
This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Cavity flow characteristics and applications
to kidney stone removal

J.G. Williams1†, A.A. Castrejon-Pita2, B.W. Turney3, P.E. Farrell1,
S.J. Tavener4, D.E. Moulton1, and S.L. Waters1

1Mathematical Institute, University of Oxford, Woodstock Road, OX2 6GG, UK
2Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, UK

3Nufffield Department of Surgical Sciences, University of Oxford, OX3 9DU
4Department of Mathematics, Colorado State University, Oval Drive, CO 80523

(Received xx; revised xx; accepted xx)

Ureteroscopy is a minimally invasive surgical procedure for the removal of kidney stones.
A ureteroscope, containing a hollow, cylindrical working channel, is inserted into the
patient’s kidney. The renal space proximal to the scope tip is irrigated, to clear stone
particles and debris, with a saline solution that flows in through the working channel.
We consider the fluid dynamics of irrigation fluid within the renal pelvis, resulting from
the emerging jet through the working channel and return flow through an access sheath.
Representing the renal pelvis as a two-dimensional rectangular cavity, we investigate
the effects of flow rate and cavity size on flow structure and subsequent clearance
time of debris. Fluid flow is modelled with the steady incompressible Navier–Stokes
equations, with an imposed Poiseuille profile at the inlet boundary to model the jet
of saline, and zero-stress conditions on the outlets. The resulting flow patterns in the
cavity contain multiple vortical structures. We demonstrate the existence of multiple
solutions dependent on the Reynolds number of the flow and the aspect ratio of the
cavity using complementary numerical simulations and PIV experiments. The clearance
of an initial debris cloud is simulated via solutions to an advection-diffusion equation and
we characterise the effects of the initial position of the debris cloud within the vortical
flow and the Péclet number on clearance time. With only weak diffusion, debris that
initiates within closed streamlines can become trapped. We discuss a flow manipulation
strategy to extract debris from vortices and decrease washout time.
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1. Introduction

Kidney stones are prevalent, extremely painful, and can, on occasion, be life threatening
(Stamatelou et al. 2003; Scales et al. 2012; Kum et al. 2016). A common, minimally
invasive procedure for stone removal is flexible uretero-renoscopy. A long and thin
endoscope, a ureteroscope, is passed through the urinary tract, with its tip within the renal
pelvis, the main hollow cavity within the kidney. Visualisation, provided by a minuscule
light and camera on the scope tip, allows the surgeon to locate stones and to establish
an appropriate treatment strategy. Large stones are often managed with laser lithotripsy
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Figure 1: The basic geometry. The light pink rectangle denotes the domain, Ω?. Figure
(a) shows the addition of a passive tracer of concentration with an initially circular
distribution.

where a long, thin optical fibre transmits laser power through a hollow channel (the
working channel) within the ureteroscope; laser pulses create shock waves to fragment
stones. The resulting particles and debris can obstruct the field-of-view for the operating
surgeon and are cleared from the renal pelvis via irrigation; a continuous flow of saline
solution through the working channel, out of the scope tip, and into the renal pelvis. The
fluid exits the body along the outside of the scope shaft through a surrounding cylindrical
access sheath. This configuration of scope and sheath requires a jet of saline to enter an
enclosed cavity and flow out in the opposite direction, leading to large recirculation zones
within the cavity. A common clinical challenge during ureteroscopic procedures is lack
of visualisation within the renal pelvis due to obscuration of the field-of-view by kidney
stone debris; in fact, visualisation during surgery has been described metaphorically as
trying to see through a “snowstorm” (Moore & Bishoff 2005; Smith et al. 2018). We
hypothesise that this issue may be, in part, caused by stone debris becoming trapped
within steady vortical structures within the fluid. If we assume a weak concentration of
stone dust that interacts passively with irrigation flow, stone dust that initiates within
closed streamlines can only escape to open streamlines via diffusive mechanisms. A main
focus of this article is to model kidney stone dust clearance as the time required to clear
a passive tracer concentration from a cavity, and to explore how this depends on the
presence of recirculation zones in the cavity.

A precursor to understanding the impact of fluid structure on washout is to fully
characterise flow structure as a function of relevant parameters such as flow rate and
cavity size. Here, it is important to note a distinctive feature of irrigation flow: an
emerging jet into an enclosed renal cavity with a return flow through the access sheath, i.e.
the inlet and outlet for the flow are located on the same boundary of an otherwise closed
domain. This feature has strong implications on the flow structure and subsequently on
the washout of debris. Here, we investigate flow in a highly idealised but representative
geometry through numerical simulations combined with flow visualisation experiments.
Our reduced geometry enables computational tractability while retaining the key feature
– return flow in an enclosed cavity – of the physiological system. The idealised geometry is
depicted in Figure 1, with Figures 1a,b representing the scope as centred and offset within
the access sheath, respectively. The light-pink region represents the renal pelvis, and
denotes the problem domain with inflow and outflow boundaries Γ ?in and Γ ?out. The black
rectangles symbolise the solid scope shaft, with grey areas denoting fluid-filled inflow and
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outflow channels (all outside the domain). The rectangular domain is characterised by
three dimensionless aspect ratios, e.g., b?/a, h?/a, and l/a and we assume fixed values
for a, b?, and h? motivated by typical working channel, scope shaft, and access sheath
dimensions in ureteroscopy. We consider a two-dimensional Cartesian coordinate system
and model fluid flow with the steady, incompressible Navier–Stokes equations.

The existence of multiple solutions to the nonlinear, two-dimensional, steady Navier–
Stokes equations in domains such as Figure 1 is expected, as flow in a channel with a
sudden expansion is one of the classical examples of nonlinear bifurcation phenomena
in fluid mechanics (Fearn et al. 1990). It is well-known for expanding channels that in
a low-Reynolds number regime, the flow is symmetric (and the solution to the steady
Navier–Stokes equations unique). As the Reynolds number increases, however, steady
asymmetric solutions bifurcate, and the critical Reynolds number at which these develop
depends on the ratio between the channel widths downstream and upstream of the sudden
expansion (Sobey & Drazin 1986). Several modifications on the classic expansion channel
problem have also been studied, such as the addition of a downstream contraction,
shown to restabilise the symmetric state above certain Reynolds numbers (Mizushima
et al. 1996; Mullin et al. 2002). Bifurcation phenomena of flow in a cavity with one
inlet and two outlets was considered by Mizushima & Takahashi (1999) – distinct from
the geometry in Figure 1a in that the outlets are on the opposite wall of the cavity
from the inlet. Two different numerical boundary conditions were implemented at the
two outlets (either equal pressure or equal flux), and although the flow patterns were
qualitatively similar, the structure of the bifurcation diagram was dependent on the
choice of boundary condition. Laminar jet flow in a geometry similar to Figure 1a, with
inflow and outflow channels included as part of the domain and a = 2 mm, b? = 38
mm, and h? = 10 mm, has been solved numerically by Jelić et al. (2007) and Koľsek
et al. (2007). Several flow distributions, including asymmetric patterns, were observed for
different cavity dimensions, and it was postulated that cavity length l is a key parameter
in controlling the nature of the flow. However, a full characterisation of the numerical
solutions, and the parameter regime (Reynolds number and cavity lengths) under which
they exist, was not presented. Solutions in a geometry similar to 1a with b? = 0 (i.e., with
a simple boundary between inlet and outlets) have also been determined by Battaglia
et al. (1998). Here, symmetry-breaking bifurcations were found, and solutions presented
for different ratios of a/h?.

Inertial forces in two-dimensional flows lead to flow separation, recirculation, and vor-
tices. An early flow-visualisation study of hydraulic behaviour in a rectangular chamber
with inlet and outlet on opposite sides demonstrated the presence of large recirculation
zones, the structure of which change dramatically with Reynolds number (Walter &
Chen 1992). These vortical flow patterns are of relevance to ureteroscopy where debris
can become trapped in regions of closed streamlines within the renal pelvis, resulting
in slow kidney clearance via irrigation. A passive tracer advected by a non-uniform
two-dimensional flow field and subject to weak diffusion undergoes enhanced mixing
through shear dispersion, first discovered by Taylor in 1953 through his study of shear-
flow dispersion in a pipe (Taylor 1953). This governing theory can be extended beyond
dispersion by laminar Poiseuille flow to the mixing of a passive scalar within closed
streamlines. According to Rhines and Young (1983), the expulsion of a tracer from closed
streamlines occurs in two stages. First, a rapid concentration-averaging phase dominated
by shear-augmented diffusion over a time Pe1/3(`/U), where ` is the length-scale of the
flow, U is the velocity scale, and Pe = U`/Deff is the Péclet number based on Deff where
Deff is proportional to the diffusion coefficient D but exceeds it if the streamlines of the
vortex are non-circular. During this period, the tracer concentration averages throughout
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the vortex. Second, a slow stage which allows the tracer to escape the closed streamlines.
This requires the full diffusion time (`2/Deff), which can be rearranged as (`/U)Pe, and
hence scales linearly with the Péclet number. Fundamentals of shear dispersion also
underpin the field of chaotic mixing: a classical example of this is the blinking vortex
model, where alternate activation and deactivation of a pair of separated vortices results
in enhanced spreading of a tracer (Aref 1984). Although we are interested, primarily, in
the advection and diffusion of a passive tracer representing kidney dust, the advection
and diffusion of heat, where fluid properties are assumed independent of temperature, is
governed by similar physics. This problem has been explored numerically within a square
cavity with inlet and outlet ports positioned in various locations (Saeidi & Khodadadi
2006). In this instance the velocity field is also dominated by vortical structures and
the effect of the relative positions of the inlet and outlet on the flow and resulting
temperature distribution is discussed. Large temperature gradients are seen proximal
to circular streamlines as the vortices trap heat, analogous to the entrapment of a
passive tracer. In Saeidi & Khodadadi (2006) only the steady-state temperature field
is calculated, rather than the time-dependent advection-diffusion problem considered in
this study.

1.1. Structure of the article

In this article, we combine physical experiments with numerical simulations to in-
vestigate cavity flow properties. The fluid is taken (in both experiments and numerical
simulations) to be water; the saline solution used in ureteroscopy is sufficiently weak that
this is a valid approximation. Our experimental technique to visualise and quantitatively
measure instantaneous velocity fields is particle image velocimetry (PIV) in a pseudo
two-dimensional set-up. Tracer particles are added to the flow, and are illuminated in a
plane with images captured at least twice within a short time interval. The displacement
of the particles between the two images, measured through post-processing techniques,
provides a measure of the velocity field (Raffel et al. 1998). We assume that the dilute
concentration of tracer particles used for the PIV experiments does not affect the fluid
rheology and that the flow properties remain Newtonian. However, it is of interest to note
that the phenomena of symmetry breaking in expanding channels has also been observed
in non-Newtonian flows (Neofytou & Drikakis 2003).

We solve the steady Navier–Stokes equations in the cavity domain Ω? pictured in Fig-
ure 1 using a finite element discretisation detailed in Section 4. We focus on quantifying
the flow structure as a function of three important parameters: the flow rate, captured
mathematically by the dimensionless Reynolds number, the scope position (centred or
offset), and the length l, of the cavity (see Figure 1). In a ureteroscopy context, these
parameters could be varied by the operating staff by changing the irrigation flow rate, or
by adjusting the distance between the scope tip and proximal kidney walls, respectively.

The resulting flow patterns, which depend on the Reynolds number of the flow and
the aspect ratio of the cavity, are characterised by multiple vortices. For the symmetric
domain (Figure 1a) we demonstrate the existence of multiple solutions and compute
bifurcation diagrams using deflation (Farrell et al. 2015). By scaling the aspect ratio of
the cavity into the governing equations, we are able to compute bifurcation diagrams
in this parameter, as well as the Reynolds number of the flow. It has been shown
that small physical imperfections in an experimental apparatus can lead to significant
disconnections in the bifurcation diagram (Fearn et al. 1990; Mullin et al. 2002; Hawa
& Rusak 2000), and indeed, we observe a disconnected pitchfork in our experimental
results. For both the centred and offset-scope domains (Figures 1a,b, respectively), we
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Figure 2: Schematics of the PIV set-up. Measurements provided in mm units; diagrams
not to scale. Figure (a) provides a side-view of the full set-up with the main components
(reservoir, pump, flow meter, and camera) labelled. Figure (b) indicates a more detailed
view of the experimental rig for the inflow, outflows, and cavity. The inner walls
demonstrate the division between the inflow and outflow channels. The LED light sheet,
which illuminates a plane of the cavity, is shown in yellow.

compare the flow patterns obtained through numerical simulation to those extracted from
the PIV experiments, with excellent qualitative and quantitative agreement.

Finally, we explore how different flow structures may affect the time taken to clear the
field-of-view in ureteroscopy by solving an advection-diffusion equation, for an imposed
initial circular cloud of stone dust (Figure 1a), assuming that the concentration of dust
has no effect on the background advecting velocity. Motivated by Rhines & Young (1983),
we propose and validate through numerical simulations that if the debris cloud initiates
within a vortex, the time required for escape and subsequent expulsion from the cavity
is split into three phases: the first two as described by Rhines & Young (1983) enable
the debris to escape the vortex, and the third, the time required for the debris to advect
out of the cavity, which depends on the flow speed and the distance between the vortex
and the outlet. We quantify how the initial position of the debris cloud and the flow
structure, in terms of vortex size and location, affect washout time. We finally propose a
theoretical flow manipulation strategy – switching instantaneously from one asymmetric
solution structure to its mirror pair – to decrease cavity clearance time.

2. Particle image velocimetry experiments

2.1. Experimental set-up

To emulate the theoretical domain in Figure 1, we designed an experimental rig, con-
sisting of a rectangular acrylic chamber, containing parallel inflow and outflow channels
(see Figure 2b). There were two positions for the inflow channel: centred, in which case
there were two outflow channels of equal width; and offset, where there was a single
outflow channel (see the two positions in Figure 1).

The centre channel had width 1.2 mm (the diameter of the working channel of Boston
Scientific’s LithoVue ureteroscope) and each outflow channel had width 0.9 mm. The
width of the chamber was 9 mm and the depth of the chamber was approximately 25 times
the inflow channel width to approximate a domain of infinite parallel plates (and reduce
the influence of the top and bottom bounding walls). Water flowed from a suspended
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reservoir to the inflow channel through a vertical tube (see Figure 2a). The height of the
reservoir could be adjusted to control the driving pressure, and subsequent flux into the
chamber. The parallel channels terminated a finite distance from the end of the chamber
(see Figure 2b), creating a cavity. Two different cavity lengths, 13 mm and 5 mm, were
tested experimentally. The water left the chamber through the two outlets and the flow
rate was measured using a flowmeter (FLR1000 Series Omega), before collecting in an
open air container. The fluid was pumped from the collecting container to the reservoir
at the required rate to maintain the height of the reservoir. A diagonal acrylic sheet acted
as a diffuser to minimise fluid recirculation in the reservoir.

To visualise the flow, the water was seeded with a dilute suspension of particles,
designed to be advected with the flow. Two particle types were used: (A) silver-coated
glass particles of 12 µm diameter and density 1.22 g/cm3 (10089-SLVR, TSI Inc.), and
(B) polyamide seeding particles of 5 µm diameter and density 1.03 g/cm3 (PSP-5 Dantec
Dynamics). The experimental contour plots in Figures 7a,c were derived from PIV data
with particle type (A), whereas all other experimental images – Figures 7b, 3, and 6a,c
– contain particle type (B). An LED light illuminated a two-dimensional sheet at the
centre of the chamber, i.e. approximately 14 mm from the chamber base (Figure 2b),
and a Phantom Miro LAB 320 high-speed camera recorded images at a speed between
2000 - 5600 fps. PIV experiments were performed for a range of reservoir heights (1.8-
72 cm above the inflow channel). The flow was gravitationally-driven and once the rig
was set-up, the flow was allowed to continuously circulate. For each reservoir height,
the flow rate was recorded, and particles introduced for flow visualisation. The wait-
time between introducing particles and recording the image depended on the type of
data sought. For purely qualitative images, we introduced particles to a clear cavity,
and immediately captured the resulting patterns (Figures 3 and 6a,c). To enable the
extraction of quantitative velocity fields by comparing subsequent image pairs, we waited
sufficient time for the particles to diffuse uniformly throughout the cavity before recording
the images. Images were analysed using PIVlab (Thielicke & Stamhuis 2014), an open
source tool in Matlab. Each PIV experiment resulted in a series of image pairs;
approximately 100 were analysed to determine average steady-state velocity fields. Figure
6 displays the average velocity fields from the multiple image pairs, and the data points
in Figure 8 give average measurements; vertical error bars provide the standard deviation
in measurements within each image set and horizontal error bars denote uncertainty in
flow measurements provided by the FLR1000 Series Omega flowmetre of approximately
0.013 cm3/s (1% of the 20-100 mL/min range).

2.2. The existence of asymmetric flow patterns

In the longer (13 mm) cavity, when the height of the suspended reservoir was above
27 cm, we observed asymmetric flow patterns, as seen in Figure 3a.

We anticipated, based on theoretical and experimental studies of flow in expanding
channels, the existence of a pitchfork solution structure: an unstable symmetric flow
pattern and a pair of stable asymmetric patterns (Drikakis 1997; Mullin et al. 2002). To
demonstrate the existence of flow with the ‘mirror’ orientation, we manually blocked the
outflow that the jet was inclined towards (e.g. the lower outflow in Figure 3a), forcing
the jet to move across the cavity (Figures 3a-e).† We then released the closed outflow,
and the new flow pattern persisted (Figure 3f).‡ For the shorter cavity (5 mm), or for

† The outflow was blocked by pinching the tubing at the exit of the acrylic chamber in Figure
2a – i.e. just over 240 mm from the base of the cavity.
‡ We note that the the images in Figure 3 were taken immediately after introducing particles
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Figure 3: A time-series of the experiment technique to ‘switch’ the direction of the jet.
The images are at 0.1 second intervals. The bottom outflow was closed between (a) and
(b) and re-opened between (e) and (f). This experiment was performed at a head height
of 61 cm (1.2 cm3/s), and a cavity length of 13 mm.

reservoir heights below 27 cm, closing and re-opening the outflow tube only disturbed
the flow before it returned to its original pattern. For very low reservoir heights (3 cm)
for the longer cavity, and for all reservoir heights for the shorter cavity, the flow patterns
appeared symmetric.

3. Theoretical formulation

The experimental results depicted in Figure 3 suggest the existence of multiple stable
flow solutions in our representative geometry. To investigate this, we compute numerical
solutions to the steady incompressible Navier–Stokes equations, considering the two-
dimensional domain in Cartesian coordinates pictured in Figure 1 with corresponding
coordinate directions i and j. We consider fluid with density ρ and viscosity µ; these
are taken to be the properties of water. The dimensional two-dimensional velocity field
is given by u? = u?i + v?j and pressure by p? (stars denote dimensional variables and
coordinates). The governing equations are thus

ρ(u? · ∇?)u? = −∇?p? + µ?∇ · E(u?), ∇? · u? = 0, (3.1a,b)

where E(u?) = ∇?u? + (∇?u?)> and ∇? = (∂/∂x?, ∂/∂y?).†
We impose a fully-developed parabolic profile at the inlet boundary with maximum

velocity U

u? = U
[
1− (y?)2

]
, v? = 0, on Γ ?in. (3.2)

As outflow conditions, we impose zero normal and tangential stress on boundaries Γ ?out

in Figure 1. Although the experiments contain parallel outflow channels (of length 240
mm) we have found nearly identical results in the truncated geometry with zero-stress
boundary conditions to those in a domain with outflow channels with zero-normal stress

to the flow; thus the higher particle density in Figure 3f than 3a is due to more particles in the
flow stream, rather than any difference in flow rate.
† The long formulation of equation (3.1a), rather than reducing ∇? · E(u?) to ∇?2u? using

equation (3.1b), ensures zero-stress as the natural boundary condition in the weak formulation
of the equations.
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and parallel outflow boundary conditions (Appendix A). We choose the smaller domain
which allows for more tractable numerical simulations. The outflow conditions on Γ ?out are
thus σ?n = 0, where σ? is the viscous stress tensor σ? = [−p?I + µ(∇?u? + (∇?u?)T )].
In two-dimensions this reduces to

2µ
∂u?

∂x?
− p? = 0,

∂u?

∂y?
+
∂v?

∂x?
= 0, on Γ ?out. (3.3a,b)

On the walls (solid black lines in Figure 1) we assume no-slip

u? = v? = 0, on Γ ?wall. (3.4)

To account for changes in the dimensionless length of the cavity, and to allow for
continuous numerical continuation in this geometric parameter, we consider the following
dimensionless ratio

α = l/a, (3.5)

see Figure 1. We scale our coordinate system accordingly

x =
x?

αa
, y =

y?

a
. (3.6a,b)

Following the formulation in Mullin et al. (2002), we also scale the velocity components,

u =
u?

U
, v =

αv?

U
, (3.7a,b)

so that equation (3.1b) remains remains independent of α. Additionally scaling pressure
p = (a/(Uµ))p? equations (3.1) become, in component form,

Re

α

(
u
∂u

∂x
+ v

∂u

∂y

)
= − 1

α

∂p

∂x
+

(
2

α2

∂2u

∂x2
+
∂u2

∂y2
+

1

α2

∂2v

∂x∂y

)
, (3.8a)

Re

α2

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+

(
2

α

∂2v

∂y2
+

1

α3

∂v2

∂x2
+

1

α

∂2u

∂x∂y

)
, (3.8b)

∂u

∂x
+
∂v

∂y
= 0. (3.8c)

The dimensionless boundary conditions (3.2), (3.3), and (3.4) are

u = 1− y2, v = 0, on Γin, (3.9a,b)

2ux − p = 0, uy + vx = 0, on Γout, (3.9c,d)

v = v = 0, on Γwall, (3.9e)

where subscripts denote partial derivatives and dimensionless boundaries are defined

Γin = {(x, y);x = 0, y ∈ [−1, 1]}, (3.10a)

Γout = {(x, y);x = 0, y ∈ [1 + b, 1 + b+ h] ∪ [−1− b− h,−1− b]}, (3.10b)

Γwall = Γ\{Γin ∪ Γout}, (3.10c)
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Figure 4: Scaled computational domain Ω with boundary Γ . The structured mesh of
rectangular elements was built in Gmsh with barycentric refinement.†

where b = b?/a and h = h?/a.

3.1. Numerical methods

We computed numerical solutions to equations (3.8) with boundary conditions (3.9)
using the open-source finite element library Firedrake (Balay et al. 2018, 1997; Dalcin
et al. 2011; Rathgeber et al. 2016; Hendrickson & Leland 1995; Mitchell & Müller 2016;
Kirby & Mitchell 2018; Amestoy et al. 2001, 2006; Deuflhard 2011). We used the solver
provided by Farrell et al. (2019) which was extended to employ the exactly divergence-
free Scott-Vogelius element (Farrell et al. 2020; Scott & Vogelius 1985; John et al. 2017).
We built a structured, rectangular mesh of triangular elements using Gmsh, shown in
Figure 4. We used a mesh that was symmetric about the midplane y = 0, so that the
continuous and discrete systems of equations were equivariant with respect to the same
symmetry operator (see equation (5), Battaglia et al. (1997)), and to support discrete
solutions that are symmetric with respect to this operator. The mesh was barycentrically
refined to insure inf-sup stability (Farrell et al. 2019) and we used cubic Scott-Vogelius
elements for velocity. A typical number of elements was 5× 104.

The values for b and c were chosen to be b = 1.933 and h = 4.2835; i.e., the
measurements of the experimental apparatus, scaled by a. The two experimental cavity
lengths were 0.5 cm and 1.3 cm which correspond to values of approximately α = 8.3
and α = 21.7.

In Figure 15 we present a computed bifurcation diagram for two different mesh sizes
(2.1 × 104 elements and 8.4 × 104 elements) to demonstrate mesh-independence of our
results.

4. Numerical and experimental results

4.1. Comparisons of streamline calculations and flow visualization experiments

Before performing a more sophisticated set of computations using numerical deflation
techniques (see section 4.2), we conducted a series of computations to compare with
flow visualization experiments. To determine the Reynolds number for a particular
experiment, we took the measured volumetric flux, Q, and divided by the cross-sectional
area of the inflow channel. This provides an estimate of the average velocity, and to
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(a) (b) (c)

Figure 5: Figures (a)-(c) show a sequence of numerical streamlines for α = 21.7, Re = 34.
Figure (a) is initially computed by solving equations (3.8) on the computational domain
with initial guess u = 0 provided to the Newton solver. To produce (b), the boundary
condition on the bottom outflow is replaced by a zero-velocity condition (demonstrated
graphically by the blocked outflow channel). Using the solution pictured in (b) as the
initial guess for the Newton solver with the true boundary conditions, we compute the
asymmetric solution (c).

obtain an estimate for U (the peak velocity for a Poiseuille inflow), we multiplied this
by 1.54, which is the relation between the average and maximum velocity for Poiseuille
flow through a rectangular channel of the relevant dimensions (Happel & Brenner 1983).
This is a slight correction from the relationship between average and maximum velocity
for Poiseuille flow through parallel plates, which is 1.5 (Lamb 1916).

The experiment in Figure 3 corresponds to α = 21.7 and Re = 34. Solving equations
(3.8) for these parameters, providing the Newton solver with a symmetric initial guess,
namely u = 0, we obtained a symmetric flow pattern (streamlines shown in Figure 5a).
Motivated by the experiment in Figure 3, we replaced the boundary condition on the
lower outlet with a zero velocity condition. Using the symmetric flow field as the initial
guess, the Newton solver converged to the flow in Figure 5b. Restoring the original
boundary conditions and using the flow field in Figure Figure 5b as an initial guess, the
Newton solver converged to the flow in Figure 5c. The structure of the flow in Figure
5c shows the existence of a large vortex near the center of the cavity, along with other
smaller vortices near the cavity wall. This asymmetric flow state persists as the Reynolds
number is further increased. While a transient computation (see section 4.2) would have
modelled the transitions observed in the laboratory experiment more closely, the point
was to establish the existence of multiple solutions at a given fixed Reynolds number,
rather than the details of the transience.

We present qualitative comparisons between numerical streamlines and PIV images of
the corresponding experiments in Figure 6 for the longer cavity length at two Reynolds
numbers, Re = 7 and Re = 34. When flow rate is low, the experiment shows the jet
emerging symmetrically into the cavity. This pattern is shown in Figure 6a, where tracer
particles indicate streamlines originating within the inflow channel. The numerical tricks
described above and resulting in Figure 5c did not produce an asymmetric solution at
this lower Reynolds number.

Figures 7a,d and Figures 7b,e display velocity colourmaps for the dimensionless nu-
merical and experimental velocity fields for Re = 35 and α = 8.3 and 21.7, respectively.‡
These suggest the existence of a critical cavity length at which asymmetric solutions

† In practise, in all simulations we used a mesh with non-dimensional length 1/0.06 to improve
mesh element shapes.
‡ The driving pressure for the experiments in Figures 6a,d was slightly different from the

driving pressure for Figures 7a-c resulting in the two different Re values (Re = 34 and Re = 35,
respectively).
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(a) Experiment (Re = 7) (b) Numerics (Re = 7)

(c) Experiment (Re = 34) (d) Numerics (Re = 34)

Figure 6: A comparison of qualitative ‘for visualisation’ experiments with theoretical
streamlines. All are for α = 21.7.

P
IV

0

0.2

0.4

0.6

0.8

1

N
u
m
er
ic
s

(a) (b)

(d) (e)

(c)

(f)

Figure 7: A comparison for (upper) numerical simulations with (lower) PIV experiments
showing the velocity magnitude and vector directions. Left α = 8.3, middle and right
α = 21.7 (with far right the ‘offset scope’ configuration). All are for Re = 35.

emerge. Although less relevant in a symmetry-breaking context, we have also compared
experimental and theoretical velocity fields for the ‘offset scope’ configuration (Figure
1b) in Figures 7 (c) and (f), respectively. All three geometries in Figure 7 demonstrate
good visual agreement between PIV and simulation.

4.2. Bifurcation diagrams

We computed bifurcation diagrams as functions of Re and α using an implementation
of numerical deflation techniques (Farrell et al. 2015) within Firedrake. Deflation is a
technique for calculating multiple solutions of a nonlinear problem from a fixed initial
guess. When a regular solution is found with Newton’s method, a modified problem
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is constructed that retains all solutions of the base problem, except the one that has
been found. Newton’s method can then be applied from the same initial guess, and if it
converges, it will converge to a distinct solution. The process can then be repeated until
Newton’s method fails to find any solutions.

To test the stability of the branches at representative points on the bifurcation diagram,
we determine transient behaviour by using the computed steady-state solution (with an
added random perturbation) as the initial condition to a time-dependent finite element
solver for the incompressible Navier–Stokes equations.†

For expanding channels, the maximum value of the cross-stream velocity along the
centreline (y = 0) provides a good functional of the solution for visualising bifurcation
phenomena, as this value will be zero for symmetric flows, and non-zero otherwise
(Battaglia et al. 1997). However, due to our confined geometry, the cross-stream velocity
along the centreline of the cavity may have two peaks of opposite sign; see, for example,
Figure 6d. Thus, we define a bifurcation functional, vm, to be the value of the first peak;
that is, the one with smaller x-value coordinate. Denoting the cross-stream velocity along
the centreline vc = v?(x, 0)/U , vm is hence defined as

vm =

{
max(vc), argmax(vc) < argmin(vc),

min(vc), otherwise.
(4.1)

In Figure 8a, we plot the computed bifurcation diagram for α = 21.7 as a function
of Reynolds number – branch stability is indicated by solid lines (stable) and dashed
lines (unstable) – as well as the relevant experimental data. We obtain a pitchfork in the
numerical solutions, where the appearance of the asymmetric branches corresponds to loss
of stability of the symmetric branch. Figure 8 demonstrates good quantitative agreement
between numerics and experiments; however, for Re < 24, only one asymmetric jet
direction was obtained experimentally, and we were unable to switch the direction
of the flow via the experimental technique described in Section 2.2. This indicates
a disconnected pitchfork in the experimental results, as is often found, due to small
imperfections in the experimental set-up (Fearn et al. 1990; Mullin et al. 2002; Hawa
& Rusak 2000). To illustrate the effect of imperfections on the bifurcation diagram, in
Figure 8b we add a small asymmetry to the domain (we take the upper outflow to be 10%
smaller than the lower one), and compute the resulting bifurcation diagram, comparing
this, again, with the experimental data. It is difficult to quantify the imperfections in
the experimental set-up, but we see that an asymmetry in the computational domain
can disconnect the bifurcation diagram in a manner that matches qualitatively with the
experimental data. Additionally it is worth recalling when comparing bifurcation results
between numerics and experiment, that flows in the physical experiments, although
conducted in a geometry where the third dimension is nearly 25 times larger than
the width of the inflow channel, will inherently be three-dimensional. The effect of the
distance between the bounding walls in the third dimension on bifurcation phenomena
in a sudden expansion channel was explored numerically by Guevel et al. (2018). The
critical Reynolds number for the first primary steady bifurcation was shown to converge

† We take u(x) + ε(x) as the initial condition, where u is the calculated steady-state solution
and ε is an independent normally distributed random variable with mean zero and standard
deviation 0.01, at each value of x. If the transient solution moves away from the initial condition,
the branch is marked unstable; otherwise it is stable. We terminate the solver once a steady-state
has been reached – i.e., when the solver requires zero Newton iterations to update the solution
from the previous time-step.
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Figure 8: Black lines denote results of numerical simulations. Solid and dashed lines are
solution branches conjectured to be stable and unstable, respectively. Figure (a) A plot
of vm as a function of Reynolds number. Data points from PIV experiments for α = 21.7
are in red, with error bars providing the standard deviation. Figure (b) We add a small
asymmetry to the domain; here the upper b separation is 10% smaller than the lower
one. Figure (c) shows the bifurcation structure as a function of α for fixed Re = 35.
Data points are from the PIV experiments with red for α = 21.7 and blue for α = 8.3.
Figure (d) is a function of Re for fixed α = 0.875 × 0.06−1 ≈ 14.58. The inset plot
shows a zoomed-in view of the area encompassed by the yellow box (from Re = 16.14 to
Re = 21). The grey and green dots denote a subcritical point and a supercritical point,
respectively, which will collide to form a C- coalescence point as α is increased.
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to the value for two-dimensional flow, albeit slowly, as the distance between the bounding
walls in the third-dimension was increased.

We also compute bifurcation diagrams as a function of α. An example is shown for
fixed Re = 35 in Figure 8c, where we also plot experimental measurements for the two
experimental cavity lengths at this Reynolds number. As predicted, for cavity lengths
below a critical value (α ≈ 14.5), only the symmetric solution exists.

Interestingly, in the numerical solutions, we observe a hysteresis loop and a small range
of α for which both the symmetric and asymmetric branches may be stable. Now fixing
α ≈ 14.58, we vary Re, to obtain the bifurcation diagram shown in Figure 8d. A similar
hysteresis loop at low Reynolds number has been shown for flow in a symmetric channel
with an expanded section, emerging at a particular aspect ratio and Reynolds number,
termed a C+ coalescence point (Mullin et al. 2002). As the aspect ratio is increased,
the subcritical point in the hysteresis loop (analogous to the green point in Figure 8)
moves and eventually coalesces with the supercritical point (in grey), colliding to form
a C- coalescence point. Although we have only computed slices through the bifurcation
structure that exists in a three-dimensional space, and have not explicitly determined the
trajectories of limit points, we postulate a similar behaviour for the bifurcation structure
in our geometry as for the channel with an expanded section (Mullin et al. 2002). We
also computed eight additional solution branches at Re > 100 and α ≈ 14.58 (results
not shown). This is not surprising given that a rich structure to solutions of the Navier–
Stokes equations in a two-dimensional expansion channel at Reynolds numbers less than
a few hundred is well-established (Alleborn et al. 1997).

The results in this section highlight that even for the simplest symmetric representative
geometry, complex asymmetric flow patterns arise. In the following section, we consider
how the structure of the flow affects the time required for a passive tracer (representing
debris within the kidney) to exit the cavity.

5. The effect of flow structure on tracer transport

We consider a passive tracer in a steady velocity field, the latter computed as a solution
to equations (3.8) with boundary conditions (3.9). We assume an initial concentration
in the cavity (sufficiently low such that the tracer does not affect the flow) that is
subsequently transported through the fluid by advection and diffusion.

5.1. Theoretical formulation

We consider the tracer concentration c?(x?, t?) to diffuse with coefficient, D, and to
be passively advected by the flow of fluid within the cavity (Figure 1a). Conservation of
mass provides

∂c?

∂t?
+∇? · J? = 0, J? = −D∇?c? + u?c?, (5.1a,b)

where stars denote dimensional quantities and u? is determined a priori by solving equa-
tions (3.8) with boundary conditions (3.9a-e). We note that due to the incompressibility
of the fluid, equation (5.1) is equivalent to

∂c?

∂t?
= D∇?2c? − u? · ∇?c?. (5.2)

We impose no movement of the tracer through the inflow or solid walls and no diffusion
through the outflows:

J? · n = 0, on Γ ?in, Γ
?
wall, ∇?c? · n = 0, on Γ ?out, (5.3a,b)
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where n is the unit vector normal to each boundary. We assume an initial tracer
concentration of density C that is uniform in a circle of radius c?r , centred at x?c = (x?c , y

?
c ),

which we approximate by

c?(x?, 0) =
C

2

[
1 + tanh

(
d?(x?)

δ?

)]
, (5.4)

where δ? controls the width of the step function approximation and

d?(x?, y?) = c?r −
√

(x? − x?c)2 + (y? − y?c )2 (5.5)

ensures an initially circular distribution.
We nondimensionalise as follows

c =
c?

C
, t =

Ut?

a
, u =

(
u?

U
,
αv?

U

)
, x =

(
x?

αa
,
y?

a

)
, (5.6a-d)

where time has been non-dimensionalised using the advective timescale. Thus, equation
(5.2) becomes

∂c

∂t
=

1

Pe

(
1

α2

∂2c

∂x2
− ∂2c

∂y2

)
− 1

α

(
u
∂c

∂x
+ v

∂c

∂y

)
. (5.7)

where Péclet number

Pe = Ua/D, (5.8)

characterises the relative influence of advection with respect to diffusion.
The dimensionless, scaled, initial condition (5.4), (5.5) is

c(x, y, 0) =
1

2

[
1 + tanh

(
d(x)

δ

)]
, (5.9)

where

d(x, y) = cr −
√
α2(x− xc)2 + (y − yc)2, (5.10)

and

xc =
x?c
αa
, yc =

y?c
a
, cr =

c?r
a
, δ =

δ?

a
. (5.11a-d)

Boundary conditions (5.3) are

J · n = 0, on Γin, Γwall, ∇c · n = 0, on Γout, (5.12a,b)

where J = −(1/Pe)∇c+ uc and ∇ = (α−1∂/∂x, ∂/∂y).
To quantify the rate at which the passive tracer exits the cavity we define the

percentage loss at time t as

% loss =

∫∫
Ω

[c(x, y, 0)− c(x, y, t)] dΩ∫∫
Ω
c(x, y, 0) dΩ

. (5.13)

We define a ‘washout time’ metric, T90 corresponding to the time required for 90% of
the tracer to exit the cavity, i.e.,∫∫

Ω
[c(x, y, 0)− c(x, y, T90)] dΩ∫∫

Ω
c(x, y, 0) dΩ

= 0.9, (5.14)

where the initial concentration is set by equations (5.9), (5.10). We note that as con-
centration only advects through the cavity outlets by equation (5.12b), T90 can also be
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defined by ∫ T90

0

[∫
Γout

cu · n dy
]

dt∫∫
Ω
c(x?, y, 0) dΩ

= 0.9. (5.15)

We have verified that both formulas agree, and use the former as it only requires spatial
integration and is thus less prone to accumulation of numerical error over time.

5.2. Numerical details

We approximated the concentration function with piecewise linear elements on the
same mesh as the velocity field (see Section 3.1). The velocity field was solved for using the
methods in Section 3.1 and subsequently restored to drive the advective term in equation
(5.9). Equation (B 2) was discretised in time using a Crank-Nicolson scheme, and we
added a mesh-dependent SUPG stabilisation term, as described in Franca et al. (1992)
as standard Galerkin discretisations of advection-diffusion equations are oscillatory in
the advection-dominated regime (Silvester et al. 2014). We validated our code using the
method of manufactured solutions, with details presented in Appendix B.2.

5.3. Effect of flow pattern

In Section 4.1, we determined the existence of multiple flow solutions in a symmetric
domain, and additionally, computed flow patterns corresponding to both centred and
offset inlets. In this section, we initially place the debris cloud in the centre of the cavity,
and consider the effect of different flow patterns on the washout time. In Figure 9, we
plot equation (5.13) as a function of time, for three different advecting flow patterns:
symmetric, asymmetric, and offset. All are at Re = 34, cavity length corresponding to
α = 21.7, and Pe = 103. The washout times T90 are indicated by the colourbar to the
right of the streamline figures, corresponding to the colors of the circular dust clouds
in Figures 9a,b,c, and the lines in Figure 9d. The symmetric flow pattern provides the
shortest washout time, and the offset one the longest. Placing the tracer initially in
the centre for the symmetric flow profile allows it to be immediately transported along
streamlines that advect out of the cavity, with only trace amounts of debris entering
the two vortices (Figure 9a). In contrast, both the asymmetric and offset flow patterns
contain vortices of closed streamlines surrounding the initial concentration, resulting in
longer washout times in an advection dominated regime (Pe = 103). To further explore
the possibility of vortical streamlines trapping debris and causing longer washout times,
we examine the effect of the initial position of a tracer within the flow pattern in Figure
9b, as well as the Péclet number, in the following sections.

5.4. Effect of tracer position

To investigate how the initial position of the debris cloud xc, affects T90, we consider five
equally spaced positions within the cavity, which we label A, B, C, D, and E, as indicated
in Figure 10. The colours of the tracers in Figure 10 demonstrate the corresponding
washout times, equation (5.14). Results are shown for three different values of Pe –
103, 102, and 101 – in Figures 10 a, b, and c, respectively. Initial placement of the tracer
in positions of vortical flow (A, B, and C) results in larger washout times than initial
placement in streamlines that advect directly out of the cavity (D, E). This difference
is more pronounced for larger values of Pe. As we decrease Pe (analogous to increasing
the diffusion coefficient as we have scaled on the advective timescale), diffusion out of
areas with closed-streamlines is faster, and total washout time decreases for positions A,
B, and C. Interestingly, an increase in diffusion is not always advantageous in decreasing



17

(a) Symmetric (b) Asymmetric (c) Offset
T90

361

1980

5230

361 1,980 5,230
0

0.5

0.9
1

t

%
lo
ss

(d) Re = 34, α = 21.7

(a) Symmetric

(b) Asymmetric

(c) Offset

Figure 9: The % loss for Pe = 103 as a function of time for three different flow patterns.
The corresponding patterns are shown in Figures (a), (b), and (c), with the colour of the
initial concentration indicating the value of T90.

A B

C

D E

Pe = 103

A B

C

D E

Pe = 102

A B

C

D E

Pe = 101 T90

15

993

2000+

D

(a) (b) (c)

Figure 10: T90 for five values of xc. Figures (a), (b), and (c) are for Pe = 103, 102, and
Pe = 101.

washout – E has a slower washout time for Pe = 101 than Pe = 102, as the tracer is
initially on streamlines that advect directly out of the cavity, so diffusion away from these
streamlines is counterproductive to washout.

5.5. Effect of Pe

Based on the work of Rhines & Young (1983), we propose that for tracer that initially
resides in a vortex, the clearance time is potentially influenced by any (or all) of the
following three dimensional time-scales:

T ?a ∼ (`D/U)Pe1/3, T ?b ∼
(
`2D/(Ua)

)
Pe, T ?c ∼ `U/U, (5.16a-c)
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Figure 11: A log-log plot of T90 as a function of Pe for dust placed in positions A, B, C,
D, and E. Points at Pe = 101, 102, and 103, correspond to the snapshots in Figure 10.
Péclet numbers considered: Pe = 10x for 200 evenly distributed x values x ∈ [1, 3].

where `D is the diffusive distance required (i.e., vortex size for initial positions A, B,
and C), and `U the advective distance (i.e., the distance of the vortex centre from an
outlet). T ?a is the time required for the tracer to distribute uniformly throughout the
vortex and reach the dividing streamline, T ?b is the time to escape the closed streamlines
via diffusion, and T ?c is the time to advect from the vortex to an outlet. Scaling equations
(5.16) by the advective time-scale as in equation (5.6b) we obtain the dimensionless forms

Ta ∼ (`D/a)Pe1/3, Tb ∼ (`D/a)2Pe, Tc ∼ `U/a. (5.17a-c)

We note that, as we have scaled on the advective time, T ?c is independent of Pe. Hence,
the total washout time for dust that initiates within a vortex is the sum of the three
components (5.17)

T ∼ Ta + Tb + Tc = (`D/a)Pe1/3 + (`D/a)2Pe + `U/a. (5.18)

In Figure 11 we plot T90 as a function of Pe for concentration initiating at positions
A, B, C, D, and E (Figure 10). For positions D and E which are not in vortices, `D = 0,
and hence for large Pe, where diffusion is negligible, we will expect T90 to scale with
Tc, which is independent of Pe, according to equations (5.17c). This is seen by the flat
grey and black lines as we increase Pe in Figure 11. For concentration that is initially
in a vortex (positions A, B, and C) we see the competing effects of Ta, Tb, and Tc. For
moderate Pe and small vortices where `D/a < 1, Ta may dominate over Tb, and this is

seen by the initial Pe1/3 scaling for positions A and B. For `D/a > 1, however, Tb will
quickly dominate as Pe increases; hence we see a linear slope emerging for position C.
For the Pe range considered, this is not seen for positions A and B, where the vortices are
small, and hence a delicate balance exists between Ta, Tb, and Tc. However, from equation
(5.18), we expect T90 ∝ Pe as Pe→∞. We also note a decrease in T90 with diffusion for
positions A, D, and E with Pe when Pe is approximately 101 6 Pe 6 102. Here, diffusion
takes concentration on to the closed streamlines in the centre of the cavity, where it will
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Figure 12: Figure (a) shows the velocity field for t < s, and (b) for t > s. Figure (c) is
the decrease in washout time as a function of switch-time with Pe = 102. The green and
red circles in Figure (a) illustrate approximate position of the tracer bulk when “flow
switching” corresponds to peaks and troughs in Figure (c), respectively.

require more time to escape.† Thus, the existence of multiple vortices which the tracer
can move between complicates the approximation of T90 beyond a simple expression such
as (5.18).

5.6. Effect of instantaneous flow switch

The results in Figures 10 and 11 demonstrate that remaining within a steady vortex
can induce extremely large times required for the passive tracer to exit the cavity. We
hypothesise that disrupting the flow pattern may increase mixing of the tracer and
improve washout times. Motivated by the experiment in Figure 3, where we saw mirror
asymmetric flows could be established, with the opportunity to switch between them by
blocking and re-opening an outflow, we instantaneously switch u in equation (B 2) from
one mirror branch to the other at a time s (see Figure 12a,b). We recognize that a fully
transient computation is more appropriate, but this approach provided rapid insights.
We denote the washout time resulting from a switch at time s by T s90. Figure 12c shows
the change in T s90 from T90 (when no “flow-switching” is imposed) as a function of s/T90

for concentration initially placed in the centre of the cavity (position C in Figure 10)
and Pe = 102. We see that instantaneously switching from Figure 12a to Figure 12b at

† As tracer originating at position A is already in a region of closed streamlines, diffusion
allows some tracer to escape via the top of the vortex and and advect through the proximal
outflow. However, a significant proportion of the tracer still diffuses to the large central vortex,
explaining the initial decrease in T90 in Figure 11.
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time t = s, when s < 0.93T90 results in a decreased washout time, T s90. The oscillations
in Figure 12c occur when switching during the phase where the tracer concentration
is averaging throughout the vortex, Ta (equation 5.17). During this initial period, as
position C doesn’t align precisely with the centre of the vortex, the tracer swirls along
the streamlines. Switching from Figure 12a to Figure 12b when the tracer is above the
centreline of the vortex (for example at the position indicated in green in Figure 12a)
moves the tracer further towards the outside of the vortex. This is beneficial both because
the tracer is closer to streamlines that advect directly out of the cavity and because the
velocity is faster, thereby increasing shear-enhanced diffusion of the tracer. Switching
once the tracer has distributed uniformly throughout the vortex, i.e., s > Ta, still moves
some of the tracer on to the advective streamlines (as the vortex is not central within the
cavity), but as the position of the tracer is relatively constant, we see a dampening of the
oscillations in Figure 12c. Although not shown, for higher values of Re the vortex is less
central within the cavity, and hence switching flow branches can move the tracer onto
a streamline that advects directly out of the cavity, thus inducing further reductions in
washout time. We caution, however, that switching the flow once the tracer has diffused
out of the vortex can actually increase washout times. This is seen in Figure 12c, where,
when s/T90 → 1, T s90 − T90 > 0. This is similar to the effect seen in Figure 10, where an
increase in diffusion caused an increase in washout time for tracer E, which is initially
placed on streamlines that advect out of the cavity. Once the tracer has reached open
streamlines that leave the cavity, switching the advecting flow pattern may move tracer
back onto closed streamlines, slowing washout times. This “flow-switching” experiment
draws parallels with the blinking vortex model, a classic example of chaotic mixing (Aref
1984).

6. Summary and discussion

Irrigation fluid is driven into the renal pelvis during ureteroscopy to wash out kidney
stone debris. We investigated the fluid mechanics of this process in a simplified, rectan-
gular geometry and considered how flow patterns affect the time required for successful
clearance of the debris.

We began by studying symmetry-breaking in the considered geometry, which we
determined occurs as a function both of Reynolds number and the aspect ratio of the
cavity. We adopted a complementary approach, performing both numerical simulations
and particle image velocimetry (PIV) experiments, and obtained excellent qualitative and
quantitative agreement. We computed bifurcation diagrams as functions both of cavity
aspect ratio and the Reynolds number of the flow via numerical deflation techniques. A
rich bifurcation structure was observed including hysteresis loops for a small range of
cavity lengths and Reynolds numbers. The PIV experiments demonstrated the presence
of a disconnected pitchfork bifurcation as a function of Reynolds number for fixed aspect
ratio. We determined both critical Reynolds numbers and aspect ratios for the existence
of asymmetric flow patterns.

For a particular Reynolds number and cavity length, we studied the effect of initial
placement of a passive tracer within the flow field on the time required for 90% of the
concentration to advect out of the cavity (the washout time) by coupling the computed
velocity field to an advection-diffusion equation. We calculated results for a variety of
Péclet numbers, and found that when the tracer is initially placed in a vortex, the washout
time (scaled by the advective time-scale) is comprised of three contributions: first, a time
for the tracer to distribute uniformly throughout the vortex via mechanisms of shear-
enhanced diffusion which scales with Pe1/3; second, a time for the tracer to escape the
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closed streamlines requiring the full diffusion time which scales with Pe; third, a time for
the tracer to advect from the vortex to a cavity outlet, which depends primarily on the
advecting velocity and is hence nearly independent of Pe (if Pe is low, however, effects
of diffusion may dominate and move the tracer away from the advective streamlines).
The dominant scaling depends on the initial position of the tracer in relation to vortices
within the cavity and streamlines that advect out of the cavity.

Finally, we considered the effect of switching from one asymmetric solution to its mirror
pair on the advection and diffusion of the passive tracer, and found that this often results
in a reduction in washout time from the “no-switching” case.

Our study was motivated by the washout of kidney stone debris in ureteroscopy
procedures. Here, it is worth highlighting the simplifying assumptions and potential next
steps in bringing this work closer to clinical translation. First, our idealised setup is
obviously different from the renal geometry both in the rectangular shape and in our
restriction to 2D. Hence one important extension to the work presented here will be to
consider the effect of the third dimension on flow patterns and resulting washout times.
Although solving the steady Navier–Stokes equations in a two-dimensional rectangular
domain allowed exploration of fundamental principles – such as the existence of multiple
solutions, and the effect of vortical flow on the clearance of debris that is passively
advected with the addition of weak diffusion – three-dimensional effects will realistically
play a significant role. Additionally, we chose a geometry with perfectly sharp corners
which do not exist in the true geometries of the ureteroscope and renal pelvis. The shape
of the domain boundary has a quantitative effect on flow separation and recirculation,
and thus performing experiments and simulations in more realistic three-dimensional
geometries is a critical next step in our study of ureteroscopy irrigation.

It is important to recall that we have assumed flow to be steady throughout this
article. It would also be interesting to see how transience affects our results, particularly
in Section 5.6, where we investigated the effect of an instantaneous switch in the direction
of the flow on washout time. The instantaneous switch is an approximation of the
experiment in Figure 3, where transient behaviour, as the flow moves between two stable
states, is clearly visible.

Another critical component of the realistic renal pelvis during ureteroscopy irrigation,
currently missing from our analysis, is the presence of a solid obstruction – a kidney stone
– that will disrupt the flow patterns. Thermal energy delivered via a thin, optical fibre
continuously degrades the stone, and while very fine dust may be modelled effectively by
considering advection with the irrigation fluid and passive diffusion, equations 5.1, the
dynamical motion of larger fragments will be intricately coupled to the fluid behaviour.
Modelling all facets of this system – the continual deterioration of the kidney stone, along
with the fluid-structure-interaction of stone particles and the fluid – is highly complex,
but must be considered for a full understanding of the interplay between saline delivery
and efficient kidney stone removal.

The points above underscore the significant work needed to bring our analysis to the
level of quantitative predictions for ureteroscopy. Nevertheless, our model provides a
first qualitative step in understanding the potential impact of vortical structures on
dust washout. Indeed, the orders of magnitude difference in washout times that we
observe suggests that procedural steps to disrupt vortices may have significant impact on
reducing procedure times. Moreover, increasing irrigation flow rate is typically considered
synonymous with improved visualisation; however, our results indicate that, depending
on the diffusive properties of kidney stone debris, increasing flux may not be the most
efficient method through which to improve clearance. Extrapolating the results of our
study in a simple two-dimensional cavity, we hypothesise that debris within the working
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Figure 13: The considered numerical domain including outflow channels.

space during ureteroscopy may get trapped in vortices, resulting in large washout times.
Disturbing the flow when debris is trapped in vortices can move debris away from the
vortex centre, onto faster streamlines which allow debris to advect out of the cavity,
resulting in shorter times required to clear the field-of-view.
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Appendix A. Outflows

In this paper, we solve equations (3.8) in the light-pink domain in Figure 1a, prescribing
zero-stress boundary conditions, equations (3.9c,d), on Γout, and a Poiseuille profile on
Γin, equation (3.9a,b).

Here, we validate truncating the numerical domain to include only the cavity, and
not the outflow channels present in the particle image velocimetry experiments (Section
2), by simulating flow on the domain pictured in Figure 13, with outflow channels of
dimensional length 24 cm (see Figure 2a), denoted lout when non-dimensionalised with
respect to a = 0.06 cm. As we scaled the horizontal coordinate by α and solve the scaled
equations (3.8), we build a mesh with outflow channels of length lout/α. As outflow
conditions we prescribe zero normal stress and parallel outflow

2ux − p = 0, v = 0, on Γout, (A 1a,b)

and as before, a Poiseuille inlet profile, equation (3.9a,b).

We plot the bifurcation diagram for α = 21.7, Re ∈ [0, 40], in Figure 14 (black marks)
including points for the simulations at the same parameters in the domain with outflow
channels with conditions (A 1) (grey marks). We see the bifurcation structure remains
unchanged, with only small discrepancies between the numerical results.
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Figure 14: A plot of vm as a function of Reynolds number, comparing the results in Figure
8a (black marks) with those including outflows (grey marks).

Appendix B. Numerical convergence

B.1. Navier–Stokes computations

To demonstrate the effect of mesh size on the numerical solutions to the Navier–Stokes
equations, in Figure 15 we compute the bifurcation diagram for α = 21.7 using 2.1× 104

elements (black points) and 8.4 × 104 elements (red points). As the two sets of points
are nearly indistinguishable, we present a zoomed-in view between Re = [36.5, 37.5]
and vm = [0.2555, 0.2562] in the yellow box in Figure 15; this inset plot demonstrates the
difference between vm values calculated with the different mesh sizes is typically O(10−3).
Furthermore, the error in the velocity field arising due to mesh size is demonstrably
smaller than the error arising due to the truncation of the flow domain.

B.2. Advection–diffusion computations

To test the code used to solve equation (B 2) we used the method of manufactured
solutions. We chose as exact solution the time- and space-dependent function

cex(x, y, t) = [(x− x0)2 + (y − y2
0)] cos(t), (B 1)

where (x0, y0) = (1/0.12, 0) was taken to be the centre of the rectangular domain. We
then solved

∂cnum

∂t
=

1

Pe

(
1

α2

∂2cnum

∂x2
− ∂2cnum

∂y2

)
− 1

α

(
u
∂cnum

∂x
+ v

∂cnum

∂y

)
+ f(x, y, t) (B 2)

using the methods described in Section 3.1, where

f(x, y, t) =
∂cex

∂t
− 1

Pe

(
1

α2

∂2cex

∂x2
− ∂2cex

∂y2

)
− 1

α

(
u
∂cex

∂x
+ v

∂cex

∂y

)
. (B 3)
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Figure 15: A plot of vm as a function of Reynolds number for α = 21.7, calculated using
2.1× 104 elements (black points) and 8.4× 104 elements (red points). A zoomed-in view
around Re = [36.5, 37.5], vm = [0.2555, 0.2562] is shown in the yellow box.

We define the error to be

||cex(t = 5)− cnum(t = 5)||L2 =

∫∫
Ω

(
cex(x, y, 5)− cnum(x, y, 5)

)2
dΩ

1/2

. (B 4)

In Figure 16 we plot the error, equation (B 4), as a function of numerical time-step
∆t. We fix the spatial step ∆x = ∆t/2, where ∆x is the distance between neighbouring
points along the structured mesh. In Figure 16 we observe the anticipated error reduction
scaling with ∆t2. We chose the physical parameters from Figure 10b; Re = 34 for the
velocity field, length-scaling factor α = 1.3, and Péclet number Pe = 100.
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