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Abstract 58	

The coupling between community composition and climate change spans a gradient from no lags 59	

to strong lags. The no-lag hypothesis is the foundation of many ecophysiological models, 60	

correlative species distribution modeling, and climate reconstruction approaches. Simple lag 61	

hypotheses have become prominent in disequilibrium ecology, proposing that communities track 62	

climate change following a fixed function or with a time delay. However more complex 63	

dynamics are possible and may lead to memory effects and alternate unstable states. We develop 64	

graphical and analytic methods for assessing these scenarios and show that these dynamics can 65	

appear in even simple models. The overall implications are that 1) complex community 66	

dynamics may be common, and 2) detailed knowledge of past climate change and community 67	

states will often be necessary yet sometimes insufficient to make predictions of a community's 68	

future state.   69	
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Introduction 70	

Understanding how communities respond to climate change is necessary for predictive modeling 71	

of global change and for identifying the processes that have shaped contemporary biodiversity 72	

patterns. A key aspect is the degree of lag in the response of community composition to 73	

contemporary climate conditions. By lag we mean the amount the community is out of 74	

equilibrium with the observed climate, in either a positive or negative direction. The equilibrium 75	

no-lag state of a community should reflect a set of species with climate niche optima close to the 76	

observed climate at a given location. However, since climates change over time, a range of 77	

transient disequilibrium community states could be achieved, in which the community’s 78	

composition is lagged relative to climate. 79	

There are two extreme hypotheses for the magnitude of lags in the response of 80	

community composition to climate change. No-lag responses are thought to occur when species 81	

respond through local persistence via high niche plasticity or niche adaptation, or rapid 82	

extinction at trailing range edges (Hampe & Petit 2005), and/or efficient long-distance dispersal 83	

and range expansions at leading range edges. In this case, the community responds instantly to 84	

climate change and is in an equilibrium state. Conversely, lagged responses are thought to occur 85	

when species have limited dispersal ability, have long persistence times, or when the regional 86	

pool does not include more appropriate species (Svenning & Sandel 2013; Blonder et al. 2015). 87	

In this case, the community is in a transient disequilibrium state that will change both when the 88	

climate varies and when the climate does not vary. These two ideas form the conceptual 89	

foundation for several large bodies of work and are thought to encompass the range of possible 90	

community responses to climate change (Ackerly 2003), with the speed and type of species 91	

Page 5 of 48 Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

response of fundamental interest for predictive modeling and for biodiversity conservation 92	

(Nicotra et al. 2010; Hoffmann & Sgro 2011; La Sorte & Jetz 2012).  93	

 The no-lag hypothesis proposes that at a given time the species composition of a 94	

community is in equilibrium with the observed climate at that location, assuming that an 95	

equilibrium can be defined over the temporal or spatial scale of interest (Svenning et al. 2015). 96	

That is, the species found in a community will have climate niches that are close to the observed 97	

climate. The implication is that, in a new climate, species with well-matched niches that are 98	

already present will persist, other species with well-matched niches will rapidly immigrate and 99	

become present, and species with poorly matched niches will rapidly die and become absent. 100	

This hypothesis is implicit in many decades of work assuming that vegetation-climate 101	

associations represent consistent physiological responses to environment (von Humboldt & 102	

Bonpland 1807 (tr. 2009); Whittaker 1967) and that have often been used to reconstruct climate 103	

from paleoecological evidence for pollen, chironomids, diatoms, etc. based on transfer functions 104	

(Guiot et al. 1989; Gasse et al. 1995; Brooks & Birks 2000), coexistence intervals (Mosbrugger 105	

& Utescher 1997; Pross et al. 2000) or probability densities (Kühl et al. 2002). Many of these 106	

climate reconstruction approaches assume that species-environment relationships are constant 107	

and instantaneous, without considering the consequences of this assumption. The no-lag 108	

hypothesis is also implicit in the vast majority of environmental niche modeling / species 109	

distribution modeling studies that predict climate change responses (Birks et al. 2010; Peterson 110	

2011). This hypothesis is a simple baseline assumption that finds support at multiple scales (e.g., 111	

both continental extents over sub-millennial to millenial time scales (e.g. in multi-taxon 112	

responses to Younger Dryas climate changes in Switzerland (Birks & Ammann 2000) or across 113	

the late Quaternary in North America (Shuman et al. 2009; Williams et al. 2011)), and is 114	
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consistent with many species having niches that are well-predicted by their range limits (Lee-115	

Yaw et al. 2016). However the hypothesis has also been criticized. One major issue is that its 116	

assumption of very fast species response can be unrealistic (Campbell & McAndrews 1993; 117	

Guisan & Thuiller 2005; Araújo & Peterson 2012). Another important issue is that realized 118	

niches may shift relative to the observed climate due to changes in the available climate space or 119	

in biotic interactions (La Sorte & Jetz 2012; Veloz et al. 2012; Maiorano et al. 2013). As such, 120	

the realized niche of a species may be a poor proxy for the fundamental niche and may not 121	

necessarily be matched to the observed climate (Jackson & Overpeck 2000; Jordan 2011). 122	

 Alternatively, lag hypotheses argue that the species composition of a community at a 123	

given time is in disequilibrium with contemporary climate (Svenning & Sandel 2013; Blonder et 124	

al. 2015). That is, the species found in a community may be poorly suited to the climates at the 125	

site, despite other species not occurring in the community having better-suited climate niches 126	

(Davis 1984; Webb 1986; Dullinger et al. 2012). Proposed mechanisms include resident species 127	

persisting via survival of long-lived individuals (Eriksson 1996; Holt 2009; Jackson & Sax 128	

2010), species interactions producing micro-scale conditions that remain favorable (Schöb et al. 129	

2012; De Frenne et al. 2013), or no immigration of more appropriate species because of priority 130	

effects (Fukami et al. 2005; Fukami et al. 2010), dispersal limitation (Svenning & Skov 2007) or 131	

species absence from the regional pool (Blonder et al. 2015). These processes together would 132	

produce a lag between communities’ composition and climate. This hypothesis is reflected in a 133	

broad literature showing vegetation lag to climate in forests in the Americas (Webb 1986; 134	

Campbell & McAndrews 1993; Blonder et al. 2015) and in Europe (Birks & Birks 2008; 135	

Bertrand et al. 2011; Normand et al. 2011; Seddon et al. 2015), in bird communities (DeVictor et 136	
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al. 2008), as well as in a range of other paleoecological data (reviewed in Davis (1981) and 137	

Svenning et al. (2015)).  138	

Here we argue that there is not a dichotomy between lag and no-lag hypotheses. Rather 139	

there is a continuum of lag hypotheses that encompasses more scenarios than have been 140	

previously considered. We show that a broader set of possibilities can lead to unintuitive or 141	

difficult-to-predict community responses. We then provide a set of quantitative tools for 142	

detecting these scenarios in empirical data. Lastly, we demonstrate that simple models of 143	

community processes can generate all of these scenarios. 144	

  145	

Community response diagrams as diagnostics of dynamics 146	

Lags and lag hypotheses can be measured by comparing a community’s composition to the 147	

climate conditions in the community. Making these concepts precise requires defining several 148	

concepts (Box 1). These concepts are presented and defined for a single climate axis and variable 149	

(e.g. temperature). They can be extended to multiple climate axes using vector approaches 150	

(Blonder et al. 2015), but are illustrated here in a single dimension for clarity. 151	

First, the location of the community has an observed climate, which is given by a 152	

function F(t) (Fig. 1A). This variable changes potentially independently from the state of the 153	

community and can be measured without knowledge of the community state, e.g. with a 154	

thermometer for a temperature axis. 155	

 Second, the community itself has an inferred climate, which is given by a function C(t) 156	

(Fig. 1A). This variable reflects the value of the climate along this axis most consistent with the 157	

occurrence of all species at time t. It can be calculated by overlapping the fundamental niches of 158	

species in the community. For example, a community with cocoa and banana trees would have a 159	
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warm inferred climate along a temperature axis, while a community with blueberry and 160	

snowberry bushes would have a cold inferred climate. Multiple species assemblages might all 161	

yield the same value of C(t).  162	

This concept of C(t) is already widely and implicitly used across fields, although using 163	

different terminology. It is widely used in multi-taxon paleoclimate reconstructions (ter Braak & 164	

Prentice 1988; Guiot et al. 1989; Birks et al. 2010; Harbert & Nixon 2015). Additionally, it 165	

underlies the definitions in community ecology for a community temperature index (DeVictor et 166	

al. 2008; Lenoir et al. 2013), a floristic temperature (De Frenne et al. 2013), and a coexistence 167	

interval (Mosbrugger & Utescher 1997; Harbert & Nixon 2015).  168	

 Third, the community climate lag can be defined as the difference between the observed 169	

and the inferred climate (Fig. 1A). This metric has been previously used in several studies of 170	

ecological disequilibrium (Davis 1984; Webb 1986; Bertrand et al. 2011; Blonder et al. 2015). If 171	

these two values are closely matched, then the lag is small; alternatively, if they are not closely 172	

matched, then the lag is large. 173	

These statistics can be visualized and combined with a community response diagram. 174	

This diagram is a time-implicit parametric plot of the observed climate F t( )  on the x-axis and 175	

the inferred climate response C t( ) on the y-axis (Fig. 1B). Using dynamical systems 176	

terminology (Katok & Hasselblatt 1997; Beisner et al. 2003), F(t) would be considered a 177	

parameter (exogenous to the system) and C(t) would be considered a state variable (endogenous 178	

to the system). The diagram is similar to a phase space diagram of dynamical systems research 179	

(e.g. Sugihara et al. (2012)) that plots multiple state variables as time-implicit curves, but is 180	

different in that F(t) is not a state variable. It also is similar to the ball-in-cup landscapes used in 181	

ecosystem resilience / regime shift / alternate stable states research (e.g. Beisner et al. (2003); 182	
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Scheffer and Carpenter (2003)) that also combine a parameter with a state variable. However this 183	

diagram differs in that it shows the actual trajectory of the state variable over time, rather than 184	

the cost of taking different trajectories at a single point in time. That is, a community response 185	

diagram integrates the trajectories on a continually deforming ball-in-cup landscape, and does 186	

not directly describe the stability or temporal dynamics of the community at any time point. As 187	

such, it is useful for addressing different questions than these other graphs, in particular 188	

questions of unstable or disequilibrium community responses to changing climate. 189	

By plotting the community’s response as a function of the climate forcing, the continuum 190	

of lag hypotheses can be described and distinguished with two novel statistics. The first statistic 191	

is the mean absolute deviation, Λ , which describes the average absolute difference between 192	

C(t) and F(t) over time (Fig. 2A).  A value statistically indistinguishable from zero indicates no 193	

lag and larger values indicates a lag (positive or negative). The second statistic is the maximum 194	

state number, n, which counts the maximum number of values of C(t) that correspond to a 195	

single value of F(t) (Fig. 2B). Considering the community response diagram as a curve in the F-196	

C plane, 𝑛 is the maximum number of intersection points of any vertical line. If there is only one 197	

value of C(t) corresponding to each value of F(t), then n=1, and the community has dynamics 198	

that can always be predicted from knowledge of the current value of F(t). If n becomes larger, 199	

then the community can have possible multiple states for a single observed climate. In these 200	

cases it becomes increasingly less possible to predict the community’s state with knowledge of 201	

only the observed climate. Thus, the maximum state number provides a simple way to assess the 202	

limits to predictability for community dynamics. 203	

 204	

A continuum of lag scenarios on a community response diagram  205	

Page 10 of 48Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

There are several general scenarios for the coupling between climate change and community 206	

response that yield different C(t) vs. F(t) trajectories on a community response diagram (Fig. 3). 207	

Each of these scenarios also yields a different combination of values for the Λ and n statistics. 208	

Therefore values of these statistics can be used to delineate hypotheses along the lag continuum.  209	

The first scenario corresponds exactly to the no-lag hypothesis: in this case Λ t( ) = 0 , so 210	

C t( ) = F t( ) . This is equivalent to a straight-line segment with slope of 1 and intercept of 0 on 211	

the community response diagram for any possible observed climate F(t) (Fig. 3A). In this 212	

scenario n=1 and Λ =0. Here, equality is statistically defined relative to natural variation, e.g. 213	

σ(t). 214	

The second scenario corresponds to a constant-relationship lag hypothesis. In this case, 215	

Λ t( ) ≥ 0 and C t( ) = f F t( )( ) . Because f is a function, then there is always a single unique value 216	

of C(t) corresponding to a unique value of F(t). However the opposite is not true: there may be 217	

multiple values of F(t) that all correspond to the same value of C(t). That is, the community’s 218	

inferred climate is uniquely determined by the observed climate at any given time. This is 219	

equivalent to a single curve on the community response diagram that never crosses itself for any 220	

observed climate, so n=1 and Λ >0 (Fig. 3B).  221	

The third scenario corresponds to the constant-lag hypothesis. In this case, Λ t( ) > 0  and 222	

 for some value α. If F(t) is a periodic function, then this corresponds to a fold 223	

on the community response diagram, i.e. a scenario where F(t) crosses over itself (Fig. 3B). In 224	

the case of a sinusoidal F(t), the shape will be a single loop, with the elongation of the loop being 225	

related to the amount of lag (Fig. 3C). Such a scenario always has a value of n=2 and Λ >0. 226	

C t( ) =αF t −φ( )
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However, for a linear F(t) function, the shape will be a straight line with slope not necessarily 227	

equal to 1 and intercept not necessarily equal to 0. That scenario reduces to the constant-228	

relationship conceptualization and has n=1 and Λ >0. In general the presence of a fold or loop in 229	

the community response diagram indicates memory effects (hysteresis), such that the future 230	

state of the system depends on its past history (Katok & Hasselblatt 1997) (Fig. 3D). Systems 231	

with memory effects have path dependence. That is, the future dynamics of the community 232	

cannot be predicted only by knowing the current community state, but rather by also using the 233	

past state of the community. Larger values of Λ  correspond to more memory effects. 234	

The fourth scenario, alternate unstable states, is a generalized version of the third 235	

scenario, describing a community response diagram that contains multiple folds (Fig. 3E). At 236	

any given value of F(t), the future state of the community depends on its past state. If F(t) is 237	

periodic, then the community response diagram will contain multiple loops corresponding to 238	

stable orbits. At any of the intersections between loops, determining which path the community 239	

takes will depend on knowledge of its past state. Alternatively if the system has a stable orbit but 240	

has not yet reached it because of transient effects; then there may be large lags between C(t) and 241	

F(t) while the system settles to a steady state (Fig. 3C). These scenarios are all reflected in a 242	

value of 2≤n<∞ and Λ >0. Critically, these alternate states are not necessarily equivalent to the 243	

alternate stable states that have been previously studied (Beisner et al. 2003). They may not 244	

persist in time, and the community state is not necessarily attracted to them, although both 245	

scenarios are admissible. The key point here is that single values of the observed climate can 246	

lead to multiple values of the community state. 247	

The fifth scenario, unpredictable dynamics, corresponds to a scenario where there are 248	

no stable orbits and a very large number of possible relationships between the observed climate 249	
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and the composition of the community. Predicting the future state of the community is very 250	

difficult, because arbitrarily large changes in the community’s future state can occur regardless 251	

of changes in values of the past community state or observed climate. In this case nmax →∞  and 252	

Λ >0. These dynamics can occur via chaos (Lorenz 1995), when the future community state is 253	

deterministic but very sensitive to variation in the present and past community state, where any 254	

state of the system is eventually reached from any other past state of the system, and where 255	

dynamical orbits are dense (Fig. 3F). Unpredictable dynamics can also occur when the future 256	

state of the community is not a deterministic response to any variable, as in the previous five 257	

scenarios, but rather is a stochastic response. In this case, 𝐶(𝑡) and F(t) can become partially or 258	

completely uncorrelated, and a range of points in the community response diagram can become 259	

filled in (Fig. 3G). For example, random immigration and emigration of species from a regional 260	

species pool can yield fluctuations in C(t) (Holyoak et al. 2005)), while the climate system drives 261	

fluctuations in F(t). Alternatively, C(t) may be determined primarily by internal processes (e.g. 262	

species interactions, anthropogenic factors) rather than external climate-mediated processes, 263	

leading to a complete decoupling of C(t) and F(t). For example, many North American and 264	

European forests are thought to have been managed for food production throughout the Holocene 265	

(Mason 2000; Abrams & Nowacki 2008), and many invasive species have colonized new regions 266	

due to enemy release (Keane & Crawley 2002), leading to geographic range shifts that are 267	

unrelated to climate change.  268	

Each of these scenarios has different consequences for predictability in community 269	

ecology. The first two scenarios (no lag, constant-relationship lag) represent scenarios where 270	

prediction of future community states is readily possible. These scenarios have received the 271	

majority of study in community ecology, perhaps rightly. Nevertheless, the latter three scenarios 272	
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are also conceptual possibilities. They challenge the assumptions of many research paradigms, 273	

because they imply there is no longer a simple or one-to-one relationship between climate 274	

conditions and community state. If constant-lag, alternative unstable states, or unpredictable 275	

dynamics were to occur, then modeling a community’s future state would be a challenge. With 276	

knowledge of only future observed climate, the task might be impossible; even with knowledge 277	

of the past observed climate and community state, the task might be very difficult. The 278	

consequence would be limited predictability in community ecology and shortened ecological 279	

forecast horizons (Petchey et al. 2015). 280	

 281	

A simple analytic model for lags in community dynamics 282	

All of the scenarios along the lag continuum can arise within a simple differential equation 283	

model for community dynamics (Box 2). The model abstracts and summarizes the community-284	

scale effect of two species-scale processes: a tracking effect, in which communities try to 285	

restore themselves toward an optimal climate state, and a resistance effect, in which 286	

communities try to maintain their current (or past) composition. Temporal variation in the 287	

observed climate acts as a forcing for the model, while the interplay between the tracking and 288	

resistance processes determines the directionality and strength of the community’s response.  289	

The resistance and tracking effects are intended as proxies for a range of real ecological 290	

processes occurring for individual species. By abstracting these lower scale processes we hope to 291	

gain general insights about possible dynamics at community-scale. Both resistance and tracking 292	

must emerge from dispersal limitation, species interactions, environmental filtering, or 293	

adaptation (Wisz et al. 2013; Singer et al. 2016; Zurell et al. 2016). For example, if some species 294	

in a regional pool have a limited ability to disperse into a community, then tracking will be 295	
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weaker. Similarly, resistance could be stronger if residents have advantages over invaders that 296	

must disperse in. If species interactions lead to established species persisting more easily than 297	

invader species can establish, then resistance will be stronger. Stronger environmental filtering 298	

could lead to stronger tracking by removing species with niches that yield low performance. 299	

Adaptation could yield both stronger tracking by shifting species’ niches or stronger resistance 300	

by enabling species to maintain their niches. Our intent here is not to develop specific models 301	

that link these species-scale processes to community-scale effects, but rather to highlight how 302	

different types of such models would lead to different community outcomes. This exercise 303	

reveals several general principles of community dynamics. These conclusions are all 304	

mathematically true regardless of how the species-scale processes come together to yield a given 305	

set of restorative and tracking effects. First, linear climate change can only lead to no-lag, 306	

constant delay, or constant-relationship scenarios regardless of all other model parameters, 307	

including the time delay . However, under periodic climate change, all lag scenarios are 308	

possible. When the tracking and resistance effects are restorative, the system is characterized by 309	

transient dynamics towards a stable orbit. During the transient stage, n can become arbitrarily 310	

large, strongly limiting the ability to predict future states. The stronger the relative effect of the 311	

restorative effect, the longer the transient behavior persists. However, 𝐶 𝑡  will eventually settle 312	

to a stable orbit with the same frequency as the observed climate 𝐹(𝑡). Depending on the exact 313	

form of the model, this steady orbit may constitute constant delay dynamics, but may also exhibit 314	

alternate unstable states with multiple loops.  If the restorative effect pulls the system toward a 315	

fixed state with time-delay (e.g. strong selection for a certain forest type regardless of climate), 316	

then along with the scenarios above, for different parameter regimes the system can also exhibit 317	

transient dynamics converging to alternate states with high n, as well as chaos.  318	

Δt
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The example community trajectories diagrammed in Figure 3 for each conceptual scenario 319	

correspond to dynamics predicted by this model for different parameter combinations. Specific 320	

parameter values are given in Table S1. However the numeric values are less important than the 321	

general conclusion that the combination of restorative forces with time delay and climate 322	

tracking can lead to complex and widely varied dynamics, even in a simplified model. There are 323	

three conceptual implications arising from this modeling exercise that will be relevant to all 324	

observational and theoretical studies of community dynamics.  325	

First, the observation of a lag between the observed climate and the community response 326	

does not immediately indicate anything about the rules governing the system. Most scenarios 327	

show memory effects, so that knowledge of the past state of climate and community are needed 328	

to predict the system’s future state. This result challenges the reliability of correlative methods 329	

for inferring the role of environmental drivers in community responses, because of the strong 330	

role of history on contemporary patterns (Dupouey et al. 2002; Willis et al. 2013). Nevertheless, 331	

for individual species, the success of species distribution models in predicting across space and 332	

time (Svenning & Sandel 2013) and the partial congruence of range limits and niche limits 333	

(Hargreaves et al. 2014; Lee-Yaw et al. 2016) suggest that simple no-lag approaches are viable. 334	

The major challenge will come in integrating species-scale predictions to community-scale 335	

responses where species-stacking approaches may fail because of interactions between species. 336	

Second, small changes in a model’s definitions can lead to qualitatively different types of 337	

ecological dynamics. This indicates that complex dynamics may become relevant in natural 338	

communities. Indeed, lagged dynamics with memory effects and state numbers of n≥2 are easy 339	

to generate in the particular model we presented here. 340	
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Third, the frequency of climate change relative to the community response capacity is 341	

important in determining the type of dynamics that arise (Sastry 2013). When the observed 342	

climate varies at much lower frequencies than the capacity of the community to respond, then the 343	

climate change is linear or effectively linear over the time period of interest, so no-lag or 344	

constant relationship dynamics are likely to dominate (Williams et al. 2011). Similarly, when the 345	

observed climate varies at much higher frequencies than the capacity of the community to 346	

respond, then unpredictable dynamics are likely to dominate unless the climate varies rapidly 347	

about a constant mean; then the community may show limited response, as for example the case 348	

of Populus tremuloides – dominated communities that persist across glacial-interglacial 349	

transitions (Mitton & Grant 1996). Finally, when the observed climate varies at frequencies 350	

comparable to the community’s response capability, then alternate unstable state or unpredictable 351	

dynamics may become important. 352	

 353	

Practical conceptual considerations 354	

A natural question arising from these conceptual and analytical arguments is: which scenarios 355	

are likely to be found in the natural world? That is, is predictability achievable in practice, or 356	

not? The framework we have proposed could be applied to empirical data to answer this 357	

question. The scope of this article prevents presentation of such an analysis, so we instead focus 358	

on highlighting several issues that should be considered before implementing the framework.  359	

Describing patterns of lags and testing lag hypotheses can be achieved by estimating C(t) 360	

and F(t) from data. If both time-series are obtained from a finite number of empirical samples 361	

C ti( ),F ti( ){ } , then the easiest way to calculate both statistics is through approximation. Values 362	

of Λ  can be obtained by averaging sampled values of C ti( )−F ti( ) . Values of n can be 363	
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calculated by linearly interpolation between successive values of C(ti) and F(ti) followed by 364	

application of line intersection methods. Measurement uncertainty or other noise arising in both 365	

C(t) and F(t) can be problematic when counting the maximum state number or determining 366	

whether a community response diagram contains loops. For example, suppose the community at 367	

two time points t1 and t2 has F(t1)=F(t2), but C t1( )−C t2( ) <max σ t1( ),σ t2( )( ) . In this case, the 368	

community takes two different states for a given observed climate, suggesting n≥2, but those 369	

states may not be sufficiently different to be confident that the difference is statistically 370	

significant. Regardless, the general qualitative implication is that estimation uncertainty and 371	

noise in time series can overestimate the maximum state number. Alternatively, low sampling 372	

resolution or a low number of points in a time series can lead to underestimation of n. Small 373	

loops or folds can be missed if they appear and disappear more rapidly than the sampling 374	

permits. We therefore recommend that community trajectories should be potentially rounded to 375	

the nearest multiple of σ(t) and also smoothed before analysis (e.g. with cubic splines) (Fig. 2). 376	

We have implemented methods to calculate n and Λ , taking into account statistical uncertainty 377	

in data, as R functions in Supplementary Data S2.  378	

Determining the underlying processes that have generated an empirical community 379	

response diagram is possible by fitting an analytic model to observed data for C(t) and F(t). 380	

There are several methods available to reconstruct a differential equation for C(t) based on 381	

observations of C(t) and F(t) at different times. For example, generalized additive models with 382	

terms describing different effects can be fitted to numerical estimates of the first derivative of 383	

C(t), providing a direct reconstruction of a differential equation (Ellner et al. 1997). It is also 384	

possible to estimate equation parameters from knowledge of the distribution of time intervals 385	

between extremes in a dataset (Bezruchko et al. 2001). Alternatively, equation-free approaches 386	

Page 18 of 48Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

for predicting the future state of a system based on its past state may also be viable (Sugihara et 387	

al. 2012; Ye et al. 2015). However all of these approaches tend to require data sampled at 388	

hundreds of different times, which may not be achievable for ecological data. 389	

 In either application, it may be difficult to distinguish among transient, chaotic, and 390	

stochastic dynamics. For finite numbers of samples, these all lead to coarsely similar community 391	

response diagrams. When sampling of C(t) and F(t) is infrequent or includes measurement errors, 392	

it may be difficult to separate signal from noise in community response diagrams. Formal tests 393	

for distinguishing chaos from noise based on embedding of dynamical systems do exist 394	

(Gottwald & Melbourne 2004). Only with very long time series and precise measurements would 395	

it be possible to distinguish these scenarios in practice. 396	

 Lastly, it may be challenging to make unbiased measurements of C(t). Because C(t) 397	

depends on knowing the modal niche value for each species, any bias in species’ estimating 398	

species niches may also propagate to community-scale statistics. Realized niche estimates based 399	

on contemporary geographic occurrences of species maybe particularly biased and themselves 400	

show lags (Jackson & Overpeck 2000; Soberón & Nakamura 2009), but provide the simplest 401	

method for calculating these statistics ((Blonder et al. 2015). 402	

 403	

Practical data considerations 404	

Finding data to infer community response diagrams remains a challenge. A representative 405	

sample of the community’s composition is required to estimate C(t). Time series of community 406	

dynamics are rare because of the long timescales and high efforts involved in this sampling. The 407	

best example is probably from the Park Grass Experiment in England, comprising dozens of 408	

censuses between 1856 and 2006 (Silvertown et al. 2006). On the other hand, the 50-ha forest 409	
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dynamics plot at Barro Colorado Island (Panama) has been censused only seven times between 410	

1980 and 2010 (Condit et al. 2012), and the macrophyte communities at Loch Leven (Scotland) 411	

have been censused only eight times between 1905 and 2008 (Dudley et al. 2012). Temporal 412	

extent is less important than number of time points: for example, it is possible to compare 413	

vegetation change on Chimborazo volcano (Ecuador) between 1802 and 2012, but measurements 414	

are only available at those two time points (Morueta-Holme et al. 2015). Other highly-sampled 415	

time series, e.g. the Isle Royale (United States) wolf-moose dataset (Vucetich & Peterson 2012), 416	

are oriented towards a single focal species rather than whole communities.  417	

However there are some systems where representative samples of communities at 418	

multiple time points are available. Microcosm studies of provide one possibility, e.g. protist 419	

communities (Petchey et al. 1999); similarly, metagenomics approaches are making community 420	

dynamics in microbial communities increasingly accessible (Faust et al. 2015). Alternatively, at 421	

longer time scales, paleoecological assemblage datasets may provide proxies for community 422	

dynamics. For example, fossil pollen assemblages for eastern North America are available for 423	

the last 21 Kyr at 500 yr resolution, e.g. Maguire et al. (2016). Indeed, many of the studies that 424	

have calculated inferred climate time series using other approaches, e.g. Mosbrugger and 425	

Utescher (1997); Kühl et al. (2002); DeVictor et al. (2008); Bertrand et al. (2011), could be 426	

recast in terms of C(t). In these cases the challenge would be to make estimates of F(t) for these 427	

communities that are independent of the community data. In the case of late Quaternary climate 428	

change, paleoclimate simulations based on general circulation models provide proxies for F(t), 429	

but spatial and temporal resolution still remains coarse (Lorenz et al. 2016). For more 430	

contemporary time series, meteorological data may instead be available, e.g. Bertrand et al. 431	

(2011). Better understanding the limitations and potential of these various datasets, as well as 432	
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actively collecting more time-series community data, remains an ongoing but important 433	

monitoring challenge for ecology.  434	

 435	

Implications and synthesis 436	

We showed that community response diagrams comprising plots of F(t) and C(t) provide 437	

methods to assess and understand how climate drives disequilibrium community states. By 438	

measuring lags with these community trajectories, and by calculating mean absolute deviations 439	

and maximum state numbers, we are able to provide approaches to assess the continuum of lag 440	

hypotheses, determine the limits to predictability, and assess the importance of a community’s 441	

past on its future. 442	

The possibility of memory effects underscores the challenges present in predictive 443	

community ecology. Hysteresis is known to limit the ability of systems to return to an original 444	

stable state (Beisner et al. 2003; Folke et al. 2004), but our work now shows that unstable 445	

communities are also not guaranteed to return to the same state when the observed climate takes 446	

a previous value. This may provide a complementary explanation for why returning 447	

environments to historical conditions is unlikely to result in community shifts toward historical 448	

states: regime shifts can occur when the history of the community determines which future 449	

compositional state will be obtained (Scheffer & Carpenter 2003). Additionally, hysteresis 450	

suggests that commonly used space-for-time substitutions may not be appropriate, because the 451	

temporal dynamics of a system will depend on the past community state, while the spatial 452	

dynamics will not. Lastly, it also suggests that conservation efforts that take actions to reduce 453	

climate lags (such as assisted migration, rewilding, or restoration of historical states) may 454	

potentially yield unexpected outcomes. 455	
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The niche axes comprising C(t) and F(t) can include any variables that mediate species 456	

response to environment. Here we defined them in terms of climate variables. However, edaphic 457	

variables could also be important, given the close association between species occurrence and 458	

soil conditions. Soil legacies can persist for 103-104 years (Dupouey et al. 2002) and many 459	

species’ distributions are very sensitive to soil conditions (Harrison 1999; Silvertown et al. 1999; 460	

Asner & Martin 2016), with community lags being driven by soil development (Kuneš et al. 461	

2011).  462	

The community response diagrams could also be recast in terms of functional traits, 463	

where F(t) is an optimum trait value, and C(t) is a community-weighted mean trait value (Garnier 464	

et al. 2004). Shifts and lags in trait-environment relationships (Kimberley et al. 2016; van der 465	

Sande et al. 2016) or skewness in trait distributions (Enquist et al. 2015) may be explainable 466	

using this approach. Remotely-sensed community-weighted mean traits and remotely-sensed 467	

climate data may be appropriate to explore this idea (e.g. Seddon et al. (2016)). 468	

A next step toward more mechanistic understanding of community dynamics will be to 469	

couple the community-scale differential equation models to process-based models for individuals 470	

and populations of species in regional pools. By assessing the individual and combined effects of 471	

different types and strengths of dispersal limitation, species interactions, and environmental 472	

filtering on community-scale patterns, it could become possible to identify the most likely 473	

drivers of each type of dynamics. Understanding the processes that lead to predictability and 474	

those that do not would help delineate when community ecology can hope to become more 475	

predictive (Fukami 2015), and when forecast horizons must remain small (Petchey et al. 2015). 476	

 477	

Conclusion 478	
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We have explored some of the limits to predictability in community ecology by using 479	

community response diagrams. The overall implication of this work is that predicting community 480	

response to past and near-future climate change will be difficult because of the diversity of 481	

possible dynamics. The no-lag hypothesis implicit in contemporary species distribution modeling 482	

represents a very narrow class of dynamics that may be successful at the scale of single species 483	

but not successful at the emergent community scale. The constant-lag and constant relationship 484	

lag hypotheses of contemporary disequilibrium ecology and the extensions of species 485	

distribution modeling that incorporate dispersal limitation also represent a limited class of 486	

dynamics. There is evidence that some communities have sensitive responses to climate change 487	

(Ackerly 2003; Shuman et al. 2009; Nogué et al. 2013) and can exhibit regime shifts (Folke et 488	

al. 2004), whereas some others do not show evidence for this (Nowacki & Abrams 2015). 489	

Similarly, evidence for niche equilibrium at species scale is highly mixed (Veloz et al. 2012; 490	

Lee-Yaw et al. 2016). The possible existence of alternate unstable states and unpredictable 491	

dynamics should lead to careful consideration of whether extant approaches have oversimplified 492	

our perception of community dynamics.  493	

Better delineating when and why responses to climate change will differ among 494	

communities should become a priority. Progress on predicting rather than explaining dynamics 495	

remains elusive and will require better understanding how processes such as species interactions 496	

and dispersal limitation determine the dynamical rules for community dynamics in response to 497	

climate change. We therefore suggest caution in our ability to make robust predictions about the 498	

future.  499	
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Supplementary Data 509	

 510	

Supplementary Data S1 – Mathematica code to replicate all differential equation solutions 511	

described by Table 1 and shown in Figure 3. 512	

 513	

Supplementary Data S2 – Code (R language) to calculate summary statistics for community 514	

response diagrams based on inputting time series for F(t) and C(t). The code also replicates Fig. 515	

2. 516	

 517	

Supplementary Table S1 - Examples of model parameters that generate each class of dynamics, 518	

corresponding to the panels in Fig. 3. Many other parameter combinations can also generate each 519	

of these scenarios; this list is not meant to be exhaustive. Fields marked as ‘-’ can take any value 520	

without changing the dynamics. 521	

Scenario Panel cT cR ∆t R(ρ) T(τ) ρ τ C0 F(t) 

No lag a 0 ∞ any - τ - C(t) – 

F(t) 

- sin(t) 

Constant delay b 0.2 10 5 sin(ρ) • 

exp(-ρ 2) 

τ C(t) – 

C(t-∆t) 

C(t) – 

F(t) 

- t 

Constant relationship b same as above as t->∞ 

Transient dynamics c 1 5 5 ρ τ C(t) – 

C(t-∆t) 

C(t) – 

F(t) 

- sin(t) 

Constant delay  c same as above as t->∞ 

Memory effects  d 1 15 3.5 ρ3 τ C(t) – 

C(t-∆t) 

C(t) – 

F(t) 

- sin(t) 

Alternate states  e 1 8 15 sin(ρ) • 

exp(-ρ 2) 

τ C(t-∆t)-

C0 

C(t) – 

F(t) 

0.2 sin(t) 

Chaos f 1 8 16 sin(ρ) • 

exp(-ρ 2) 

τ C(t-∆t)-

C0 

C(t) – 

F(t) 

0.35 sin(t) 

Stochastic g not applicable – C(t) simulated as smoothed Brownian motion sin(t) 

 522	
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Supplementary Text S1. An upper bound on the maximum state number n. 524	

The bound comes as a consequence of the observation that if both F and C are periodic, then the 525	

response diagram in the F-C plane will form a closed curve.  It is evident that any vertical line 526	

can only intersect a closed curve a finite number of times; hence the state number is finite.  527	

Further, for a closed curve, the maximum number of intersection points of a vertical line cannot 528	

be larger than the number of vertical fold points, i.e. points where !"
!"
= 0.  This follows from the 529	

fact that on either side of an intersection point, the curve must fold back in order to form a closed 530	

curve.  If we define 𝑃! to be the period of 𝐹 𝑡 , and 𝑃!  the period of 𝐶(𝑡), then the period 𝑃 of 531	

the system (time for F and C to both return to the same value) will satisfy 𝑃 = 𝑎𝑃! = 𝑏𝑃!, where 532	

𝑎 and 𝑏 are mutually prime integers.  Then, if !"
!"
= 0 𝑘 times in one period 𝑃!, then we have the 533	

bound 534	

(S1-1) 
  

n ≤ kb  535	

For example, considering simple sinusoids 𝐹 𝑡 = sin 𝑡 ,𝐶 𝑡 = sin( !
!
), with 𝑚 ≥ 1 an 536	

integer (because	F	forces	C	and	not	the	other	way	around,	C	will	typically	have	longer	[or	equal]	537	

period	than	F). This gives 𝑘 = 2 and 𝑏 = 𝑚, the least common multiple of their periods. A larger 538	

value of 𝑏 implies that the observed climate must cycle more times before the community 539	

response repeats, and thus one value of 𝐹 can correspond to more values of 𝐶.  A larger value of 540	

𝑘, on the other hand, implies a more complex observed climate.  541	

While this result is only strictly valid for continuous periodic functions 𝐶(𝑡) and 𝐹(𝑡), 542	

the basic idea can be extended to empirical time series of 𝐶(𝑡) and 𝐹(𝑡) that are approximately 543	

periodic.  For instance, if the Fourier spectra of 𝐶(𝑡) and 𝐹(𝑡) are dominated by particular 544	

wavelengths, then approximations for 𝑎 and 𝑏 may be computed and the arguments above may 545	

be applied.  546	
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Supplementary Text S2. Transient behavior of the model described in Box 2.  547	

To understand the nature of transient effects and the parametric dependence, we analyze the case 548	

of linear tracking and linear resistance, 𝑇(𝑥) = 𝑅 𝑥 = 𝑥, for which analytical progress can be 549	

made.  We use Equation B2-3 for 𝜌.  In this case, Equation B2-1 can be expressed as 550	

(S2-1)
  

dC t( )
dt

+ cTC(t)+ cR C(t)−C(t −Δt)( ) = cTF(t)  551	

The solution is the sum of a solution of the homogeneous equation, with zero right hand side, 552	

and a particular solution.  Seeking a solution of the homogeneous equation in the form 553	

𝐶 𝑡 = 𝐴𝑒!" leads to the transcendental equation 𝜆 + 𝑐! + 𝑐! − 𝑐!𝑒!!"# = 0.  We seek 554	

solutions in the complex plane: taking 𝜆 = 𝑥 + 𝑖𝑦 and separating real and imaginary parts gives 555	

the set of equations 556	

 (S2-2)  

x + cT + cR = cRe
−Δtx cos(Δty)

y = cRe
−Δtx sin(Δty)

 557	

We begin by showing that any solution will be characterized by 𝑥 < 0.  First, note that when 558	

𝛥𝑡 = 0, the only solution is 𝑦 = 0, and 𝑥 = −𝑐! < 0.  In order to have 𝑥 > 0, it must cross the 559	

axis, i.e. there must be a value of 𝛥𝑡 for which 𝑥 = 0.  However, setting 𝑥 = 0 gives cos 𝛥𝑡𝑦 =560	

!!!!!
!!

> 1, for which there can be no solutions.  Therefore, the homogeneous solution is always 561	

characterized by exponential decay. 562	

 Once the homogeneous solution sufficiently decays, 𝐶 𝑡  follows the particular solution, 563	

whose form will be driven by the form of 𝐹(𝑡).  For example, in the case of sinusoidal forcing  564	

(Equation B2-10), the particular solution may be constructed explicitly as a combination of 565	

sin 𝜔𝑡  and cos (𝜔𝑡).  This shows (for the linear case) that after transients decay, the system 566	

settles into a periodic state with equivalent frequency to the forcing.  While the situation is less 567	
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straightforward with nonlinear tracking and resistance functions, the general structure of 568	

transient decay towards a solution with the same form as 𝐹(𝑡) has generally been observed in all 569	

of our numerical simulations.   570	

 The duration of the transient effects is determined by the value of 𝑥 closest to 0.  571	

Considering the graphs of the curves 𝑓 𝑥 = !
!!
+ 1+ !!

!!
,  𝑔 𝑥 = 𝑒!!" ! cos (𝛥𝑡𝑦), whose 572	

intersections define the rate of decay of transients, we see that in the limit !!
!!
→ 0, 𝑓(𝑥) 573	

approaches a vertical line with intercept at 𝑓 0 = 1, and thus intersection points 𝑥∗ for which 574	

𝑓 𝑥∗ = 𝑔 𝑥∗  approach 0 from the left.  In the other limit, !!
!!
→∞, there is only a single root 575	

𝑥∗ → −𝑐! .  The transient time increases with decreasing ratio !!
!!

, i.e. as resistance effects 576	

dominate tracking effects. 577	

 This simple analysis also suggests a strong difference in the potential behavior exhibited 578	

with lagged resistance to a constant state, that is when 𝜌 is given by Equation B2-4.  Here 579	

Equation S2-2 becomes  580	

(S2-3)   
x + cT = −cRe

−Δtx cos(Δty)
y = −cRe

−Δtx sin(Δty)
 581	

These equations do admit solutions with non-negative 𝑥. Thus there are parameter regimes in the 582	

linear case where the transient grows with time, even while the community is restoring toward a 583	

constant state. 584	

  585	
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Box 1. Definitions of lag statistics for community dynamics 845	

Consider a community containing a set of i{ }∈ 1,k( )  species at time t. Each resident species i 846	

has a fundamental niche function that can be described by a relative fitness over a given niche 847	

axis. Suppose that each of these niche functions has a modal value of Ni(t).  848	

The location of the community has an observed climate F(t). The inferred climate of 849	

the community also can be defined as the mean of the niche optima of all species (Fig. 1): 850	

(B1-1)   C t( ) = E Ni t( )⎡⎣ ⎤⎦  851	

More sophisticated definitions (e.g. abundance-weighted means or medians across species) are 852	

possible and potentially more useful in low-richness communities.  853	

We can also define a measure of uncertainty in the inferred climate, σ(t), as the standard 854	

deviation of the modal niche values: 855	

(B1-2)  σ t( ) = E Ni t( )−C t( )( )
2⎡

⎣⎢
⎤
⎦⎥  856	

If a community is comprised of species with similar Ni(t) values, then σ(t) is close to zero; 857	

alternatively, if species have a wide range of Ni(t) values, then σ(t) is large. Large values of σ(t) 858	

can also represent community lag resulting from differences in species responses to changing 859	

climatic conditions, but we primarily consider them as uncertainties in the context of empirical 860	

data.  861	

The community climate lag can be defined as the difference between the inferred 862	

climate and observed climate. It can be calculated at any given time t: 863	

(B1-3)   864	

Because of linearity, the standard deviation (uncertainty) of Λ(t) is also equal to σ(t).   865	

The mean absolute deviation can be defined as: 866	

Λ t( ) =C t( )−F t( )
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(B1-4)  Λ =
1
tmax

Λ t( ) dt
0

tmax

∫
 

867	

where generally the statistic would be calculated for tmax →∞ .  868	

The maximum state number can be defined as the largest number of real values of C 869	

corresponding to any of the realized values of F. Let g be the implicit constraint equation 870	

defining the relationship between F and C, i.e. g(C,F)=0. Then n is the maximum cardinality of 871	

the set of real roots of g for each value of F: 872	

(B1-5)  n =max
F

C ∈ℜ : g C,F( ) = 0{ }  873	

There are several ways to calculate n. If g(C,F)=0 is a polynomial in C, then an exact value for n 874	

can easily be obtained using Sturm’s theorem for counting distinct real roots (Dorrie & Antin 875	

1965). In the more general case, if g(C,F)=0 is transcendental in C, then g can be approximated 876	

to arbitrary accuracy by Chebyshev polynomials, with real roots counted using companion 877	

matrix eigenvalue methods (Boyd 2013). 878	

 It is also possible to obtain an upper bound on the maximum state number.  As we prove 879	

in Supplementary Text S1, if F and C are both periodic in time, then the maximum state 880	

number is always finite, with  881	

(B1-6) 
  

n ≤ kb.  882	

where k is the number of times F folds over itself in one period in the F-C plane, and b is the 883	

relative periodicity of F relative to C. The analytical bound essentially reflects how synchronized 884	

the observed and inferred climates are.  Thus, even with stable dynamics characterized by 885	

periodic orbits, predictability of the community can vary strongly.  Moreover, a simple 886	

functional form for F(t) does not imply simple predictability in the inferred climate.  The state 887	

number, which can be understood as a metric that characterizes the complexity of those 888	
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dynamics, is a valuable measure for predictability and the diversity of community responses 889	

possible.  890	
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Box 2. A simple model of community dynamics 891	

We propose an ordinary differential equation model for the dynamics of a community’s state, 892	

C(t). The model’s formulation is general, but is operationalized here with linear functions to 893	

demonstrate the range of complex behavior that can arise from simple model structure. 894	

(B2-1)    
dC t( )
dt

= −cTT τ t( )⎡⎣ ⎤⎦− cRR ρ t( )⎡⎣ ⎤⎦  895	

where 
 
is a function describing how the community tracks a change  in its state 896	

relative to the observed climate at time t and 
 
 is a function describing how the 897	

community resists a change  in its state at time t relative to a past observed climate. The 898	

coefficients cR≥0 and cT≥0 determine the relative importance of each effect. This model 899	

describes a forced delay differential equation, whose general properties and solutions have been 900	

explored in the mathematics and control theory literature (Sastry 2013). 901	

 The size of the tracking change, , can be defined as the linear difference between the 902	

observed climate and the community composition at time t:   903	

(B2-2)  τ t( ) =C t( )−F t( ) = Λ t( ) . 904	

We consider two possibilities for the resistance change, .  One is to define resistance by the 905	

linear difference between the community composition at time t and the community composition 906	

based on a time delay, : 907	

(B2-3)  ρ t( ) =C t( )−C t −Δt( ) . 908	

This models a scenario where the amount of restorative force is proportional to the difference 909	

between the community’s past and present state, so that the system tends toward a past state (e.g. 910	

T τ t( )⎡⎣ ⎤⎦ τ t( )

R ρ t( )⎡⎣ ⎤⎦

ρ t( )

τ t( )

ρ t( )

Δt

Page 39 of 48 Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

maintenance of an already-established forest type). Another is to use the difference between the 911	

community state at time t-  and a optimal state C0: 912	

(B2-4)  ρ t( ) =C t −Δt( )−C0 , 913	

which models a scenario where the system tends toward a fixed climate-independent optimum. 914	

A simple proposal for the tracking function is a linear function: 915	

(B2-5)  T (τ ) = τ .  916	

where the response of a community to climate is directly proportional to the lag at that time. 917	

 Similarly, a simple resistance function can be proposed with a linear response, for 918	

example  919	

(B2-6)  R(ρ) = ρ  920	

or with a nonlinear response, as 921	

(B2-7)  R(ρ) = ρ3  922	

Both resistance functions are odd and therefore yield responses that are restorative, in that they 923	

try to maintain the system in its current state. Another proposal is a nonlinear restorative function 924	

with multiple basins of attraction: 925	

(B2-8)  R(ρ) = sin ρ( ) ⋅exp −ρ2( )  926	

This equation describes a situation where small to medium changes in system state lead to 927	

increasingly strong restorative responses, but where large changes lead to non-restorative 928	

responses.  929	

 The model also depends on the temporal trajectory of the observed climate F(t). Here, we 930	

consider two simple example cases for climate change: a linearly increasing forcing with rate : 931	

(B2-9)   932	

Δt

γ

Flinear t( ) = γt
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and a periodic forcing with angular frequency : 933	

 (B2-10)  934	

First, consider the linear forcing. In the case that cR=0 (no resistance effects), Equation B2-1 935	

reduces to  936	

(B2-11)  937	

and has solution when C(0)=0 of 938	

(B2-12)  939	

That is, the system is delayed by . The second term rapidly decays over time, so the 940	

lag converges on a constant value as time increases. If cT=0, the delay become zero. Thus, only 941	

no-lag (Fig. 3A) or constant-lag (Fig. 3B) dynamics can occur.  942	

If instead resistance does occur (cR>0), then Equation B2-1 no longer has an exact 943	

solution. However, the system does respond with constant relationship dynamics regardless of 944	

the choice of resistance function.  Indeed, for any monotonic forcing function this will be the 945	

case.  For monotonic forcing, 𝐹 and 𝑡 are in a one-to-one relationship.  Therefore, a given choice 946	

𝐹 = 𝐹! will correspond to a single time 𝑡 = 𝑡!.  Since 𝐶 𝑡  must be a function (emerging as the 947	

solution of a differential equation), fixing 𝑡 = 𝑡! fixes 𝐶 = 𝐶! = 𝐶(𝑡!).  This implies that even 948	

though 𝐶 𝑡  is not necessarily (in fact, usually not) a monotonic function, a given 𝐹 corresponds 949	

to a single 𝐶, and thus the community response diagram in the 𝐹 − 𝐶 plane will be one-to-one, 950	

for which the state number is always n=1 (Fig. 3B).  The general implication is that only 951	

constant-lag, constant-relationship, and no-lag dynamics are possible with linear climate change. 952	

ω

Fperiodic t( ) = sin ωt( )

dC t( )
dt

= −cT C t( )−γ t( )

C t( ) = γ t + e
−cTt −1
cT

⎛

⎝
⎜

⎞

⎠
⎟= F t( )− γ

cT
1− e−cTt( )

γ
cT
1− e−cT t( )
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Next, consider the periodic forcing. The no-lag and constant delay hypotheses can both 953	

occur when there are no resistance effects (cR=0).  The system reduces to 954	

(B2-13)  955	

In this case, the solution, assuming C(0)=0, becomes 956	

(B2-14) C t( ) = cT
cT
2 +ω 2 cT sin ωt( )−ω sin π

2
−ωt

⎛

⎝
⎜

⎞

⎠
⎟+ωe−cTt

⎡

⎣
⎢

⎤

⎦
⎥  957	

That is, the community response is proportional to the sum of the observed climate, a time 958	

delayed observed climate, and a transient coefficient that decays rapidly over time (Fig. 3C). As 959	

the parameter cT becomes large relative to ω, C(t) converges exactly on F(t) and the time lag 960	

disappears. That is, when cR=0, a small value of cT corresponds to the constant-lag hypothesis, 961	

and a large value of cT corresponds to the no-lag hypothesis. 962	

 Alternatively when resistance effects also occur (cR>0), the type of dynamics depends on 963	

the size and form of the resistance. For the simple lagged resistance (Equation B2-3), constant-964	

lag and alternate state dynamics can occur, but are restricted to state number n=2 (Fig. 3D). For 965	

the more complex restorative resistance change (Equation B2-4) and resistance functions 966	

(Equation B2-7), we find far more complex dynamics exhibited, including periodic states with 967	

state number n≥2 (Fig. 3E), as well as chaos in some parameter regimes (Fig. 3F). 968	

 We can also determine when (if ever) the system reaches a steady state, depending on the 969	

presence of resistance or tracking effects. As proved in Supplementary Text S2, we can 970	

separate the community’s dynamics into transient effects and steady states (except in the case of 971	

parameters leading to chaos).  In the transient state, the system takes a trajectory that is highly 972	

influenced by initial conditions that can be difficult to predict. After the system settles to a steady 973	

state, C(t) becomes a periodic function, and the community response diagram follows a fixed 974	

dC t( )
dt

= −cT C t( )− sin ωt( )( )
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pattern that repeats over time. The duration of the transient increases with decreases in the ratio 975	

!!
!!

, i.e. as resistance effects dominate tracking effects. The previous result holds except for where 976	

the tracking function restores toward a climate-independent state (Equation B2-4). In this case, 977	

are parameter regimes where the transient grows with time, even while the community is 978	

restoring toward a constant state. Thus the system never obtains a fixed pattern that repeats over 979	

time and instead exhibits transient dynamics for all times that may have arbitrarily high n and Λ980	

. 981	

  982	
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Figures 983	

 984	

Fig. 1. A) Definition of community and climate terms. A community contains a set of resident 985	

species, each described by a different realized climate niche (cyan distributions) at time t. By 986	

overlapping these niches, a climate most consistent with the occurrence of these species (blue 987	

distribution) can be inferred and summarized by its expected value, defined as the community 988	

climate, C(t) (vertical blue line). The community climate may differ from the observed climate at 989	

the location of the community, F(t) (vertical red line). The difference between the community 990	

climate and the observed climate is defined as the community climate lag, Λ t( ) . If the 991	

community is in equilibrium with climate and there are no lags, Λ t( ) = 0 , or Λ t( ) > 0  992	

otherwise. B) An example of time series for C(t) and F(t). Values of zero are shown as a dashed 993	

horizontal line. C) A community response diagram is a parametric plot of time-series of F(t) and 994	

C(t). Data are replotted here from panel B. Values of zero are shown as dashed horizontal and 995	

vertical lines. The 1:1 no-lag expectation of C(t)=F(t) is shown as a gray line. 996	
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Fig. 2. Definition of community response diagram statistics using an example dataset. A) A 1000	

community’s trajectory of observed climate F(t) and the community response C(t) is shown for 1001	

original data (black curve), coarsened data (gray curve), and coarsened and smoothed data (blue 1002	

curve). The 1:1 (no lag) expectation is shown as a diagonal red line. The maximum state number, 1003	

n, indicates the largest number of unique values of C(t) that correspond to any coarsened value of 1004	

F(t). It is calculated by intersecting a vertical line with the community’s trajectory at all values of 1005	

F(t) (vertical blue lines). B) The mean absolute deviation, Λ , indicates the average difference 1006	

between C(t) and F(t) across all times, with larger values indicating greater lags. The distribution 1007	

of lags is shown as a gray envelope and the statistic’s value is shown as a vertical blue line. 1008	
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Fig. 3. General classes of dynamics possible for a community’s response to climate change. In 1011	

each box, the time series shows an observed climate F(t) (red lines) and a community response 1012	

C(t) (blue lines). Values of the state number n and the mean absolute deviation Λ  are shown as 1013	

insets for each example. A) No-lag dynamics occur where the community climate closely 1014	

matches the observed climate. This scenario can be detected when the community response 1015	

diagram matches the 1:1 line. B) Constant relationship dynamics occur when the community 1016	

response diagram is a function, i.e. has a unique value of C(t) for every value of F(t). C) 1017	

Constant delay dynamics occur when the community climate follows the observed climate with a 1018	

fixed time delay. This scenario cannot be detected for a linear climate change but appears as a 1019	

single loop for a sinusoidal climate change. Transient effects can also occur producing 1020	

unpredictable dynamics with high n. D) Memory effects occur when the community climate 1021	

follows the observed climate with a variable delay and magnitude. This scenario can be detected 1022	

via the presence of one or more crossing-back events that can also form loops when F(t) is 1023	

periodic. E) Alternate unstable states occur when the community shows memory effects with 1024	

multiple stacked loops, such that the state number is always greater than two. F) Unpredictable 1025	

dynamics can occur when n becomes infinite. Memory effects occur in this scenario as well. A 1026	

scenario is shown here for chaos. G) Unpredictable dynamics can also occur when the 1027	

community response is uncorrelated with the observed climate, e.g. because of stochastic 1028	

dynamics. All trajectories were generated from the model in Box 2 using parameter 1029	

combinations described Table S1. 1030	
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