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We consider an optimal stopping problem arising in connection with the exercise of an
executive stock option by an agent with inside information. The agent is assumed to
have noisy information on the terminal value of the stock, does not trade the stock or
outside securities, and maximises the expected discounted payoff over all stopping times
with regard to an enlarged filtration which includes the inside information. This leads to
a stopping problem governed by a time-inhomogeneous diffusion and a call-type reward.
We establish conditions under which the option value exhibits time decay, and derive
the smooth fit condition for the solution to the free boundary problem governing the
maximum expected reward, and derive the early exercise decomposition of the value
function. The resulting integral equation for the unknown exercise boundary is solved
numerically and this shows that the insider may exercise the option before maturity, in
situations when an agent without the privileged information may not. Hence we show
that early exercise may arise due to the agent having inside information on the future
stock price.

Keywords: Optimal stopping; executive stock options; enlargement of filtration; free
boundary.

1. Introduction

In this paper we model the exercise decision of an insider who is granted an executive
stock option (ESO). The agent is an employee who is granted a single American-style
option on a stock of his employing company. This executive is barred from trading
the stock, does not trade other securities either, and has some inside information on
the future evolution of the stock at the terminal date of the option. The executive is
modelled as risk-neutral, so has a linear utility function, and hence maximises the
discounted expectation under the physical measure P of the option payoff at the
exercise time. We do not endow the agent with risk-averse preferences as we wish
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to focus exclusively on the role of inside information on the exercise decision, and
this is also the reason for assuming away all other trading opportunities, as well as
other contractual complications that are common in ESOs, such as a vesting period,
resetting of strikes, partial exercise opportunities, job termination, and so on.

The exercise time is a stopping time with respect to an enlarged filtration formed
by augmenting a filtration F with the o-algebra of a random variable L, which
corresponds to noisy information on the value of the stock at the option maturity
time 7. Writing the stock dynamics under the enlarged filtration FZ, the stock price
is governed by a time-inhomogeneous diffusion with state and time-dependent drift
and constant volatility, and we are faced with an optimal stopping problem governed
by the time-inhomogeneous diffusion. The enlargement of filtration, leading to a
state and time-dependent drift, leads to the theoretical possibility of early exercise.
We establish that early exercise can occur and provide a numerical computation of
the early exercise boundary.

We establish the equivalence between the optimal stopping problem and a free
boundary PDE. We further establish that the value function governing the maxi-
mum expected reward exhibits time decay for suitably low realisations of L, and for
zero interest rate, regardless of L. In these cases we prove that the value function
satisfies the smooth-fit condition at the free boundary, and from this we derive the
early exercise decomposition of the value function into a European-style payoff and
an early exercise premium. This leads to an integral equation characterising the
free boundary, which is solved numerically. The numerical results show that the
insider can indeed exercise the ESO prior to maturity in situations in which an
executive without the inside information would not. Hence, we show that privileged
information can also be a factor contributing to the early exercise of ESOs.

The rest of the paper is as follows. Section 2 describes the model and the optimal
stopping problems for an insider and a non-insider. Section 3 contains our main
results. We analyse the value function of the insider’s discounted ESO value as a
function of log-stock price. We use ideas of stochastic flows to establish convexity
and monotonicity of the value function, derive the free boundary PDE, conditions
under which the ESO value exhibits time decay, and the smooth fit condition at the
exercise boundary. We use these results to derive an early exercise decomposition
for the ESO value, and a resulting integral equation for the exercise boundary. The
properties are well-known in standard American option problems with constant
parameters under a martingale measure, but our problem is rather non-standard,
containing a time-inhomogeneous drift term not equal to the interest rate, since
valuation is performed under the physical measure. We solve the integral equation
numerically and present results which show that the insider can be induced to early
exercise by possessing privileged information. Section 4 concludes.

2. The Model

We have a single stock price process S = (S¢)o<t<r defined on a complete prob-
ability space (€2, F, P) equipped with a filtration F = (F;)o<¢<7 that satisfies the
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usual conditions of right-continuity and completeness. A (P, F)-Brownian motion
B = (B4)o<t<r drives the stock price, which follows the geometric Brownian motion

dSt = /J,Stdt + O'StdBt,

where o and o > 0 are known constants. There is a constant risk-free interest rate
r > 0.

It will be sometimes be more convenient to work with the log-stock price X :=
log S, satisfying

Xt:X0+’)/t+UBt, OStST, (21)

where v 1= pu — 02/2.

Our financial agent (an executive) is an employee of the firm whose stock price is
S, and is awarded at time zero a single American-style call option on the stock with
maturity 7. We assume that the agent is barred from trading S or outside securities,
that there is no opportunity for partial exercise of the option, and we take the agent’s
preferences to be risk-neutral, so he maximises the expected discounted payoff under
the objective probability measure P. Grasselli and Henderson [6] or Rogers and
Scheinkman [16] focus on the effects of risk aversion and outside trading on early
and block exercise. We do not introduce contractual complications that sometimes
feature in ESOs, as done by Sircar and co-authors [12, 13, 18]. We exclude the above
features of ESOs in order to focus exclusively on the impact of inside information on
the agent’s optimal stopping problem of when to exercise the option. In particular,
we can examine a case in which the absence of inside information results in no early
exercise, and we can then show that the introduction of additional information can
lead to early exercise, and we compute the early exercise boundary numerically. Even
with the simplifications that we make, we shall see that we are nevertheless faced
with a non-standard American problem with a time-inhomogeneous diffusion for the
stock, so that many standard properties of the value function are not known a priori
and have to be established. These properties include monotonicity and convexity in
the log-stock price, time decay, and the smooth fit condition (continuity of the first
spatial derivative) at the optimal exercise boundary.

The agent has inside knowledge at time zero of an F-measurable random variable
L, corresponding to noisy knowledge of the terminal log-stock price Xp. We shall
sometimes refer to this agent as the insider or the executive. We shall also consider
an agent whose information is represented by the filtration F, so who does not have
the privileged information. This agent will sometimes be referred to as the regular
agent or as the non-executive.

The random variable L will be given by

L=aXr+(1—-a), 0<a<l, (2.2)

where ¢ is a standard normal random variable independent of F. Hence, the exec-
utive’s information flow is represented by the enlarged filtration F' = (Ff)o<i<r,
defined by

Fl=Fve(L), 0<t<T.
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See Danilova et al. [1] for similar examples of such inside information within the
context of partial information investment problems. The dynamics of the log-stock
price with respect to the enlarged filtration are given by classical enlargement of
filtration methods (see Yor [19]) in the following lemma.

Lemma 2.1. With respect to the enlarged filtration FE, the dynamics of the log-
stock price are

dX, =

1 L
T,-T)+ = — X, |dt + odBf
et (9T =14 L = XY+ aa
where BL is an FL-Brownian motion and T, is the modulated time defined by

1—a

ao

2
Ta::T+< ) , O<a<l (2.3)

Proof. Classical enlargement of filtration results (Theorem 12.1 in Yor [19]) imply
that the F-Brownian B has a semi-martingale decomposition with respect to F¥ of
the form

t
Bt:BtL—F/V(L,u)du, 0<t<T,
0

with BY an FL-Brownian motion, and the process (v(L,t))o<t<T, is called the
information drift, given by the logarithmic derivative of the conditional density of
L given F;. This results in

¢
L — a(X T B,
Bt:BtL—i—/ aXo+9T+0B) g gy <r (2.4)
o ao(Ty — )
and combining this with (2.1), the lemma follows. m|

2.1. The optimal stopping problems

Denote by 7 the set of all stopping times with respect to the filtration F, and by 7%
the set of all stopping times with respect to the enlarged filtration FZ. Introduce
the following subsets of 7 and 7°:

T ={reT|P(ret,T) =1}, 0<t<T < oo,
T ={reT"|P(ret,T))=1}, 0<t<T <o
Of course, we have 7y, = 7 and ’ZB{‘T =7k
The executive stock option is an American call with strike K > 0. If exercised

at time 7 € [0, T, the discounted payoff at time zero is Y, where Y = (Y} )o<i<7 is
the reward process, defined by

YVii=e e —K)T, 0<t<T,

)
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assumed to satisfy

E [ sup Yt] < 00.
0<t<
The insider’s (that is, the executive’s) optimal stopping problem is to find a stopping
time 7* € 71 to achieve the maximal expected reward
Vo(L) := sup E[Y;|F{].
TeTL

Notice that the supremum is over stopping times of the enlarged filtration F, so we
emphasise this with the conditioning on the enlarged initial o-field 7. The maximal
expected reward V(L) is thus an Fl-measurable random variable (though from the
perspective of the insider, L is a known constant) and the relevant dynamics of the
state variable X are given by Lemma 2.1. When no confusion arises we suppress
the dependence on L of V.

The non-executive faces a similar optimal stopping problem, but over F-stopping
times, so in this case X is given by (2.1). We denote the non-executive’s maximal
expected reward at time zero by

Ve := sup E[Y;],
TeT

where the expectation is conditional upon the (assumed trivial) o-algebra Fo.

2.2. Benchmark case: p > r and no inside information

For p > r, the reward process Y is a (P, F)-submartingale, so the regular agent’s
value for the American ESO coincides with the European value: V) = E[Y7]. In
particular, the exercise time 7 = T is optimal for the regular agent. This slightly
artificial conclusion derives from the fact that there are no trading opportunities for
the regular agent and also that the agent has a linear utility function. This result
serves as a useful benchmark for us. Given the same trading opportunities (none)
and the same preferences for the insider as the regular agent, our main goal is to
show that inside information on the stock can result in early exercise, because the
drift of the stock becomes time and price-dependent.

2.3. The instder’s problem

In this section we analyse the optimal stopping problem for the insider. The log-
stock price follows the time-inhomogeneous diffusion of Lemma 2.1, which we

write as
dX; = B(t, X;)dt + cd BE, (2.5)
where ((t,x) = ((t, x; L) is given by
C—z L
= = Ta — T —_—. 2
Blt) = 5, Cimr(Tu=T)+ (26)
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Given an initial condition X; = = € R, for ¢ € [0,77], the solution to (2.5) is the
Gaussian process (Xy,)i<u<T given by

Xu:x—i—ﬁ(t,x)(u—t)—f—a(Ta—u)/ dBY, 0<t<u<T. (2.7
t

a— P

In particular, the transition density p(¢, x;u, y) for moving from X; = = to X,, € dy

1 1 (y—m(t,z;u) 2
t,rsu,y) = ————exp|—= | —=——] |, zy€ER,
a4 v) S(tu)v2m Xp[ 2 < E(t;u) ) ] !

at u >t is given explicitly by

where m(t, z;u) and X(¢;u) > 0 are given by

T, —
m(t,z;u) =z + Bt x)(u—t), X*(tu) =0 ( T _1:) (u—1). (2.9)
For a starting time ¢ € [0, 7] the maximal expected discounted payoff is given
by the FE-adapted process

Vi = Vi(L) := esssup E[e*T(Tft)(BXT - K)* |7:tL]
‘rGTﬁT

= e"esssup B[V, | FE], 0<t<T.
TE’Z}%T

We are thus led to consider the FZ-adapted process U defined by

U =Uy(L) :=esssup E[Y, | FL], 0<t<T, (2.10)

L
TE/J;,T

satisfying U; = e~ "'V} a.s., for any t € [0,T].

Classical optimal stopping theory (Appendix D of Karatzas and Shreve [11])
characterises the solution to the optimal stopping problem (2.10) as follows. There
exists a non-negative cadlag (P,FE)-supermartingale U = (Uy)o<i<7, the Snell
envelope of Y, such that U is the smallest (P, FZ)-supermartingale that dominates
Y, with Ur = Y7 a.s. A stopping time 7* € 7T is optimal for the problem (2.10)
starting at time zero if and only if U+ = Y« a.s., and the stopped supermartingale
U™ defined by U7 = Uryp;,0 < t < T, is a (P,FF)-martingale. The smallest
optimal stopping time in ’ZQLT for the problem (2.10) is 74", defined by

o =inf{pe[t,T]|U,=Y,} AT, 0<t<T.

3. The Value Function

We are interested in the optimal stopping problem with reward process

Y, =e e - K)T = f(t Xy),
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where f:[0,7] x R — RT is the continuous non-negative function given by
flt,x) :=e (" — K)T,

and where (X,)t<y<7 is the solution (2.7) of (2.5) with X; = « deterministic, for
t € [0,T]. For a fixed value of the random variable L, say L = ¢ € R, we define the
value function F : [0,7] x R — R™ by

F(t,xz) = F(t,x;0) :== sup E[f(r,X;)| Xy =x,L=1{]. (3.1)

L
TE/J;’T

Then, in a very general continuous-time Markov setting, F' is a continuous function
and the process U = (F(t, Xt))o<t<7 is the Snell envelope of Y = (f(¢, Xt))o<t<r
(see for instance El Karoui et al. [5]).

The insider’s value process for the ESO is (V (¢, S;; L))o<i<1, where V : [0,T] x
Rt — R* is given by

Vi(t,s) = V(t,s;0):= sup Ele" "8, — K)*|S; =s,L =1,
TE’Z}%T

and we suppress dependence on L when no confusion arises. Hence the value func-
tions F' and V' are related according to

e "V (t,s(x)) = F(t,r), with s(x):=e®.

The (smallest) optimal stopping time for the problem (3.1) starting at time ¢ € [0, T
with X; = x is 7 (¢, z) given by

T (t,x) =inf{p € [t,T]| F(p, X,) = f(p, X,)}
=inf{p € [t, T]|V(p, S,) = (S, - K)*}.

The continuation region C is defined by
C:={(t,z) € [0,T) xR|F(t,x) > f(t,x)}
= {(t,s) €10, T) x RT |V (t,s) > (s — K)T}.

Since F,V are continuous, C is open. This suggests (and we show below) that there
is function z* : [0,7] — R (respectively, s* : [0,7] — R™), the critical log-stock
price (respectively, critical stock price) or optimal early exercise boundary, such
that the option is exercised the first time the log-stock price exceeds z*(t). Since
it is never optimal to exercise if the stock is below the strike K, we must have
x*(t) > log K for all t € [0,T].

We shall characterise the early exercise boundary and the value function F' as a
solution to a free boundary problem, and we also establish the smooth fit condition
at the boundary that is common in many optimal stopping problems. This is not
guaranteed and in general needs to be verified on a case by case basis. This is the
situation we are faced with here, as we are dealing with a non-standard American
option problem involving a stock with a state and time-dependent drift.
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3.1. Convexity and monotonicity of the value function in x

We wish to show that the value function F' is increasing and convex in z. Although
these properties do not necessarily imply similar properties for the ESO value V'
in the stock price, they will be sufficient to allow us to characterise the exercise
boundary and establish bounds on the derivative F., which are ingredients we need
to obtain the free boundary PDE and the smooth fit condition satisfied by F'. These
then lead easily to a corresponding free boundary PDE and smooth fit condition
for V.

We shall utilise ideas of stochastic flows applied to the log-stock price. We write
X (z) for the log-stock price with initial condition Xy = x, considered as the solution
to a diffusion SDE with time and state-dependent drift. In Lemma 3.1, we show
that the map @ — X (z) is non-decreasing, and give a condition on the drift g of
X for this map to be convex in z. This condition is indeed satisfied in our specific
model. From the properties of x — X (z) we deduce the corresponding properties
for the map = — F(-, z).

Note that for a diffusion with time and state dependent drift, properties such
as monotonicity and convexity in the initial condition are not automatic, so the
obvious properties of the map z — X (z) under F do indeed need to be shown to
hold under F’.

An alternative to our approach would be to use a technique due to El Karoui
et al. [4]. They prove convexity of standard American option prices with respect
to stock price (so evaluated under a martingale measure) in diffusion models with
deterministic interest rate. They also employ ideas of stochastic flows, first to show
the property for European prices, then, adapting an iterative procedure found in El
Karoui [3], they extend the result to American prices. This approach can be shown
to work in our model, since the FEuropean option value can be written as an integral
with respect to the transition density of X, given in (2.8).} Indeed, we adapt this
technique later for part of our analysis of the time decay property of the American
ESO value: see the proof of Theorem 3.3.

In principle one might try to use our techniques to prove convexity and mono-
tonicity of ESO value function V in the starting stock price Sy = s, for any ¢ € [0, T7].
This does not appear to be straightforward using our methods, because it does not
appear easy to prove that the map s — S(s) is increasing and convex for a general
diffusion. Indeed, we shall see in Remark 3.1 that, when we use the explicit solution
(2.7) for X (z), the map * — X () is indeed increasing and convex, but that the
map s — S(s) is increasing but not convex.

It is well known that convexity of American option prices with respect to stock
price does not immediately follow from the convexity of the payoff process when
the return distribution of the stock depends on the stock price, as shown by Mer-
ton [14] (Theorem 10 and the counter-example in Appendix 1). Other authors

IWe thank an anonymous referee for pointing this out.



Optimal Exercise of an ESO by an Insider 91

have also analysed convexity of American option values with respect to stock price.
Ekstrom [2] used stochastic time changes and a limiting argument based on approx-
imating American option by a Bermudan option, and Hobson [7] utilised coupling
methods. Similar to [4], these papers consider standard American pricing problems
under a risk-neutral measure, with a deterministic rate of interest. We have a rather
non-standard problem where the stock price drift is not the interest rate, and in
addition is both state and time-dependent. For these reasons, we cannot directly
read off the required properties of the value function from these papers.

For simplicity consider a starting time ¢ = 0. The same ideas apply to any
starting time ¢ € [0, T]. Consider the log-stock price with initial condition X = z,
and write X = X (z), following

t
Xi(x) =2 —|—/ B(u, X, (x))du +oBL, 0<t<T. (3.2)
0

We may choose versions of (X;(x))o<¢<r which for each t € [0,7] and each w € 2
are diffeomorphisms in z from R — R. That is, the map = — X (z) is smooth.
Define
0

b(t,z) = %ﬂ(LxL Dy(z) == %Xt(x). (3.3)

Lemma 3.1. The map x — X(x) is increasing, and if B (t,z) > 0, also convez.
Proof. We have
t
Dy(x) = exp (/ b(u,Xu(x))du> >0,
0

so x — X (z) is increasing.
Define c(t, x) := by (t,x) = By (t, ). Then
0

%Dt(x) = Dt(x)/o c(u, Xu(2)) Dy (x)du,

which is non-negative if ¢(t,xz) > 0 for all (¢,z) € [0,7] x R. Then x — X(z) is
convex. O

Remark 3.1. Lemma 3.1 holds for a general diffusion with a time and state-
dependent drift. Alternatively, with the explicit solution (2.7) we can directly
compute

t 0

D =1-=>0, —

t(x) Ta > U, ax

which directly shows that x — X (z) is increasing and convex. The same method
applied to the map s — S(s) (the stock price with initial condition Sy = s > 0)

gives

0 ~ Si(s) t 0? ~ Si(s) t\ t
550t(8) = T(l_T_a> >0, 525(s)=——5" -7 % <0,

Dt (J?) = O,
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so that s — S(s) is increasing, but not convex (though this does not necessarily
imply that s — V (-, s) is not convex).

Theorem 3.1. The map x — F(t,x) is increasing for any t € [0,T]. Suppose
Bux(t,x) > 0. Then the map x — F(t,x) is convex for any t € [0,T].
Proof. We set t = 0 without loss of generality. Then F(x) = F(0,z) is given by

F(z) = SequL Ele™ " (exp(X,(z)) — K)T | FE], (3.4)

and where Xo(z) = z. Let 7*(z) € 71 denote the optimal stopping time for the
problem in (3.4). Then we may write

F({L‘) = E[e*r‘r*(aj) (exp(X,.*(m) (LE)) — K)+],

where for brevity we have suppressed the conditioning on F¥.
Since the map = — X (z) is increasing, we have, for xg < x1,

(exP(Xr+ () (20)) — K) T < (exp(Xre (5 (1)) — K) T

Multiply both sides by e="7 (*0) take expectations, and use the fact that T*(x0) is
sub-optimal for the starting state x1, to obtain

F(x0) < Ele™"™ ) (exp(Xr- 5y (21)) = K)T] < F(a1),

which shows that z — F'(x) is non-decreasing.

To establish convexity, define ) := Azg + (1 — A\)zy for 2y < z1 and X\ € [0, 1].
Using the property that  — X (z) is convex, we have that z — (exp(X(z)) — K)*
is also convex. Hence

(€xP(Xre 2y (1)) = K)T < Mexp(Xre 4y (w0)) — K)T
+ (1 — )\)(exp(X,.*(mA)(xl)) — K)+

Multiplying by exp(—r7*(x))), taking expectations and using the fact that 7*(xy)
is sub-optimal for the starting states x;,7 = 0,1, we obtain

F(xy) < AF(x0) + (1 = N)F(x1),

so ¢ — F(x) is convex. m|

3.2. Free boundary problem for the value function

As F is increasing and convex, the exercise boundary x*(t) divides the domain of
F into the continuation region C and the stopping region S, given by

C={(t,z) €0,T)xR|z <loga*(t)} = {(t,5) € [0,T) x RT | s < s*(t)},
with § = C°.
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Define the extended generator £ of X by

Lg(t,z) = gi(t,x) + B(t, x)g.(¢t, ) + %Ung(t,x).

Denote the closure of the continuation region by C.

Theorem 3.2. The value function F in (3.1) solves, in C, the free boundary problem
LE(t,x) =0, (t,z) €C,
F(t,z) > e "(e* — K), (t,x) €C,
F(t,z*(t)) =e " (e”® —K), 0<t<T,
F(T,z)=e"(e* —K)", z€R.

Proof. This is by standard methods (Theorem 2.7.7 in Karatzas and Shreve [11]).
O

3.3. The exercise boundary is non-increasing

We now analyse the time decay of the ESO value, that is, that the map ¢t — V (¢, s)
is non-increasing, for any ¢ € [0,7] and s € RT. This property will imply that the
exercise boundary is a non-increasing function of time. Recall the F-measurable
random variable C' in (2.6).

Theorem 3.3. (1) If C <log K then the map t — V(t,s) is non-increasing.
(2) If the interest rate is zero, then t — V(t,8) is non-increasing for any value

of C.

Time decay for American-style claims cannot be expected to hold in general
when the price dynamics are governed by a time-inhomogeneous process, as pointed
out by Ekstrom [2]. He describes a drastic counter-example, in which volatility can
jump from zero to a positive value at some future time. Time decay is often taken
for granted, as longer-dated options have all the exercise opportunities of shorter-
dated claims, so holds in time-homogeneous models. For this reason, there seems to
be very little analysis of this property in the literature.

Theorem 3.3 states that the time decay property always holds for zero interest
rate. The same holds for standard American pricing problems (under a martingale
measure) in diffusion models (see [2]). Regardless of the interest rate, time decay
for the ESO holds for suitably low realisations of the random variable L. Indeed,
C < log K corresponds (modulo the noise in the inside information, governed by
the parameter a € (0,1)) to knowledge that the stock price will end up below the
strike. With this knowledge, it is intuitively plausible that the insider would exercise
the option early, knowing that it will end up out of the money, and this would make
the ESO less valuable as time progresses.

We shall use this property below to establish that the exercise boundary is non-
increasing, which is an ingredient in our subsequent proof of the smooth pasting
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condition. An alternative to our approach would be to use an iterative procedure
due to Muthuraman [15], which seeks to solve American option problems using a
sequence of problems each with known exercise boundary, and with successively
better approximations to the true boundary. This would be a good topic for future
research, and might be able to show that the smooth pasting condition holds.? In
particular, this would imply that in fact the exercise boundary is non-increasing
and that the time decay property is valid.

Proof. [Proof of Theorem 3.3] The dynamics of the stock price with respect to the
enlarged filtration F” are

1
dS; = Si[a(t, Sy)dt + odBF], alt,s) = B(t,logs) + 502. (3.5)

Using the Tanaka-Meyer formula (Jeanblanc et al. [9], Chapter 4) applied to the
semi-martingale S, we have

e Sy —K)T =e (S — K)T — 7‘/ e "P(S, — K)+dp—|—/ e "y, kydS,
t t

1 u
+§/ e "PALE(S), 0<t<u<T,
t

where L% (S) denotes the local time of S at level K. We take expectation given
S; = s (and of course, implicitly, given L = ¢, with this dependence suppressed).
It is not hard to verify that the stochastic integral is a (P, F¥) martingale, and we
obtain, on using the dynamics (3.5),

Ele™™(Sy — K)*|S; = 5]

=e"(s-K)"+E {/ e "Pllalp,Sp) —1)S, + rK]]l{sp>K}dp Sy = s]
t
1 u
+§E[/ e "PALE(S) St:s}, 0<t<u<T. (3.6)
t

We proceed formally for the moment, and indicate further below how to make the
following argument rigorous. The local time may be represented as

LE(S) = /ta(sp - K)d(S),, 0<t<T,
0

where (+) is the Dirac delta function. We shall give meaning to this heuristic expres-
sion further below. Using this representation of L*(S) we convert (3.6) into

Ele (8, — K)* | Sy =s] — (s — K)*

= E[/ e P70 A(p, Sp)dp’ Sy = s}, 0<t<u<T, (3.7)
t

2We thank an anonymous referee for pointing us towards this reference.
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where

Alt,s) :

1
[(a(t,s)—r)s—|—rK]]l{S>K}—|—502555(5—K), 0<t<T, scRt.

Jacka and Lynn [8] use a similar construction to (3.7), but for smooth payoff func-
tions, to analyse time decay of optimal stopping problems governed by diffusions.

Now consider two times to, ¢ satisfying 0 < ¢ty < ¢t <T'. Suppose that (¢,s) € C.
Let 7*(t,s) denote the optimal stopping time for starting state (t,s) and define
v >0 by 7"(t,s) =: t + v. Applying (3.7) between ¢ and ¢ 4+ v, we obtain

t+v
0<V(t,s)—(s—K)" = E[/ e P A(p, S,)dp
t

Sy = 5] . (3.8)

Since tp+v is in general sub-optimal for the starting state (o, s), the same argument
applied over [tg, to + v] gives

to+v
Vto,s) — (s — K)* > E[ / e_r(p_tO)A(p,Sp)dp’ Sy, = s} (3.9)

to

From (3.8) and (3.9) we see that if A(%, s) is non-increasing in ¢, then we will have
V(to,S) - (S - K)+ > V(t,S) - (S - K)+ > Oa

implying that value function is non-increasing in time.
The condition that A(t, s) is non-increasing in ¢ translates to

(C —logs)
(Ta — t)2 ]l{s>K} <0.

This condition is clearly satisfied whenever s < K. When s > K (which is the case
whenever (¢,s) € C) it will always be satisfied for C' < log K, and with the outline
below of how to make the above arguments fully rigorous, this proves the first
statement in the theorem.

To be fully rigorous, one must give precise meaning to the representation of the
local time in terms of the Dirac delta function. This can be done in the classical
manner in which the generalised It6 formula for convex functions is established, by
approximating the Dirac delta function d6(x) by a sequence of probability densities
with increasing concentration at the origin. This type of argument can be found in
Secs. 3.6 and 3.7 of Karatzas and Shreve [10] and is outlined below.

One defines a sequence of probability density functions (or mollifiers, positive
C*° functions with compact support that integrate to 1) (¢n(z))nen as well as a
sequence of functions (u,(x))nen, given by

@y
Up () ::/ / on(z — K)dzdy, x€R, n>1,
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such that the following limiting relations hold:

€T

lim u,(z) = (r — K)*, lim v/ (z) = lim on(z — K)dz = 155 gy,
as well as

lim [ u/(z)g(z)de = lim [ pn(z — K)g(x)dx/ 0z — K)g(z)dz = g(K),
for any Borel function g(-). Thus, in the limit as n — oo, the function ¢, (-) takes
on the same properties as the Dirac delta.

One now applies the same arguments that led to (3.7) with u,(z) in place of
(z — K)*, so we are able to use the Itd formula because the u,, are C2. This gives

Bl 0y(8,) 15, = = () = B| [ 70040 Sp>dp\ 5]
t
where
1
An(t,s) == al(t, s)sul, (s) + 502551/;(3) —run(s), 0<t<T, scRT.

With this is place one looks for conditions such that A4,,(¢, s) is non-increasing in ¢,
and finally takes the limit as n — oo, drawing the same conclusions as before.

To prove the second part of the theorem, we need to establish that when C' >
log K, then time decay holds provided r = 0, since we already know that time decay
is valid for C' < log K, regardless of r. We do this by adapting a procedure found
in El Karoui et al. [4], first considering the time decay of a European ESO, and
then invoking a variant of an iterative procedure originally due to El Karoui [3]
which allows one to infer that the American ESO will inherit whatever time decay
property holds for the European ESO.

The European ESO value for starting state (¢,s) € [0,7] x RT and maturity
u < T is given by

VE(t,s;u) = EleT™ (S, — K)*| S, = 5],

where the dependence on a given value of L is suppressed as usual. A straightforward
computation using the transition density (2.8) gives

VE(, s;u) = e " [LESDD(2(t, 55u)) — KB(2(t, 5u) — B(t )],
where ®(-) is the standard cumulative normal distribution function and

m(t,logs;u) — log K
5(tu) ’

1
b(t, s;u) = m(t,logs;u) + EEQ(t;u), z(t, s;u) = E(t;u) +
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with m, ¥ defined in (2.9). Differentiation with respect to t gives

ove

T (t, s;u) = e (07D [(r + om + Ea—2> P(2) —rKd(z — %)

ot ot

o
+K—d'(z - %)|,
5]
where we have suppressed arguments of functions for brevity. Since ® and @’ are
positive and 9%/t is negative, the last two terms on the right-hand side are nega-
tive, so the European ESO value will be guaranteed to be non-increasing with time
provided that

0 ox
r+ a—T(t,log s;u) + X(t; U)E(t,u) <0.
This condition translates to
(T-1® 1.,
- >po U - — ).
C—logs>r T 59 (T, —u)

Suppose r = 0. We are ultimately interested in when the American ESO value will
exhibit time decay, and since V(¢t,s) = 0 for s < K, we only consider the case
when s > K. Then, for the European ESO value to exhibit time decay in the region
s > K we require

1
C —logs > —502(Ta—u), when s > K. (3.10)

Since the right-hand side is negative, the condition will be guaranteed if C' > log K.
Hence we conclude that for r = 0 and s > K, OV /0t(t,s;u) < 0if C > log K.

To complete the proof we now invoke the iterative procedure of El Karoui et al.
[4] to infer a property for the American option from the corresponding property for
the European value.

Denote the payoff of the option by h(s) = (s — K)*. Denote by (Su(t,$))t<u<r
the stock price process given initial condition S; = s, for t € [0, T]. Recall that the
American ESO value is given by

V(t,s) = sup Ele "7 In(S:(t,5))], 0<t<T, s>0.
TETt{‘T

For fixed (t,s) the process (e """V (u,S,(t,)))t<u<r is the smallest super-
martingale that dominates (e ™" (“"Yh(S,(t, 5)))t<u<r. We now construct V by an
iterative procedure found in [4], adapted to the situation in hand.

For any continuous Borel function ¢ : [0,7] x Rt — R, we define

(Rug)(t,s) :== E[e_r(“_t)g(u, Su(t,s))], 0<t<u<T, s>0.

So, in particular, we have V¥ (¢, s;u) = (R,h)(t,s) and this is decreasing in t for
r=0,s>K and C > log K.
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Define the operator

(Kg)(t,s) :== sup (Ryg)(t,s), 0<t<T, s>0.
w€lt,T)
It is straightforward to see that Ch also exhibits time decay. Moreover, for r = 0
and s > K, Kh > h if C' > log K, by virtue of the Jensen inequality, since we have
for any u € [t,T]:

(KRh)(t,s) > (Ruh)(t,s) = e " DE[(Su(t,s) — K)*]
> e "WTD(B[S, (t,5)] — K)T

+
= (b <s exp [ﬂ(m log s)(u —t) + %Ez(t; u)} - K) .
Then, if r = 0, we see that (ICh)(t,s) > h(s) provided that
B(t,logs)(u—1t) + %Ez(t;u) > 0.

This is (3.10), so for s > K will hold whenever C' > log K.

Since Kh > h, we have K"1h > K"h, where K" denotes the n-fold iterate of
K. We can thus define

w:= lim K"h = sup K"h.
n—oo neN

It is easy to see that w inherits the properties of ICh, so w also exhibits time decay.

The remainder of the proof follows the same reasoning as Theorem 9.4 in El
Karoui et al. [4], to establish that w is the smallest fixed point of K dominating
h, and hence that w coincides with V', so that V also displays time decay when
r =0 and C > log K. Since V displays time decay when C' < log K, we conclude
that time decay holds for all values of C' when r = 0. This ends the proof. For
completeness, here is the argument.

We have w > K"Mlw = K(K"w). Letting n — oo, we obtain w > Kw. The
reverse inequality is trivial.

If w is a fixed point of K dominating h, then u = K"u > K™h. Letting n — oo,
we obtain u > w.

Fix (t,s) and consider Z, = e "(“"Dw(u, S,(t,s)). For 0 <t < uy < ug < T,
we have

E[Zu, | FL) = e 7D Ele 7w (uy, S, (1, 5)) | Fi]
= e "D (R w)(uy, Su, (¢, )
< e "= (Kw) (uy, S, (¢, 5))
= Zu,.

Thus, Z is a supermartingale dominating e " (*=Yh(S,,(, s)), and so must dominate
e W=V (u, S, (t, 5)) as well. In particular, w(t,s) = Zy > V (1, s).
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For the reverse inequality, we observe from the supermartingale property for

e "=V (4, S, (t, s)) that (R,V)(t,s) < V(t,s), and hence KV < V. Therefore, V/

is a fixed point of IC, and being a fixed point of I, V must dominate w. Hence, V'
and w coincide, and so V inherits the properties of w, and we are done.

O

Lemma 3.2. Suppose the map t — V(t,s) is non-increasing. Then the exercise
boundary s*(t) is non-increasing, for t € [0,T)].
Proof. Choose (t,s) € C for some s € RT and consider tg satisfying 0 < to <t <7
By assumption, V(tg,s) > V (¢, s), and therefore

V(ty,s) — (s —K)" >V(t,s) —(s—K)" >0, 0<t<T,

so that (o, s) is also in C. That is, for tg < ¢, we have that s < s*(¢) necessarily
implies that s < s*(p), and this can only be true if s*(¢) is at least as big as s*(¢),
that is, s*(tg) > s*(¢). O

This lemma implies that x*(t) = log s*(¢) is also non-increasing.

3.4. Smooth fit condition

In this subsection we establish the smooth-fit condition for F. There are three
ingredients in the proof: convexity of F in z (Theorem 3.1), a “regularity” property
of the exercise boundary z* (Lemma 3.3) and a result (Lemma 3.4) which allows
us to establish a lower bound for F, just below the exercise boundary.

The smooth-fit condition for F' is as follows. The proof is given at the end of
this subsection, after establishing some auxiliary lemmas.

Theorem 3.4. Suppose the exercise boundary is non-increasing. Then the value
function satisfies the smooth fit condition, that is

Fy(t,z*(t)) = e e O < Vi(t,s*(t) =1, forallte|0,T).

When the exercise boundary is non-increasing, we have the regularity result
below characterising the boundary. It states that if the log-stock price process starts
arbitrarily close to the boundary, then it will hit the boundary in the next instant.
This is in the spirit of the definition of a regular boundary point in the context of
the Dirichlet problem (see Definition 4.2.9 and Theorem 4.2.12 in [10]).

Lemma 3.3. Suppose the exercise boundary is non-increasing. Denote by 7*(t, x)
the optimal stopping time for F(t,x), for some (t,x) € [0,T) x R. Then, we have

liI%T*(t,x*(t) —€)—t, as, 0<t<T.
€e—
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Proof. Without loss of generality, set the starting time to zero, write X (x) =
X (0, z) for the value of the log-stock price given Xy = z, as well as 7%(z) = 7°(0, z)
and z*(0) = x*. For ¢ > 0, since the exercise boundary is non-increasing we have

" (z" —€) <inf{p € [0,T) | X, (2" —€) > z"}. (3.11)

From the solution (2.7) for X (z) and the Law of the Iterated Logarithm for Brow-
nian motion (Section I1.16 of Rogers and Williams [17]), we have

sup Xy(x) >z, as.,
0<u<p

for every p > 0. Hence there exists a sufficiently small € > 0 such that

sup X, (z* —¢€) > 2", as.
0<u<p

Hence the right-hand side of (3.11) tends to zero as e — 0, and this completes the
proof. O

The next ingredient we need for the proof of smooth fit is the following lemma.

Lemma 3.4. Let (t,x) € [0,T) x R and denote by X (t,x) the log-stock price with
initial condition X; = x. Denote by (T¢)e>0 a family of ’Z;,LT-stopping times converg-
ing to t almost surely as e — 0. Then X (t,x) satisfies

1
lir% —(exp(X; (t,z)) —exp(X, (t,z —€))) =e®, as.
e—0 €

Proof. Without loss of generality, consider a starting time ¢ = 0. The same ideas
apply to any starting time ¢ € [0,7"). Write X (z) = X (0, ) for the log-stock price
with initial condition Xy = x € R. For € > 0, define
1
Ay(e) := g(ﬁ(u,XU(x)) —Bu, Xu(x—¢€))), 0<u<T. (3.12)

Using (3.2), we have

1 1 Te
Z(eXre(@) _ eXre(@=0)y = ZpXre(@—e) [exp{e(l —|—/ Au(e)du)} - 1].
€ € 0

Using Taylor’s expansion, we get

1(eXfe @) _ eXre(@=e)y — oXre(z=6) (1 + / “Au()du + O(e)),
0

€

where O(e) denotes terms of order € or higher. Observe that
liH(l) Ay(e) =b(u, Xy(2))Dy(z), 0<u<T, as,

where b, D are defined in (3.3). Then, using the fact that lim._o7. = 0 (since we
have set ¢ = 0) and eX~ (r=€) — ¢% a.s. completes the proof. O
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Note that if the drift § was constant or a deterministic function of time, then
the lemma would follow directly from the fact that A in (3.12) is equal to zero.
We now prove the smooth fit condition.

Proof. [Proof of Theorem 3.4 (Smooth fit)] It entails no loss of generality if we set
r =0 and ¢ = 0, but significantly simplifies notation. Write F'(z) = F(0,z) and
2* = 2*(0). Then F(z) = (e — K) for & > x*, so Fy(v*+) = e® .

On the other hand, from Theorem 3.1 we know that the mapping x — F(x) is
increasing and convex, so Fj,(z*—) < e . Hence it suffices to show that

F(z*—) > e .

As before let 7*(z) denote the optimal stopping time for starting state z. Since
7*(x — €) is suboptimal for F(z), we have

F(z) = F(z — €) > El(exp(Xr+(g—e) (7)) — K)" — (exp(Xpe(z—e) (@ — €)) — K)*]
> E[(eXT*(mfe)(w) — eXT*(1’5)(wie))]l{XT*(I_F)(m—e)ZlogK}L (3.13)

where we have use the fact that + — X () is increasing.
By Lemma 3.3 and the fact that it is never optimal to exercise below the strike,
we have

li_r}(l)]l{xr(m*—e)(z*—E)ZIOgK} =Tixy(a*)>logx} = 1, as. (3.14)

Also, by Lemma 3.4, we have

5

]_ * *
lim = (eXr@ -0 (@) _ eXr@r—o@ =) — 2" 54 (3.15)

e—0 €
Using (3.14) and (3.15) and noting that all terms inside the expectation in (3.13)
are uniformly integrable, Theorem I1.21.2 in Rogers and Williams [17] gives

lim 2[F(z*) — F(z* — )] > ¢,

e—0 €

which completes the proof. |

3.5. The early exercise decomposition

We now transform the state space from log-stock price to stock price in order
to state the early exercise decomposition for the ESO value function V, given by
e "V (t,s) = F(t,logs). With this change of variable the smooth fit condition
becomes Vi(t,s*(t)) = 1 and the PDE for F' in the continuation region transforms
to L5V —rV =0, where £ is the extended generator of S, given by

0 9 1 4 4 0?

1
s _ Y ~ oLz — 252
L” = 5 +a(t’3)583 + 505 o3 a(t,s) = B(t,log s) + 59" (3.16)

We then have the following decomposition for V.
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Theorem 3.5. The value function V of an executive stock option with strike K
and maturity T has the following decomposition into a Furopean option value and
an early exrercise premium:

V(t,s)=e "TVE[(Sp — K)T|S; = s] +p(t,s), (t,s)e0,T] xR, (3.17)

where
T
p(t,s) = / e " TIE(((r — alu, 8))Su — rE) (s, 550y | St = sldu,  (3.18)
t
is the early exercise premium.

Proof. The smooth fit condition implies that F}, is continuous. We have that F,
is continuous in the continuation region and equal to e~"**% in the stopping region.
Though the second derivative might not be continuous across the exercise boundary
we may nevertheless apply the generalised It6 formula for convex functions to F,
to obtain the Doob-Meyer decomposition of the Snell envelope:

T
F(T,X7) = F(t, X;) + a/ Fy(u, X,,)dBE
t

T
1
+/ c [(ﬁ(u,xu) T30 r) e TK} Iix.>arydu, 0<t<T,
t

where we have used F(t,z) = e "(e” — K) for x > x*(t). Now take expectation
conditional on X; = z (and of course given a known value of L), change variables
from X to S, and (3.18) follows. m|

3.6. Integral equation for early exercise boundary

The integral equation for the early exercise boundary follows by setting s = s*(¢) in
(3.18), yielding the following corollary. To be explicit we restore the dependence on
the random variable L. For L = ¢, denote the insider’s exercise boundary by s;(t).
Using V' (t,s5(t)) = sj(t) — K, we obtain:

Corollary 3.1. For L ={ € R, the insider’s exercise boundary s, satisfies, for 0 <
t<T,

s;(t) =K +e " TOE[(Sp — K)T| S, = s*(t),L = /]

T
+/ e "B (5,5 6w} ((r = alu, 84))Su = 7K) | Sy = 57(1), L = {]du.
t

3.7. Numerical solution of early erercise boundary equation

The algorithm used to numerically solve the integral equation in Corollary 3.1 is as
follows. For a fixed ¢t € [0, 7] and ¢ € R, we treat the computations of the expecta-
tions as European option prices, with stock price dynamics under F¥ given by

dS, = a(u, S,)Sudu + oS, dBE,
with a defined in (3.16).
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These are computed by solving the associated Black-Scholes style PDE using a
central difference scheme, for a sufficiently wide range of s;(¢). We discretise the
interval [0, 7] and use the trapezoidal rule to approximate the integral, solving the
discretised integral equation using the fixed point method. The exercise boundary
is computed by backward recursion with the starting value sj(7) = K.

Figure 1 shows the insider’s exercise boundaries when the stock appreciation
rate p is higher than the interest rate. The insider possesses noisy log-stock price
knowledge with L = alog80 with a = 0.5,0.6,0.7, so the insider knows that the
ESO is likely to be at-the-money at maturity with varying degrees of certainty.

The impact of inside information in this case is clear. Recall that it is not optimal
for the regular agent to exercise early when p > r.® This conclusion is altered for
the insider, who has greater certainty than the regular agent that the option will
expire out of the money, and this induces early exercise. We also observe that the
exercise boundary is lower as a increases towards 1, and the privileged information
becomes less noisy. The insider becomes more certain that the option will expire
worthless and early exercise is induced at lower thresholds.

Figure 2 shows the regular trader’s and insider’s exercise boundaries when p < r.
The insider possesses noisy log-stock price knowledge where L = 0.5log Sy with
St = 178,80,82,90.

110 T T T T T T T T T

—a=05
——a=0.6

105

100

95

Stock price

90

85

80 ] ] ] ] ] ] ] ] ]
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Time to maturity

Fig. 1. Insider’s exercise boundaries for L = alog80 with different values of the noise coefficient
a, 7 =001, p=002 0c=02T=1, K = 80.

3Indeed, attempts to solve for the regular agent’s exercise boundary numerically when p > r leads
to divergence when executing the fixed point method.
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90
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(%]
86
84
82
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1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
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Fig. 2. Regular trader’s and insider’s exercise boundaries for L = 0.5log St with different values
of Sp,r=001, u=0,0=02,T=1, K =80.

For Sy = 78 and St = 80, the insider has a lower exercise boundary than
the regular agent due to his pessimistic inside information, in a similar vein to
the results in Fig. 1. For Sp = 82, the insider knows that the ESO is likely to be
in-the-money, yet still exercises the ESO earlier than the regular agent. Although
the fact that the ESO is likely to end up in-the-money tends to delay exercise,
there is a competing effect of a lower variance in the stock price as perceived by
the insider, and this induces earlier exercise. For the case Sp = 90, the privileged
information is sufficiently optimistic so that the insider exercises later than the
regular trader.

This suggests that inside information has two potentially competing effects: a
reduced variance of the stock price that hastens exercise and a directional effect,
which can hasten or delay exercise.

4. Conclusions

Using an initial enlargement of filtration to augment a Brownian filtration with
noisy information on the value of a stock at the maturity time of an ESO, we
have analysed the stopping decision faced by an insider who does not trade the
stock or other securities. This shows that the insider can exercise the ESO before
maturity, in situations in which a regular agent would not. This involved establishing
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fundamental properties of the value function (notably convexity, time decay and
smooth fit) when the price process is a time-inhomogeneous diffusion.

This paper has set a framework in which such questions can be studied. An

interesting direction for future work is to add trading opportunities in outside assets

and risk aversion for the agent.
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