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Abstract. We derive representations for optimal martingale measures in a
two-factor Markovian model, by seeking ramifications of a distortion power
solution (Zariphopoulou (2001)) of the primal utility maximisation problem,
for the dual problem. This provides an alternative to existing methods in the
literature for characterising optimal measures, and gives new results in the
form of a novel representation for the dual stochastic control problem, and
in the form of Esscher transform relations between the optimal measure and
the minimal measure.
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1. Introduction

This paper analyses optimal measures in a two-factor Markovian market
containing a stock S and a stochastic volatility Y , driven by two correlated
Brownian motions W, W̃ , respectively, with fixed correlation ρ ∈ [−1, 1].
The parameters of the stochastic differential equation for S are progressively
measurable with respect to the filtration F̃ := (F̃t )0≤t≤T generated by W̃ .
We exploit an explicit solution, known as a distortion power solution (Za-
riphopoulou (2001), Tehranchi (2004)), for a primal utility maximisation
problem, and seek ramifications for the dual to the primal problem.

In the distortion power solution, a value function u(x) = EU(X∗
T ), in

which U is the utility function, X∗
T is optimal terminal wealth and x is

initial wealth, is obtained in the form u(x) = U(x)[EP̃Mζ 1/δ]δ. Here, ζ is
an F̃T -measurable random variable, δ is known as the distortion power and
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depends on the correlation ρ (and, with power utility, on the risk aversion
parameter), and P̃ M is a measure related to the minimal martingale measure
QM (and which, with exponential utility, is the projection ofQM onto F̃T ).
Our results stem from translating this representation into a representation
for the solution of the dual problem. The random variable ζ is of the form
H(0, Y0) for some functionH which satisfies, by the Feynman-Kac theorem,
a linear parabolic PDE.

The motivation for this work is, first, to understand the relations (if any)
between the distortion method and the dual approach, and between the op-
timal martingale measure Q∗ of the dual problem and the measure P̃ M in
the distortion solution. Second, we derive a number of representations for
Q∗ using the distortion solution, for both power and exponential utility, and
our methods are an alternative to some existing techniques in the literature,
notably the representation equations of Hobson (2004), Rheinländer (2005),
and the PDE representation of Benth and Karlsen (2005).

The main results are as follows. First, we derive a general representation
for Q∗ in terms of ζ = H(0, Y0) (Lemma 1) by translating the distortion
solution into a formula for the dual value function. This is the initial relation
between Q∗ and P̃ M , and is used frequently in what follows.

Suppose the dual optimiser has density with respect to the physical mea-
sure P given by dQ∗/dP = E(−λ ·W − ξ ·W⊥), where λ is the Sharpe
ratio of the stock, W⊥ is a Brownian motion independent of W , and ξ is an
optimal integrand characterising Q∗. We derive an expression (Theorem 1)
for ξt in terms of H(t, Yt ). This generalises a result of Benth and Karlsen
(2005) for the minimal entropy measure to encompass the dual measure
associated with a power utility function.

We then show that the above formula for ξ gives a solution to the re-
presentation of Hobson (2004) for Q∗ (Proposition 3), and we use this to
verify optimality of ξ for the dual problem. By duality, this implies optimality
of the trading strategy π∗ in the primal problem, that is associated with
the distortion solution. We then derive the relationship between π∗ and ξ
(Proposition 4).

Viewing ξ as the optimal control of a dual stochastic control problem,
we then give a novel representation for the solution to this control problem
(Theorem 2). To the best of our knowledge this result is new. The dual
control problem is to optimise a functionalEP

ψ

Cψ , where ψ represents the
control, and where the measure Pψ and integral Cψ both depend on ψ . The
distortion solution implies that the solution of the dual control problem is
of the form �(EP

ψ

Cψ) = EP
0
�(C0), where � is a given function and P 0

(when projected onto F̃T ) is the measure P̃ M in the distortion solution.
Finally, our analysis culminates in an extremely succinct relationship be-

tweenQ∗ and P̃ M (Theorem 3), in the form of an Esscher transform relation
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between a measure P kξ and P̃ M , where k is a constant depending on the
correlation (and Pψ is the measure appearing in the dual control problem).
For exponential utility this result reduces to the beautiful result that the pro-
jections of the minimal entropy measure QE and the minimal martingale
measureQM onto F̃T are related by an Esscher transform (Corollary 3). This
relationship between QE,QM in models of this type appears to be new. It
may be viewed as quantifying the economic premium associated with ex-
ponential valuation, relative to that associated with quadratic or logarithmic
criteria.

The rest of this paper is as follows. The next section describes the mar-
ket model, Section 3 gives the distortion solution, Section 4 derives our
main results (representations forQ∗), and Section 5 briefly applies the same
program to a problem with random endowment, under exponential utility.

2. The market model

Let (	,F, P ) be a probability space supporting two correlated Brownian
motions W := (Wt)0≤t≤T and W̃ := (W̃t )0≤t≤T with fixed correlation ρ ∈
[−1, 1]. Let F := (Ft )0≤t≤T be the completion of the filtration generated
by the pair (W, W̃ ), and denote by F̃ := (F̃t )0≤t≤T the completion of the
filtration generated by W̃ .

The model comprises a traded asset S := (St )0≤t≤T and a stochastic
volatility Y := (Yt )0≤t≤T , described by the stochastic differential equations

dSt = YtSt (λ(Yt )dt + dWt) , (1)

dYt = a(Yt )dt + b(Yt )dW̃t , (2)

under the physical measure P , and subject to initial conditions. We write
W̃t = ρWt + ρ̄W⊥

t , with ρ̄ = √
1 − ρ2, and in which (W,W⊥) :=

(WtW
⊥
t )0≤t≤T is a two-dimensional Brownian. Note that the parameter func-

tions λ, a, b are F̃-adapted.
We assume that λ, a, b are such that unique strong solutions to the

stochastic differential equations (1–2) exist. A Lipschitz condition is suf-
ficient, but we do not impose this on the parameters at this stage, as we do
not wish to exclude some well-known stochastic volatility models from the
outset.

The interest rate is zero, or equivalently S represents a discounted price.
This entails no loss of generality if interest rates are deterministic. Stochastic
interest rates are a non-trivial extension, as the choice of numéraire can yield
differing optimal investment problems.

In general, the information available to an agent at t ∈ [0, T ] is FS
t =

σ({Ss; s ≤ t}). However, Y 2
t is clearly measurable with respect to FS

t .
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If, further, Yt is measurable with respect to FS
t , for example, if Yt is nec-

essarily non-negative, then Yt is FS
t -measurable, and so Wt, W̃t ,W

⊥
t are

FS
t -measurable, and we have FS

t = Ft . Henceforth we assume this is the
case, though it rules out some cases in the literature. Rheinländer (2005)
discusses this issue in some depth with particular reference to a version of
the Stein-Stein (1991) model.

The mean-variance trade-off is the increasing process K := (Kt)0≤t≤T
given by

Kt :=
∫ t

0
λ2(Ys)ds, 0 ≤ t ≤ T .

We assume throughout that Kt < ∞, 0 ≤ t ≤ T , P -almost surely. In what
follows we sometimes write λt ≡ λ(Yt), 0 ≤ t ≤ T , and (λ ·W)t for the
integral

∫ t
0 λsdWs .

The class M of local martingale measures is the set of measuresQ with
density processes

dQ

dP

∣
∣
∣
∣
Ft

≡ Zt := E (−λ ·W − ψ ·W⊥)
t
, 0 ≤ t ≤ T , (3)

where E is the Doléans exponential, andψ is an F-adapted process satisfying
∫ T

0 ψ
2
t dt < ∞ P -almost surely. If λ,ψ are such that EZT = 1, then the

local (P,F)-martingale Z := (Zt)0≤t≤T is a true martingale and Q ∈ M
are probability measures equivalent to P on FT .

The P -dynamics of Z are

dZt = −λ(Yt)ZtdWt − ψtZtdW
⊥
t . (4)

Under Q ∈ M, dSt = YtStdW
Q
t , and Y follows

dYt = [a(Yt )− b(Yt )(ρλ(Yt )+ ρ̄ψt )] dt + b(Yt )dW̃
Q
t ,

where WQ, W̃Q are Q-Brownian motions with correlation ρ. We write
W̃Q = ρWQ + ρ̄W⊥,Q, where (WQ,W⊥,Q) is a two-dimensional Q-
Brownian motion given by dWQ

t = dWt+λ(Yt)dt , dW⊥,Q
t = dW⊥

t +ψtdt .
The traded asset S is a localQ-martingale, and theQ-drift of Y is arbitrary
and parametrised by the integrand ψ in (3).

The minimal martingale measure QM of Föllmer and Schweizer (1991)
corresponds to taking ψt = 0, 0 ≤ t ≤ T , and therefore dQM/dP =:
ZMT := E(−λ ·W)T . We assume λ(y) is such that EZMT = 1 so that QM is
a well-defined probability measure equivalent to P on FT .

For q ∈ (0, 1], define measures P (q,ψ) as those with densities

dP (q,ψ)

dP
= E(−qλ ·W − qψ ·W⊥)T , (5)
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where λ,ψ are the same processes as in (3). The restriction of P (q,ψ) onto
F̃T is P̃ (q,ψ) := P (q,ψ)|F̃T

given by

dP̃ (q,ψ)

dP
:= E

[
dP (q,ψ)

dP

∣
∣
∣
∣ F̃T

]

= E[−q(ρλ+ ρ̄ψ) · W̃ ]T . (6)

We sometimes refer to the measures P̃ (q,ψ) as distortion measures.
The “minimal” distortion measure, P̃ M := P̃ (q,0), corresponding toψ =

0, features prominently in this paper, and has density with respect toP given
by

dP̃M

dP
= E(−qρλ · W̃ )T ,

corresponding to ψ = 0 in (5) and (6). Note that our assumptions on λ(y)
imply that P̃ M is a probability measure equivalent to P on F̃T . Moreover,
for q = 1, P̃ M = Q̃M , the projection of the minimal martingale measure
QM onto F̃T .

For our purposes, the parameter λ should be such that the function H
below is well-defined and suitably smooth. This function is the cornerstone
of the distortion solution for the primal utility maximisation problem.

For q ∈ (0, 1], define H : [0, T ] × R → R
+ by

H(t, y) = EP̃
M

[

exp

(

−1

2
q(1 − qρ2)

∫ T

t

λ2(Ys)ds

)∣
∣
∣
∣Yt = y

]

. (7)

This is clearly finite and bounded by 0 < H(t, y) ≤ 1, for q ∈ (0, 1].
We assume the parameter functions are such that H ∈ C1,2([0, T ] × R) ∩
C([0, T ] × R). Under P̃ M the drift of Yt is a(Yt ) − qρλ(Yt)b(Yt ), and by
the Feynman-Kac theorem H(t, y) satisfies the linear PDE

Ht + (a(y)− qρλ(y)b(y))Hy + 1

2
b2(y)Hyy − 1

2
q(1 − qρ2)λ2(y)H = 0,

(8)

with H(T, y) = 1. Benth and Karlsen (2005) (see also Pham (2002)) con-
sider the smoothness of the function f : [0, T ] × R → R defined by1

f (t, y) := − 1

1 − qρ2
logH(t, y). (9)

From the PDE (8) for H , f (t, y) solves the semi-linear PDE

ft + (a(y)− qbρλ(y))fy + 1
2b

2(y)fyy − 1
2b

2(y)(1 − qρ2)f 2
y + 1

2qλ
2(y) = 0,

(10)

1 Benth and Karlsen (2005) consider the case q = 1, but their conclusions on the smooth-
ness of f are unaltered for q ∈ (0, 1].
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with f (T , y) = 0. It is shown in Benth and Karlsen (2005) that f (and
hence H ) is sufficiently smooth provided that the parameter functions λ, a
satisfy

|a(y)| ≤ C|y|, |a′(y)| ≤ C,

|λ(y)| ≤ C|y|, |λ′(y)| ≤ C,
(11)

for a positive constant C and y ∈ R. Under these conditions there is a
unique, quadratically growing classical solution of (10) with linearly grow-
ing derivative.

The conditions (11) are satisfied by the following version of the Stein-
Stein (1991) model, considered in Benth and Karlsen (2005), with λ(y) =
λy for some constant λ �= 0, a(y) = m − αy, b(y) = β, with m,α, β
positive constants:

dSt = YtSt (λYtdt + dWt), dYt = (m− αYt)dt + βdW̃t . (12)

Although (11) is not satisfied by the Heston (1993) model, it turns out that
the function H is also smooth in this case, as shown in Benth and Karlsen
(2005), who consider a version of the Heston model with λ(y) = λy for
some constant λ �= 0, a(y) = (m/y)−αy, b(y) = β, withm,α, β positive
constants:

dSt = YtSt (λYtdt + dWt), dYt =
(
m
Yt

− αYt

)

dt + βdW̃t , (13)

with m ≥ 1
2β

2 ensuring that the squared volatility Y 2
t =: Vt is positive.

2.1. The primal problem

In the primal utility maximisation problem, an agent trades a self-financing
portfolio involving the traded asset, so that the portfolio wealth process
Xπ ≡ X := (Xt)0≤t≤T satisfies

dXt = πtYt (λ(Yt )dt + dWt) , (14)

where π := (πt )0≤t≤T is the wealth invested in the stock, representing the
agent’s trading strategy.A trading strategy is an adapted processπ satisfying
∫ T

0 Y
2
t π

2
t dt < ∞ almost surely. Let A0 denote the set of trading strategies.

The agent has risk preferences expressed via a concave utility function
U(x). We consider the two cases:

U(x) =
{
xγ /γ, 0 < γ < 1, x ∈ R

+ (power utility),
− exp(−αx), α > 0, x ∈ R (exponential utility).

(15)
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The objective is to maximise expected utility of terminal wealth at time T ,
given initial capital X0 = x:

u(x) := sup
π∈A

EU(XT ), (16)

where A denotes a set of admissible trading strategies.
For power utility, an admissible trading strategy is one whose wealth

process satisfies X ≥ 0, a.s.
For exponential utility, let Mf denote the set of martingale measuresQ

with finite relative entropy with respect to P . Then, defining � := π/S as
the adapted S-integrable process for the number of shares held, we follow
Becherer (2004) and take the space of permitted strategies as

A = {� : (� · S) is a (Q,F)-martingale for all Q ∈ Mf }, (17)

where (� · S)t = ∫ t
0 �sdSs is the gain from trading over [0, t], t ∈ [0, T ].

Other choices for A are possible. For instance, one may follow Schacher-
mayer (2001) and consider strategies with wealth bounded from below, and
then maximise over the L1(P )-closure of the set of all random variables
U(�) such that � can be super-hedged by some trading strategy. The good
news is that these choices lead to the same solution for the dual to the primal
utility maximisation problem (Delbaen et al. (2002), Kabanov and Stricker
(2002), Schachermayer (2001)).

For a starting time t ∈ [0, T ] the agent’s maximum utility, or primal
value function, is

u(t, x, y) := sup
π∈A

E[U(Xt)|Xt = x, Yt = y], (18)

with u(0, x, y) ≡ u(x) given in (16).

2.2. The dual problem

The dual problem to (16) is defined by

v(η) := inf
Q∈M

EV

(

η
dQ

dP

)

, η > 0, (19)

where V : R
+ → R is the convex conjugate of the utility function U(·):

V (η) := sup
x∈dom(U)

(U(x)− xη) , η > 0.

For the utility functions in (15), V is given by

V (η) =
{

− (ηq/q) , q = −
(

γ

1−γ
)

, U(x) = xγ /γ,

(η/α) (log (η/α)− 1) , U(x) = −e−αx. (20)
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Denote the optimiser in (19) by Q∗. Then, for power utility, Q∗ = Q(q)

maximising (for q ∈ (0, 1)) the functional

dq(Q, P ) := E

[(
dQ

dP

)q]

, 0 < q < 1,

overQ ∈ M, with q = −γ /(1−γ ). The measureQ(q) is sometimes called
the q-optimal measure, and is studied by Hobson (2004) for q ≥ 1.

For exponential utility, (20) implies that the dual optimiser is the minimal
entropy measure QE , which minimises the relative entropy

d1(Q, P ) := E

[
dQ

dP
log

dQ

dP

]

overQ ∈ Mf . As Hobson (2004) has shown, the minimal entropy measure
can be viewed as the q-optimal measure for q = 1, QE = Q(1).

A well-known body of work (Karatzas et al. (1991), Kramkov and
Schachermayer (1999), Goll and Rüschendorf (2001), Bellini and Frittelli
(2002), Delbaen et al. (2002), Frittelli (2000), Owen (2002)) has established
the fundamental duality relations between u(x) and v(η). The value func-
tionsu(x), v(η) are conjugate, inheriting these properties fromU,V , and the
optimal terminal wealth in (16), X∗

T , is related to the optimal dual measure
Q∗ by

U ′(X∗
T ) = u′(x)

dQ∗

dP
. (21)

For an initial time t ∈ [0, T ] the dual value function is defined by the
dual stochastic control problem

v(t, η, y) := inf
ψ∈� E

[

V

(

η
ZT

Zt

)∣
∣
∣
∣Yt = y

]

, (22)

with Zt = E(−λ · W − ψ · W⊥), 0 ≤ t ≤ T , defined in (3), and where
� denotes the set of processes ψ satisfying

∫ T
0 ψ

2
t dt < ∞. We have

v(0, η, y) ≡ v(η), and the dual optimiser Q∗ has density with respect to P
given by

dQ∗

dP
= E(−λ ·W − ξ ·W⊥)T ,

for an optimal process ψ∗ ≡ ξ := (ξt )0≤t≤T achieving the infimum in
(22). The value functions u(t, x, y) and v(t, η, y) are conjugate, in the same
manner as their time 0 counterparts u(x) and v(η).
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3. The distortion solution to the primal problem

The following solution for the primal value function was established by
various authors under varying conditions. Under global Lipschitz and lin-
ear growth conditions on the parameter functions, we refer the reader to
Zariphopoulou (2001) for proofs based on viscosity solution techniques.
Under further conditions (boundedness and Hölder continuity of the pa-
rameter functions, and uniform ellipticity of b(y)), Zariphopoulou (2001)
shows that the value function is in fact a smooth solution of the associated
Hamilton-Jacobi-Bellman (HJB) equation. Tehranchi (2004) proves the dis-
tortion representation below in a non-Markovian scenario with boundedness
conditions on the market parameters. Below we use formal PDE arguments,
assuming the value function has sufficient regularity and smoothness. This
is true if the parameters satisfy (11), and for the versions of the Stein-Stein
and Heston models given in (12) and (13). We verify optimality by appeal-
ing to subsequent results, in which we establish optimality of the candidate
optimal measure (in the dual problem) implied by the distortion solution of
the primal problem.

Proposition 1 (Distortion Power Solution). For 0 < q ≤ 1, the value
function (18) is given by

u(t, x, y) = U(x) (H(t, y))δ , (23)

where

δ = 1

1 − qρ2
, (24)

with q = 1 for exponential utility, q = −γ /(1 − γ ) for power utility, and
H(t, y) given in (7).

Proof. The HJB equation for u(t, x, y) is

max
π

(

ut + LYu+ πyλ(y)ux + 1

2
π2y2uxx + πρyb(y)uxy

)

= 0,

where LY is the generator of the process Y :

LY u := a(y)uy + 1

2
b2(y)uyy.

Performing the maximisation then gives the optimal (Markov) control
π∗(t, x, y) as

π∗(t, x, y) = −(λ(y)ux + ρb(y)uxy)

yuxx
. (25)
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The optimal trading strategy π∗ := (π∗
t )0≤t≤T is given by π∗

t =
π∗(t, X∗

t , Yt ), where X∗
t is the wealth process (14) with πt = π∗

t . Inserting
(25) into the Bellman equation gives

ut + a(y)uy + 1

2
b2(y)uyy − 1

2uxx

(
λ(y)ux + ρb(y)uxy

)2 = 0, (26)

with u(T , x, y) = U(x). Seek a separable solution to (26) of the form (23),
in turn for power and exponential preferences. Then it is straightforward
to verify that δ as in (24) and q as given in the proposition results in H
satisfying the linear PDE (8), and the form of u is proved. A verification
theorem establishes that the solution is indeed the value function. In fact,
we show below that the proposed solution is the value function by appealing
to duality, demonstrating that the candidate optimal measure for the dual
problem, implied by the above solution for the primal problem, is in fact the
dual optimiser. This is achieved by showing that the representation equation
of Hobson (2004) for the dual optimiser is satisfied.

4. Representations for the dual optimiser

We begin with a simple lemma, establishing the relation between the dual
value function (and hence the dual optimiser Q∗), and the function H ap-
pearing in the distortion solution of the primal problem.

Lemma 1. The dual optimiser Q∗ achieving the infimum

v(η) := inf
Q∈M

EV

(

η
dQ

dP

)

satisfies

v(η) ≡ EV

(

η
dQ∗

dP

)

= HδV
( η

Hδ

)

, (27)

where H ≡ H(0, Y0) is given in (7) and δ is given in (24).

Proof. The dual value function v(η) is the convex conjugate of u(x):

v(η) = sup
x∈dom(U)

[u(x)− xη],

which implies that, for any η > 0, the value of x achieving the above
supremum is x∗ ≡ x∗(η) satisfying u′(x∗) = η. Using (23) at t = 0, and
writing H ≡ H(0, Y0), we see that this condition becomes U ′(x∗)Hδ = η,
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or x∗ = I (η/Hδ), where I (·) = (U ′(·))−1 is the inverse of the gradient of
the utility function U . Hence

v(η) = u(x∗)− x∗η
= Hδ

[
U(I (η/Hδ))− (η/Hδ)I (η/Hδ)

]
,

and the result follows from the identity V (η) = U(I (η))− ηI (η).

Written explicitly, Lemma 1 states that Q∗ and P̃ M are related by:

– For exponential utility, with q = 1 (so that P̃ M = Q̃M ),

E

[
dQE

dP
log

dQE

dP

]

= − 1

1 − ρ2
logEQ̃

M

e−
1
2 (1−ρ2)KT

= − 1

1 − ρ2
logH(0, Y0), (28)

whereQ∗ = QE = Q(1) is the minimal entropy measure. Independently,
Stoikov and Zariphopoulou (2004) (Corollaries 2.1 and 3.1) have also
derived this result.

– For power utility, with q = −γ /(1 − γ ),

E

[(
dQ(q)

dP

)q
]

=
(

EP̃
M

e−
1
2 q(1−qρ2)KT

)(1−q)/(1−qρ2)

= [H(0, Y0)]
(1−q)/(1−qρ2) , (29)

where Q∗ = Q(q) is the q-optimal measure. This result, written in a
different form, appears in Hobson (2004).

Naturally, an analogous relationship to (27) can be derived between the
dual value function v(t, η, y) for initial time t ∈ [0, T ] and H(t, y). This
yields that the dual value function v(t, η, y) is related to H(t, y) and δ =
1/(1 − qρ2) by

v(t, η, y) =
{
V (η) (H(t, y))δ(1−q) , 0 < q < 1,
V (η)− (η/α) log

(
(H(t, y))δ

)
, q = 1.

(30)

We now attack the dual problem (22) directly via dynamic programming
and the associated HJB equation. Fusing this with (30) gives the following
representation for the optimiser Q∗.

Theorem 1. The dual optimiser Q∗ has density given by

dQ∗

dP
= E (−λ ·W − ξ ·W⊥)

T
,
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with

ξt = −
√

1 − ρ2

1 − qρ2
b(Yt )

∂

∂y
logH(t, Yt ), t ∈ [0, T ], 0 < q ≤ 1, (31)

and where H(t, y) is given in (7).

Proof. From the definition (22) and the P -dynamics (2) of Y and (4) of Z,
the Bellman equation for v is

inf
ψ

[

vt + LY v + 1

2

(
λ2(y)+ ψ2

)
η2vηη − (ρλ(y)+ ρ̄ψ) b(y)ηvηy

]

= 0.

Performing the minimisation gives the optimal value of ψ in feedback form
as ψ∗ ≡ ξ given by

ξ(t, η, y) = ρ̄b(y)

η

vηy(t, η, y)

vηη(t, η, y)
. (32)

Using (30), in turn for q = 1 and for 0 < q < 1, we see that (32) loses all
dependence on η and reduces to

ξ(t, y) = −
√

1 − ρ2

1 − qρ2
b(y)

Hy(t, y)

H(t, y)
. (33)

The optimal control process ξ := (ξt )0≤t≤T is given by ξt = ξ(t, Yt ). The
optimality of the proposed control follows from a verification theorem, or
alternatively from the fact that ξ given in (33) does indeed solve the rep-
resentation equation of Hobson (2004) which identifies the optimal dual
measure, and we demonstrate this fact below.

4.1. A representation equation for the dual minimiser

Theorem 1 identifies a candidate optimal dual measure Q∗ and associated
optimal dual control process ξ . To verify that these candidates are indeed
optimal, we show that they satisfy a martingale representation equation of
Hobson (2004) for the q-optimal measure Q(q) ∈ M (q ∈ R) in stochastic
volatility models. Recall that we identify the q-optimal measure with the
optimal dual measure Q∗, with 0 < q < 1 corresponding to power utility,
and q = 1 corresponding to exponential utility (in which case Hobson’s
result reduces to a representation equation of Rheinländer (2005)). The case
q = 0 corresponds to logarithmic utility, and is not analysed here. This case
is somewhat degenerate, in that the optimal dual measure is the minimal
measure QM (as the reader can easily verify), in accordance with a general
result of Schweizer (1999).
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The representation equation was established in Hobson (2004) for q ≥ 1,
and it was pointed out there and in Henderson et al. (2005) that the result
extends to q < 1.We verify this claim for the case 0 < q < 1 after stating the
result, and we give integrability conditions under which the representation
equation does indeed identify the dual optimiser Q∗.

Proposition 2 (Hobson (2004)). Suppose there are previsible processes ν
and ξ and a finite constant c such that

1

2
qKT = MT + 1

2
(1 − q)[M]T + LT + 1

2
[L]T + c, (34)

where

Mt :=
∫ t

0
νs(dWs + qλsds), Lt := ∫ t

0 ξsdW
⊥
s .

Then, for q ∈ (0, 1], the q-optimal measure Q(q) (equivalently the dual
optimiser Q∗) is given by

dQ∗

dP
= E(−λ ·W − ξ ·W⊥)T , (35)

and the constant c is given by

c = E

[
dQ∗

dP
log

dQ∗

dP

]

, q = 1, (36)

e−(1−q)c = E

[(
dQ∗

dP

)q]

, 0 < q < 1, (37)

provided that the local martingale Z∗ := E(−λ · W − ξ · W⊥) is a true
martingale, and provided that the following integrability conditions are sat-
isfied:

– for q=1: (ν − λ) ·WQ is a Q-martingale for all Q ∈ M;
– for 0 < q < 1, the local Q-martingale E[−(1 − q)(ν − λ) ·WQ] is a

true Q-martingale for all Q ∈ M.

We first show that a solution to (34) can be found in terms of our candidate
dual control process ξ of Theorem 1.

Proposition 3. Proposition 2 holds for the triple (ν, ξ, c) given by

ρ̄νt − ρξt = 0, (38)

with ξt given by (31):
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ξt = −
√

1 − ρ2

1 − qρ2
b(Yt )

∂

∂y
logH(t, Yt ),

and

c = − 1

1 − qρ2
logH(0, Y0). (39)

Proof. First note that with c given by (39), then (36) and (37) are implied
by (28) and (29).

For q ∈ (0, 1], define the function f : [0, T ] × R → R by (9):

f (t, y) := − 1

1 − qρ2
logH(t, y),

so that f solves the semi-linear PDE (10). With ξ as in the proposition,M,L
are given by

Mt = ρ

∫ t

0
b(Ys)fy(s, Ys)(dWs + qλ(Ys)ds),

Lt = ρ̄

∫ t

0
b(Ys)fy(s, Ys)dW

⊥
s .

With W̃ = ρW + ρ̄W⊥, a (P, F̃) Brownian motion, a direct computation
gives

MT + 1

2
(1 − q)[M]T + LT + 1

2
[L]T

=
∫ T

0
b(Yt )fy(t, Yt )dW̃t

+
∫ T

0

(

qρλ(Yt)b(Yt )fy(t, Yt )+ 1

2
(1 − qρ2)b2(Yt )f

2
y (t, Yt )

)

dt

= 1

2
qKT +

∫ T

0

{(
ft(t, Yt )+ LY f (t, Yt )

)
dt + b(Yt )fy(t, Yt )dW̃t

}

= 1

2
qKT +

∫ T

0
df (t, Yt )

= = 1

2
qKT − f (0, Y0)

= 1

2
qKT + 1

1 − qρ2
logH(0, Y0)

= 1

2
qKT − c,

where we have used the PDE (10) satisfied by f and the Itô formula. This
establishes that the representation equation (34) is satisfied.
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It remains to show that the candidate measureQ� is indeed optimal pro-
vided the relevant integrability conditions hold. We shall need the following
simple lemma, an adaptation of Lemma 3.4 in Hobson (2004) and easily
proven by similar methods to those in Hobson (2004).

Lemma 2. For any α ∈ (0, 1), adapted integrand φ and Brownian motion
B, we have

E
[
(E(φ · B)T )α

] ≤ 1, E
[∫ T

0 φtdBt + 1
2φ

2
t dt

]

≥ 0.

Now, with (ν, ξ, c) as in the proposition, the candidate dual optimiserQ∗
is defined by (35). LetQ be any martingale measure, with density given by
(3) for some process ψ satisfying

∫ T
0 ψ

2
t dt < ∞ P -almost surely. Defining

the two-dimensional Q-Brownian motion (WQ,W⊥,Q) by dWQ
t = dWt +

λ(Yt)dt ,dW
⊥,Q
t = dW⊥

t +ψtdt , we may rewrite the representation equation
(34) in terms of (WQ,W⊥,Q) as

1

2
qKT = (ν ·WQ)T + (1 − q)

∫ T

0

(
1

2
ν2
t − νtλt

)

dt + (ξ ·W⊥,Q)T

+
∫ T

0

(
1

2
ξ 2
t − ξtψt

)

dt. (40)

Now write logZT ≡ log(dQ/dP ) in terms of (WQ,W⊥,Q) as

logZT = −(λ ·WQ)T + 1

2
KT − (ψ ·W⊥,Q)T + 1

2

∫ T

0
ψ2
t dt.

Use the trivial decomposition 1
2KT = 1

2qKT + 1
2 (1 − q)KT and (40) to

obtain

logZT = (
(ν − λ) ·WQ

)

T
+ (
(ξ − ψ) ·W⊥,Q)

T

+ 1

2

∫ T

0

{
(1 − q)(νt − λt)

2 + (ξt − ψt)
2
}
dt + c. (41)

Then, for 0 < q < 1, we have

dq(Q, P ) = E
[
Z
q

T

] = EQ
[

Z
−(1−q)
T

]

= EQ
[

E [−(1 − q)(ν − λ) ·WQ
]

T

{E [(ξ − ψ) ·W⊥,Q]
T

}1−q]
e−(1−q)c.

If� := E[−(1−q)(ν−λ)·WQ] is a trueQ-martingale for allQ ∈ M, then it
can be used to define a measure change to a measure R, by dR/dQ := �T .
After this measure change, WQ,⊥ is still a Brownian motion, which we
denote by WR,⊥, and we obtain

dq(Q, P ) = ER
[{E [(ξ − ψ) ·WR,⊥]

T

}1−q]
e−(1−q)c ≤ e−(1−q)c,
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the inequality following from Lemma 2, with equality if ψ = ξ , so that
dq(Q, P ) is maximised over all Q ∈ M by this choice.

For the case q = 1, we have, by the same analysis as above,

d1(Q, P ) = E
[
ZT logZT

] = EQ logZT = EQ
[
(ν − λ) ·WQ

]

T

+EQ
[
(
(ξ − ψ) ·W⊥,Q)

T
+ 1

2

∫ T

0
(ξt − ψt)

2dt

]

+ c.

If (ν − λ) ·WQ is a q-martingale the first term in the last line vanishes and
we have

d1(Q, P ) = EQ
[
(
(ξ − ψ) ·W⊥,Q)

T
+ 1

2

∫ T

0
(ξt − ψt)

2dt

]

+ c ≥ c,

the inequality following from Lemma 2, with equality if ψ = ξ , so that
d1(Q, P ) is minimised over all Q ∈ M by this choice.

This establishes the optimality of the proposed candidate dual optimiser,
and by duality, the optimality of the distortion solution for the primal prob-
lem.

An immediate corollary of the representation equation (34) is the follow-
ing representation of the likelihood ratio dQ∗/dP , given in Hobson (2004)
for q ≥ 1 and extended here to 0 < q ≤ 1.

Corollary 1. The dual optimiser has Radon-Nikodym derivative given in
terms of the traded asset price S by

log
dQ∗

dP
= c +

∫ T

0
θtdSt + 1

2
(1 − q)

∫ T

0
θ2
t d[S]t ,

where

θt := νt − λ(Yt)

YtSt
, 0 ≤ t ≤ T . (42)

Proof. This follows immediately on using (41) with ψ = ξ .

4.2. Relation between optimal portfolio and dual optimiser

The process θ in Corollary 1 is closely related to the optimal trading strategy,
as we now show. For a utility functionU(x), denote theArrow-Pratt measure
of risk aversion by A(x) := −U ′′(x)/U ′(x). Then we have the following
relation between the primal and dual feedback control functions.
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Proposition 4. The optimal portfolio process π∗ is given by

π∗
t = − θtSt

A(X∗
t )
, (43)

where θt is the process in (42), and X∗
t is the optimal wealth process (14)

with πt = π∗
t .

Proof. Use the distortion solution (23) in (25) to give the optimal portfolio
feedback control π∗(t, x, y) as

π∗(t, x, y) = 1

yA(x)

(

λ(y)+ δρb(y)
Hy(t, y)

H(t, y)

)

= − 1

yA(x)

((
ρ

ρ̄

)

ξ(t, y)− λ(y)

)

,

the last equality following from (33). Then (43) follows from π∗
t =

π∗(t, X∗
t , Yt ), along with (38) and the expression (42) for θ .

Remark 1. Note that for exponential utility, with A(x) = α, the condition
that (ν − λ) ·WQ is a Q-martingale becomes, on using (43), that �∗ · S is
aQ-martingale, where�∗ = π∗/S is the optimal number of shares. This is
in accordance with the definition of the admissible trading strategies for the
exponential utility case, given in (17).

Proposition 4 is an example of the classical relation (21) between the
dual optimiser and the optimal terminal wealth:

Corollary 2. The relation (43) implies (21).

Proof. We prove the result for power utility, 0 < q < 1. The proof for ex-
ponential preferences follows the same lines. Using (43) in (14), the optimal
wealth process follows

dX∗
t = − θt

A(X∗
t )
dSt .

For power utility, A(x) = 1/ (x(1 − q)). Using this and applying the Itô
formula gives the logarithm of optimal terminal wealth, given X0 = x, as

logX∗
T = log x − (1 − q)

(∫ T

0
θtdSt + 1

2
(1 − q)

∫ T

0
θ2
t d[S]t

)

.

Using Corollary 1 this may be rearranged to

X∗
T = xe(1−q)c

(
dQ∗

dP

)−(1−q)
.
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Using (39) to eliminate c in favour of H(0, Y0) we get

X∗
T = x [H(0, Y0)]

−(1−q)/(1−qρ2)

(
dQ∗

dP

)−(1−q)
. (44)

For power utility, U ′(x) = x−1/(1−q). We also have u(x) = U(x)

× [H(0, Y0)]
1/(1−qρ2) from the distortion solution. Using these facts we con-

vert (44) to

U ′(X∗
T ) = u′(x)

dQ∗

dP
. �

4.3. A novel representation of the dual control problem

Define the functional Cq,ψ by

Cq,ψ :=
{

exp
{

− 1
2q(1 − q)

∫ T
0

(
λ2(Yt )+ ψ2

t

)
dt
}

, 0 < q < 1,
1
2

∫ T
0

(
λ2(Yt )+ ψ2

t

)
dt, q = 1.

Theorem 2. For 0 < q ≤ 1, the dual problem is the stochastic control
problem to minimise (maximise, for q ∈ (0, 1))

dq(Q, P ) = EP
(q,ψ)

Cq,ψ,

over processesψ ∈ � satisfying
∫ T

0 ψ
2
t dt < ∞. The optimal controlψ∗ =:

ξ satisfies

�(q)
(

EP
(q,ξ)

Cq,ξ
)

= EP
q,0
�(q)(Cq,0),

where �(q)(·) is given by

�(q)(x) =
{
x(1−qρ2)/(1−q), 0 < q < 1,
exp

{
(1 − ρ2)x

}
, q = 1.

Proof. We prove the result for 0 < q < 1 (power utility). The case q = 1
is proved similarly.

For a martingale measure Q ∈ M we have, with ZT ≡ dQ/dP =
E(−λ ·W − ψ ·W⊥)T ,

dq(Q, P ) = E
[
Z
q

T

] = EP
(q,ψ)

[
Z
q

T

dP (q,ψ)/dP

]

= EP
(q,ψ)

Cq,ψ,

so that

dq(Q
∗, P ) = sup

ψ∈�
EP

(q,ψ)

Cq,ψ = EP
(q,ξ)

Cq,ξ .
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Using (29) to substitute for dq(Q∗, P ), we obtain

sup
ψ∈�

EP
(q,ψ)

Cq,ψ =
(

EP̃
M

e−
1
2 q(1−qρ2)KT

)(1−q)/(1−qρ2)

=
{

EP̃
(q,0)

[(
Cq,0

)(1−qρ2)/(1−q)]}(1−q)/(1−qρ2)

,

where we have used P̃ M = P̃ (q,0). Since Cq,0 is F̃T -measurable we can
replace P̃ (q,0) by P (q,0) in the expectation on the right hand side, and the
required formula follows. We know that the above supremum is attained
from the proof of Proposition 3, and this completes the proof.

4.4. Esscher transform relations

Theorem 3. For q ∈ (0, 1], define the process χ := (χt )0≤t≤T by

χt := 1 − qρ2

q(1 − ρ2)
ξt ,

where ξ is the optimal dual control process (31). Then we have the Esscher
transform relation

dP̃ (q,χ)

dP̃ M
= exp(− 1

2q(1 − qρ2)KT )

EP̃
M exp(− 1

2q(1 − qρ2)KT )
.

Proof. We use the representation equation (34) and Proposition 3. Introduce
the orthogonal Brownian motions

W̃ := ρW + ρ̄W⊥, W̃⊥ := ρ̄W − ρW⊥,

so that W̃ is F̃-adapted and W̃⊥ is independent of F̃. We write the repre-
sentation equation (34) in terms of W̃ , W̃⊥, and also use (38) and (39) to
substitute for ν, c. This yields

1

2
qKT = 1

ρ̄

∫ T

0
ξtdW̃t + 1

ρ̄2

∫ T

0

{

qρρ̄λtξt + 1

2
(1 − qρ2)ξ 2

t

}

dt

− 1

1 − qρ2
logH(0, Y0).

Multiplying by 1 − qρ2 and using the stochastic representation (7) for
H(0, Y0) gives, after some rearrangement,

exp(hKT )

EP̃
M exp(hKT )

= E
(

− 1 − qρ2

√
1 − ρ2

ξ · W̃
)

T

exp

(

−qρ(1 − qρ2)
√

1 − ρ2

∫ T

0
λtξtdt

)

, (45)
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where h = − 1
2q(1 − qρ2). With χ defined as in the theorem, the right-hand

side of this equation is precisely dP̃ (q,χ)/dP̃M , since we have

dP̃ (q,χ)

dP̃ M
= dP̃ (q,χ)

dP

/
dP̃M

dP

= E[−q(ρλ+ ρ̄χ) · W̃ ]T
E(−qρλ · W̃ )T

= E(−qρ̄χ · W̃ )T exp

(

−q2ρρ̄

∫ T

0
λtχtdt

)

,

which reproduces the right-hand side of (45) on using the definition of χ in
the theorem.

For the case q = 1 we have the striking corollary:

Corollary 3. The minimal entropy measure and minimal martingale mea-
sures, projected onto the sigma-field F̃T , are related by the Esscher trans-
form

dQ̃E

dQ̃M
= exp

(− 1
2 (1 − ρ2)KT

)

EQ̃
M exp

(− 1
2 (1 − ρ2)KT

) .

See Monoyios (2005) for a proof of this result in a non-Markovian setting.

5. Application to exponential hedging

In this section we specialise to exponential utility, U(x) = − exp(−αx),
so q = 1, and we modify the primal problem to allow for the sale of an
F̃T -measurable claim B(YT ) ≡ B, representing the payoff of a European
claim on Y . We assume the function B(y) is such that all the expectations
that appear below are well-defined. We apply a similar program to earlier
sections, deriving a distortion representation for the primal problem, then
exploring the ramifications for the dual problem. The proofs follow the same
reasoning as for the problem with no random endowment, and so are omitted,
leaving details as an exercise for the reader.

The objective in the primal problem is to maximise

JB(t, x, y;π) = E[U(XT − B(YT ))|Xt = x, Yt = y].
The agent’s primal value function is

uB(t, x, y) := sup
π∈A

JB(t, x, y;π), (46)

with uB(T , x, y) = U(x − B(y)). The class of admissible strategies A is
defined in a similar manner to (17).
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By using the same methods as above, it is straightforward to establish
the following distortion solution for uB . The value function uB satisfies the
same PDE as u, with modified terminal boundary condition.

Proposition 5. With exponential utility, U(x) = − exp(−αx), the value
function (46) is given by

uB(t, x, y) = U(x) (HB(t, y))
1/(1−ρ2) , (47)

where HB : [0, T ] × R → R
+ has the stochastic representation

HB(t, y) = EQ̃
M

[

e
−(1−ρ2)

(
1
2

∫ T
t λ

2(Ys)ds−αB(YT )
)∣
∣
∣
∣Yt = y

]

. (48)

The dual value function vB(t, η, y) is given by the Legendre transform

vB(t, η, y) = sup
x∈R

(uB(t, x, y)− xη) .

The distortion representation for uB then implies that vB is given by

vB(t, η, y) = V (η)− η

α
log

(

(HB(t, y))
1/(1−ρ2)

)

, (49)

whereV (η) = (η/α)(log(η/α)−1) is the convex conjugate of the exponen-
tial utility function. We recognise (49) as the analogue of (30) (for q = 1)
in the optimisation problem with random endowment.

The dual value function has the fundamental definition

vB(t, η, y) := inf
Q∈M

E

[

V

(

η
ZT

Zt

)

− η
ZT

Zt
B(YT )

∣
∣
∣
∣Yt = y

]

.

For t = 0, with vB(η) ≡ vB(0, η, y), this is

vB(η) = V (η)+ η

α
inf
Q∈M

[
d1(Q, P )− αEQB(YT )

]
. (50)

Then, equating (49) at t = 0 with (50) gives the following result, the ana-
logue of (28) for the problem with random endowment.

Proposition 6. The dual minimiser QB achieving the infimum in (50) is
related to HB(0, Y0), and hence to the minimal measure QM , by

d1(Q
B, P )− EQ

B

(αB) = − 1

1 − ρ2
logEQ̃

M

e−(1−ρ2)( 1
2KT−αB)

= − 1

1 − ρ2
logHB(0, Y0). (51)
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Naturally, (51) reduces to (28) for B = 0. The above proposition is new
in that it links the measures QB,QM . Using it in the distortion solution
for the primal value function allows us to reproduce more familiar duality
results, as follows:

uB(x) = − exp(−αx) (H(0, Y0))
1/(1−ρ2)

= − exp
(

−αx − [d1(Q
B, P )− EQ

B

(αB)]
)

= − exp

(

−αx − inf
Q∈M

[d1(Q, P )− αEQB]
)

,

which is the fundamental duality in Delbaen et al. (2002).

5.1. The dual control problem

We may treat the dual problem with random endowment as a stochastic
control problem over control processes ψ ∈ �, in an analogous manner to
the problem without random endowment.

Proposition 7. The dual minimiser QB is given by

dQB

dP
= E (−λ ·W − ξB ·W⊥)

T
,

with

ξBt = − b(Yt )
√

1 − ρ2

∂

∂y
logHB(t, Yt ), t ∈ [0, T ], (52)

and HB(t, y) as in (48).

The next theorem is a novel representation for the solution of the dual
stochastic control problem, the analogue of Theorem 2 for the problem with
random endowment, and proven by similar methods. Define the functional

Cψ,B := 1

2

∫ T

0

(
λ2(Yt )+ ψ2

t

)
dt − αB.

Theorem 4. The dual problem with random endowment is the stochastic
control problem to minimise

d1(Q, P )− αEQB = EQ
ψ

Cψ,B

over processesψ ∈ � satisfying
∫ T

0 ψ
2
t dt < ∞. The optimal controlψ∗ =:

ξB satisfies

exp
(

−(1 − ρ2)EQ
ξB

Cξ
B,B
)

= EQ
0

exp
(−(1 − ρ2)C0,B

)
, (53)

where Q0 = QM is the minimal martingale measure.
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We note that (53) is of the form

�(1)

(

inf
ψ∈� E

QψCψ,B
)

= EQ
0
�(1)

(
C0,B

)
,

where �(1)(x) = exp(−(1 − ρ2)x), as in Theorem 2.

5.2. A representation equation for the dual minimiser

We derive a martingale representation identity for the dual minimiser QB ,
extending (34) for q = 1 to the problem with random endowment, by
considering the integral

∫ T

0
d(logHB(t, YT )),

in a similar manner to the proof of Proposition 3.

Theorem 5. Define

LBt :=
∫ t

0
ξBs dW

⊥
s ,

MB
t :=

∫ t

0
νBs (dW

⊥
s + λ(Ys)ds),

with

ρ̄νBt − ρξBt = 0,

and where ξB is given by (52). Then MB
T ,L

B
T satisfy

1

2
KT − αB = MB

T + LBT + 1

2
[LB]T + d1(Q

B, P )− αEQ
B

B.

5.3. Indifference pricing

Define the indifference selling price (at time t , given Yt = y) of the claim
B, PB(t, y), by

uB(t, x + PB(t, y), y) = u(t, x, y), (54)

where u is the value function (18) when no claim is present. Note that
we have anticipated the well-known property of indifference prices under
exponential preferences, namely, that they do not depend on the initial cash
endowment x. Using (23) and (47) in (54) gives the following representation
for the indifference price.
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Theorem 6.

exp
(
α(1 − ρ2)PB(t, y)

) = HB(t, y)

H(t, y)

=
EQ̃

M

[

e
−(1−ρ2)

(
1
2

∫ T
t λ

2(Ys)ds−αB(YT )
)∣
∣
∣
∣Yt = y

]

EQ̃
M

[

e− 1
2 (1−ρ2)

∫ T
t λ

2(Ys)ds

∣
∣
∣Yt = y

] .

After the first version of this paper was written we discovered that, in-
dependently of this work, Grasselli and Hurd (2006) have produced this
result. We can recast the above result into another form, in terms of the dual
optimisersQB,QE for the problems with and without random endowment,
by setting t = 0 and using (51) and (28) on the right-hand side, to give, for
PB ≡ PB(0, Y0):

PB = sup
Q∈M

[

EQB − 1

α

(
d1(Q, P )− d1(Q

E, P )
)
]

,

which is the representation found in Delbaen et al. (2002), and from which
well-known limits limα→∞ PB = supQ∈MEQB and limα→0 PB = EQ

E

B

easily follow.
Finally, we note that for deterministic K Theorem 6 reduces to

exp
{
(1 − ρ2)αPB

} = EQ̃
M

exp{(1 − ρ2)αB},
which is the representation found in (Henderson (2002), Monoyios (2004),
Musiela and Zariphopoulou (2004)).
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