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� Abstract In many filamentary structures, such as hydrostatic arms, roots, and stems, the active or

growing part of the material depends on contractile or elongating fibers. Through their activation by muscular

contraction or growth, these fibers will generate internal stresses that are partially relieved by the filament

acquiring intrinsic torsion and curvature. This process is fundamental in morphogenesis but also in plant

tropism, nematic solid activation, and muscular motion of filamentary organs such as elephant trunks and

octopus arms. Here, we provide a general theory that links the activation of arbitrary fibers at the microscale

to the generation of curvature and torsion at the macroscale. This theory is obtained by dimensional reduction

from the full anelastic description of three-dimensional bodies to morphoelastic Kirchhoff rods. Hence, it

links the geometry and material properties of embedded fibers to the shape and stiffness of the rod. The

theory is applied to fibers that are wound helically around a central core in tapered and untapered filaments.

1 Introduction

Filaments are soft slender mechanical structures that are roughly defined by having one dimension
much larger than the typical scale of its cross section. Around us, filaments are the strings, ropes,
strands, wires, cables, and cords that run through our lives. In mechanics, they include beams,
strings, strips, ribbons, and rods [1]. Passive filaments have fixed material and geometric properties
such as length, girth, intrinsic shape, and rigidity. The central problem in the mechanics of these
passive objects is to obtain their shapes for given boundary conditions, body forces, and external
loads. Due to their particular aspect ratio, the shape of such objects can be captured from their
central axis and modeled using a combination of differential geometry of curves and physical balance
laws for forces and moments, leading ultimately to the Kirchhoff equations of rod theory [2, 3, 4].
These equations have been successfully applied to structures as varied in size and functions as DNA,
proteins [5, 6, 7, 8, 9, 10], polymers and liquid crystals [11], whips and lassos [12, 13], and bridge
cables [14, 15].

By contrast, active filaments share the same slender geometry but have the additional feature
of allowing internal remodelling. Many examples of such active structures can be found in the
natural world [16] including neurons [17], anguilliform swimmers [18], roots [19], stems [20], tendrils
[21], trees [22, 23], seed pods [24], and various tentacles [25, 26, 27, 28, 29, 30]. In the engineering
world, it includes some soft robotic arms [31, 32, 33, 34, 35, 36], liquid crystal elastomers [37] and
actuators [38, 39]. Internal remodeling can be generated by external fields as in the case of magnetic
actuation, by growth during morphogenesis, or by muscular contraction. In most situations, the
internal changes can be modeled by the relative change of internal geometry of a volume element
along a principal direction. Since the activation is done in a single distinguished direction, we refer
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to such a volume element as a fiber, and the activation direction as the fiber direction. as shown in
Fig. 1. There are now two main questions: What is the intrinsic shape of the filament, for a given
activation field, in the absence of body forces and boundary loads? And, what is the shape of the
filament when loaded given this intrinsic shape? Here, we will focus on the first question to obtain
the active filament formula linking fiber activation to intrinsic curvature and torsion.

Our starting point is the general theory developed in [40] for the problem of determining the
curvature, extension, and torsion of a filament for an arbitrary anelastic field. Accordingly, we
treat the filament as a morphoelastic solid. This is a continuum that can grow, remodel, support
stresses and can be subject to large deformations [41, 42, 16]. We use the theory of morphoelasticity,
which represents deformations due to elasticity, growth, and remodeling through a multiplicative
decomposition of the deformation gradient into elastic and growth tensors [16]. In the present
work, the decomposition is naturally extended to include the activation process, such as mass-
preserving contraction or elongation, in the growth tensor. The problem is then to obtain from the
specification of a growth tensor representing fiber activation for the full three dimensional problem,
the corresponding reduced one-dimensional morphoelastic rod as defined in [43, 44].

2 General set-up

We briefly recall the basic assumptions from [40]. We assume that the filament is a three-dimensional
tubular body with slow variation of its shape along its axis and that is allowed to grow. The initial
structure is stress-free and growth or anelastic activation is defined at every point as a local change
of a volume element. Following the procedure in [40], we define a growth tensor, characterizing at
each point the local change of shape of a volume element by the addition, removal, or redistribution
of mass. We assume that this filamentary structure deforms into another tubular, structure defined
by variations along a deformed centerline. The slenderness of this structure introduces naturally
a small parameter ε in the problem that can be used to asymptotically expand the energy of the
system. This energy can then be minimized and the stresses and strains within the section can
be obtained explicitly, leaving an energy that can be identified with the energy of a rod. This
type of dimensional reduction is related to a large body of work in rational mechanics focused on
obtaining systematically reduced models from three-dimensional elasticity [45, 46] and anelasticity
[47, 48, 49, 50, 51, 52]. The emphasis here is not in justifying the reduction but using it to explore
the possible shapes that can be created through simple and universal filamentary structures.

2.1 The growth tensor for activation

We consider an initial elastic tubular configuration B0 ⊂ R3 with material points (X,Y, Z) ∈ B0

that can be decomposed as the product [0, L]× S of a segment of the Z-axis between 0 and L and
a family of cross-sections SZ whose centroids are on the Z-axis and oriented with the condition∫

SZ
EX dXdY =

∫
SZ
EY dXdY =

∫
SZ
EXY dXdY = 0, (1)

where E is the Young’s modulus. The typical length scale of each section is O(ε), corresponding to
a typical or averaged radius, and each cross section is a slowly varying function of the arc length Z,
so that, on short scales, the tubular structure is cylindrical.

We consider the deformation χ(X) : B0 → B from the initial configuration B0 to the current
configuration B and model the growth or activation through a tensor G so that

F = Gradχ = AG, (2)
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Growth along �bers
(a) (b) (c)

Muscle activation

Figure 1: (a), (b) A filamentary structure that contains a field of fibers embedded throughout its body.
(c) An infinitesimal volume element with embedded fibers can deform either through growth along
the fibers (with det(G) 6= 1 and ν = 0) or through muscle activation (with ν ∈ [0, 1/2]–see text), in
which case no new material is produced in the filament body and the change in size in the directions
perpendicular to the activating fiber is due to the Poisson effect with Poisson ratio ν.

where the gradient is taken with respect to the X coordinates and A is an elastic tensor describing
the elastic stretches related to a strain-energy density function W = W (A). The tensor G is given
with a strictly positive determinant. In the case of fiber activation, the determinant is determined
by the Poisson effect of the activating element. In the case of growth it is different from one for
growth or shrinkage. For the rest of the paper, we refer to any process with G 6= 1 as activation.
Activation is naturally expressed as a map from the cylindrical coordinates (εR,Θ, Z) of the reference
configuration to the cylindrical coordinates (r, θ, z) of the current configuration

G = (1 + G1)G0 = Gij ei ⊗ ej , i ∈ {r, θ, z}, j ∈ {R,Θ, Z}. (3)

where (er, eθ, ez) and (eR, eΘ, eZ) are the usual unit cylindrical basis vectors in the current and
reference configuration, respectively, and Gij = Gij(εR,Θ, Z). We restrict our analysis to growth
tensors that are small deviations with respect to identity, where the deviation is measured with
respect to the small parameter ε:

G = 1 + εG0(X). (4)

A key assumption of our theory is that we restrict our attention to a particular family of possible
deformations, mapping a straight tubular structure to a filament in space B with centerline r(Z) as
shown in Fig. 2. This centerline is the image of a segment of the Z-axis defining the centerline of
the initial configuration. From this centerline, we define a local director basis (d1(Z),d2(Z),d3(Z))
where r′(Z) = ζd3, ζ is the axial extension, and ( )′ denotes derivatives with respect to the material
coordinate Z. From the director basis, we define the Darboux curvature vector u = u1d1+u2d2+u3d3.

3



Figure 2: We consider a tubular structure in the reference configuration (left) and its deformation in
the current configuration (right). The deformed configuration is fully parameterized by the centerline
r(Z) and the deformation of each cross section.

This vector describes the evolution of the director basis along the filament, satisfiying

d′i(Z) = ζu× di. (5)

The mapping χ : B0 → B is then written

χ(X) = r(Z) +
3∑
i=1

εai(εR,Θ, Z)di(Z), (6)

where the reactive strains ai correspond to deformations of the sections and are to be determined;
these satisfy ai(0, 0, Z) = 0 so that the Z-axis maps to the centerline r(Z). The particular form
(6) expresses the deformation of a tubular body in terms of its centerline and director basis. We
note that, since the section has a typical radius ε, the variable R is an order 1 quantity. Taking
ζ = 1 + εξ, the deformation gradient F = Fijdi ⊗ ej , i ∈ {1, 2, 3}, j ∈ {R,Θ, Z} is then given by

F =

 a1R
1
Ra1Θ ε(1 + εξ) (u2a3 − u3a2)

a2R
1
Ra2Θ ε(1 + εξ) (u3a1 − u1a3)

a3R
1
Ra3Θ (1 + εξ) (1 + ε(u1a2 − u2a1))

 . (7)
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Fiber

(a)

(b)

Figure 3: (a) We consider arbitrary fibers characterized by angles α = α(R,Θ) and β = β(R,Θ) with
respect to the section. (b) Representative fiber architectures for constant α and β: axial (top-left),
helical (top-right), hoop (bottom-left), and radial (bottom-right) fibers.

Next, we consider a continuum with a distinguished direction that we call a fiber. Whereas, it
is a model for a material that contains fibers that can be activated, it is worth noting that in our
model, the material does not actually contain physical fibers within a matrix. Rather, we assume
that the density of fibres is large enough so that they can be represented, locally, by a vector field
m as shown in Fig. 3. In cylindrical coordinates, this arbitrary fiber direction m is described by
two angles α and β:

m = sinα sinβ eR + sinα cosβ eΘ + cosα eZ , α, β ∈ [−π/2, π/2]. (8)

Helical fibers are tangent to a cylinder centered around the axis and are therefore prescribed by
β = 0 and α ∈ [−π/2, π/2] with limiting cases of a hoop fiber at α = +π/2 and an axial fiber at
α = 0. A right-handed helical fiber is given by 0 < α < π/2 and a left-handed helical fiber is specified
by −π/2 < α < 0. Sectional fibers lie in the cross-section and are characterized by α = π/2, with
radial fibers given by β = π/2 and in the limit β = 0, we recover hoop fibers, as before.

Since we are only considering elongation or contraction along this fiber, m must be an eigenvector
of the tensor G with eigenvalue g. Similarly, the perpendicular vector m⊥ = cosβ eR − sinβ eΘ
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and m′⊥ = m×m⊥ are also eigenvectors of G:

G ·m = δm, G ·m⊥ = δ⊥m⊥, G ·m′⊥ = δ′⊥m
′
⊥. (9)

We consider two cases: growth and activation (see Fig 1(c)). In the growth case, there is a change of
length of the fiber δ = 1 + εg(R,Θ) that is not accompanied by a change in the transverse direction
and δ⊥ = δ′⊥ = 1. For active fibers, the extension (contraction) of the fiber generates a contraction
(extension) in the transverse directions, with any change in volume due to the action of G described
by Poisson’s ratio. Therefore, for small ε, we have δ⊥ = δ′⊥ = 1− ενg(R,Θ) and δ = 1 + εg(R,Θ),
where ν is Poisson’s ratio. We see that both cases can be combined by taking either ν = 0 for
growth and ν ∈ [0, 1/2] for an active fiber (in the case ν = 0, there is no distinction between an
active fiber and growth as the material extends without lateral contraction). We emphasize that α,
β and g may be functions of R, Θ and, possibly, slowly varying functions of Z. Combining both
cases, the growth tensor in cylindrical coordinates is

G = 1 + εg

 (1+ν) sin2α sin2β−ν (1+ν) sin2α sinβ cosβ (1+ν) sinα cosα sinβ
(1+ν) sin2α sinβ cosβ −(1+ν) sin2α sin2β−ν (1+ν) sinα cosα cosβ
(1+ν) sinα cosα sinβ (1+ν) sinα cosα cosβ 1

2(1−ν+ (1+ν) cos 2α)

 .
(10)

2.2 The energy density

We assume that the growing material is a compressible hyperelastic material with strain-energy
density W = W (A). The total energy of the system is

W =

∫
B0

W (A)detGdXdY dZ, (11)

which can be written in terms of F and G as

W =

∫
B0

V (FG−1,G)dXdY dZ, V = W (FG−1)detG. (12)

The problem is then to minimize this energy for a given G over the set of allowable deformations
gradients F considered above. In cylindrical coordinates, the energy functional can be written

W = ε2

∫ L

0
dZ

∫
S
V (FG−1,G)R dRdΘ. (13)

We proceed by expanding the inner variables ai, with the auxiliary energy density taking the form

V (FG−1,G) = V0 + ε2V2 +O(ε3), (14)

where each Vi = Vi(a
(i)
1 , a

(i)
2 , a

(i)
3 , a

(i)
1R
, a

(i)
2R
, a

(i)
3R
, a

(i)
1Θ
, a

(i)
2Θ
, a

(i)
3Θ

). The Euler-Lagrange equations then
become

∂

∂R

∂Vi

∂a
(k)
jR

+
1

R

∂Vi

∂a
(k)
jR

+
∂

∂Θ

∂Vi

∂a
(k)
jΘ

− ∂Vi

∂a
(k)
j

= 0, j = 1, 2, 3, k = 0, 1, (15)

with the appropriate natural boundary conditions.
To lowest order, the solution of the Euler-Lagrange equations is given by

a(0) = R(cos Θ, sin Θ, 0). (16)
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To order O(ε), the Euler-Lagrange equations are indentically satisfied. To order O(ε2), the solution
for the reactive strains is

a
(1)
1 = − λR

4(λ+ µ)
(Ru1 sin 2θ −Ru2 cos 2θ + 2ξ cos θ) + f1(R,Θ), (17)

a
(1)
2 =

λR

4(λ+ µ)
(Ru1 cos 2θ +Ru2 sin 2θ − 2ξ sin θ) + f2(R,Θ), (18)

a
(1)
3 = ω(R, θ) + u3φ(R, θ), (19)

where f1,2 are functions that only enter in the so-called reactive part of the energy and are not
needed to compute the moduli and intrinsic curvature.

The function φ(R,Θ) is the classic warping function and is a solution of the Neumann problem
for the Laplace equation:

∆φ = 0, X ∈ S (20)

n ·Gradφ = −Rn.eΘ, X ∈ ∂S, (21)

where n is the unit outward normal vector to the cross section boundary ∂S.
The function ω(R,Θ) is a new function that we call the torsion function. It is given by the

solution of the Poisson equation with null Neumann condition:

∆ω = −2R(1 + ν) [sinα cosα (RgR sinβ + gΘ cosβ) +

g
(
−RαR sin2 α sinβ + αΘ cos(2α) cosβ +RαR cos2 α sinβ−

βΘ sinα cosα sinβ +RβR sinα cosα cosβ + sinα cosα sinβ)] (22)

n ·Gradω = 0, X ∈ ∂S. (23)

With the solution for the reactive strains, the energy takes the form

E = ε4

∫ L

0
dZ

∫
S
RV2(a(0),a(1); u1, u2, u3, ξ) dR dΘ +O(ε5). (24)

Since the strain-energy density is isotropic and its contribution in the expression for V includes at
most quadratic terms in the strains, we can use without loss of generality the quadratic approximation
of W :

W =
1

2

[
µ
(
tr
(
H.HT

)
+ tr(H2)

)
+ λ tr(H)2

]
, (25)

where H = A− 1 and µ, λ are the Lamé parameters. After integration, up to order O(ε4), we find

E =
1

2

∫ L

0
K0(ζ − ζ̂)2 +K1(u1 − û1)2 +K2(u1 − û2)2 +K3(u3 − û3)2 dZ. (26)

Here we have used ξ = (ζ − 1)/R0 where R0 is the typical scale of the cross section. We recover the
classic extensional, bending, and torsional stiffness coefficients of rod theory

K0 =

∫
S
ER dR dΘ, (27)

K1 =

∫
S
ER3 sin2Θ dR dΘ, (28)

K2 =

∫
S
ER3 cos2Θ dR dΘ, (29)

K3 =

∫
S
µ

(
R3 + 2RφΘ +

1

R
φ2

Θ +Rφ2
R

)
dR dΘ, (30)
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where E = µ(3λ+ 2µ)/(λ+ µ) is the Young’s modulus which can be taken as a function of position.
If E and µ are constant, we recover

K0 = EA, K1 = EI1, K2 = EI2 K3 = µJ, (31)

where A is area of the the cross section whereas I1,2 are its second moments of area, and J is a
parameter that depends only on the cross-sectional shape and the warping function. In addition, we
define

H0 =
1

2

∫
S
E(1− ν + (1 + ν) cos 2α)g R dR dΘ, (32)

H1 =
1

2

∫
S
ER2(1− ν + (1 + ν) cos 2α)g sin Θ dR dΘ, (33)

H2 =
1

2

∫
S
ER2(1− ν + (1 + ν) cos 2α)g cos Θ dR dΘ, (34)

H3 =
1

2

∫
S

E

ν + 1

(
g(ν + 1) sin(2α)

(
(R2 + φΘ) cosβ +RφR sinβ

)
−
ωΘ

(
φΘ +R2

)
R

−RωRφR
)

dR dΘ. (35)

From these quantities, we extract the intrinsic extension and curvatures:

ζ̂ = 1 +H0/K0, û1 = H1/K1, û2 = −H2/K2, û3 = H3/K3, (36)

We refer to the last three set of definitions for Hi, Ki and ûi as the active filament formulas as they
describe in a fundamental way how curvatures are related to internal stresses induced by growth or
activation. These formulas are named in honor of the fundamental helical spring formulas obtained
by Tait and Thompson that relates the curvatures to external stresses [53, 54].

3 Particular case of a circular cross-section

The expressions above greatly simplify if we consider a circular cross-section of radius R0. In that
case, the stiffnesses Ki have been tabulated for different types of inclusions and the appropriate
formulas can be found in textbooks for different profiles of E. For a uniform material with no
variations of E, we have:

K0 = EπR2
0, K1 = E

πR4
0

4
, K2 = E

πR4
0

4
, K3 =

E

1 + ν

πR4
0

4
. (37)

More interestingly, the warping function is identically zero and, since ω is periodic in Θ, it will not
contribute. We then obtain an explicit expression in terms of the given functions g = g(R,Θ), α =
α(R,Θ), β = β(R,Θ) and the material parameters ν and E:

H0 =
1

2

∫ R0

0
R dR

∫ 2π

0
Eg(1− ν + (1 + ν) cos 2α) dΘ, (38)

H1 =
1

2

∫ R0

0
R2 dR

∫ 2π

0
Eg(1− ν + (1 + ν) cos 2α) sin Θ dΘ, (39)

H2 =
1

2

∫ R0

0
R2 dR

∫ 2π

0
Eg(1− ν + (1 + ν) cos 2α) cos Θ dΘ, (40)

H3 =
1

2

∫ R0

0
R2 dR

∫ 2π

0
Eg cosβ sin 2α dΘ. (41)
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3.1 Ring solution

We consider first the case of a ring of helical fibers R ∈ [R1, R2] with constant moduli in a cylinder
of radius R0. We further assume that the helical structure is created initially by a uniform twist
and thus satisfies the relationship

tanα

R
=

tanα2

R2
, (42)

where α2 ∈] − π/2,+π/2[ is the helical angle on the cylinder of radius R2. Assuming that each
cylinder contains physical helical fibers, the activation g on two different sections is related to the
angle so that

g(R,Θ) = γ(Θ− Z

R
tanα) = γ(Θ− Z

R2
tanα2). (43)

The functions Hi can then be expressed in terms of the first three Fourier coefficients of γ

a0 =
1

π

∫ 2π

0
γ(θ) dθ, a1 =

1

π

∫ 2π

0
γ(θ) cos θ dθ, b1 =

1

π

∫ 2π

0
γ(θ) sin θ dθ, (44)

as follows

H0 =
Eπ

2
δ0a0, (45)

H1 = −Eπ
3
δ1A sin(ϕ− Z

R2
tanα2), (46)

H2 =
Eπ

3
δ2A cos(ϕ− Z

R2
tanα2), (47)

H3 =
Eπ

2(1 + ν)
δ3a0, (48)

where we defined A and ϕ through a1 = A cosϕ, b1 = −A sinϕ and

δ0 = (ν + 1)R2
2 cot2 α2 log

(
R2

2 sec2α2

R2
1 tan2 α2 +R2

2

)
+ ν

(
R2

1 −R2
2

)
, (49)

δ1 = δ2 = (R1 −R2)
(
ν
(
R2

1 +R2R1 +R2
2

)
− 3(ν + 1)R2

2 cot2 α2

)
+ 3(ν + 1)R3

2 cot3 α2 arctan

(
R1 tanα2

R2

)
− 3α2(ν + 1)R3

2 cot3 α2, (50)

δ3 = −(1 + ν)R2 cotα2

(
R2

1 −R2
2 +R2

2 cot2 α2 log

(
2R2

2(
R2

2 −R2
1

)
cos 2α2 +R2

1 +R2
2

))
.

(51)

From these expressions, we compute the intrinsic stretch and curvatures:

ζ̂ = 1 +
a0δ0

2R2
0

, (52)

û1 = −4Aδ1

3R4
0

sin(ϕ− Z

R2
tanα2), (53)

û2 = −4Aδ2

3R4
0

cos(ϕ− Z

R2
tanα2), (54)

û3 =
2δ3

R4
0

a0. (55)

9



These intrinsic curvatures have the familiar form û = (ζ̂κ̂ sin ϕ̂, ζ̂κ̂ cos ϕ̂, ζ̂ τ̂ + ϕ̂′) [16, p.103] from
which we obtain the intrinsic Frenet curvature and torsion:

κ̂ =
4

3ζ̂R4
0

|δ1|A, (56)

τ̂ =
1

ζ̂

(
tanα2

R2
+ 2

δ3a0

R4
0

)
. (57)

Note that we must include the factor ζ̂ here to take into account the change of length in the rod
due to activation. A few comments are in order:

• In the case of incompressible activation (ν = 1/2), the factor (1 − ν + (1 + ν) cos 2α) that
appears in (38–40) is δ1 = 1+3 cos 2α. It vanishes at the magic angle [16] given by α ≈ ±54.73
degrees. Therefore, we can design a system with fiber angles close to that particular angle
so that δ1 = δ2 = 0. For this system there is no curvature induced by the activation of the
fibers [55]. The absence of extension is well known in the theory of McKibben actuators.
The absence of curvature at that angle seems to be new and unexpected. It will be further
analyzed in the next section.

• The contribution to the curvature from activation is specified by the amplitude of the first
Fourier components A =

√
a2

1 + b21. This amplitude can be controlled by a function γ that
can be either continuous or discrete.

• The activation of a ring sector with Aδ1 6= 0 leads in general to an intrinsic helical centerline
since both curvature and torsion are constant.

• Right-handed helical fibers can lead to a left-handed helical shape if −a0 is sufficiently large,
which requires average contraction of the fiber on the ring. Any extension of the fibers will
lead to a shape with the same handedness.

• We emphasize again that the contribution of any activation function γ(θ) only enters through
its first three Fourier coefficients. Hence, on a ring there are at most three independent degrees
of freedom dictating the curvatures.

3.2 Ring solution with piecewise constant and uniform activation

We further constrain the system by assuming that activation is uniform along Z and piecewise
constant along θ, as shown in Fig. 4, and take R2 = R0. Let B[x;x0, σ] be the real 2π-periodic
function that is zero everywhere except in the interval [x0 − σ/2, x0 + σ/2] where it is equal to one.
Then, our activation function has N , equally spaced, helical activators in the ring:

γ(θ) =

N−1∑
i=0

γi+1B[θ; θ0 +
2πi

N
, σ], (58)

where σ ≤ 2π/N to avoid overlap. The corresponding Fourier coefficients are:

a0 =
σ

π

N∑
i=1

γi, (59)

a1 = 2
sin(σ/2)

π

N−1∑
i=0

γi+1 cos(θ0 +
2πi

N
), (60)

b1 = 2
sin(σ/2)

π

N−1∑
i=0

γi+1 sin(θ0 +
2πi

N
). (61)
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. . .

(a)

(c)

(b)

Figure 4: Schematic representation of piecewise constant activation distributions γ(θ) for the case of
a single ring geometry (a), and a geometry with M concentric rings (b). Red-filled regions correspond
to γ 6= 0, while all other regions are not activated. (c) Three-dimensional structure of an activated
filament showing how the active regions twine around the main axis based on the angle of the fibers.

We observe that there are only three independent variables for activation: a0, a1, and b1. Therefore,
one does not need more than three independent activators, i.e., the choice N = 3 is sufficient in
terms of their relative effect, and their angular extent can be adjusted to increase the magnitude of
the response. The variable θ0 is a phase that is used to adjust the initial position of the activator.
It can be set to zero without loss of generality by assuming that one of the filament ends can be
rotated arbitrarily. Therefore, for the rest of our analysis, we set θ0 = 0.

In order to understand the possible material and activation controls, we consider two extreme
cases.

3.2.1 Curvature without torsion

We first look at the possibility of creating intrinsic curvature with helical fibers (α2 6= 0) without
intrinsic torsion. From the relation (57), we see that it requires a combination of material properties
and activation. Indeed, δ3 has the same sign as tanα2. Hence, zero torsion can only occur if a0 is
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negative, which implies contraction on average, and requires

a0 = −R
3
0

2δ3
tanα2. (62)

In addition, we need A =
√
a2

1 + b21 to be non-vanishing, which implies that all the γi cannot be
equal to each other. We show in Fig. 5 that zero torsion is only possible for small values of the
helical angle, as higher values would require unrealistically large values of −γi.

(a)

a

(b) (c)

c
b

Figure 5: Deformed configurations for three different values of a0: (a) a0 = 0.7a∗0 below the threshold
value a∗0 ≈ −1.44, (b) a0 equal to the threshold value a∗0, (c) a0 = 1.3a∗0 above the threshold value
a∗0. Computations assumed α2 = π/6, R1 = 0.8, R2 = R0 = 1.0, L = 20, E = 1, ν = 1/2, and
a1 = b1 = 0.45. The three configurations are mapped to their corresponding points on the plot of a0
vs. α2. Configuration (b) exhibits zero torsion and non-zero curvature, and its respective point in the
(α2, a0) plane coincides with the threshold curve a0 = a∗0.

3.2.2 Twist without curvature

In the absence of curvature, there can be no torsion. Thus, the complementary problem to the
problem of curvature without torsion is twisting a rod in the absence of curvature. There are two
ways that can be used to remove curvature from the system.

First, by symmetry, we have that a1 = b1 = 0 if γi = γ for all i. In this case, the system does
not develop any curvature but only twist.

Second, we can design the structure so that δ1 = 0 for all activations. Indeed for given radii R1

and R2 = R0, we can choose the angle α2 so that δ1 = 0 as shown in Fig. 6. This can only happen
for a narrow range of angles between α∗2 ≤ α2 ≤ α∗∗2 , where α∗2 = arccos(−1/3)/2 is the magic angle
and α∗∗2 is the solution of 1 = −9α2 cot3 α2 + 9 cot2 α2.
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Figure 6: Values of R1/R2 as a function of the helical angle α2 leading to twist but no curvature.
Here, R2 = R0, ν = 1/2.

4 Multiple rings

We can design a filamentary structure with multiple rings as shown in Fig. 4. In this case, each new
ring contributes to the intrinsic curvatures additively. Denoting by a superscript ( )(i) a quantity
attached to the i-th ring from 1 to M , we simply have:

ζ̂ = 1 +
1

2R2
0

M∑
i=0

a
(i)
0 δ

(i)
0 , (63)

û1 = − 4

3R4
0

M∑
i=0

Aδ
(i)
1 sin(ϕ(i) − Z

R
(i)
2

tanα
(i)
2 ), (64)

û2 = − 4

3R4
0

M∑
i=0

Aδ
(i)
1 cos(ϕ(i) − Z

R
(i)
2

tanα
(i)
2 ), (65)

û3 =
2

R4
0

M∑
i=0

δ
(i)
3 a

(i)
0 , (66)

Where the expressions for δ
(i)
0 , δ

(i)
1 , δ

(i)
3 are obtained by replacing R1 and R2 by the internal and

external radii of the i-th ring R
(i)
1 and R

(i)
2 , respectively.

For these solutions, unless the helical angles follow the same rule (42) in all rings, the curvature
and torsion are not constant anymore and the activation induces therefore non-helical solutions
that can be controlled through the activation parameters. The space of solutions becomes quite rich
even with two rings, as demonstrated in Fig. 4. However, a difficulty arises here in that the space of
potential configurations cannot be easily quantified, since the actual position of the rod’s centerline
in space, r(Z), is not easy to describe as a function of activation.

5 Tapered filaments

Many filamentary structures are tapered. It is therefore of interest to understand the advantages or
differences that these structures present with respect to a simpler cylindrical profile. The tapering
is characterized by a function f = f(Z) with f(0) = 1 such that the external and internal radii are
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Figure 7: Domain geometry and helical fiber architecture in the tapered filament case: a three-
dimensional view (left), an orthographic side view (top-right), and a cross-sectional slice (bottom-right).
Representative fibers are shown on two surfaces of revolution R = R2(Z), R = R1(0)R2(Z)/R2(0),
where R2(Z) = R2(0)f(Z) is some arbitrary tapering profile. On R = R2(Z), α̃2 is constant by
construction, while the tapering angle on R = R2, i.e. φ2, is a function of Z for a general R2(Z).

given by R2(Z) = R2(0)f(Z), and R1(Z) = R1(0)f(Z), respectively. At a point Z, the graph of the
function R2(Z) makes an angle φ2(Z) with the Z-axis as shown in Fig. 7, while φ = φ(R,Z) is the
general fiber tapering angle which varies in both R and Z, such that φ2(Z) = φ(R2, Z). We want
to define local angles for the fiber m on the surface that have the same interpretation as in the case
of untapered filaments. To do so, we introduce the local angles α̃ and β̃ and a rotation matrix

R =

 cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ

 . (67)

A fiber defined by a vector

m̃ = sin α̃ sin β̃ eR + sin α̃ cos β̃ eΘ + cos α̃ eZ , α̃, β̃ ∈]− π/2,+π/2] (68)

is mapped to

m = R · m̃ (69)

= (sin α̃ sin β̃ cosφ− cos α̃ sinφ) eR + sin α̃ cos β̃ eΘ + (sin α̃ sin β̃ sinφ+ cos α̃ cosφ) eZ .

These angles now have the same interpretation as the ones given in Fig. 3. For instance, an axial
fiber in the tapered case lies in a plane that contains the Z-axis and is characterized by α̃ = β̃ = 0,
and so on. Using these new angles, we can compute the two angular functions that enter the active
filament formulas:

cos 2α = sin 2α̃ sin β̃ sin 2φ− sin2 α̃
(

sin2 β̃ cos 2φ+ cos2 β̃
)

+ cos2 α̃ cos 2φ, (70)

cosβ sin 2α = 2 sin α̃ cos β̃
(

sin α̃ sin β̃ sinφ+ cos α̃ cosφ
)
. (71)
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5.1 Curvature and torsion in tapered filaments

In the case of the ring solution, we utilize a uniform twist relationship for the tapered fiber field
akin to (42), such that

tan α̃

R
=

tan α̃2

R2
= cα̃,

tanφ

R
=

tanφ2

R2
= cφ, (72)

where cα̃ = cα̃(Z), cφ = cφ(Z) are introduced for notational brevity. For such a construction of
a tapered fiber field, the activation function g can be written as g(R,Θ) = γ(Θ − Θ̃), where the
angular shift function Θ̃ is given by

Θ̃(R0, Z) = tan α̃2

∫ Z

0

√
1 + [R0f ′(s)]2

R2(0)f(s)
ds, (73)

and R0 ∈ [R1(0), R2(0)] is the radius at which a given activated fiber originates at Z = 0. Under the
assumption of a slow tapering profile f(Z), the variation of Θ̃ with respect to R0 is negligible. Thus,
we can perform the substitution R0 ← R2 to obtain an approximate form Θ̃2(Z) = Θ̃(R2(0), Z) of
the angular shift, which depends only on Z. Then, substituting g(R,Θ) = γ(Θ− Θ̃2) into (38)-(41)
yields

H0 =
Eπ

4
δ0a0, (74)

H1 = −Eπ
6
δ1A sin(ϕ− Θ̃2), (75)

H2 =
Eπ

6
δ2A cos(ϕ− Θ̃2), (76)

H3 =
Eπ

6
δ3a0, (77)

where δ0, δ1 = δ2, δ3 are functions of cα̃, β̃, cφ, R1, R2, ν, and all other quantities are defined as
before. In the case of tangentially helical fibers (β̃ = 0), δi reduce to

δ0 = 2
(
R2

1 −R2
2

)
ν − 2(1 + ν)

c2
φ − c2

α̃

log


(

1 +R2
1c

2
φ

) (
1 +R2

2c
2
α̃

)(
1 +R2

2c
2
φ

) (
1 +R2

1c
2
α̃

)
, (78)

δ1 = δ2 =
2

cφcα̃

(
c2
φ − c2

α̃

) [3(1 + ν) (arctan (R1cφ)− arctan (R2cφ)) cα̃ +
(
R3

1 −R3
2

)
νc3
φcα̃

− cφ
(
3(1 + ν) (arctan (R1cα̃)− arctan (R2cα̃)) +

(
R3

1 −R3
2

)
νc3
α̃

)]
,

(79)

δ3 =
3

c2
φc

2
α̃

√
c2
φ − c2

α̃

[
(T (−R1) + T (R1)− T (−R2)− T (R2)) c2

φ + 6cα̃ (−S(R1) + S(R2))
]
, (80)

where

T (R) = arctan

(
cα̃ + ic2

φR

S(R)

)
, S(R) =

√(
c2
φ − c2

α̃

)(
1 + c2

φR
2
)
. (81)

The intrinsic extension and curvatures are then obtained via (36).
Utilizing this result, we consider the intrinsic curvature, κ̂, for axially tapered fibers (α̃2 = 0,

β̃ = 0), and torsion, τ̂ , for helically tapered fibers (α̃2 6= 0, β̃ = 0). These quantities are computed
for three different functional forms of the tapering profile f(Z), as shown in Fig. 8. Consistently with
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Figure 8: Deformations of filaments with different tapering profiles (a, b, c) for both axial and
helical fiber architectures. The first column shows the tapering profile geometry. The functional
forms of the three profiles under consideration are: (a) linear f(Z) = c1Z + c2, (b) exponential
f(Z) = c1 + c2e

c3Z , (c) logarithmic f(Z) = c1 log(c2Z + c3). The second and third columns show
representative deformations of rods with axial fibers (α̃2 = 0, β̃ = 0) and helical fibers (α̃2 = π/64,
β̃ = 0) respectively. The coloring of the rod surfaces corresponds to curvature (second column)
and torsion (third column) normalized by their respective maximum values, for Z ∈ [0, L]. Plots of
said normalized curvature and torsion functions are presented in the fourth column. All tapering
profiles assumed R2(0)/R1(0) = 2, L/R2(0) = 25, and all deformations were computed for a1 = 0.4,
a0 = b1 = 0, E = 1, ν = 0.5.

intuition, both curvature and torsion are monotonically increasing functions of Z for all considered
tapering profiles, as manifested by the spiraling shapes of the deformed filaments. Interestingly, for
each of the three cases, the normalized curvature and torsion functions are approximately equal for
Z outside of the close neighborhood of Z = 0; hence the collapse of κ̂/κ̂max and τ̂ /τ̂max into one
curve in each of the three plots. Further, the shapes of the normalized κ̂ and τ̂ curves are not trivial
despite the monotonicity of f(Z) and its derivatives, as exemplified by the inflection point in the
curvature and torsion functions for the logarithmic profile. Such a complexity arises primarily since
we account for the activation of a tapered fiber field embedded in a tapered domain geometry. Such
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an approach is more biologically relevant because a non-tapered field contained in a tapered domain
would result in premature termination of fibers inside the filament.

−6

−4

−2

0

2

activation

(f)

(a) (b)

(e)

(c) (d)

(g)

Figure 9: Comparison of configurations developed upon activation in the non-tapered and tapered
cases. A multi-ring geometry with rings of equal thickness is assumed in both (a) the non-tapered
reference configuration, and (d) the tapered reference configuration. (b), (c) Both domains contain
axial fibers embedded in the first ring and helical fibers in the second ring. (e) The same activation
distributions γ(1)(θ), γ(2)(θ) are simulated in both the non-tapered and tapered scenarios. Imposing
the activation results in configurations (f) and (g) for the non-tapered and tapered cases, respectively.

Parameters for the non-tapered reference geometry: R
(1)
1 = 0.7, R

(2)
1 = R

(1)
2 = 1.1, R

(2)
2 = 1.5,

L = 30, α
(2)
2 = π/4, α

(1)
2 = β(1) = β(2) = 0; for the tapered reference geometry: R

(1)
1 (0) = 1.8,

R
(2)
1 (0) = R

(1)
2 (0) = 2.2, R

(2)
2 (0) = 2.6, L = 30, α̃

(2)
2 = π/4, φ

(2)
2 = π/40, α̃

(1)
2 = β̃(1) = β̃(2) = 0.

Material parameters were chosen to be E = 1, ν = 0.5 in both cases.
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5.2 Activation in non-tapered and tapered filaments

We now compile the main results to inform the comparison of configurations resulting from activation
in non-tapered and tapered filaments. In particular, as shown in Fig. 9, we consider a multi-ring
geometry in both cases. The first ring contains axial fibers (α̃(1) = β̃(1) = 0), and the second ring

consists of helical fibers (α̃(2) 6= 0, β̃(2) = 0), with φ
(i)
2 = 0 and φ

(i)
2 > 0 in the non-tapered and

tapered scenarios, respectively. In such a setup, the first ring enables direct curvature control, while
the activation of the second ring promotes torsion. Generally, these effects are not decoupled when
both rings are activated simultaneously, so special care needs to be taken in designing the activation
patterns for a desired configuration to be attained.

The same activation distributions, γ(1)(θ), γ(2)(θ) (Fig. 9e), are prescribed in the corresponding
rings in both geometries, for the comparison to be meaningful. Moreover, the initial ring thicknesses

R
(i)
2 (0) − R

(i)
1 (0) are set to be the same in both cases, so that the activation magnitudes are

comparable as well. In order to ensure that the outer boundary of the first ring and the inner

boundary of the second ring coincide at all Z, φ
(1)
2 is chosen such that R

(1)
2 (0) = R

(2)
1 (0) and

c
(1)
φ = c

(2)
φ at all Z, for some φ

(2)
2 . For simplicity, the tapering profile, f(Z), is chosen to be linear,

but the same analysis can be readily applied for an arbitrary form of f(Z).
Activation of the tapered filament (Fig. 9g) results in a notably more elaborate configuration, as

compared to the deformed shape of the non-tapered geometry (Fig. 9f). The variation in magnitude
of curvature and torsion is considerably larger in the tapered case, as expected based on the prior
analysis in Fig. 8, but it is now confirmed for the multi-ring scenario. Further, the non-tapered
configuration is more compact in space due to the high activation magnitudes in rings of uniformly
large thickness (as opposed to decreasing thickness in the tapered case), which induces significant
curvature and torsion throughout the entire filament.

From a practical perspective, the tapered filament assumes a morphology similar to a biological
arm during a grappling motion, such as an elephant trunk wrapping around a tree branch. The
development of a physiologically functional configuration upon activation in the tapered case might
point to the mechanical role of tapering in biological filaments.

6 Conclusion

Active filaments are one-dimensional structures that remodel internally. Here, we have assumed that
the lone source of this remodeling process is a fiber activation field given at any point in the material
and specifying extension or contraction in a given direction. The case of activation by growth or
muscular contraction are both taken into account through the specification of a Poisson-like ratio for
the extending fiber. This fiber activation is not the most general case of activation as, in principle,
a full anelastic tensor could be specified at each point. Yet, from a modeling point of view, these
fiber-driven active structures are ubiquitous and universal. Within this framework, we derived the
so-called active filament formulas linking fiber stretch and orientation to the intrinsic curvatures
generated by the remodeling process.

We further restricted our attention to the case of filaments with circular cross sections and
ring solutions for rope-like structures. In these materials, the orientation of the fiber is slaved to
the orientation of the active material. As the active material coils around the central core, we
assume that the activation takes place in the tangential direction to the coil. A mathematically
pleasing model for these structures is given by ring solutions with well-defined sectors of activation,
each specified by a single angle, hence restricting the number of parameters. In this case, further
analytical progress leads to an explicit form of the curvatures in terms of the Fourier decomposition
of the activation functions. The sets of possible shapes of these structures, even in the simple case
of a single active ring with a finite number of activation sectors, are remarkably rich. In particular,
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we showed that a chiral helically-wrapped filament can be tuned to create an achiral intrinsic shape
with curvature but no torsion, or a structure with twist but without curvature.

Since most expressions have an analytic form, it is easy to consider interesting limiting cases.
For instance, we showed that one can easily build curvature without torsion. This is the typical
case of most metallic bi-layer actuators. More surprisingly, we showed that one can achieve twisting
without curvature, an actuation of potential interest to the soft-robotics community.

Our analysis is limited to filaments that are initially straight. If the initial curvature is relatively
small with respect to the length, we expect that the intrinsic curvature will be the sum of the initial
curvature and the curvature induced by activation. However, for larger curvature, the analysis
should be done properly, e.g. starting with a ring or helical initial configuration.

We generalized the ring solutions to the case of tapered filaments, another ubiquitous feature
of the natural world. We showed that for a given tapering function, intrinsic curvatures can still
be obtained, albeit at the expense of increasingly more complicated analytical formulas. Tapering
provides yet another opportunity for control, especially in its ability to create large curvature at
the small end of the filament. One would naturally expect that the intrinsic curvature increases
as the radius decreases and, once the internal balance of forces is computed, this is mostly what
we see. Yet, the change in radius R has another important effect, as it changes the stiffness of the
structure. The typical scaling for the bending stiffness, inherited from the second moment of area,
is R4. Hence, the tapering not only affects the curvature, it also allows to connect a stiff region
(large radii) that needs to support the weight of the filament to a soft region (small radii) dedicated
to fine manipulations. This is exactly what is observed in the massive elephant trunk.

The framework presented here provides a general analytical formulation for the problem of active
filaments. It can now be adapted for specific challenges in physics and engineering — particularly,
solving inverse problems found in robotics, where a given geometrical property or a final shape of a
soft-robotic filament is sought, and the activation functions need to be determined. It can also be
used to understand typical and universal design of natural manipulators, such as the elephant trunk.
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