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Abstract

The ballistic projection of the chameleon tongue is an extreme example of quick energy re-
lease in the animal kingdom. It relies on a complicated physiological structure and an elaborate
balance between tissue elasticity, collagen fibre anisotropy, active muscular contraction, stress
release, and geometry. A general biophysical model for the dynamics of the chameleon tongue
based on large deformation bio-elasticity is proposed. The model involves three distinct coupled
sub-systems: the energetics of the intra-lingual sheets, the mechanics of the activating accelera-
tor muscle, and the dynamics of tongue extension. Together, these three systems elucidate the
key physical principles of prey-catching among chameleonides.

1 Introduction

Among animals, chameleons have strikingly distinctive features: they have zygodactylous feet,
prehensile tails, color changing ability, panoramic eyes, and ballistic projection of their tongue for
prey-catching. What distinguishes prey-catching in chameleons is not only the extension of the
tongue – up to 2.5 body lengths – but also the extreme acceleration and short duration of the
entire ballistic projection (Fig. 1). Anderson [2] estimates the total duration of tongue projection,
depending on species, to last between 10-55 msec. Maximum accelerations between 500 and 2,590
m/sec2 are reported, requiring peak power density between 3,000 and 14,040 W/kg [28, 5, 18,
2]. The accepted theory is that the tongue projection is triggered entirely by intrinsic muscular
activities [27]. It is further understood that the peak power recorded in tongue extension cannot
be solely due to muscle activation but is the result of a release of the energy stored in the extension
of the tongue’s collagenous tissue [5]. By contrast, the relatively slow process of tongue retraction
results from direct muscular contraction as demonstrated experimentally [3]. The chameleon’s
ballistic mechanism is a clear example in biology of elastic forces generating rapid motion [21].
This remarkable process has been studied since the 17th century [15, 9, 14] and has received
considerable interest in recent decades, primarily in experimental biology [19, 12, 5, 3, 4], but also
from theoretical [25] as well as biomimetic [8] perspectives. Tongue projection and prey-catching
in salamanders, which rely on a different mechanism, has also been extensively investigated [6, 7].
Despite such interest, a complete biomechanical model describing the storage and release of energy
in the chameleon tongue is lacking. The purpose of this paper is to provide such a model, to explain
the key features and advantages of this system, and to examine the mechanism from an engineering
design perspective. From a theoretical point of view, the modelling of such a phenomenon is also
particularly interesting as it naturally combines large deformation solid mechanics together with
the modelling of anisotropic response and active muscular contraction. These features appear in
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Figure 1: Tongue ejection in Chamaeleo calyptratus. Images courtesy of Stephen Deban.

many diverse biomechanical systems such as arteries, elephant trunks, stems, and in the rapid
release of seeds [17, 26, 10].

There are three main processes of interest related to the tongue projection: (i) the muscle fibres
in the accelerator muscle are activated and produce mechanical work; (ii) elastic energy is stored in
tubular-shaped collagenous intralingual sheaths; and (iii) the stored energy is rapidly released and
converted into kinetic energy to generate ballistic projection [23, 24]. The tongue of the chameleon
rests on a rigid bone-like structure, the entoglossal process (called here the bone). The tongue
complex itself is made of connected tubular units: the intralingual sheaths and the accelerator
muscle (Fig. 2). For reference we place a cylindrical coordinate system along the axis of the
tongue, taken as the z-axis. The intralingual sheaths are almost exclusively made of collagen [5, 13]
with collagen fibrils organised in pairs of equal and opposite helical fibres along the z-direction,
preventing torsional shear while providing extensibility. On the bone, the intralingual sheaths are
concentrically stacked (Fig. 2) so that it appears mechanically as n thin tubular cylinders. As the
tongue is ejected, the sheaths extend telescopically, (not unlike the popular laser saber toy from
the Star Wars franchise), until fully extended (Fig. 1). Surrounding the sheaths is the accelerator
muscle, a thick tubular unit attached to the outermost intralingual sheath and ejected during
ballistic projection. The muscle fibres in this unit are oriented in a plane perpendicular to the axis.
Before muscular activation, the system is at rest on the bone. As the muscle fibres contract, the
accelerator muscle squeezes the intralingual sheaths and extends them closer to the tip, the loaded
position. From that position a further small contraction will allow the entire complex to fire by
sliding off the tapered tip, quickly converting its elastic potential energy into kinetic energy. The
tongue structure and positions are shown schematically in Fig. 2. We first develop a biomechanical
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Figure 2: Inset: Cross-section of the tongue complex composed of the entoglossal process (bone),
intralingual sheaths (with collagen fibres), and accelerator muscle (with helical muscular fibres).
The complex has three key positions: I. The rest position in the absence of muscular activity; II.
The extended loaded position after muscular activity and, III. The fire position when the tongue
slips off the bone.

description of this structure in Sec. 2 within the theory of nonlinear elasticity by modelling the
tongue tissues as elastic fibre-reinforced tubular units under the action of muscular contraction. To
elucidate the roles of the muscle and the sheaths and the effect of geometry on the mechanism, in
Sec. 3 we compare the energy, stresses, and deformations generated in the system in the rest and
loaded positions. To explore the physics involved in the energy release, in Sec. 4 we use the force
applied on the bone and the elasticity of the system to model the dynamics of the firing.

2 Model development

2.1 Setup

As depicted in Fig. 3, we model the bone as a cylinder of radius ρ with a tapered end and the tongue
complex as n + 1 hyperelastic cylindrical shells composed of n intralingual sheaths of unstressed
lengths Li, inner radii Ai, and outer radii Bi = Ai + h, for i = 1, .., n; and the accelerator muscle
with unstressed length Ln+1 and inner and outer radii An+1, Bn+1 respectively. The material is
assumed incompressible both for convenience in finding analytical solutions and due to the fact
that most collagenous soft tissues are nearly incompressible. We assume in this analysis that each
tube remains cylindrical while on the bone. Let ai and bi be the inner and outer radii, respectively,
of the ith tube in the rest position and ãi and b̃i the corresponding values in the loaded position,
such that a1 = ã1 = ρ.

Both the sheaths and the accelerator muscle contain embedded fibres. The sheaths are reinforced
by collagen fibrils arranged in pairs of oppositely oriented helices. We let φ denote the angle the
fibres make with the circumferential direction in the reference geometry (see Fig. 3). The accelerator
muscle contains cross-sectional fibres arranged in logarithmic spirals [23], the tightness of which is
characterised by angle ∆θ (see Fig. 3). The firing mechanism is activated by contraction of these
fibres, which is accounted for by a parameter ν appearing in the energy [11], such that ν = 1 at
rest and ν < 1 in contraction.
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We assume that both sheaths and muscle remain connected so that the outer radius of the ith
tube equals the inner radius of the (i + 1)th tube for i = 1, . . . , n + 1, and all tubes have length l
at rest and length l̃ when loaded. The accelerator muscle is assumed to be stress free in the rest
position (An+1 = bn) but we allow for the possibility that the sheaths are radially stretched in
this position, so that 0 < Ai ≤ ai for i = 1, . . . , n. We use the standard cylindrical coordinates
(R,Θ, Z) to denote a material point in the reference configuration and (r, θ, z) to denote the same
point in a deformed configuration both in the basis (er, eθ, ez).

2.2 Mechanical equilibrium

The elastic strain energy in the system is given by the sum of the energy density Wis of the
intralingual sheaths (which depends on their reference radii Ai and the fibre angle φ) and the energy
density Wam of the accelerator muscle (depending on the contraction ν of the fibre muscles):

E = 2πζl

[∫ bn

ρ
Wis(r, ζ;Ai, φ)rdr +

∫ bn+1

bn

Wam(r, ζ; ν)rdr

]
,

where ζ = l̃/l is the axial extension (ζ = 1 in the rest position, ζ > 1 in the loaded position).
For given reference parameters and for a given contraction ν, the problem is to obtain the

extension ζ by minimising this energy. Once the extension is known, we compute the energy in
the loaded position. To solve this problem, we write the elasto-static boundary-value problem
associated with the minimisation of this energy. That is, we balance the forces with the condition
of no axial loading on the faces, a stress-free boundary on the outer cylinder, and a fixed radius
on the inner cylinder, corresponding to the fixed bone radius ρ. This approach also provides the
pressure of the tongue complex on the bone, which will play a key role in the tongue dynamics.

Reference geometry Rest state

Ai

Bi

Li l

ai

bi

Loaded state

l

ai

bi

(ep)

(am)
(is)

2ρ

Δθ

nh

bn+1

bn
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Figure 3: Geometry of the tongue complex and intralingual sheaths. The bone (ep for entoglossal
process), with radius ρ, is surrounded by n concentric intralingual sheaths (is) and the accelerator
muscle (am). The accelerator muscle contains embedded fibres arranged in a logarithmic spiral
characterised by angle ∆θ. On the bone, the inner radius of the first sheath is a1 = ρ. Off the
bone, the reference radius is A1 ≤ ρ with reference fibre angle φ.
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The deformation of each tube is determined as follows. In the absence of torsion, each tube can
inflate and extend so that its deformation is simply given by

r = r(R), Θ = θ, z = ζZ, (1)

where ζ is the constant axial stretch and r(R) a function to be determined. It is standard to show
[20] that the deformation gradient is

F = r′(R)er ⊗ er +
r

R
eθ ⊗ eθ + ζez ⊗ ez, (2)

where⊗ denotes the standard tensorial product. We can use the incompressibility condition detF =
r′rζ
R = 1 to obtain an explicit form for the deformation:

r =

√
a2 +

R2 −A2

ζ
. (3)

The outer radius in the current configuration is then given by

b =

√
a2 +

B2 −A2

ζ
. (4)

Since the deformation is diagonal in cylindrical coordinates and only depends on R, the Cauchy
stress tensor, T is also diagonal in these coordinates so that

T ≡ diag(tr, tθ, tz) ≡ trer ⊗ er + tθeθ ⊗ eθ + tzez ⊗ ez. (5)

This particular form of the Cauchy stress tensor implies that the Cauchy equation for the equi-
librium of an elastic material in the absence of body forces, divT = 0, in cylindrical coordinates
reduces to a single scalar equation

dtr
dr

+
1

r
(tr − tθ) = 0. (6)

This equation can be integrated over r with the proper boundary condition

tr(b)− tr(a) =

∫ b

a

tθ − tr
r

dr. (7)

To obtain stresses and strains, we need to specify a strain-energy density function that gives the
energy stored in a particular deformation. The sheaths are modeled by the standard fibre-reinforced
strain-energy density function[22]. The idea is to penalize the energy in deformations along the
directions M± of fibres modeled as a continuous field. That is, in addition to the classical quadratic
form of the energy in terms of the strain, we add a contribution due to the fibres so that we have
now:

Wis = µis
[
(I1 − 3) + αis

(
(I+ − 1)2 + (I− − 1)2

)]
(8)

with

I1 = tr(C), I± = M± · (CM±). (9)

and C = FTF is the right Cauchy-Green stretch tensor that contains all information regarding
stretches and the invariants I± express the stretch in the direction of the fibres. Note that this
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particular form of stretch is written in a way such that in all deformations, the invariants express
the fibre stretch even if the fibre orientation changes. Here,

M± = cosφ eθ ± sinφ ez (10)

denotes the orientation of the fibres taken to be tangent to the cylinder at each point (see Fig. 3).
The accelerator muscle is also described by a fibre-reinforced strain-energy density function

modified to take into account the muscular contraction:

Wam = µam
[
(I1 − 3) + αam

(
(I+ − ν)2 + (I− − ν)2

)]
, (11)

with
I1 = tr(C), I± = N± · (CN±), (12)

The muscle fibres are not organised into helices but in spirals (see Fig. 3), so that

N± =
er ±RG′eθ√

(RG′)2 + 1
, (13)

where
G(R) = ∆Θlog(R/An+1)/log (An+2/An+1) (14)

corresponds to equal and opposite fibres arranged in logarithmic spirals in the plane normal to the
cylinder axis [16]. As stated, the parameter ν controls the muscular contraction where 0 < ν < 1
corresponds to contraction and ν > 1 is an extension [11].

Having defined the strain-energy density function for sheaths and muscle, the constitutive re-
lation between the Cauchy stress tensor and the strain is

T = −pI + 2 [W1C +W+m+ ⊗m+ +W−m− ⊗m−] , (15)

where p is a hydrostatic pressure that maintains incompressibility and Wi = ∂IiW, for i ∈ {1,+,−}
and m± = FM± for the sheaths and m± = FN± for the accelerator muscle.

The above relation forms the mechanical constitutive description for each individual tube. To
construct the tongue complex and determine the equilibrium configuration, the n sheaths are ar-
ranged concentrically on the bone followed by the accelerator muscle, with continuity of deformation
(ai+1 = bi) and traction (tr(ai+1) = tr(bi)) imposed at each interface. We then integrate (6) over
all layers, with piecewise defined functions for stress and strain. The pressure P exerted by the
tongue complex on the bone and the force F in the axial direction are given by [11]

P =

∫ b̃n+1

ã1

Tθθ − Trr
r

dr, F = 2π

∫ b̃n+1

ã1

Tzzrdr. (16)

The boundary conditions in both rest and loaded position are a1 = ã1 = ρ, corresponding to
the tongue complex sitting on the bone, and no axial force on the faces, i.e. F = 0. These two
conditions, together with the incompressibility condition, r′(R)rζ = R, are sufficient to determine
the deformation, fully specified by the length l̃. The rest position is obtained by setting the muscular
contraction ν = 1 and the loaded position corresponds to a value 0 < ν < 1.

2.3 Parameters

The base parameters that we have used in this model are provided in Table 1. The geometric
parameters for the bone, sheaths, and accelerator muscle are as reported in [5] for Trioceros jack-
sonii. In cases where a particular parameter was not specifically stated in [5], they were estimated
from images in [5]. Mechanical parameters correspond to typical values of shear moduli for fibrous
biological tissues, with fibre density estimated from images in [5].
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Parameter Description Value

ρ bone radius 1.4 mm
n number of sheaths 10
A1 inner sheath ref radius 1.4 mm
h sheath ref thickness 0.05 mm
Ai ith sheath ref radius 1.4 + (i− 1)h mm
L tongue length in rest state 15 mm
li ith sheath ref length 15 mm
φ sheath fibres orientation angle 50◦

An+1 muscle ref inner radius 1.9 mm
Bn+1 muscle ref outer radius 2.5 mm
∆Θ muscle fibre spiral parameter 80◦

µis sheath shear modulus 1 kPa
µam muscle bulk shear modulus 1 kPa
µisαis sheath fibre shear modulus 0.1 GPa
µamαam muscle fibre shear modulus 0.1 GPa

Table 1: Parameter values.

3 Energy build-up and extension

The two main quantities of interest in the deformation of the tongue from the rest to the loaded
positions are the axial extension ζ = l̃/l and the elastic energy E . In order to fire successfully, the
contracting muscle must generate sufficient axial extension for the tongue complex to reach the tip
of the bone, while at the same time developing enough elastic energy to achieve high velocity when
converted to kinetic energy.

3.1 Role of sheaths

To understand the role of the sheaths in the mechanism, we plot in Fig. 4 the elastic energy and
axial extension for varying muscle contraction ν for two cases: base parameter values as reported in
Table 1 for Trioceros jacksonii, and the case of an equivalent volume of accelerator muscle but with
no sheaths present. As the muscle contracts, if there are no sheaths present, the muscle simply
extends axially, attaining large extension (ζ = 2.5 at ν = 0.7) but building almost no internal
energy. With sheaths, the axial extension is reduced, but the energy in both muscle and sheaths is
2 orders of magnitude higher.

This computation demonstrates that the sheaths are crucial for the build-up of energy and
that, with sheaths present, comparable energy is built-up in both the sheaths and the accelerator
muscle. Essentially, in the absence of sheath, there is no resistance to axial extension, so upon
muscle contraction the equilibrium configuration consists of a large extension and little stored
energy. The sheaths provide strong resistance to axial extension, due to the presence of the helical
fibres, hence the extension is reduced and large elastic energy is stored. The degree of resistance
and consequently the amount of extension and stored energy is strongly dependent on the sheath
angle. We explore this relationship in the following sections.

3.2 Role of geometry

Having established the importance of the sheaths, we seek to understand the role of geometric
parameters on the energy building capabilities. There are numerous possible configurations and
changes in geometry that could in principle be analysed. Here, we focus on two fundamental
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Figure 4: Elastic energy stored: without intralingual sheaths (red). In blue, the energy distributed
in the sheaths (dashed) and in the muscles (solid) when both structures act together.

physical components that govern the energy storage and projectile capabilities of the tongue. One
is the degree of pre-stretch, due to any difference between the stress-free radii of the sheaths, Ai,
and their radii in the rest position, ai. Second, is the fibre anisotropy, characterised by the angle φ.
Note that the number and thickness of sheaths is only of secondary importance, since the thickness
of the cylinder of stacked sheaths is the primary effect that enters the computation. We consider
4 representative combinations of these effects:

• BASE: base values with stress-free sheaths: Ai = ai = ρ + (i − 1)h for sheaths, Li = l, and
fibre angle φ = 50◦, as used in Fig. 4;

• ANI: Change of anisotropy by decreasing fibre angle to be less aligned with longitudinal axis:
φ decreased from 50◦ to 30◦;

• PRE: Addition of pre-stress by decreasing sheath radii: Ai = 1.35 mm for all sheaths;

• ANI-PRE: Decrease of both angle and radii, as above.

For consistent comparison, the total volume of sheaths, total mass of accelerator muscle, and rest
length l are taken to be equal for each case.
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Figure 5: Schematic for the 4 different cases considered.

A schematic for these 4 cases is given in Fig. 5. In varying the Ai to incorporate pre-stress, our
approach here is to take all sheaths to have the same reference radius, thus creating a substantial
degree of residual stress (as opposed to taking A1 < ρ and Ai = A1 + (i − 1)h for i = 2, 3, . . . n).
We note that not all parameter sets are even physically feasible, e.g. if we take φ = 30◦ and
Ai = 1.35 + (i− 1)h, the rest state requires a negative pressure applied to the bone, i.e. the tongue
would not sit on the bone in mechanical equilibrium without additional forces being imposed. We
have chosen here a representative set of cases within the physically feasible range.

In Fig. 6 we plot the total stored energy and axial stretch as functions of the muscle contraction
ν for the 4 cases. The comparison between the different cases leads to the following conclusions:

• Comparing BASE and ANI demonstrates the significant effect of fibre angle. A decreased
angle leads to a significant increase in axial extension but a large reduction in energy. For
helical fibres more aligned with the circumferential direction, less resistance to extension is
provided, and less energy stored.

• Comparing BASE and PRE shows improvement in axial extension with no significant changes
in energy. The combination of pre-stress and anisotropy is more complicated due to the highly
non-linear response of the structure.

• Looking at ANI-PRE, we see that the extension is increased (compared to PRE), but the total
energy also increases, with more than double the amount at 30% contraction. However, in this
case, the rest position (ν = 1) has very high energy due to the large residual stress. Hence,
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with pre-stress more work is needed to reload the apparatus on the bone after projection, and
the structure would exert significant and potentially damaging force even at rest position.
We conclude that while the benefit of extra axial extension and sensitivity to fibre angle may
have interesting design implications for biomimetics (see, e.g. [8]), it is unlikely to be a key
component in the chameleon’s projection mechanism.
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Figure 6: Elastic properties under different hypotheses as accelerator muscle contracts. (a) Total
elastic energy; (b) axial extension.

4 Energy release

The analysis of the stored elastic energy in the loaded position does not give us direct information
on the dynamical process leading to prey catching. To catch its prey, this energy must be converted
into kinetic energy in the axial direction, Kz = mv2z/2. The tongue complex for T. jacksonii weighs
around 1 g and reaches a velocity of around 6 m/s [5, 4, 1], which requires 18 mJ of axial kinetic
energy. Rapid motion is achieved when the tongue complex slides off the tapered tip of the bone,
after which it is free to decrease the internal radius of the complex and reduce its internal elastic
energy. Mechanically, the tongue complex acts equivalently to a series of connected springs pushed
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Figure 7: Schematic of model for tongue projection dynamics. The cylindrical tongue complex is
mapped to a series of 1D springs subject to a axial reaction force in the tapered region of the bone.

by a force in the axial direction. This force is the longitudinal component of the reaction force due
to the pressure exerted by the tongue at the tapered tip: the tapering acts as a launch pad for the
release of the elastic energy.

4.1 A model for dynamics

To simulate the dynamics and release of stored energy, we devise a map from the 3D concentric
tubes to a series of 1D connected springs pushed by a force in the axial direction. In the loaded
state, the tongue exerts an axial pressure on the bone, given by (16). Over the cylindrical portion
of the bone, this pressure is balanced by a radial reaction force and the system is in mechanical
equilibrium. However, in the tapered portion of the bone, the reaction force contains a longitudinal
component, so that the tapered tip acts as a launch pad to convert the stored energy into kinetic
energy. To model this process, we discretize the tongue complex along the z-direction and map
the elastic properties of the n+ 1 layer cylinder to an effective spring constant and a 1D force field
provided by the full 3D nonlinear model as shown in Fig. 7. For a given ν, the effective spring
constant can be obtained from (16) as K = ∂F/∂ζ, evaluated at ζ(ν).

To simulate the force applied to the tapered tip of the bone, we compute the pressure P0

exerted by the tongue complex on the cylindrical portion of the bone, and the radius ρ̂ < ρ at
which no radial pressure is exerted. We computed the following values for the different cases:
BASE: ρ̂ = 1.01 mm; ANI: ρ̂ = 1.2 mm, PRE: ρ̂ = 1.09 mm, ANI-PRE: ρ̂ = 1.1 mm. Modelling
the relevant portion of the tapered tip as a line with angle ϕ (see Fig. 7), we can express the bone
radius as ξ(z) = ρ− tanϕ(z− zA), where zA marks the beginning of the tapered portion. We used
the value ϕ = π/4 in all simulations. A longitudinal reaction force exists in the region [zA, zB],
where zB = zA + (ρ − ρ̂)/ tanϕ is the point at which ξ = ρ̂. The pressure in this region is well
approximated by the function

11



P (z) =
P0 (1− (z − zA))

zB − zA
. (17)

From this we obtain the axial component of the reaction force density

Fz(z) = −2πξ(z) sinϕP (z)χ(z), (18)

expressed as a force per axial length, where χ is a characteristic function for the region [zA, zB].
Once the effective force Fz(z) and the effective spring constant K are known, the dynamics of

the system is simply governed by Newton’s second law. Letting zi(t) denote the position of the ith
point, i = 1, 2, . . . N , we integrate forward the coupled system of equations

miz̈i + γżi +K

(
2zi − zi+1 − zi−1

l
− 1

)
= Fz(zi)l, (19)

with appropriate one-sided spring forces at the end points i = 1 and i = N . Here mi = m/N
with m the total mass, l = l̃/(N − 1) the “rest length” of each spring unit, and γ is a damping
coefficient. Once the tongue complex has completely left the bone, it has acquired its final velocity
and simply extends telescopically until its tip reaches the prey. Our primary point of interest is to
determine that velocity. Since the relevant dynamics occurs while the tongue is on the bone, we do
not explicitly model the telescoping process, and we consider the tongue complex as a single unit
while on the bone (i.e. zi denotes the position of the ith point of the entire tongue complex).

The simulated motions for the four cases of Fig. 5 are presented in Fig. 8. In each case, we
have assumed that launch occurs at ν = 0.75 such that the anterior 2 mm extends into the tapered
region at time t = 0. For comparison, we reproduce the tongue motion as measured in Trioceros
melleri [5]. For the solid lines in Fig. 8, the launch is simulated without drag. As expected, there
is a correlation between the amount of internal energy and the maximum velocity. However, this
relationship is highly nonlinear due to the complex launching process. For instance, there is 56 mJ
of stored energy in BASE, which would predict a maximum velocity of 10.5 m/s if all the energy
were converted into directed axial motion, yet only 9.1 m/s is attained, even in a frictionless system.
Also, while in ANI-PRE there is more than 5 times the amount of stored energy compared to ANI,
the maximum velocity is less than double the amount. Such discrepancies between potential energy
and realised axial kinetic energy reflect the fact that the full 3D tissue will dynamically deform
both radially and axially, so not all energy will contribute to directed axial motion.

For the dashed lines in Fig. 8, we take into account the effect of damping while on the bone,
with damping coefficient γ proportional to the radial pressure, for BASE and ANI-PRE. Even with
mild damping (γ = 0.025lP0), the maximum velocity is significantly decreased. With damping,
BASE is slowed to 6.1 m/s, similar to the typical measured peak velocity seen across a number of
species [5, 4, 1]. Interestingly, the increased damping in ANI-PRE due to the higher radial pressure
negates the energy advantage of the residually stressed sheaths, so that the tongue complex for
BASE departs the bone more quickly and with higher maximum velocity.

5 Discussion

In this paper we have developed a mathematical framework for the firing mechanism of the
chameleon tongue. Our results, while not an exhaustive analysis of the potential configurations,
nevertheless highlight the nonlinear dependence of measurable quantities on model parameters in
this intriguing mechanical system. A natural question to ask is whether the system is optimised
in some sense. From a biological standpoint, optimisation is an appealing but difficult concept,
strongly dependent on evolutionary history and specific situations. However, from a mechanical
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Figure 8: Mean position against time; inset shows measured data from Trioceros melleri, from [5].
Solid lines simulate dynamics without damping, Dashed lines include a damping term proportional
to radial pressure.

design perspective, it is perfectly reasonable to consider whether the mechanism elucidated here
can be optimised in any particular, well-defined, sense by varying the geometrical configuration.
One natural measure to consider in this regard is the maximum speed attained in the ballistic
firing.

In Fig. 9 we examine the effect of two key control parameters on maximum speed: the fibre
angle φ in the sheaths and the reference radius of the innermost sheath, A1. In Fig. 9(a) we
plot the maximum speed and stored energy for varying φ and with all other parameters at the
base values. In each case we simulate the dynamics at ν = 0.75 and with damping while on
the bone proportional to radial pressure as above (γ = 0.025lP0). At small fibre angles there is
not enough stored energy to overcome the damping and the tongue does not fire. At about 30◦

a first-order transition is observed, and the maximum speed then increases monotonically as the
fibres become more aligned with the axial direction. However, while axially-oriented fibres produce
the greatest speed, such a choice is deficient in other regards. As φ increases, the axial stiffness
of the sheaths increases sharply. The effect of this is twofold: first, almost no axial extension is
attained, a significant hindrance in reaching the tapered tip to fire. Second, high axial stiffness of
the underlying layers is antagonistic to the muscle, which attempts to extend the complex axially
when contracting. Hence, in order to achieve 30% contraction, the work requirements of the muscle
rise significantly, with almost all energy stored in the muscle as φ → 90◦. The angle range 35-50◦

provides a balance between speed, extension, and energy storage, as it allows for significant axial
extension while sheaths and muscle store similar amounts of energy.

In Fig. 9(b), we repeat the analysis with varying inner sheath radius A1. Here, any value less
than 1.4 mm induces residual stress in the rest position. In all cases, with φ fixed at 50◦, the axial
stretch is greater than 10% and so we focus on the maximum speed. We plot in Fig. 9(b) both the
total stored elastic energy and the maximum speed. The key feature is that even though the total
stored energy achieves a maximum with non-zero residual stress (A1 ≈ 1.35), the maximum speed
is monotonic, achieving a maximal value at the limiting case of no residual stress (note that A1

cannot be taken beyond 1.4 mm, as the sheaths would be disconnected from the bone in the rest
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Figure 10: Maximum speed as a function of body scale factor α. When the body length doubles,
the overall maximal velocity remains mostly constant.

position). This computation demonstrates again the non-trivial relation between energy storage
and energy release. With added residual stress, the pressure on the bone is higher, which creates
a greater longitudinal reaction force; however increased pressure also creates increased damping,
ultimately resulting here in decreased speed. Hence, maximal potential elastic energy does not
necessarily translate into maximal kinetic energy, which challenges the traditional view of biome-
chanics that high energy storage is the principal design goal.

While the results above demonstrate a potentially significant variation in firing velocity with
material parameters, due to the mechanical complexity of the firing mechanism, it has been observed
that peak velocity is relatively constant across different species of chameleons [4, 1]. This invariance
is particularly intriguing when considering the relatively significant distribution in size found in
chameleons, with body length (typically measured from snout to vent) varying by more than a
factor of 2 between species. The size independence of velocity is attributed to the fact that smaller
chameleons have proportionally larger tongue apparatuses – for instance the tongue mass does
not scale with the cube of the length of the chameleon’s body, but rather is closer to the square
of the length [1]. While a detailed analysis of interspecific variation and scaling of the tongue
mechanism is beyond the scope of the current study, it is worthwhile to comment on the effect
of scale. In Fig. 10 we plot the maximum velocity as a function of body length scale factor α,
i.e. the proportional increase in snout-vent body length from the base model parameters, which
correspond to T. jacksonii. Thus, the left-most point α = 1 corresponds to the base values while
the right-most point α = 2 corresponds to a chameleon of double the length. For each value of
α, we have scaled the tongue length l (scales as ≈ 0.8α), mass m (scales as ≈ α2), bone radius ρ
(scales as ≈ 0.8α), and accelerator muscle area (scales as ≈ α/0.8) according to the scaling laws
in [4]. As seen in Fig. 10, the model correctly predicts a nearly constant peak velocity, with a
variation of only about 10% across a 200% variation in body length.

The ballistic mechanism of the Chameleon is a striking example of mechanical innovation and
the use of elasticity to generate rapid motion in the animal kingdom. The analysis presented
suggests that this mechanism involves a complex interplay between geometry (through the in-
ternal organization of intralingual sheaths and accelerator muscles), material properties (defined
by the orientation of the collagen fibres, the pre-stress and the muscle activation), and mechan-
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ics (contraction-extension followed by expulsion). We have given a quantitative confirmation for
the hypothesis that the ballistic mechanism requires energy storage in the collagenous intralin-
gual sheaths coupled with muscular activity. Our model connects within a single mathematical
framework the several distinct features necessary for successful projection: it requires sufficient
initial tongue extension, internal elastic energy formed through the deformations and interactions
of different layers, and a means of efficient energy conversion to produce directed motion.
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