark also pertains to Lemma 2.3.

2.2. Relation with the Malliavin derivative. We can connect the Malliavin derivative of
F (when this exists) to the kernel ∂F in the condition (2.4) and to the directional derivative
in Lemma 2.2.

First, note that the right-hand side of (2.10) has the same structure as the right-hand side
of (2.1), so Lemma 2.2 is a version of the integration-by-parts formula, generalized to Bismut’s
setup, when Φ =

∫ ·
0 ϕs ds need not be restricted to elements of CM.

Now, with Φ =
∫ ·
0 ϕs ds, take the limit ε→ 0 in (2.18), using the conditions in Assumption

2.1 and the dominated convergence theorem (a similar procedure is used in [24, 36] in proving
the Clark representation formula), to obtain

(2.20) E

[∫ T

0
Φt · ∂F (W ; dt)

]
= E

[
F (W )

∫ T

0
ϕt · dWt

]
.

Using Φ =
∫ ·
0 ϕs ds and integrating by parts on the left-hand side as was done to obtain (2.6),

we convert (2.20) to the equivalent form

(2.21) E

[∫ T

0
∂F (W ; (t, T ]) · ϕt dt

]
= E

[
F (W )

∫ T

0
ϕt · dWt

]
.

Comparing with (2.10), we see that the left-hand side of (2.21) is just another way to write
the directional derivative in Lemma 2.2. Note that if we use the martingale representation
(2.8) of F on the right-hand side of (2.21), we obtain the Clark formula (2.9).D
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In the case that Φ ≡ ∫ ·
0 ϕs ds is an element of the Cameron–Martin space CM, and for

Malliavin-differentiable F , the right-hand side of (2.10) or (2.21) is also the right-hand side of
the integration-by-parts formula (2.1), so in this case the kernel ∂F is related to the Malliavin
derivative according to

∂F (W ; (t, T ]) = DtF (W ), 0 ≤ t ≤ T,

and (2.21) is the integration-by-parts formula. So when F is Malliavin differentiable and

Φ ∈ CM ⊂ Ω, the directional derivative in (2.10) is also given by E[
∫ T
0 DtF · ϕt dt]. But

Lemma 2.2 is valid when F is not necessarily Malliavin differentiable and for previsible ϕ,
with Φ ≡ ∫ ·

0 ϕs ds not necessarily in CM.

3. Malliavin asymptotics of a control problem. In this section we describe a control
problem and analyze it via variational principles and Bismut–Malliavin asymptotics. How
this type of problem arises in a financial model will be described in subsequent sections.

We have a canonical basis (Ω,F ,F = (Ft)0≤t≤T ,P), on which is defined an m-dimensional
Brownian motion W . A square-integrable random variable F is a functional of the paths of
the perturbed Brownian motion W + ε

∫ ·
0 ϕs ds, where ε ∈ R is a small parameter and ϕ is

a control process satisfying
∫ T
0 ‖ϕt‖2 dt < ∞, and such that E(|ε|ϕ ·W ) is a martingale. (A

Novikov condition E[exp(12ε
2
∫ T
0 ‖ϕt‖2 dt)] < ∞ would suffice.) Denote by A the set of such

controls.
The control problem we are interested in is to maximize an objective functional G(ϕ),

defined by

(3.1) G(ϕ) := E

[
F

(
W + ε

∫ ·

0
ϕs ds

)
− 1

2

∫ T

0
‖ϕt‖2 dt

]
.

The value function is

(3.2) p := G(ϕ∗) = sup
ϕ∈A

G(ϕ)

for some optimal control ϕ∗.
As we shall see in section 5, in finance this type of control problem typically arises because

F is a functional of the Brownian paths through dependence on some perturbed state variable
X ≡ X(ε) ∈ Rm, following an Itô process

(3.3) dX
(ε)
t = at dt+ bt( dWt + εϕt dt),

for some m-dimensional adapted process a satisfying
∫ T
0 ‖at‖dt < ∞ and m × m adapted

matrix process b satisfying
∫ T
0 btb



t dt <∞. In this section we shall not require a state process

X(ε).
The idea behind the asymptotic expansion is to treat εϕ as a perturbation to the Brownian

paths. We suppose that, for small ε, the optimal control ϕ∗ will be small. We expand the
objective functional in (3.1) about ε = 0 using Lemma 2.2. Naturally, for ε = 0 the functional
F (W +ε

∫ ·
0 ϕs ds) loses all dependence on the control ϕ, so in this case optimal control is zero,D
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and the leading order term will be E[F (W )]. Ultimately, this leads to the main result below,
a perturbative solution to the control problem (3.2).

Theorem 3.1. On the canonical basis (Ω,F , (Ft)t∈[0,T ],P), define an m-dimensional Brow-

nian motion W . Let Φ :=
∫ ·
0 ϕs ds ∈ Ω be such that

∫ T
0 ‖ϕt‖2 dt <∞ and E(|ε|ϕ·W ) is a mar-

tingale, with ε ∈ R a small parameter. Denote the set of such ϕ by A. Let F (W + ε
∫ ·
0 ϕs ds)

be a functional of the paths of the perturbed Brownian motion W + ε
∫ ·
0 ϕs ds, and let it sat-

isfy Assumption 2.1. Then the control problem with value function (3.2) has asymptotic value
given by

(3.4) p = E[F (W )] +
1

2
ε2E

[∫ T

0
‖ψt‖2 dt

]
+O(ε4),

where ψ is the integrand in the martingale representation (2.8) of F (W ).
Remark 3.2 (heuristics). Before proving the theorem, we outline the ideas underlying the

proof in a simple setting where ordinary calculus can replace variational calculus on Wiener
space.

Consider maximizing, over a scalar variable ϕ, a smooth function J(ε, ϕ) given by

(3.5) J(ε, ϕ) := f(x+ εϕ)− 1

2
ϕ2,

for some smooth function f , and with ε a small parameter. The optimizer of this problem
satisfies

(3.6) ϕ∗ = εf ′(x+ εϕ∗),

so it is, of course, zero for ε = 0. If we seek a power series approximation for ϕ∗, writing
ϕ∗ =

∑∞
k=1 ε

kϕ(k) for some coefficients ϕ(k), then using this in (3.6) along with a Taylor
expansion of f ′(x+ εϕ) gives

ϕ∗ = εf ′(x)(1 + ε2f ′′(x)) +O(ε5).

In particular, the first two terms in ϕ∗ are linear and cubic in ε. With the given structure
of the objective function in (3.5), this implies that the maximum has asymptotic expansion
given by

J(ε, ϕ∗) = f(x) +
1

2
ε2(f ′(x))2 +O(ε4).

But this is the same value as is obtained by maximizing the linear-in-ε approximation to
J(ε, ϕ):

J(ε, ϕ) = f(x) + εϕf ′(x)− 1

2
ϕ2 +O(ε2ϕ2),

which is maximized by ϕ̂ = εf ′(x), yielding

J(ε, ϕ̂) = f(x) +
1

2
ε2(f ′(x))2 +O(ε4),

so that J(ε, ϕ∗) = J(ε, ϕ̂) to order ε2, with the remainder being of order ε4 in both cases.D
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We shall see that a similar structure underlies the proof of Theorem 3.1, which we give
further below, after some preparation.

The following result is the analogue of (3.6) for differentiation (in a variational sense) of
the objective functional of the control problem with respect to the control ϕ. We will use this
later in establishing the asymptotic expansion of Theorem 3.1.

Proposition 3.3. Assume the same setting as in Theorem 3.1. The optimal control ϕ∗ for
the problem with value function (3.2) satisfies

(3.7) ϕ∗
t = εE

[
∂F

(
W + ε

∫ ·

0
ϕ∗
s ds; (t, T ]

)∣∣∣∣Ft

]
, 0 ≤ t ≤ T,

where ∂F (W + ε
∫ ·
0 ϕ

∗
s ds; ·) is the kernel in (2.4), evaluated at W + ε

∫ ·
0 ϕ

∗
s ds ∈ Ω.

Proof. Recall the conditions (2.3) and (2.4) in Assumption 2.1. We shall use these to
differentiate, in a variational manner akin to our development of Lemma 2.2, the objective
functional (3.1) of the control problem with respect to the control ϕ.

Consider varying ϕ in (3.1). To this end, for γ ∈ R a small parameter and Ξ =
∫ ·
0 ξs ds ∈ Ω,

consider the variation

δG(ϕ; ξ) := lim
γ→0

1

γ
[G(ϕ + γξ)−G(ϕ)] .

Using (2.3) and (2.4) applied atW+ε
∫ ·
0 ϕs ds along with the dominated convergence theorem,

we obtain

δG(ϕ; ξ) = E

[∫ T

0
εΞt · ∂F

(
W + ε

∫ ·

0
ϕs ds; dt

)
−
∫ T

0
ϕt · ξt dt

]
.

Using Ξ =
∫ ·
0 ξs ds and integrating by parts in the first term on the right-hand side converts

this to

δG(ϕ; ξ) = E

[∫ T

0

(
ε∂F

(
W + ε

∫ ·

0
ϕs ds; (t, T ]

)
− ϕt

)
· ξt dt

]
.

The first order condition for the optimal control, δG(ϕ∗; ξ) = 0, gives that

E

[∫ T

0
ε∂F

(
W + ε

∫ ·

0
ϕ∗
s ds; (t, T ]

)
· ξt dt

]
= E

[∫ T

0
ϕ∗
t · ξt dt

]
must hold for every adapted process ξ, so (3.7) follows. Note that this is the analogue of (3.6)
when performing variational differentiation on Wiener space.

Remark 3.4. If F were Fréchet differentiable (respectively, Malliavin differentiable with
controls ϕ such that

∫ ·
0 ϕs ds ∈ CM), then the optimizer would be given by ϕ∗

t = εE
[
F ′(W +

ε
∫ ·
0 ϕ

∗
s ds; (t, T ]

)|Ft

] (
respectively, ϕ∗

t = εE
[
DtF

(
W + ε

∫ ·
0 ϕ

∗
s ds

) |Ft

])
.

Proof of Theorem 3.1. There are two parts to the proof. First, following the method of
Davis [10], we use Lemma 2.2 to approximate G(ϕ) for small ε and maximize the approxima-
tion with respect to ϕ. We then show that if one were able to solve the problem exactly and
then approximate the value function G(ϕ∗) for small ε, the same result would ensue. This
will use variational arguments and Proposition 3.3.D
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Using Lemma 2.2 and the martingale representation (2.8) of F (W ), the objective func-
tional G(ϕ) in (3.1) is approximated as

G(ϕ) = E

[
F (W ) +

∫ T

0

(
εψt · ϕt − 1

2
‖ϕt‖2

)
dt

]
+ o(|ε|‖ϕ‖∞).

This is maximized over ϕ by choosing ϕ = ϕ̂ := εψ, to give

G(ϕ̂) = E[F (W )] +
1

2
ε2E

[∫ T

0
‖ψt‖2 dt

]
+O(ε4),

with the remainder term of O(ε4) due to (2.11). Thus, (3.4) is indeed obtained by optimizing
the approximation to G(ϕ).

For the second part of the proof, using (2.7) along with (2.3) and the dominated conver-
gence theorem, we write the value function G(ϕ∗) as

(3.8) G(ϕ∗) = E

[
F (W ) + ε

∫ T

0
∂F (W ; (t, T ]) · ϕ∗

t dt−
1

2

∫ T

0
‖ϕ∗

t ‖2 dt
]
+ o(|ε|‖ϕ∗‖∞).

From (3.7), it is evident that (under the mild condition that ∂F possesses a well-defined first
variation)

(3.9) ϕ∗
t = εE[∂F (W ; (t, T ])|Ft] + o(|ε|‖ϕ∗‖∞) = εψt + o(|ε|‖ϕ∗‖∞),

the last equality following from the Clark formula (2.9). Observe that, to first order in ε,
ϕ∗ = ϕ̂.

We now show what would happen if we were to impose a perturbative structure on the
optimal control, that is, if we were to write

(3.10) ϕ∗
t = εψt + ε2ϕ

(2)
t + ε3ϕ

(3)
t +O(ε4)

for some coefficients ϕ(2), ϕ(3). Supposing such an expansion were possible, and using this in
(3.9), we would have

εψt + ε2ϕ
(2)
t + ε3ϕ

(3)
t +O(ε4) = εψt + o(ε2‖ψ‖∞).

This would imply, in particular, that ϕ(2) = 0, and then (3.10) converts to

εϕ∗
t = ε2ψt +O(ε4).

Using this in (3.8) we obtain

G(ϕ∗) = E

[
F (W ) + ε2

∫ T

0
∂F (W ; (t, T ]) · ψt dt− 1

2
ε2
∫ T

0
‖ψt‖2 dt

]
+O(ε4).

One can use iterated expectations and (2.9) to convert this to the statement (3.4) of the
theorem.

Remark 3.5. For F sufficiently Fréchet differentiable (respectively, Malliavin differentiable
with

∫ ·
0 ϕs ds ∈ CM), the proof of the asymptotic expansion and the quantification of the

error term would be more straightforward, using a Taylor expansion of F (W + ε
∫ ·
0 ϕs ds) and

of the optimal control ϕ∗
t = E[F ′(W + ε

∫ ·
0 ϕ

∗
s ds; (t, T ])|Ft] (respectively, ϕ

∗
t = E[DtF (W +

ε
∫ ·
0 ϕ

∗
s ds; (t, T ])|Ft]).D
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4. Dynamic dual representations of indifference price processes. In this section we
derive a dynamic dual stochastic control representation for the exponential indifference price
process of a European claim in a locally bounded semimartingale market. This will form the
basis for our asymptotic expansion of the indifference price. Our representation is a slight
deviation from the usual way of expressing the indifference price in terms of relative entropy.
Although the material in this section is mainly classical, we want a unified treatment that
gives dynamic results for unbounded claims, and this is not readily available in one compact
account.

Our approach is to begin with the seminal representation of Grandits and Rheinländer
[17] and Kabanov and Stricker [21] for an entropy-minimizing measure, to establish a dynamic
version of this (Corollary 4.4), and to use this to establish a dynamic version (Theorem 4.5)
of the duality result of Delbaen et al. [11]. This result has been obtained for a bounded claim
by Mania and Schweizer [28]. We carry out this program for a claim satisfying exponential
moment conditions akin to those in Becherer [2]. Once we establish duality for the invest-
ment problem with random endowment, we obtain a dynamic version of the classical dual
indifference price representation (Corollary 4.6). Then we derive a dynamic result on the
entropic distance between measures (Proposition 4.7) using the results of [17, 21] once more,
and this allows us to convert the classical indifference price representation to our required
representation in Lemma 4.8.

The setting is a probability space (Ω,F ,P) equipped with a filtration F = (Ft)0≤t≤T

satisfying the usual conditions of right-continuity and completeness, where T ∈ (0,∞) is a
fixed time horizon. We assume that F0 is trivial and that F = FT . The discounted prices
of d stocks are modeled by a positive locally bounded semimartingale S. Since we work with
discounted assets, our formulae are unencumbered by any interest rate adjustments. The class
M of equivalent local martingale measures (ELMMs) Q is, of course, defined by

M := {Q ∼ P|S is a Q-local martingale}

and is assumed nonempty. This assumption is a classical one, consistent with the absence of
arbitrage opportunities, in accordance with Delbaen and Schachermayer [12].

Denote by ZQ the density process with respect to P of any Q ∈ M. We write ZQ,M for the
density process of Q ∈ M with respect to any measure M other than the physical measure P,
EM for expectation with respect to M, and E for EP.

For 0 ≤ t ≤ T , we write ZQ
t,T := ZQ

T /Z
Q
t , with a similar convention for any positive process.

The conditional relative entropy between Q ∈ M and P is the process defined by

It(Q|P) := EQ[logZQ
t,T |Ft], 0 ≤ t ≤ T,

provided this is almost surely finite. Define the subset of M given by

Mf := {Q ∈ M|I0(Q|P) <∞},

and we assume throughout that this set of ELMMs with finite relative entropy is nonempty:
Mf �= ∅. By Theorem 2.1 of Frittelli [16], this implies that there exists a unique Q0 ∈ Mf ,
the minimal entropy martingale measure (MEMM), that minimizes I0(Q|P) over all Q ∈ Mf .D
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It is well known (see, for example, Proposition 4.1 of Kabanov and Stricker [21]) that the
density process ZQ0

also minimizes the conditional relative entropy process I(Q|P) between
Q ∈ Mf and P.

The density process of one martingale measure with respect to another is simply the ratio
of their density processes with respect to P, as shown in the following lemma.

Lemma 4.1. Let Q1,Q2 ∈ Mf have density processes ZQ1 , ZQ2 with respect to P. Then the
density process of Q1 with respect to Q2 is ZQ1/ZQ2 .

Proof. Denote by ZQ1,Q2 the density process of Q1 with respect to Q2. We have

ZQ1,Q2

T :=
dQ1

dQ2
=

dQ1

dP

(
dQ2

dP

)−1

=
ZQ1
T

ZQ2
T

.

Hence, the Q2-martingale ZQ1,Q2 is given by

ZQ1,Q2
t = EQ2 [ZQ1,Q2

T |Ft] = EQ2

[
ZQ1
T

ZQ2
T

∣∣∣∣∣Ft

]

=
1

ZQ2
t

E[ZQ1
T |Ft] =

ZQ1
t

ZQ2
t

, 0 ≤ t ≤ T,

the penultimate equality following from the Bayes rule applied between Q2 and P and the
final equality from the fact that ZQ1 is a P-martingale.

A financial agent trades S and has risk preferences represented by the exponential utility
function

U(x) = − exp(−αx), α > 0, x ∈ R,

with risk aversion coefficient α. A European contingent claim has FT -measurable payoff F .
Following Becherer [2] and others, we assume that F satisfies suitable exponential moment
conditions:

(4.1) E[exp((α + ε)F )] <∞, E[exp(−εF )] <∞ for some ε > 0.

Condition (4.1) is sufficient to guarantee that F is Q-integrable for any Q ∈ Mf (see, for
example, Lemma A.1 in Becherer [2]).

4.1. The dynamic primal and dual problems. The set Θ of admissible trading strategies
is defined as the set of S-integrable processes θ such that the stochastic integral θ · S is a
Q-martingale for every Q ∈ Mf , where θ is a d-dimensional vector representing the number
of shares of each stock in the vector S. It is well known [2, 11, 21, 37, 38] that there are
a number of possible choices for a feasible set of permitted strategies, which all lead to the
same value for the dual problem, defined further below, and it is on this latter problem that
our analysis will be centered. For any t ∈ [0, T ], fix an Ft-measurable random variable xt,
representing initial capital. Let Θt denote admissible strategies beginning at t.

The primal problem is to maximize the expected utility of terminal wealth generated from
trading S and paying the claim payoff at T . The maximal expected utility process is

(4.2) uFt (xt) := ess sup
θ∈Θt

E

[
−e−α(xt+

∫ T
t θu·dSu−F)

∣∣∣Ft

]
, 0 ≤ t ≤ T,
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with
∫ T
t θu · dSu =

∑d
i=1

∫ T
t θiu dS

i
u.

We shall use the notational convention whereby setting F = 0 in (4.2) signifies the corre-
sponding quantity in the problem without the claim. Hence, the classical investment problem
without the claim has maximal expected utility process u0. We denote the optimizer in (4.2)
by θF , so θ0 is the optimizer in the problem without the claim.

The utility indifference price process for the claim, p(α), is defined by

uFt (xt + pt(α)) = u0t (xt), 0 ≤ t ≤ T.

It is well known (see, for instance, Becherer [2] or Mania and Schweizer [28]) that, with
exponential utility, p(α) has no dependence on the starting capital (this follows from (4.2),
where the initial capital factors out of the optimization). The hedging strategy associated
with this pricing mechanism is θ(α), defined by

θ(α) := θF − θ0.

The dual problem to (4.2) is defined by

(4.3) IFt := ess inf
Q∈Mf

[
It(Q|P)− αEQ[F |Ft]

]
, 0 ≤ t ≤ T.

We denote the optimizer in (4.3) by QF , so the optimizer without the claim is Q0, the MEMM.
It is well known (at least in a static context) that if we define the measure PF ∼ P by

(4.4)
dPF

dP
:=

exp(αF )

E[exp(αF )]
,

then we can use PF instead of P as our reference measure, and this removes the claim from
the primal and dual problems. In the dual picture, therefore, QF is the martingale measure
which minimizes the relative entropy between any Q ∈ Mf and PF . These properties of PF

are well known in a static context from Delbaen et al. [11]. The dynamic analogue of these
arguments is given below.

Note that if we use PF instead of P as our reference measure, one could (in principle)
define a set Mf (PF ) of ELMMs with finite relative entropy with respect to PF , but it is well
known that Mf (PF ) = Mf (P) (see the statement and proof of Lemma A.1 in Becherer [2],
for example), so we simply write Mf .

Define the P-martingale MF as the density process of PF with respect to P:

MF
t :=

dPF

dP

∣∣∣∣
Ft

= E

[
dPF

dP

∣∣∣∣Ft

]
=

E[eαF |Ft]

E[eαF ]
, 0 ≤ t ≤ T,

which satisfies, for any integrable FT -measurable random variable V ,

(4.5) EPF [V |Ft] =
1

MF
t

E[MF
T V |Ft], 0 ≤ t ≤ T.

We “remove the claim” from the primal problem using the measure PF as follows. Using (4.5)
we convert (4.2) to

uFt (xt) := E[eαF |Ft] ess sup
θ∈Θt

EPF

[
−e−α(xt+

∫ T
t θu·dSu)

∣∣∣Ft

]
, 0 ≤ t ≤ T,
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900 MICHAEL MONOYIOS

from which it is apparent that one may optimize over strategies in a problem without the
claim and with PF as our reference measure. The same approach also works, of course, for
the dual problem, as we show below. We shall need the following simple result relating the
density process of any Q ∈ Mf with respect to P to its counterpart with respect to PF .

Lemma 4.2. For any Q ∈ Mf , the density processes ZQ and ZQ,PF are related by

ZQ
t =MF

t Z
Q,PF
t , 0 ≤ t ≤ T.

Proof. For Q ∈ Mf , we have

ZQ,PF
t = EPF

[
dQ

dPF

∣∣∣∣Ft

]
= EPF

[
dQ

dP

/
dPF

dP

∣∣∣∣Ft

]
= EPF

[
1

MF
T

dQ

dP

∣∣∣∣Ft

]
=

1

MF
t

E

[
dQ

dP

∣∣∣∣Ft

]
=

ZQ
t

MF
t

, 0 ≤ t ≤ T,

where we have used (4.5).

Applying Lemma 4.2 in turn at t ≤ T and at T , we obtain

(4.6) ZQ,PF
t,T =

ZQ
t,T

MF
t,T

=
E[eαF |Ft]

eαF
ZQ
t,T , 0 ≤ t ≤ T.

We use this to “remove the claim” from the dual problem (4.3): compute, for any Q ∈ Mf ,

It(Q|PF ) = EQ[logZQ,PF
t,T |Ft]

= It(Q|P)− αEQ[F |Ft] + log(E[eαF |Ft]), 0 ≤ t ≤ T.

Using this in (4.3), we obtain

(4.7) IFt = ess inf
Q∈Mf

[It(Q|PF )]− log(E[eαF |Ft]), 0 ≤ t ≤ T.

Since the last term on the right-hand side does not depend on Q, we see that we can reduce
the dual problem to the problem

It(Q|PF ) −→ min!,

so that QF minimizes I(Q|PF ), and, when F = 0, Q0 is the MEMM.D
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4.2. The fundamental duality. The duality results we need follow from the representation
below for ZQF ,PF , originally proven independently (to the best of our knowledge) by Grandits
and Rheinländer [17] and Kabanov and Stricker [21] for F = 0 (and hence for ZQ0

), but which
applies equally well to QF if we use PF as reference measure. Both [17] and [21] prove the
result for a market involving a locally bounded semimartingale S. This has been generalized
to a general semimartingale by Biagini and Frittelli [4].

Property 4.3 (see [17, 21]). The density of the dual minimizer QF in (4.3) with respect to
the measure PF defined in (4.4) is given by

(4.8)
dQF

dPF
≡ ZQF ,PF

T = cF exp(−α(θF · S)T ), cF ∈ R+,

where θF ∈ Θ is the optimal strategy in the primal problem (4.2) and the stochastic integral
(θF · S) is a Q-martingale for any Q ∈ Mf .

We convert this to the dynamic result below, in which we also restore P as our reference
measure.

Corollary 4.4. The density process ZQF
of the dual minimizer QF in (4.3) satisfies, for

t ∈ [0, T ],

(4.9) ZQF

t,T = exp

[
It(Q

F |P)− α

(
EQF

[F |Ft] +

∫ T

t
θFu · dSu − F

)]
,

where θF ∈ Θ is the optimal strategy in the primal problem (4.2).
Proof. First, we obtain a dynamic version of (4.8). Using (4.8) and the QF -martingale

property of (θF · S), we have

It(Q
F |PF ) = EQF

[logZQF ,PF
t,T |Ft]

= EQF
[log cF − α(θF · S)T |Ft]− logZQF ,PF

t

= log cF − α(θF · S)t − logZQF ,PF
t , 0 ≤ t ≤ T.

Using this in turn at t ≤ T and T , we obtain

ZQF ,PF
t,T = cFt exp

(
−α

∫ T

t
θFu · dSu

)
, cFt := exp(It(Q

F |PF ), 0 ≤ t ≤ T,

which is a dynamic version of (4.8). Using this along with (4.6) and (4.7), we obtain

ZQF

t,T = exp

(
IFt − α

∫ T

t
θFu · dSu + αF

)
, 0 ≤ t ≤ T.

Finally, using the definition (4.3) of IF gives the result.
Corollary 4.4 is nothing more than a dynamic version of the classical result of Grandits and

Rheinländer [17] and Kabanov and Stricker [21] for the MEMM, with the added generalization
of allowing for PF as our reference measure. It leads immediately to the duality result below,
a dynamic version of the duality in Delbaen et al. [11]. This result is stated in Mania andD
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Schweizer [28] for a bounded claim. We give a proof to highlight that the boundedness
condition on the claim is not needed.

Theorem 4.5 (see [11, 2, 21, 28]). Suppose the claim payoff F satisfies the exponential mo-
ment conditions (4.1). Then the maximal expected utility process in (4.2) and the optimal dual
process in (4.3) are related by

(4.10) uFt (xt) = − exp
(−αxt − IFt

)
, 0 ≤ t ≤ T.

Proof. We compute the primal optimal expected utility process and use Corollary 4.4 to
substitute for the stochastic integral (θF · S):

uFt (xt) = E

[
−e−α(xt+

∫ T
t θFu ·dSu−F)

∣∣∣Ft

]
= −e−αxtE[ZQF

t,T exp(−IFt )|Ft] (using Corollary 4.4)

= − exp
(−αxt − IFt

)
, 0 ≤ t ≤ T.

Using this theorem and the definition of the indifference price we obtain the following dual
representation of the indifference price process, a dynamic version of the classical representa-
tion.

Corollary 4.6. The indifference price process has the dual representation

(4.11) pt(α) = − 1

α
(IFt − I0t ), 0 ≤ t ≤ T.

Written out explicitly, (4.11) can be recast into the more familiar form

(4.12) pt(α) = ess sup
Q∈Mf

[
EQ[F |Ft]− 1

α

(
It(Q|P)− It(Q

0|P))] , 0 ≤ t ≤ T.

The two conditional entropy terms in (4.12) can in fact be condensed into one, using the
following proposition.

Proposition 4.7. The conditional entropy process I satisfies the property that, for any
ELMM Q ∈ Mf ,

(4.13) It(Q|P)− It(Q
0|P) = It(Q|Q0), 0 ≤ t ≤ T.

Proof. For any Q ∈ Mf , the conditional entropy process I(Q|Q0) is given by

It(Q|Q0) := EQ[logZQ,Q0

t,T |Ft]

= EQ[logZQ
t,T − logZQ0

t,T |Ft]

= It(Q|P)− EQ[logZQ0

t,T |Ft], 0 ≤ t ≤ T.(4.14)

We have the dynamic version of the Grandits–Rheinländer representation [17] of the MEMM,
given by (4.9) for F = 0:

ZQ0

t,T = exp

(
It(Q

0|P)− α

∫ T

t
θ0u · dSu

)
, 0 ≤ t ≤ T,
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MALLIAVIN ASYMPTOTIC EXPANSIONS 903

where the optimal investment strategy θ0 ∈ Θ, and hence (θ0 · S) is a Q-martingale, for any
Q ∈ Mf . Using this in (4.14) we obtain (4.13).

Using Proposition 4.7 in the classical dual stochastic control representation (4.11) of the
indifference price process, we immediately obtain the following form for p(α), which will form
the basis for our asymptotic expansion of the indifference price process.

Lemma 4.8. The indifference price process is given by the dual stochastic control represen-
tation

pt(α) = ess sup
Q∈Mf

[
EQ[F |Ft]− 1

α
It(Q|Q0)

]
, 0 ≤ t ≤ T.

Proof. Use (4.13) in (4.11).
Remark 4.9. A version of Lemma 4.8 for American claims was given in Leung, Sircar, and

Zariphopoulou [26] in a stochastic volatility scenario (see their Proposition 7).
Remark 4.10. The optimizer in Lemma 4.8 is also the optimizer in (4.12), that is, QF .

5. Indifference valuation in an incomplete Itô process market. In this section we apply
the indifference pricing formula from Lemma 4.8 in an Itô process setting, and we show how
it leads to a control problem of a structure similar to that analyzed in section 3.

We have a probability space (Ω,F ,P) equipped with the standard augmented filtration
F := (Ft)0≤t≤T associated with an m-dimensional Brownian motion W . On this space we
have a financial market with (for simplicity) zero interest rate. The price processes of d < m
stocks are given by the vector S = (S1, . . . , Sd)
, where S = (St)0≤t≤T follows the Itô process

(5.1) dSt = diagd(St)[μ
S
t dt+ σt dWt],

with diagd(·) denoting the (d × d) matrix with zero entries off the main diagonal. The d-
dimensional appreciation rate vector μS and the (d×m) volatility matrix σ are F-progressively

measurable processes satisfying
∫ T
0 ‖μSt ‖dt < ∞ and

∫ T
0 σtσ



t dt < ∞, almost surely. The

volatility matrix σt has full rank for every t ∈ [0, T ], so that the matrix (σtσ


t )

−1 is well
defined, as is the m-dimensional relative risk process given by

(5.2) λt := σ
t (σtσ


t )

−1μSt , 0 ≤ t ≤ T.

For d < m, this market is incomplete. We also have a vector Y = (Y 1, . . . , Y m−d)
 of
(m−d) nontraded factors. These could be the prices of nontraded assets, or of factors such as
stochastic volatilities and correlations. This framework is general enough to encompass mul-
tidimensional versions of basis risk models as well as multifactor stochastic volatility models,
with no Markovian structure needed. We assume that Y follows the Itô process

dYt = diagm−d(Yt)[μ
Y
t dt+ βt dWt]

for an (m − d)-dimensional progressively measurable vector μY satisfying
∫ T
0 ‖μYt ‖dt < ∞,

almost surely, and an (m− d)×m-dimensional progressively measurable matrix β satisfying∫ T
0 βtβ



t dt <∞, almost surely.

A European contingent claim has FT -measurable payoff F depending on the evolution of
(S, Y ). We assume F satisfies Assumption 2.1, and hence, in particular, F ∈ L2(Q), for any
ELMM Q ∈ Mf .D
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904 MICHAEL MONOYIOS

Measures Q ∼ P have density processes with respect to P of the form

(5.3) ZQ
t = E(−q ·W )t, 0 ≤ t ≤ T,

for some m-dimensional process q satisfying
∫ T
0 ‖qt‖2 dt <∞, almost surely. For ZQ to be the

density of an ELMM, it must be a P-martingale (a Novikov condition on q would guarantee
this) and in addition q must satisfy

(5.4) μSt − σtqt = 0d, 0 ≤ t ≤ T,

where 0d denotes the d-dimensional zero vector, so that S is a local Q-martingale.
As the market is incomplete, there will be an infinite number of solutions q to the equations

(5.4), and the ELMMs Q are in one-to-one correspondence with processes q satisfying (5.4)
and such that E(−q ·W ) is a P-martingale.

By the Girsanov theorem, the process WQ defined by

(5.5) WQ
t :=Wt +

∫ t

0
qu du, 0 ≤ t ≤ T,

is an m-dimensional Q-Brownian motion. The dynamics of the stocks and nontraded factors
under Q are then

dSt = diagd(St)σt dW
Q
t ,(5.6)

dYt = diagm−d(Yt)[(μ
Y
t − βtqt) dt+ βt dW

Q
t ].(5.7)

If we choose q = λ, given by (5.2), we obtain the minimal martingale measure QM , while the
density process of the MEMM Q0 is ZQ0

= E(−q0 ·W ), for some integrand q0.
Denote H2(Q) to be the space of L2-bounded continuous Q-martingales M (so that

supt∈[0,T ] E
Q[M2

t ] <∞). By Proposition IV.1.23 and Corollary IV.1.25 in Revuz and Yor [35],

H2(Q) is also the space of martingales M such that EQ[[M ]T ] <∞. Denoting ΛQ := (q ·WQ),
and then using (5.3) and (5.5), logZQ = −ΛQ + [ΛQ]/2, so the relative entropy between
Q ∈ Mf and P is given by

0 ≤ I0(Q|P) = EQ

[
−ΛQ

T +
1

2
[ΛQ]T

]
<∞,

the last inequality true by assumption. The finiteness and nonnegativity of this relative
entropy yield that both expectations above are finite. Precisely, we have EQ[ΛQ

T ] > −∞ and,
in particular, EQ[[ΛQ]T ] <∞, the latter condition implying that ΛQ ∈ H2(Q). Therefore,

(5.8) ΛQ := (q ·WQ) is a Q-martingale for all Q ∈ Mf .

This will be useful in computing the conditional relative entropy I(Q|Q0).
Using (5.5) in turn for Q and Q0, we have

(5.9) WQ
t =WQ0

t +

∫ t

0
(qt − q0t ) dt, 0 ≤ t ≤ T,
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MALLIAVIN ASYMPTOTIC EXPANSIONS 905

where WQ0
is a Q0-Brownian motion.

Note that since both q and q0 satisfy (5.4), we have

(5.10) σt(qt − q0t ) = 0d, 0 ≤ t ≤ T,

which we shall use later.
Using (5.9), we can write the Q-dynamics of Y in (5.7) as

dYt = diagm−d(Yt)[(μ
Y
t − βtq

0
t ) dt+ βt( dW

Q
t − (qt − q0t ) dt)].

The point of this representation is that the Q-dynamics of Y may be interpreted as a per-
turbation of the Q0-dynamics, since setting q = q0 gives the dynamics under the MEMM Q0,
with the Brownian motion WQ also being modulated by the choice of q.

Using (5.5) and (5.9), the density process of Q with respect to Q0 is

ZQ,Q0

t =
ZQ
t

ZQ0

t

=
E(−q ·W )t
E(−q0 ·W )t

= E(−(q − q0) ·WQ0
)t, 0 ≤ t ≤ T.

Using this, along with (5.9) and the martingale condition (5.8), we compute

(5.11) It(Q|Q0) = EQ

[
1

2

∫ T

t
‖qu − q0u‖2 du

∣∣∣∣Ft

]
, 0 ≤ t ≤ T.

Now we explicitly consider Q as a perturbation around Q0. Introduce, for some small param-
eter ε, a parametrized family of measures {Q(ε)}ε∈R, such that

(5.12) Q ≡ Q(ε), Q0 ≡ Q(0),

and also write

(5.13) q − q0 =: −εϕ,

for some process ϕ. Then (5.10) becomes

(5.14) σϕ = 0d.

Denote by A(Mf ) the set of such ϕ which correspond to Q ∈ Mf , and also define the process
Φ :=

∫ ·
0 ϕs ds.

The Q(ε)-dynamics of the state variables S, Y in this notation are then

dSt = diagd(St)σt dW
Q(ε)
t ,(5.15)

dYt = diagm−d(Yt)[(μ
Y
t − βtq

0
t ) dt+ βt( dW

Q(ε)
t + εϕt dt)].(5.16)

Observe that if we define the state variable X := (S, Y )
, then we have recovered dynamics
of the general form (3.3).

The Q(ε)-dynamics (5.15) of S, along with the constraint (5.14), lead to the following
orthogonality result between trading strategies and dual controls. Consider integrands θ(ε), ϕD
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such that (θ(ε) ·S) is a Q(ε)-martingale and ϕ satisfies (5.14). Then a straightforward compu-
tation using (5.15) and (5.14) shows that the stochastic integrals (θ(ε) ·S) and (ϕ ·WQ(ε)) are
orthogonal Q(ε)-martingales. That is, EQ(ε)[(θ(ε) · S)T (ϕ ·WQ(ε))T ] = 0. In particular, this
will hold for ε = 0.

A similar orthogonality result is reflected in the following decomposition of the claim
payoff F . When the dynamics of the state variables are given as in (5.15) and (5.16), we
write F ≡ F (WQ(ε)+εΦ). Write the Galtchouk–Kunita–Watanabe decomposition of F under
Q(0) ≡ Q0 as

(5.17) F (WQ(0)) = EQ(0)[F (WQ(0))] + (θ(0) · S)T + (ξ(0) ·WQ(0))T ,

for some integrands θ(0), ξ(0), such that the stochastic integrals in (5.17) are orthogonal Q(0)-
martingales, so that we have

EQ(0)[(θ(0) · S)T (ξ(0) ·WQ(0))T ] = 0.

Using (5.11) and (5.13), the indifference price process, as given by Lemma 4.8, has the
stochastic control representation

pt(α) = sup
ϕ∈A(Mf )

EQ(ε)

[
F (WQ(ε) + εΦ)− ε2

2α

∫ T

t
‖ϕu‖2 du

∣∣∣∣Ft

]
, 0 ≤ t ≤ T.

If we choose

(5.18) ε2 = α,

then we get a control problem of the form

pt(α) = sup
ϕ∈A(Mf )

EQ(ε)

[
F

(
WQ(ε) + ε

∫ ·

t
ϕu du

)
− 1

2

∫ T

t
‖ϕu‖2 du

∣∣∣∣Ft

]
, 0 ≤ t ≤ T,

subject to Q(ε)-dynamics of S, Y given by (5.15), (5.16), and with Q(0) corresponding to the
MEMM Q0. We have now formulated the indifference pricing control problem in the form of
a control problem akin to that described in section 3. We then have the following result.

Theorem 5.1. Let the payoff of the claim, F , be a functional of the paths of S, Y , satisfying
Assumption 2.1. Let the Q(ε)-dynamics of S, Y be given by (5.15), (5.16), with Q(ε) given
by (5.12), and with the parameter ε given by (5.18). Then for small risk aversion α, the
indifference price process of the claim has the asymptotic expansion

(5.19) pt(α) = EQ0
[F |Ft] +

1

2
αEQ0

[∫ T

t
‖ξ(0)u ‖2 du

∣∣∣∣Ft

]
+O(α2), 0 ≤ t ≤ T,

where Q0 is the MEMM, and ξ(0) is the process in the Kunita–Watanabe decomposition (5.17)
of the claim, under Q(0) ≡ Q0.D
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Proof. In the state dynamics (5.15), (5.16) each choice of the perturbation εϕ gives rise
to a different measure Q(ε). To apply Theorem 3.1, we fix a measure M and instead consider
the perturbed state process X(ε) = (S(ε), Y (ε))
, with dynamics under M given by

dS
(ε)
t = diagd(S

(ε)
t )σt dW

M
t ,

dY
(ε)
t = diagm−d(Y

(ε)
t )[(μYt − βtq

0
t ) dt+ βt( dW

M
t + εϕt dt)],

for some m-dimensional M-Brownian motion WM. The dynamics of the state variable X(ε)

under M match those of (S, Y )
 under Q(ε), and are of the required form (3.3), with ε = 0
corresponding to the MEMM Q0. We can now apply Theorem 3.1 directly, with the Kunita–
Watanabe decomposition (5.17) of the claim under Q(0) ≡ Q0 taking the place of the mar-
tingale representation result (2.8), and the result duly follows.

The underlying message of Theorem 5.1 is that for small risk aversion, the lowest order
contribution to the indifference price process is the marginal utility-based price process p̂t :=
EQ0

[F |Ft], corresponding to the valuation methodology developed by Davis [9]. The first order
correction is a mean-variance correction, since the Kunita–Watanabe decomposition (5.17) for
ε = 0 is the Föllmer–Schweizer–Sondermann decomposition of the claim under Q0, and the
integrand θ(0) in (5.17) is a risk-minimizing strategy in the sense of Föllmer and Sondermann
[13] under Q0. Similar results have been obtained for bounded claims by Mania and Schweizer
[28] and Kallsen and Rheinländer [23]. The contribution here is to show a new methodology
for obtaining this result, for a square-integrable claim. The strategy θ(0) is, in general, the
zero risk aversion limit of the optimal hedging strategy θ(α) (see, for example, [28, 23] for
a bounded claim) and hence can also be interpreted as the marginal utility-based hedging
strategy.

Note that using (5.17) for ε = 0, we can write (5.19) as

(5.20) pt(α) = EQ0
[F |Ft] +

1

2
α

(
varQ

0
[F |Ft]− EQ0

[∫ T

t
‖θ(0)u ‖2 d[S]u

∣∣∣∣Ft

])
+O(α2),

for t ∈ [0, T ], which highlights the mean-variance structure of the asymptotic representation.

6. Applications. Here we show some examples where Theorem 5.1 would apply. In these
examples we assume that the functional F satisfies Assumption 2.1. This is a relatively mild
assumption and would apply in a wide range of models, but, of course, would need to be
checked on a case-by-case basis in specific models, and would depend on the model and also
on the specific form of the functional F . We give a concrete case in Example 6.2 of a lookback
put option on a nontraded asset, where we check that Assumption 2.1 is satisfied.

Example 6.1 (multidimensional random parameter basis risk model). This is the model of sec-
tion 5, with d traded stocks S and (m−d) nontraded assets Y , and with the volatility process
σ in (5.1) given by

σt =
(
σSt 0d×(m−d)

)
, 0 ≤ t ≤ T,

where σS is a d×d invertible matrix process, and where 0d×(m−d) denotes the zero d× (m−d)
matrix. Write the m-dimensional Brownian motion W as W = (W S ,W S,⊥)
, where W S

denotes the first d components of W . Then the d traded stocks are driven by d BrownianD
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motions, and the nontraded assets are imperfectly correlated with S. The claim payoff F
is typically dependent on the evolution of Y only, though our results are valid without this
restriction.

In this case, the process λ in (5.2) and the integrand q in (5.3) are given by

λt =

(
λSt

0m−d

)
, qt =

(
λSt
γt

)
, 0 ≤ t ≤ T,

where λS is the stocks’ d-dimensional market price of risk process, given by λS := (σS)−1μS ,
and γ is an (m − d)-dimensional adapted process. Each choice of γ leads to a different
ELMM Q, with γ = 0m−d corresponding to the minimal martingale measure QM , and γ = γ0

corresponding to the MEMM Q0 ≡ QE, for some (m−d)-dimensional process γ0. The density
process of any ELMM Q ∈ Mf is then given by

(6.1) ZQ
t = E(−λS ·W S − γ ·W S,⊥)t, 0 ≤ t ≤ T.

The indifference price expansion of the claim with payoff F is then of the form (5.19) or,
equivalently, (5.20).

A special feature of these models arises when the process λS is either deterministic or does
not depend on the nontraded asset prices Y . In this case it is not hard to see that the MEMM
Q0 = QM . This is because the relative entropy process between Q ∈ Mf and P is given by

(6.2) It(Q|P) = EQ

[
1

2

∫ T

t
(‖λSu‖2 + ‖γu‖2) du

∣∣∣∣Ft

]
, 0 ≤ t ≤ T.

The problem of finding the MEMM is then to minimize this functional subject to the Q-
dynamics of S, Y given by (5.6), (5.7), with the process γ playing the role of a control. In the
current notation, the Q-dynamics of Y are

dYt = diagm−d(Yt)

[(
μYt − βt

(
λSt
γt

))
dt+ βt dW

Q
t

]
.

From this it is clear that if λS does not depend on Y , then it is unaffected by the control, and
then the relative entropy process in (6.2) is minimized by choosing γ = 0m−d, so QE ≡ Q0 =
QM . In this case, the Kunita–Watanabe decomposition of the claim under QM will be of the
form

F = EQM [F ] + (θM · S)T + (ξM ·WQM )T ,

for integrands θM , ξM , such that the QM -martingales (θM ·S) and (ξM ·WQM ) are orthogonal,
and WQM is a QM -Brownian motion. An example where this pertains is given in Monoyios
[33], in a two-dimensional model of basis risk with partial information. The indifference price
process expansion is given by the analogue of (5.20) as
(6.3)

pt(α) = EQM [F |Ft] +
1

2
α

(
varQM [F |Ft]− EQM

[∫ T

t
‖θMu ‖2 d[S]u

])
+O(α2), 0 ≤ t ≤ T.
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MALLIAVIN ASYMPTOTIC EXPANSIONS 909

When the model is Markovian, the integrand θM can sometimes be expressed in terms of
the partial derivatives with respect to S and Y of the marginal price process p̂(t, St, Yt) =
EQM [F |St, Yt]. An example where this is carried out can be found in Monoyios [33].

Example 6.2 (two-dimensional random parameter basis risk model). This is a random param-
eter version of the classical example first considered by Davis [10] and hence a two-dimensional
case of Example 6.1. We show how the asymptotic expansion for the indifference price simpli-
fies in this case, and so we extend the results of Davis and others [10, 18, 29] to general (and
hence possibly path-dependent) payoffs dependent on the nontraded asset price in a random
parameter scenario. We also illustrate how the conditions in Assumption 2.1 are satisfied in
the case of a lookback put option in the constant parameter (lognormal) case.

Set d = 1, m = 2 in Example 6.1, and set

βt = σYt

(
ρt

√
1− ρ2t

)
, ρt ∈ (−1, 1), 0 ≤ t ≤ T,

for adapted processes σY , ρ. Then the stock and nontraded asset are imperfectly correlated
with the cross-variation process given by

[S, Y ]t =

∫ t

0
ρuσ

S
uσ

Y
u SuYu du, 0 ≤ t ≤ T.

The P-dynamics of the assets are

dSt = σSt St(λ
S
t dt+ dW S

t ), dYt = Yt(μ
Y
t dt+ σYt dW Y

t ), λSt := μSt /σ
S
t , 0 ≤ t ≤ T,

where W Y = ρW S +
√

1− ρ2W S,⊥.
The density process of any ELMM Q ∈ Mf is once again given by (6.1), with λSt = μSt /σ

S
t ,

and in this case the processes in the Doléans exponential are one-dimensional. For the MEMM
Q0 ≡ QE, the integrand γ in (6.1) is given by some process γ0. We may write the Q-dynamics
of Y as a perturbation to the Q0-dynamics in the same manner as in section 5. This gives the
Q-dynamics of the asset prices in the form

(6.4) dSt = σSt St dW
S,Q
t , dYt = Yt

[
νt dt+ σYt

(
dW Y,Q

t +
√

1− ρ2t εϕt dt

)]
,

for Q-Brownian motions W S,Q,W Y,Q with instantaneous correlation ρ, so that

(6.5) W Y,Q = ρW S,Q +
√

1− ρ2W S,⊥,Q,

with W S,Q,W S,⊥,Q independent Q-Brownian motions, ν := μY − σY (ρλS +
√

1− ρ2γ0) and
εϕ := −(γ − γ0), for a small parameter ε and control process ϕ. For εϕ = 0 we have the
dynamics under the MEMM Q0. Once again, the perturbation expansion for the indifference
price of a claim with payoff F depending on the evolution of S, Y over [0, T ] will be of the
form (5.19) or, equivalently, (5.20). In the case that λS has no dependence on Y , then γ0 = 0
and Q0 = QM .

Another special case arises when ρ is deterministic (say, constant), λS , μY , σY are adapted
to the filtration generated by W Y , and hence depend on the evolution of the nontraded assetD
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price only, and the claim is written on the nontraded asset, so that its payoff F also depends
only on the evolution of Y . (This would also apply in a stochastic volatility model where Y
is the process driving the volatility, and then F would be a volatility derivative.) In this case
the Kunita–Watanabe decomposition of F under Q0 will be of the special form

(6.6) F = EQ0
[F ] + (ψ(0) ·W Y,Q0

)T ,

for some process ψ(0), such that (ψ(0) · W Y,Q0
) is a Q0-martingale. But we also have the

general form (5.17) of this decomposition, which in this case reads as

(6.7) F = EQ0
[F ] + (θ(0) · S)T + (ξ(0) ·W S,⊥,Q0

)T ,

for integrands θ(0), ξ(0) (here, θ(0) would be the marginal utility-based hedging strategy for
the claim).

Equating the representations in (6.6) and (6.7) and in view of (6.4) and (6.5) for the case
Q = Q0, it is easy to see that θ(0), ξ(0) are both linearly related to the process ψ(0), through

θ(0)σSS = ρψ(0), ξ(0) =
√

1− ρ2ψ(0).

It is then straightforward to compute that

varQ
0
[F ] =

1

ρ2
EQ0

[∫ T

0
(θ

(0)
t )2 d[S]t

]
.

The time-zero indifference price expansion in this case then simplifies to

p0(α) = EQ0
[F ] +

1

2
α(1− ρ2)varQ

0
[F ] +O(α2),

which is an extension of the form found in [10, 18, 29] to European payoffs F satisfying
Assumption 2.1, in models with random parameters dependent on Y . If, in addition, λS is
deterministic, then Q0 = QM .

It is instructive to see how Assumption 2.1 would be checked in a simple case of this
example. Suppose the parameters of the model are constants, so that Y is a geometric
Brownian motion. Let the claim be a European floating strike lookback put option on the
nontraded asset, so that F is a functional of a one-dimensional Brownian motion given by

F = max
0≤t≤T

Yt − YT .

To ease notation, write W ≡ W Y,Q for the Brownian motion driving Y under any ELMM.
When the perturbation εϕ is zero, Y satisfies

dYt = Yt(ν dt+ η dWt), Y0 = y ∈ R+

for constants ν and η > 0. For concreteness, let us suppose that ν − 1
2η

2 > 0. The functional
F ≡ F (W ) is given by

F (W ) = y exp

[(
ν − 1

2
η2
)
T

](
exp

(
η max
0≤t≤T

Wt

)
− exp(ηWT )

)
.
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Consider the two functionals F1(W ) := exp(ηWT ) and F2(W ) := exp (ηmax0≤t≤T Wt) in turn.

For F1, it is straightforward to see square integrability and that Assumption 2.1(ii) is
satisfied with k = F1 and g(ε) = exp(ηε) − 1. It is also easy to compute

lim
ε→0

1

ε

[
F1

(
W + ε

∫ ·

0
ϕs ds

)
− F1(W )

]
= ηYT

∫ T

0
ϕt dt =

∫ T

0
ηF1(W )ϕt dt.

Therefore, ∂F1(W ; (t, T ]) = ηF1(W ).

For F2, the maximum of the Brownian motion over [0, T ] is achieved at some random time
τ(ω) ≡ τ(W ), so in this case we have

F2(W ) = y exp

[(
ν − 1

2
η2
)
T + ηWτ(W )

]
.

The first two conditions in Assumption 2.1 are satisfied in a manner similar to that for F1.
For the last condition, with Φ =

∫ ·
0 ϕs ds we obtain

lim
ε→0

1

ε
[F2 (W + εΦ)− F2(W )] = ηF2(W )Φτ(W ) =

∫ T

0
ηF2(W )�{τ(W )>t}ϕt dt.

Therefore, ∂F2(W ; (t, T ]) = ηF2(W )�{τ(W )>t}. This shows how Assumption 2.1 is compatible
with path-dependent payoffs. Similar reasoning can work with random parameter models.

Example 6.3 (basis risk with stochastic correlation). This model was considered by Ankirch-
ner and Heyne [1], who examined local risk minimization methods for hedging basis risk.
A traded asset S and nontraded asset Y follow correlated geometric Brownian motions,
as in Example 6.2, but the correlation ρ = (ρt)0≤t≤T is now stochastic. In this case, we
have m = 3, d = 1. With W a three-dimensional Brownian motion, let W S = W 1,
W Y = ρW 1 +

√
1− ρ2W 2, and W ρ = δW 1 + ηW 2 +

√
1− δ2 − η2W 3 for constants δ, η

such that δ2 + η2 ≤ 1. The state variable dynamics are then

dSt = σSSt(λ
S dt+ dW 1

t ),

dYt = Yt

[
μY dt+ σY

(
ρt dW

1
t +

√
1− ρ2t dW

2
t

)]
,

dρt = gt dt+ ht(δ dW
1
t + η dW 2

t +
√

1− δ2 − η2 dW 3
t ).

Here, g, h are adapted processes such that ρt ∈ [−1, 1] almost surely. Ankirchner and Heyne
[1] give some specific examples of such models.

In this example we also have Q0 = QM , with ZQM = E(−λSW 1), and the Föllmer–
Schweizer–Sondermann decomposition of the claim is of the form

(6.8) F = EQM [F ] + (θM · S)T + (ξM ·W 2,QM )T + (φM ·W 3,QM )T ,

for some integrands θM , ξM , φM , where

WQM = (W 1,QM ,W 2,QM ,W 3,QM )
D
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is a three-dimensional QM -Brownian motion, the first of which drives the stock, so that the
stochastic integrals in (6.8) are orthogonal QM -martingales. The time-zero indifference price
expansion is again of the form (6.3).

Many examples are covered by the framework of Theorem 5.1, including classical stochastic
volatility models, basis risk models with stochastic volatility (and hence m = 3, d = 1) with
a traded and a nontraded asset both driven by a common stochastic volatility process (and
stochastic correlation can be added to this framework), or basis risk models with unknown
asset drifts, extending [33] (which modeled the drifts as unknown constants) to model the
drifts as linear diffusions.

6.1. Entropy minimization in stochastic volatility models. We end with another ap-
plication of the asymptotic methods developed in the paper. This time, we are interested
in finding the MEMM Q0 ≡ QE in a stochastic volatility model. A traded asset S and a
nontraded stochastic factor Y follow, under the physical measure P,

dSt = σ(Yt)St
(
λ(Yt) dt+ dW S

t

)
,(6.9)

dYt = a(Yt) dt+ b(Yt) dW
Y
t ,(6.10)

for suitable functions σ, λ, a, b, such that there are unique strong solutions to (6.9), (6.10).
The Brownian motions W S ,W Y have constant correlation ρ ∈ [−1, 1]. We write W Y

t =

ρW S
t +

√
1− ρ2W S,⊥

t . The density process of any ELMM Q is

ZQ
t = E(−λ ·W S − γ ·W S,⊥)t, 0 ≤ t ≤ T,

for some square-integrable process γ, such that ZQ is a P-martingale.
The entropy minimization problem is the stochastic control problem of minimizing

I0(Q|P) = EQ

[
1

2

∫ T

0
(λ2(Yt) + γ2t ) dt

]
,

over control processes γ, where we assume that I0(Q|P) <∞, and where, under Q, S, Y follow

dSt = σ(Yt)St dW
S,Q
t ,

dYt = (a(Yt)− b(Yt)ρλ(Yt)) dt+ b(Yt)( dW
Y,Q
t −

√
1− ρ2γt dt),(6.11)

for Q-Brownian motions W S,Q,W Y,Q with correlation ρ, such that setting γ = 0 yields the
minimal martingale measure QM .

The idea here is to consider the drift adjustment
√

1− ρ2γt in (6.11) as a perturbation
to the Brownian paths, and hence to convert the entropy minimization problem to the type
of control problem we have considered in section 3, in the limit that the absolute value of the
correlation is close to 1, so that 1 − ρ2 is small. To this end, we define a parameter ε and a
control process ϕ such that

ε2 = 1− ρ2, εϕ = −
√

1− ρ2γ,

and we define a parametrized family of measures {Q(ε)}ε∈R such that

Q = Q(ε), Q(0) = QM .D
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The state variable dynamics for Y are then given by

(6.12) dYt = (a(Yt)− b(Yt)ρλ(Yt)) dt+ b(Yt)( dW
Y,Q(ε)
t + εϕt dt).

With Φ :=
∫ ·
0 ϕs ds, we define a square-integrable functional F ≡ F (WQ(ε) + εΦ) of the

Brownian paths by

F :=
1

2

∫ T

0
λ2(Yt) dt =:

1

2
KT ,

where, for brevity of notation, we have defined the so-called mean-variance trade-off process
K by

(6.13) Kt :=

∫ t

0
λ2(Yu) du, 0 ≤ t ≤ T.

We assume that the model is such that KT defines a functional satisfying Assumption 2.1.
In this notation, the relative entropy between the minimal martingale measure and P is

(6.14) I0(QM |P) = EQM

[
1

2
KT

]
= EQ(0)[F (WQ(0))].

The control problem of minimizing I0(Q|P) over ELMMs Q ∈ Mf then has value function

(6.15) I0(QE |P) := inf
ϕ∈A(Mf )

EQ(ε)

[
F

(
WQ(ε) + ε

∫ ·

0
ϕs ds

)
+

1

2

∫ T

0
ϕ2
t dt

]
,

where A(Mf ) denotes the set of controls ϕ such that I0(Q|P) is finite.
We have now formulated the entropy minimization problem in the form we need to be

able to apply the Malliavin asymptotic method, and this gives the theorem below.
Theorem 6.4. In the stochastic volatility model defined by (6.9), (6.10), suppose the termi-

nal value KT of the mean-variance trade-off process in (6.13) defines a Brownian functional
satisfying Assumption 2.1. Then the relative entropy between the MEMM QE and P, in the
limit that 1− ρ2 is close to 1, is given as

I0(QE|P) = I0(QM |P)− 1

8
(1− ρ2)varQM [KT ] +O((1− ρ2)2),

where QM is the minimal martingale measure.
Proof. This is along the same lines as previous results, so we only sketch the details. One

appeals to the decomposition of F under Q(0), which is of the form

(6.16) F (WQ(0)) = EQ(0)[F (WQ(0))] + (ξ(0) ·WQ(0))T ,

for some integrand ξ(0). Such a decomposition exists uniquely, given that F depends only on
Y and the dynamics in (6.12). We expand the objective function (6.15) about ε = 0 and use
the representation (6.16). This gives

EQ(ε)

[
F

(
WQ(ε) + ε

∫ ·

0
ϕs ds

)
+

1

2

∫ T

0
ϕ2
t dt

]
= EQ(0)

[
F (WQ(0)) +

∫ T

0

(
εξ

(0)
t ϕt +

1

2
ϕ2
t

)
dt

]
+ o(ε).
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We minimize the right-hand side over ϕ by choosing ϕ = −εξ(0). Using (6.16) again and
recalling (6.14), the result follows.

Remark 6.5. In [31, 30], Esscher transform relations between QE and QM are derived, and
it is an exercise in asymptotic analysis to see that those results are consistent with Theorem
6.4.

7. Conclusions. It is quite natural to apply Malliavin calculus ideas in stochastic control
problems where the control turns out to be a drift which is considered as a perturbation to a
Brownian motion, and this is the path taken in this paper. We have shown how the method
can yield small risk aversion asymptotic expansions for exponential indifference prices in Itô
process models, and how one can identify the minimal entropy measure as a perturbation to
the minimal martingale measure in stochastic volatility models. It would be interesting to
extend the method to models with jumps in the underlying state process.

Acknowledgments. Many thanks to Giuseppe Benedetti for helpful comments, and to
the Associate Editor and the two anonymous referees for careful and insightful reading and
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[25] D. Kramkov and M. Ŝırbu, Asymptotic analysis of utility-based hedging strategies for small number of
contingent claims, Stochastic Process. Appl., 117 (2007), pp. 1606–1620.

[26] T. Leung, R. Sircar, and T. Zariphopoulou, Forward indifference valuation of American options,
Stochastics, 84 (2012), pp. 741–770.

[27] D. G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, New York, 1969.
[28] M. Mania and M. Schweizer, Dynamic exponential utility indifference valuation, Ann. Appl. Probab.,

15 (2005), pp. 2113–2143.
[29] M. Monoyios, Performance of utility-based strategies for hedging basis risk, Quant. Finance, 4 (2004),

pp. 245–255.
[30] M. Monoyios, Characterisation of optimal dual measures via distortion, Decis. Econ. Finance, 29 (2006),

pp. 95–119.
[31] M. Monoyios, The minimal entropy measure and an Esscher transform in an incomplete market model,

Statist. Probab. Lett., 77 (2007), pp. 1070–1076.
[32] M. Monoyios, Optimal hedging and parameter uncertainty, IMA J. Manag. Math., 18 (2007), pp. 331–

351.
[33] M. Monoyios, Utility-based valuation and hedging of basis risk with partial information, Appl. Math.

Finance, 17 (2010), pp. 519–551.
[34] D. Nualart, The Malliavin Calculus and Related Topics, 2nd ed., Probab. Appl. (N. Y.), Springer-Verlag,

Berlin, 2006.
[35] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd ed, Grundlehren Math.

Wiss. 293, Springer-Verlag, Berlin, 1999.
[36] L. C. G. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales. Volume 2: Itô
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