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Abstract. - Elastic cavitation is a well-known physical process by which elastic materials under

stress can open cavities.

Usually, cavitation is induced by applied loads on the elastic body.

However, growing materials may generate stresses in the absence of applied loads and could induce
cavity opening. Here, we demonstrate the possibility of spontaneous growth-induced cavitation
in elastic materials and consider the implications of this phenomenon to biological tissues and in
particular to the problem of schizogenous aerenchyma formation.

Introduction. — Among the many typical biologi-
cal structures, tubular structures such as hollow stems
and blood vessels abound in nature. Tubes are typically
used for transport or mechanical support. Their morpho-
genesis usually involves complex genetic and biochemical
processes [Patan (2000)] mediated by mechanical forces.
Here, we consider the possible role of mechanical stress
in the opening of cavities in elastic tissues. Many bio-
logical tissues exhibit differential growth. That is, differ-
ent parts of the tissue grow at different rates or in an
anisotropic fashion. Typically these local changes of vol-
ume or mass induce elastic stresses that cannot be relieved
by a change in geometry, hence building so-called residual
stresses, stresses that remain in the body in the absence
of body or external loads. Residual stresses are found
universally in biological tissues and are the hallmark of
mechanical biology. These stresses are known to play a
role in the regulation of circumferential stress gradients
in blood vessels [Fung (1991)], to improve the rigidity of
growing plant stems [Vandiver and Goriely (2008)] and the
stability of arteries [Goriely and Vandiver (2010)], and to
assist in the proper functioning of airways and oesophagus
[Han and Fung (1991)]. The theoretical analysis of resid-
ual stresses in growing elastic bodies has revealed that
growth-induced stresses can trigger both mechanical in-
stability [Goriely and Ben Amar( 2005)] and, in the case
of elastic membranes, elastic cavitation [McMahon et al.
(2008)].

A particularly striking example of cavity opening is
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Fig. 1: A. Aerenchyma tissue in the roots of Zea mays, corn
(from Kramer [Kramer (1983)]), B. Diaphragms in a sliced
stem, C. Hollow stem in hollyhock Althaea rosea. D. Trans-
verse section of the flowering scape of Allium Schoenoprasum
(from Sachs [Sachs (1875)])

found in the world of plants. Indeed, most people are
familiar with the simple observation that many plants
such as dandelions, chives, and bamboo have hollow stems.
Similarly, many roots and water plants have tissues with
large airy tissues known as aerenchyma (See Fig. 1). The
existence of these pockets of gas in the plant tissues fulfill
many functions such as mechanical economy and rigidity
for hollow stems [Hoga and Niklas (1990)], buoyancy for
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hydrophytes, increased gas transport and sap flow, change
in the scattering of light for chlorophyl production, and
seed projection [Raven (1996)]. In the nineteenth cen-
tury, Sachs [Sachs (1875),Newcombe (1894)] characterized
the formation of aerenchyma as being either lysigenous,
that is, created through uniform growth and cell death, or
schizogenous, that is, air spaces are created through a pro-
cess of differential growth creating tension in tissues that
leads to the mechanical tearing of adjoining cells [Evans
(2003)]. Schizogenous formation is associated with large
and regular structures in plant tissues such as hollow stems
of which Sachs write [Sachs (1875)]: “I will refer only to
the one obvious fact that while the pith is no longer able
to grow in proportion, it becomes ruptured while a cav-
ity arises in the interior. This may be easily observed
in the flower stems of the Teazel and Dandelion.” While
lysigenous aerenchyma formation has received consider-
able attention by plant physiologists [Kozela and Regan
(2003)], schizogenous aerenchyma formation with its com-
bined mechanical and developmental regulation is not well
understood [Jackson and Armstrong (1999)] .

Schizogenous aerenchyma formation is a simple and
beautiful example of the role that mechanics can play in
the morphogenesis of long tubular structures. It naturally
leads to physical questions regarding the role of stresses
and differential growth in the opening of cavities and in
stem hollowing.

In the world of engineering and material sciences, elastic
cavitation refers to the opening of voids in elastic materi-
als. Following the early work of Gent and the seminal pa-
per by Ball [Ball (1982),Cho et al. (1987)], it is well known
that for a dead-load traction p > pcr = 5E/6 on the outer
boundary of an incompressible neo-Hookean sphere (where
E is the Young’s modulus of infinitesimal deformations),
the sphere supports the trivial spherical solution (with no
cavity) and a cavitated solution with spherical symmetry
whose cavity radius vanishes when p = per. That these
two solutions meet at p = per and coexist for p > per leads
to the interesting (but somewhat controversial) possibility
of a bifurcation between the trivial and cavitated state,
with possible applications to void nucleation and fracture
initiation [Antman (1995)] (see [Fond (2001)] for a review
and some experimental verifications).

The purpose of this Letter is to study the general prob-
lem of elastic cavitation in residually stressed biological
materials and to understand the role of mechanics in cav-
ity and tube formation. We show that elastic cavitation
can naturally occur as a result of the residual stress cre-
ated during growth. The Letter is organized as follows.
First, we consider elastic cavitation in elastic spherical
shells growing differentially either anisotropically or in-
homogeneously. Second, we look at the possibility of void
opening in tubular structures modelled as cylindrical tubes
and apply these ideas to the problem of hollowing in plant
stems.

Morpho-elastic materials. — We first consider the
growth of an incompressible hyperelastic body [Pence and
Tsai (2006)]. Let x = x(X,t) be the deformation of a
three-dimensional elastic body where X and x describe
the material coordinates of a point in the reference and
current configurations. We use the theory of morpho-
elasticity to describe the deformation of a material that is
due to the combination of both growth and elasticity. Fol-
lowing the standard approach introduced by [Rodriguez
et al. (1994)] and by analogy with finite elasto-plasticity,
technically we utilize a multiplicative decomposition of the
deformation gradient F = Grad(x) to describe the growth
process. That is, we assume that F = A - G is the prod-
uct of a growth tensor G and an elastic tensor A. The
growth tensor locally instructs the addition or loss of ma-
terial throughout the body. The local changes of volume
can introduce incompatibilities in the material, and so an
elastic response is needed to ensure compatibility and in-
tegrity during the growth process - this is captured by
the elastic tensor. Assuming that the material is hyper-
elastic, its response function is given by a strain energy
density function W = W (A) which sets the Cauchy stress
tensor as

1)

where W is the tensorial derivative of W w.r.t. A, and p
is associated with the incompressibility constraint [Ogden
(1984)]. The Cauchy equations for the balance of linear
and angular momenta are, in the static case,

T:A-WA—pl

div(T) =0 and TL =T (2)
where the divergence is taken in the current configura-
tion. We assume that growth in the material takes place
on a much slower time scale than the elastic response of
the material so that the material can be considered at me-
chanical equilibrium at all time. For a given growth tensor
or a counstitutive law for the evolution of the growth ten-
sor as a function of the other fields, these equations can
be solved with suitable boundary conditions.

Symmetric growth and deformation of a sphere.
— In the particular case of an initial incompressible
sphere conserving its spherical symmetry during deforma-
tion and growth, these kinematic descriptors take a par-
ticularly simple form [Ben Amar and Goriely (2005)]

F = diag(9dgr,r/R,r/R), (3)
A = diag(ay, g, a,) = diag(a™?,a,a),  (4)
G = diag(gr, 90, 90) ()

where the tensors are all expressed in the usual spherical
coordinates (R, O, ®) and (1,0, ¢) in the initial and current
configuration. The deformation is thus described by the
map r(R). Here, the growth functions g, and gy describe
the addition or loss of material in the radial and circum-
ferential directions, respectively. (Note that the ¢ and 6
components are the same in order to maintain spherical
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symmetry.) In particular, if g9 = 1, material is added
(removed) if g. > 1 (g, < 1), and the process is called
radial growth (resorption). Circumferential growth and
resorption occurs if gy # 1. If these quantities are unequal
the growth is anisotropic; inhomogeneous growth occurs
if they are functions of position.

Let a = r(A) and b = r(B) be the inner and outer radii
in the current configuration of a shell of initial radii A
(A = 0 for a sphere) and B. The relation F = A - G
implies

(6)

and also specifies the strain as a function of the reference
radius

R
r?—a® = S/A R%*g,(R)gi(R)dR

o r(R) 1
g9l geR

R 1/3
<a3+3 / R2gr(R)g§(R)dR> :
A
(7)

Once the inner radius a is known, the deformation is com-
pletely determined. An equation for a is obtained from
the equation of mechanical equilibrium: we set the di-
vergence of the Cauchy stress equal to zero, where the
Cauchy stress satisfies Eq. (1). In the spherical geome-
try under consideration, this reduces to a single equation
for the derivative of the radial component ¢, = T}, (see
[Ben Amar and Goriely (2005)] for details). Integrating,
t, is found to be

R

g,r_ —
r = rA « )
tr(R) = t,.( )+/A ggRa2a W(a)dR

(8)
where W(a) = W(a=2,a,a). In the absence of external
loads and recalling that the sphere is initially defined by
radius A < R < B, the boundary conditions are t,.(B) = 0
and either ¢,.(A) = 0 for a cavitated solution, or ¢,.(0) finite
for a sphere. Therefore, setting R = B and t,.(B) = 0,
Eq. (8) together with Eq. (7) give an equation for the
single parameter a

0= t,(A) + / o 9. W (@)dR. 9)

A goRa?
The problem of elastic cavitation is reduced to showing
the existence of a solution with a > 0. Before doing so,
we find conditions for the existence of a trivial solution
(that is, @ = 0, the solution with no inner cavity). Let
g1 = limg_0g, > 0 and gy = limg_,5 gy > 0 be the local
growth elements at the origin. An expansion of (8) around

R = 0 reveals that
1/3

(91/92)

t(R) = ——F—

7 0aW ((91/92)"*) + O(1).

(10)

Since t;(R) has to be finite at the origin, we need
(%W((gl/gg)l/‘g) = 0 which is only guaranteed if g, /gs =
1. We conclude that the trivial spherical solution ceases to
exist unless limpr_,0 gg/g- = 1; that is, close to the origin,
growth must be isotropic for the trivial solution to persist.

Growth-induced cavitation in sphere. — We now
study the possibility of growth-induced cavitation by look-
ing at the existence of non-trivial solutions for given
growth functions g,,gg. We consider two complemen-
tary cases, first the case of anisotropic but homogeneous
growth and second, the case of isotropic but inhomo-
geneous growth. We restrict our attention to the neo-
Hookean energy function

Wh:@(a$+a§+ai)—3 (11)

n 2
(We will scale all forces by taking elastic modulus to be
Mpp = 1, which corresponds for small deformation to a
Young modulus E = 3.) In the first case (anisotropic
growth), we take, without loss of generality, outer radius
B =1 and g, = 1 (that is a volume element grows along
the two spherical angles and not along the radial direction;
only the ratio gg/g, plays a role in creating residual stress
[Ben Amar and Goriely (2005)]). Then, Eq. (8), which
can be integrated explicitly, provides an implicit relation-
ship between a and gy. In Fig. 2, we graph the solution
a = a(gp, A) for various initial inner radii. The cavitated

a(gy)

0.25

Fig. 2: Growth-induced cavitation of a sphere of initial radius
1 with constant anisotropic growth (g» = 1,99 > 1). Dashed
curve: asymptotic solution tangent to the numerical solution.
Solid curves correspond to cavity opening of a shell of initial
inner radius A = 0.01,0.05,0.1,0.2 due to growth.

solution from the sphere corresponds to the choice A = 0.
A local analysis of the solution close to gy = 1 leads to

V3m _ 66gp° +183gp — 114
18 36(ge+1)(ge—1) 1"

a ~. 3exp (12)

go—

which clearly establishes the existence of a cavitated so-
lution whose inner radius is exponentially small close to
gp = 1 but non-vanishing for all values of g9 > 1. This is
in contrast with the classical cavitation case for which the
trivial solution persists and a large value of the external
traction is required to obtain a cavitated solution. Phys-
ically, the two problems are different due to the particu-
lar boundary conditions associated with a residual stress
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field. The effect of anisotropic growth is twofold. First,
the trivial spherical solution ceases to exist due to the lo-
cal anisotropy at the origin. Second, the residual stress
field creates radial tension close to the inner radius but
satisfies the vanishing boundary condition for all values of
go. In the classical case, a large elastic energy is neces-
sary to balance a large gradient of radial stress close to
the inner boundary which jumps from a finite value for
the trivial solution to zero on the bifurcated solution. In
Fig. 3, the radial residual stress is plotted for the two
highlighted cavitated solutions of Fig. 2. Notice that the
magnitude and the gradient of the stress is greater in the
solution with the smaller cavity radius.
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Fig. 3: Radial residual stress corresponding to the highlighted
solutions of Fig. 2. The dashed curve corresponds to the so-
lution with smaller cavity radius. In both cases the sphere is
in radial tension, but as the cavity opens both the magnitude
and gradient descrease.

In the second case (inhomogeneous growth), we set
gr = g9 = 1+ pr. Then, it can be similarly established
that a cavity opens for pu > p. ~ 0.8971637 as shown
in Fig. 4. Here the radial tension at the origin increases
with ¢ up to the critical point where sufficient elastic en-
ergy is built in the system to trigger cavitation. A similar
mechanical environment could be created by considering
an elastic sphere surrounded by a growing spherical shell.
Again, for sufficiently large growth, the tension created
by the shell pulling on the sphere would be enough to
open a cavity. Therefore, we conclude that growth, ei-
ther homogeneous or anisotropic, could be a simple and
universal mechanism to open cavities in elastic materials.
Its relevance to biological material is, however, still to be
determined.

Before proceeding with the problem of stem hollowing,
we should mention that there are two main fundamental
issues related to both the classical case of elastic cavi-
tation and the case of growth-induced cavitation. First,
the possibility of a cavitation depends crucially on the
choice of the strain-energy function. Namely, if we con-
sider a perturbation of the neo-Hookean energy function
W =Wy, + eWpert such that W = Wy + ea”, then it

a(w) tH(R)

A B u

088 090 092 094 096 098  1.00

Fig. 4: Growth-induced cavitation of a sphere of initial radius
1 with isotropic homogeneous growth (g» = go = 1 + uR).
Left: Opening a as a function of y after the critical value p. =
0.8971637 . Right: Radial stress as a function of initial radius
R for p = 0.88 and p = 0.98; dashed curve: trivial solution,
solid curves, the cavitated solution with zero radial tension at
the boundaries.

is standard to show that there is no cavitated solution for
all n > 3 and € # 0 [Horgan and Polignone (1995)]; the
bifurcation is topologically unstable as it disappears for
arbitrarily small perturbations of the strain-energy func-
tion. Second, a similar cavitation analysis can be carried
out in cylindrical geometry where one studies the bifurca-
tion of a cylinder to a cylindrical tube. However, in this
case, there is no possibility of cavitation for a neo-Hookean
material (note however that Varga materials still exhibit
cavitation [McMahon et al. (2008)]). This create a some-
what paradoxical situation if an anisotropic growth field is
applied to a neo-Hookean cylinder: following the previous
discussions, it is easy to show that neither the trivial so-
lution nor a cavitated solution exists. In this case, either
there is no solution to the morpho-elastic problem or there
exists an asymmetric solution (with or without a cavity);
this remains an open problem.

The fact that cavitation depends both on the material
response and on the particular geometry; that it changes
the topology of the material; and that it relies on the as-
sumption that elasticity remains valid at the microstruc-
ture suggests that cavitation may not be a robust mate-
rial feature. However, cavitation is an idealized concept.
If there exists a micro-void in the material, cavitation is
replaced by the problem of cavity opening, which does not
suffer the topological instabilities encountered in pure cav-
itation. As seen in Fig. 2, the opening of a small initial
cavity at A = 0.01 is essentially indistinguishable from the
ideal cavitation problem and no experiment could distin-
guish between cavity opening and pure cavitation. Fur-
ther, in the absence of a micro-void, the local stress field
could be such that locally the material reaches the yield
stress for rupture. At this point a small cavity opens due
to tearing and the problem of ideal elastic cavitation can
be replaced by the problem of the opening of a small cav-

ity.
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Plant stem opening. — We now consider an appli-
cation of these ideas to the problem of cavity formation in
plant stems. In a beautiful study, Takano et al. [Takano
et al. (2001)] analyzed the effect of mechanical stress and
gibberellins on stem hollowing in bean plants (see also
[Carr and Jaffe (1995)]). Gibberellins are a well-known
class of plant growth hormones involved in stem elonga-
tion [Muto et al. (2004)]. In Takano’s experiment, appli-
cation of gibberellin to bush bean plants, which are natu-
rally not hollow, increases the length of the stem, reduces
its diameter, and induces stem hollowing . Conversely, in
bean pole plants, which are naturally hollow, mechanical
stresses [Jaffe and Forbes (1993), Pressman et al. (1983)]
induced by rubbing cause an increase in the thickening, a
reduction in axial length, and prevent stem hollowing.

While Takano’s experiment suggests a connection be-
tween stem hollowing and differential growth, other au-
thors have argued that cavity opening is the result of a
chemical lysing process acting on the cell wall [Carr and
Jaffe (1995)]. It is therefore of interest to study the pos-
sible role of mechanical stresses in this process. Here, we
consider a simple model of stem growth where the stem is
an incompressible neo-Hookean cylinder with initial outer
radius B subject to radial, angular, and axial deforma-
tion and growth along the three cylindrical coordinates
(r,0,z). As discussed above, cavitation is not possible for
a neo-Hookean cylinder. Therefore, the idea is to explore
whether growth induced stresses can be sufficient to induce
rupture. Assuming that the cylinder retains its symmetry
during deformation, the deformation, growth and elastic
tensors are

F = diag(r’,r/R, \.), (13)

G = diag(gr, 99, 9=), (14)

A = diag(1/(awy), a, ay). (15)

The radial stress is then given by
R .
9r9:-Wa
t.(R) = t,(0 99: Ve g 16
(B =t,0)+ [ 20 (16)

where I//V\(a) = W(1/(aa,),a,a,). Added to this last
equation are boundary conditions ¢,.(B) = 0 and zero re-
sultant load on the top and bottom [Rivlin (1949)], so that
for a given growth tensor, the condition

b
/ rt,(r,a,)dr =0 (17)
0

fixes the strains o and the tension at the origin, ¢,.(0).
Following known patterns of growth in stems [Peters et al.
(2000)], we assume that on a given cross section, growth is
isotropic but inhomogeneous by using a linear dependence
with respect to the radius R. Further, we assume that ax-
ial growth creates tissue tension by being faster in the
pith than the epidermis [Peters and Tomos (1996), Van-
diver and Goriely (2008)]. That is,

gr =99 =v1+ 1R, g.=p + (B —R). (18)

Keeping the growth gradients 15 and po constant, an in-
crease of the parameter 111 corresponds to axial growth and
an increase of v; induces stem thickening which reproduce
theoretically the changes in growth patterns correspond-
ing to Takano’s experiments. We compute the maximal
stresses on the cylinder cross-section. The axial stress is
always compressive due to the fact that the pith grows
faster than the outer layers [Peters and Tomos (1996), Van-
diver and Goriely (2008)]. However, both hoop and radial
stresses at the origin (¢,(0) and t¢(0)) are equal and pos-
itive (i.e. tensile) for most realistic values of the growth
parameters. Due to the zero load boundary condition on
the outer edge and the form of the imposed growth laws,
cross-sectional rings want to expand, but are restricted by
the solid cylinder geometry, and so “pull” on their inside
neighboring rings. It is thus intuitive that the hoop and
radial stress is maximal at the origin. (This can also be
shown mathematically, where it is found that the stress
has a nearly linear profile.)

= f
tr(()) Stem elongation v,=1.0 7(0) Stem thickening
11 *
v,=0.9
124
10
v,=08 .,
09
08
08 v2=1.0
" 067 v,=0.9
! ~ v,=0.8
5 10 15 20 25 08 1.0 12 16 vy

Fig. 5: Radial stress at the origin of a growing cylinder with
constant inhomogeneous and anisotropic growth (g = g9 =
vi+wveR,  g. = p1+p2(B— R)) with parameter us = 2. Left:
the growth parameter 1 = 1 is constant and the axial growth
parameter p; is varied. Right: the axial growth parameter
n1 = 10 is constant and the constant sectional growth param-
eter is varied. The dashed line corresponds to an estimate of
the breaking strength (See text). The material is assumed to
be elastic with a strain-energy function W ,.

In Fig. 5, we plot this maximal value as a function of the
axial and sectional growth parameters (11 and v; respec-
tively). In addition, we plot the value of breaking stress
for pith tissue estimated from [Niklas (1993)] in which the
Young Modulus for the pith is around 1 Mpa (Fig. 1 in
[Niklas (1993)]) and values of the breaking stresses are
around 0.3 MPa (Fig. 2 in [Niklas (1993)]). Since we have
rescaled the stresses by setting the Young modulus E = 3,
the breaking stress is around #},,.,,c = 1 in rescaled vari-
ables.

This analysis shows that the sign (compressive or ten-
sile) and magnitude of the mechanical stresses acting on
the cross-section of a stem are consistent with the hypoth-
esis that aerenchyma is the result of mechanical tearing
(note however that in similar experiments on celery and
tomato pithiness, Jaffe and co-workers have argued that
chemical lysis play the dominant—if not unique- role in
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aerenchyma). This tearing could be further enhanced by
an underlying chemical process [Jarvis (1998), Jarvis et al.
(2003)]. Note that chemical lysing would change the ma-
terial properties of the tissue. Hence, an improved model
which includes the effects of differential growth and chem-
ical lysing would need to treat the material as being po-
tentially inhomogeneous due to differential weakening of
cell walls. We leave such an analysis for future work..

We have shown that cavity opening in elastic tissues
can be induced by either anisotropic or inhomogeneous
growth even in the absence of external tractions. How-
ever, continuum mechanics is topologically unstable and
potentially paradoxical with regards to pure cavitation. A
detailed study of the stresses generated in the growth of
plant stems reveals that residual stresses likely provide the
resolution, creating a mechanical environment suitable for
tissue tearing, beyond which stem hollowing involves the
robust elastic process of the opening of a cavity.
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