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 A B S T R A C T

With more than 90,000 muscle fascicles, the elephant trunk is a complex biological structure 
and the largest known muscular hydrostat. It achieves unprecedented control through intricately 
orchestrated contractions of a wide variety of muscle architectures. Fascinated by the elephant 
trunk’s unique performance, scientists of all disciplines are studying its anatomy, function, 
and mechanics, and use it as an inspiration for biomimetic soft robots. Yet, to date, there 
is no precise mapping between microstructural muscular activity and macrostructural trunk 
motion, and our understanding of the elephant trunk remains incomplete. Specifically, no 
model of the elephant trunk employs formal physics-based arguments that account for its 
complex muscular architecture, while preserving low computational cost to enable fast screening 
of its configuration space. Here we create a reduced-order model of the elephant trunk 
that can – within a fraction of a second – predict the trunk’s motion as a result of its 
muscular activity. To ensure reliable results in the finite deformation regime, we integrate first 
principles of continuum mechanics and the theory of morphoelasticity for fibrillar activation. 
We employ dimensional reduction to represent the trunk as an active slender structure, which 
results in closed-form expressions for its curvatures and extension as functions of muscle 
activation and anatomy. We create a high-resolution digital representation of the trunk from 
magnetic resonance images to quantify the effects of different muscle groups. We propose a 
general solution method for the inverse motion problem and apply it to extract the muscular 
activations in three representative trunk motions: picking a fruit; lifting a log; and lifting a log 
asymmetrically. For each task, we identify key features in the muscle activation profiles. Our 
results suggest that the elephant trunk either autonomously reorganizes muscle activation upon 
reaching the maximum contraction or chooses the inverse problem branches that avoid reaching 
the contraction constraints throughout the motion. Our study provides a complete quantitative 
characterization of the fundamental science behind elephant trunk biomechanics, with potential 
applications in the material science of flexible structures, the design of soft robots, and the 
creation of flexible prosthesis and assist devices.

. Motivation

The intricate musculature of the elephant trunk has fascinated scientists and engineers for decades. Along with other biological 
tructures such as the octopus arm or the human tongue, it is a muscular hydrostat in which the near-incompressible muscle tissue 
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Fig. 1. The elephant trunk can perform complex motions. These series of natural uses performed by African elephants (Loxodonta africana) were recorded in 
the Samburu National Reserve in Kenya, Summer 2024.

enables various motion mechanisms without the support of a rigid skeleton (Kier and Smith, 1985; Kier and Stella, 2007; Kier, 2012). 
Carefully orchestrated contractions of around 90,000 muscle fascicles of the elephant trunk (Longren et al., 2023) can generate a 
wide variety of complex motion archetypes. Fig.  1 illustrates the spectrum of motion, ranging from the precise manipulation of 
small objects (Wu et al., 2018; Cornette et al., 2022) to the high force generation to lift heavy objects (Shoshani, 1998).

From the perspective of biomechanics, the elephant trunk is an example of a soft slender structure, in which the activation of the 
internal muscles determines its deformation in a tight interplay with applied external loading and boundary conditions. However, 
while the mechanics of passive slender structures have seen centuries of general theoretical treatise (Kirchhoff, 1859; Love, 1906; 
Antman, 1973; Simo, 1985; Dill, 1992; Bergou et al., 2008; Altenbach et al., 2013; Lazarus et al., 2013; Gazzola et al., 2018), 
system-specific modeling (Hubbard, 1980; Gudmundson, 1983; van der Heijden et al., 2003; Neukirch et al., 2007; Wang and Feng, 
2009; Chandraseker et al., 2009; Bretl and McCarthy, 2014; Wu and Cao, 2016; Lv et al., 2020), and experimentation (Lacarbonara 
and Yabuno, 2006; Jawed et al., 2014; Yu and Hanna, 2019; Aloi and Rucker, 2019-05-20/2019-05-24; Chakrabarti et al., 2020; 
Sintov et al., 2020; Johanns et al., 2021; Sano et al., 2022), studies of slender structures with internal mechanical activation remain 
sparse and require further improvements in computational efficiency and fidelity (Huang et al., 2020; Trivedi et al., 2008a; Wang 
et al., 2020; Naughton et al., 2021; Sano et al., 2022).
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In particular, the elephant trunk, despite being one of the most prominent examples of active slender structures in nature, remains 
incompletely understood and is still a subject of active research. Past work involved experimental studies (Dagenais et al., 2021; 
Longren et al., 2023; Wu et al., 2018; Schulz et al., 2022; Purkart et al., 2022; Kaufmann et al., 2022; Deiringer et al., 2023) 
and modeling efforts (Wilson et al., 1991; Liang et al., 2006; Schulz et al., 2023; Kaczmarski et al., 2024a; Kamare et al., 2023) 
which provided invaluable insights into the principles that underlie the elephant trunk’s control capabilities and investigated the 
main features of the trunk that engineers could extract to produce more effective designs in soft-robotic applications. In fact, the 
sheer versatility of the elephant trunk served as an inspiration for a large range of engineering solutions developed throughout 
the years (Trivedi et al., 2008b; Cieślak and Morecki, 1999; Hannan and Walker, 2003; Rolf and Steil, 2014; Laschi et al., 2016). 
Additionally, other muscular hydrostats, such as the octopus arm, have sparked the development of computational tools that have 
deepened our understanding of the immense mechanical complexities inherent in this class of structures (Tekinalp et al., 2024).

However, to our knowledge, there is no model of the biomechanics of the elephant trunk that derives from first principles and 
finite-deformation continuum mechanics to ensure reliable simulation results. Proposed models use over-simplifying assumptions 
in the mechanical formulation or are computationally expensive which prevents fast solution of inverse problems and efficient 
exploration of the trunk’s configuration space. In this work, we fill these research gaps by providing a reduced-order physics-based 
model of the elephant trunk’s musculature and use its real-time implementation to simulate the biomechanics of the elephant trunk 
for several motion tasks. While reproducing trunk motions in a simulation setting is generally challenging, we are able to use our 
digital trunk representation to automatically extract the muscular activations underlying the physiological trunk motions. As a result, 
the model not only provides key quantitative insights into the mechanical principles governing slender biological systems, but also 
provides guidance for future development of engineered active structures.

We formulate our trunk model based on the theory of active slender structures, which describes the deformation of thin tapered 
tubular bodies in response to arbitrary activation of generalized fibrillar architectures (Kaczmarski et al., 2022). Inspired by previous 
developments that used the theory to extract a minimal manipulator design based on the elephant trunk (Kaczmarski et al., 2024a), 
we seek to employ rigorous continuum mechanics arguments to establish a computationally efficient trunk representation with a high 
degree of anatomical correspondence. We begin by introducing the general concept of tapered active slender structures (Kaczmarski 
et al., 2022) and define their deformation as a function of the internal fibrillar activation and the applied external loading. We 
then specialize the general model to construct a representation of the elephant trunk consisting of multiple muscular subdomains 
with various muscle architecture types. We derive the trunk curvature and extension formulas in response to fibrillar activation 
and simplify the result for the case of uniform activation and linear tapering. By using magnetic resonance images of the 
elephant trunk (Dagenais et al., 2021), we extract the geometrical and architectural parameters of the trunk muscles, resulting 
in 28 independently activated muscular subdomains. Further, we incorporate the effects of trunk incompressibility, optimize the 
computational structure of the model implementation to enable real-time simulation, and define the kinematic principles of the 
motion of the trunk’s proximal base. Using the derived model, we establish general biomechanical principles governing the trunk 
representation by analyzing the signs and magnitudes of the contributions of different muscle groups to the overall trunk motion. 
Finally, we construct and analyze three elephant trunk motions through optimization of muscle fiber contractions.

2. Elephant trunk mechanics

2.1. Reduced-order continuum model

We model the elephant trunk as an active slender structure, in which an internal mechanical activation induced by the muscular 
contractions contributes to its deformation in addition to any external loading. Here we describe the continuum mechanics of the 
trunk according to the reduced-order theory of active slender structure mechanics (Kaczmarski et al., 2022), as shown in Fig.  2.

We begin by defining the tubular initial configuration 0 of the trunk in a cylindrical basis {𝐞𝑅, 𝐞𝛩, 𝐞𝑍} with respect to the 
cylindrical coordinates {𝑅,𝛩,𝑍}, as well as the activated configuration  in a basis {𝐞𝑟, 𝐞𝜃 , 𝐞𝑧} with coordinates {𝑟, 𝜃, 𝑧}. We assume 
that every cross section along 𝐞𝑍 of the structure 0 is a disk with a slowly varying radius 𝑅0(𝑍), for 𝑍 ∈ [0, 𝐿], where 𝐿 is the 
total length of the structure. We then use dimensional reduction to reduce the computational complexity of the model and enable 
purely analytical tractability of the deformation solution. Specifically, we represent the deformation in terms of a one-dimensional 
centerline 𝐫(𝑍) that describes the trajectory traced by the slender configuration, and an orthonormal director basis {𝐝1,𝐝2,𝐝3} that 
defines the orientation of the cross section at 𝐫(𝑍), for all 𝑍 ∈ [0, 𝐿]. The kinematics of the resulting one-dimensional filamentary 
structure dictate the following general relationships between the centerline and the director basis (see Goriely (2017) for details on 
Kirchhoff rod formulation): 

𝐫′ = 𝜁𝐝3,
𝐝′𝑖 = 𝜁𝐮 × 𝐝𝑖, 𝑖 ∈ {1, 2, 3},

(1)

where the derivatives are with respect to 𝑍, 𝜁 denotes the axial extension of the structure, and 𝐮 =
∑3
𝑖=1 𝗎𝑖𝐝𝑖 is the Darboux curvature 

vector (Moulton et al., 2013). For the deformation of the activated configuration , we denote the centerline by ̂𝐫(𝑍) and the director 
basis by {𝐝̂1, 𝐝̂2, 𝐝̂3}, giving the kinematic relations 𝐫̂′ = 𝜁 𝐝̂3 and 𝐝̂′𝑖 = 𝜁 𝐮̂× 𝐝̂𝑖, for 𝑖 ∈ {1, 2, 3}, where 𝐮̂ =

∑3
𝑖=1 𝗎̂𝑖𝐝̂𝑖 are the curvatures 

in the activated configuration.
Using the centerline and the directors, we can express the reduced deformation map 𝝌 ∶ 0 →  as 

𝝌(𝐗) = 𝐫̂(𝑍) +
3
∑

𝜀𝑒𝑖(𝜀𝑅,𝛩,𝑍)𝐝̂𝑖(𝑍), (2)

𝑖=1

3 
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Fig. 2. Reduced-order continuum model of the elephant trunk as a tapered active slender structure. (a) The elephant trunk. Internal muscular activation governs 
the deformation of the trunk in addition to the external loading. Image adapted from Pexels. (b) The initial configuration 0 representing the trunk prior 
to fibrillar activation and external loading. We define the domain geometry with 𝑍 ∈ [0, 𝐿] and an outer radius profile 𝑅0(𝑍), assuming disk cross sections 
along 𝐞𝑍 at all 𝑍. (c) The activated configuration  resulting from a fiber activation field 𝑔̂ applied over a fiber direction field 𝐃. The deformation 𝝌 uses a 
one-dimensional representation of  in terms of the activated centerline 𝐫̂ and director basis {𝐝̂𝑖}. (d) Sign convention for the bending components 𝗎̂1, 𝗎̂2, and 
the twist density component 𝗎̂3 of 𝐮̂. (e) Definition of the fiber direction field 𝐃. At a given point 𝐗, 𝐃(𝐗) makes an angle 𝛼(𝐗) with 𝐞𝑍 and an angle 𝛽(𝐗) with 
𝐞𝛩 in the plane spanned by 𝐞𝑅 and 𝐞𝛩 . (f) Example of an arbitrary scalar field 𝑔̂(𝐗) applied throughout the initial configuration. The field |𝑔̂(𝐗)| represents the 
magnitude of muscular activation at all points 𝐗 in 0. (g) The deformed configuration d defined by the centerline 𝐫 and directors {𝐝𝑖} that result from an 
applied external loading.

where 𝐗 ∈ 0 is a point in the initial configuration, 𝜀 is the ratio of the characteristic cross-sectional radius to the length 𝐿, and 
𝜀𝑒𝑖 are the reactive strains that define the deformation in the cross section. The quantity 𝜀 is the small parameter of the model 
that permits the homogenization used in deriving the explicit deformation expressions in the theory (Kaczmarski et al., 2022; Xu 
et al., 2016). Fig.  2b and c visualize the deformation 𝝌 in terms of the centerline 𝐫̂ and the director basis {𝐝̂𝑖} of the activated 
configuration. The functions 𝐫̂ and 𝐝̂𝑖, 𝑖 ∈ {1, 2, 3}, act as maps from the interval 𝑍 ∈ [0, 𝐿] to R3. In Fig.  2d, we specify the sign 
convention for the activated curvatures and twist density 𝗎̂1, 𝗎̂2, and 𝗎̂3.

We define the internal activation process representing the muscular contraction as a pre-strain contraction or elongation of 
internal fibers arbitrarily distributed throughout the continuum 0 (Kaczmarski et al., 2022). Most generally, we can write a vector 
field of fiber directions in the cylindrical basis as 

𝐃 = sin 𝛼 sin 𝛽 𝐞𝑅 + sin 𝛼 sin 𝛽 𝐞𝛩 + cos 𝛼 𝐞𝑍 , (3)

where 𝛼(𝐗) ∈ (−𝜋∕2, 𝜋∕2] and 𝛽(𝐗) ∈ (−𝜋∕2, 𝜋∕2] are the fiber direction angles at all points 𝐗 ∈ 0; see Fig.  2e. The fiber 
direction field gives rise to the activation tensor 𝐆 with eigenvectors 𝐃, 𝐃⟂ = cos 𝛽 𝐞𝑅 − sin 𝛽 𝐞𝛩, and 𝐃′

⟂ = 𝐃 × 𝐃⟂, where the 
corresponding eigenvalues define the contractions or elongations due to activation along the three orthonormal eigenvectors. To 
define the deformation map 𝝌 in terms of the internal activation process, we decompose multiplicatively the deformation gradient 
𝐅 into the elastic part 𝐀 and the defined activation part 𝐆, such that (Goriely, 2017; Moulton et al., 2020) 

𝐅 = Grad𝝌 = 𝐀𝐆. (4)

Using this decomposition of 𝐅, we then minimize the total energy of the system with respect to all cross sectional deformations 
admissible under 𝝌 for an arbitrary fiber direction field 𝐃 and a general distribution of fibrillar activations throughout that field.
4 
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The minimization procedure, omitted here, yields the following closed-form formulas for the curvatures 𝗎̂𝑖 and the extension 𝜁
of the activated configuration (details given in Kaczmarski et al. (2022)): 

𝜁 = 1 +
𝐻0
𝐾0

, 𝗎̂1 =
𝐻1
𝐾1

, 𝗎̂2 = −
𝐻2
𝐾2

, 𝗎̂3 =
𝐻3
𝐾3

, (5)

where 

𝐻0 =
1
2 ∫

𝑅0

0
𝑅𝑑𝑅∫

2𝜋

0
𝐸𝑔̂(1 − 𝜈 + (1 + 𝜈) cos(2𝛼)) 𝑑𝛩,

𝐻1 =
1
2 ∫

𝑅0

0
𝑅2 𝑑𝑅∫

2𝜋

0
𝐸𝑔̂(1 − 𝜈 + (1 + 𝜈) cos(2𝛼)) sin𝛩𝑑𝛩,

𝐻2 =
1
2 ∫

𝑅0

0
𝑅2 𝑑𝑅∫

2𝜋

0
𝐸𝑔̂(1 − 𝜈 + (1 + 𝜈) cos(2𝛼)) cos𝛩𝑑𝛩,

𝐻3 =
1
2 ∫

𝑅0

0
𝑅2 𝑑𝑅∫

2𝜋

0
𝐸𝑔̂ cos 𝛽 sin(2𝛼) 𝑑𝛩,

(6)

where 𝛼 = 𝛼(𝑅,𝛩,𝑍) and 𝛽 = 𝛽(𝑅,𝛩,𝑍) are the fiber architecture angle functions, 𝐸 = 𝐸(𝑅,𝛩,𝑍) is the Young’s modulus, 
𝜈 = 𝜈(𝑅,𝛩,𝑍) is the Poisson’s ratio, and 𝑔̂ = 𝑔̂(𝑅,𝛩,𝑍) is a scalar function defining the extent of fibrillar activation at each point in 
the domain. In general, the scalar activation 𝑔̂(𝑅,𝛩,𝑍) represents a measure of either contractile or extensile pre-strain in a fiber 
along the fiber direction 𝐃 at a point (𝑅,𝛩,𝑍). For a given 𝑔̂, the Poisson’s ratio 𝜈 governs the associated extension or contraction 
in the transverse directions 𝐃⟂ and 𝐃′

⟂ (Kaczmarski et al., 2022). Fig.  2f shows an example of an arbitrary fibrillar activation field 𝑔̂
applied throughout the initial configuration. The denominator quantities 𝐾0, 𝐾1, 𝐾2, and 𝐾3 are the stiffness coefficients, classically 
encountered in the theories of rod mechanics, which simplify to 

𝐾0 = 𝐸𝜋𝑅2
0, 𝐾1 = 𝐾2 =

𝐸𝜋
4
𝑅4
0, 𝐾3 =

𝐸𝜋
4(1 + 𝜈)

𝑅4
0, (7)

in the case of a disk cross section.
The musculature of the elephant trunk contains three primary muscle architectures: longitudinal, helical, and radial (Longren 

et al., 2023). Under the assumption of disk cross sections, these architectures simplify the general 𝛼(𝑅,𝛩,𝑍) and 𝛽(𝑅,𝛩,𝑍) functions 
to angles 𝛼 and 𝛽 that are constant with respect to 𝛩 in the whole domain. In the case of a constant outer radius 𝑅0(𝑍) = 𝑅0, 𝛼 = 𝛽 = 0
for longitudinal, 𝛼 ∈ (−𝜋∕2, 𝜋∕2) ⧵ {0} and 𝛽 = 0 for helical, and 𝛼 = 𝛽 = 𝜋∕2 for radial fibers. However, since the elephant trunk 
is a tapered structure, the fiber architecture has to reflect the tapering of the outer radius 𝑅0(𝑍) along 𝑍. According to Kaczmarski 
et al. (2022), given a tapering angle function 𝜙(𝑅,𝑍) that is independent of 𝛩, we obtain the tapered fiber field by transforming a 
fiber direction 

𝐃̃ = sin 𝛼̃ sin 𝛽 𝐞𝑅 + sin 𝛼̃ sin 𝛽 𝐞𝛩 + cos 𝛼̃ 𝐞𝑍 , (8)

using a rotational transformation by 𝜙(𝑅,𝑍) about −𝐞𝛩, which gives the tapered fiber field 

𝐃 = (sin 𝛼̃ sin 𝛽 cos𝜙 − cos 𝛼̃ sin𝜙)𝐞𝑅 + sin 𝛼̃ cos 𝛽𝐞𝛩 + (sin 𝛼̃ sin 𝛽 sin𝜙 + cos 𝛼̃ cos𝜙)𝐞𝑍 , (9)

where 𝛼̃(𝑅,𝑍) and 𝛽(𝑅,𝑍) are auxiliary angle functions expressed in the pre-tapered space. We use 𝛼̃ and 𝛽 throughout this 
manuscript since their spatial variation is significantly easier to express compared to the physical angles 𝛼 and 𝛽, which we can 
obtain from the relationships (Kaczmarski et al., 2022) 

cos 2𝛼 = sin 2𝛼̃ sin 𝛽 sin 2𝜙 − sin2 𝛼̃(sin2 𝛽 cos 2𝜙 + cos2 𝛽) + cos2 𝛼̃ cos 2𝜙,

cos 𝛽 sin 2𝛼 = 2 sin 𝛼̃ cos 𝛽(sin 𝛼̃ sin 𝛽 sin𝜙 + cos 𝛼̃ cos𝜙).
(10)

2.2. External loading

Eqs. (5)–(7) define the intrinsic extension and curvatures generated by arbitrary fibrillar activations. To compute the deformation 
due to not only the internal muscular activation, but also the external loading, we define a deformed configuration d—the result of 
deforming the activated configuration  through external forces. We assume that the motion of the elephant trunk is slow enough 
such that, at every time point, d is a quasi-static solution of the force and moment balance equations for extensible Kirchhoff 
rods (Moulton et al., 2013): 

𝜕𝐧
𝜕𝑍

+ 𝜁 𝐟 = 𝟎,

𝜕𝐦
𝜕𝑍

+ 𝜕𝐫
𝜕𝑍

× 𝐧 + 𝜁 𝐥 = 𝟎,
(11)

where 𝐧 is the internal force, 𝜁 𝐟 is the external body force per unit length of 0, 𝐦 is the internal moment, 𝐫 is the centerline 
function of the deformed configuration, and 𝜁 𝐥 is the external body couple per unit length of 0. We provide in Fig.  2g a schematic 
of a sample deformed configuration d generated through external loading applied to . To compute d, we solve the boundary 
value problem defined in Eq. (11) with a choice of 𝐟 , 𝐥, and boundary conditions on 𝐦(𝑍) and 𝐧(𝑍) appropriate for a given loading 
scenario.
5 
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Previous work posed the boundary value problem resulting from the weight of an active slender structure due to grav-
ity (Kaczmarski et al., 2024a; Leanza et al., 2024). Here, we consider an extended library of loading scenarios consisting 
of:

• A gravitational body force due to the weight of the trunk;
• A point load 𝐕 =

∑

𝖵𝑖𝐝𝑖 applied at 𝑍 = 𝐿;
• A uniformly distributed load 𝐰(𝑍) given by 

𝐰(𝑍) =

⎧

⎪

⎨

⎪

⎩

𝐖
𝐿 −𝑍𝐰

for 𝑍 ∈ [𝑍𝐰, 𝐿]

𝟎 otherwise,
(12)

caused by an object of weight 𝐖 ∈ R3 lifted by the trunk, and applied along a one-dimensional contact region  ∶ [𝑍𝐰, 𝐿] → ;
• A uniformly distributed body couple 𝜁 𝐥 = ∑

𝗅𝑖𝐝𝑖 given by 

𝜁 𝐥(𝑍) =

⎧

⎪

⎨

⎪

⎩

𝐋
𝐿 −𝑍𝐰

for 𝑍 ∈ [𝑍𝐰, 𝐿]

𝟎 otherwise,
(13)

caused by a moment 𝐋 ∈ R3 due to the weight of the object when lifted off-center;
• A clamped boundary condition at the 𝑍 = 0 end of the trunk;
• A free-end boundary condition at the 𝑍 = 𝐿 end of the trunk.

With these loading assumptions, the general form of Eq. (11) and the kinematics in Eq. (1) yield the following boundary value 
problem 

𝐫′(𝑍) = 𝜁 (𝑍)𝐝3(𝑍),

𝐝′𝑖(𝑍) = 𝜁 (𝑍)𝐮(𝑍) × 𝐝𝑖(𝑍), 𝑖 ∈ {1, 2, 3},

𝗆′
1(𝑍) = 𝜁 (𝗎3(𝑍)𝗆2(𝑍) − 𝗎2(𝑍)𝗆3(𝑍)) + 𝜁𝗇2(𝑍) − 𝗅1(𝑍),

𝗆′
2(𝑍) = 𝜁 (𝗎1(𝑍)𝗆3(𝑍) − 𝗎3(𝑍)𝗆1(𝑍)) − 𝜁𝗇1(𝑍) − 𝗅2(𝑍),

𝗆′
3(𝑍) = 𝜁 (𝗎2(𝑍)𝗆1(𝑍) − 𝗎1(𝑍)𝗆2(𝑍)) − 𝗅3(𝑍),

𝐫(0) = 𝐫0,
𝐝𝑖(0) = 𝐝𝑖0, 𝑖 ∈ {1, 2, 3},

𝐦(𝐿) = 𝟎,

(14)

where {𝐝𝑖} form the director basis of the deformed configuration d, 𝐮 =
∑3
𝑖=1 𝗎𝑖𝐝𝑖 is the vector of curvatures of d, 𝐧 =

∑

𝗇𝑖𝐝𝑖, 
𝐦 =

∑

𝗆𝑖𝐝𝑖, 𝜁 = 𝜁𝜁ext is the total extension of the rod in the deformed configuration, 𝜁ext is the centerline extension due to the 
external loading relative to the activated configuration, 𝐫0 is the clamping position, the basis {𝐝𝑖0} defines the clamping direction, 
and 

𝗇𝑖(𝑍) = 𝖵𝑖 + (𝐠 ⋅ 𝐝𝑖)∫
𝐿

𝑍
𝜌lin,0(𝑍′) 𝑑𝑍′ +

(

𝐖 ⋅ 𝐝𝑖
) 𝐿 −max(𝑍,𝑍𝐰)

𝐿 −𝑍𝐰
,

𝜁ext(𝑍) = 1 +
𝗇3(𝑍)
𝐾∗

0 (𝑍)
,

𝗎𝑖(𝑍) = 𝗎̂𝑖(𝑍) +
𝗆𝑖(𝑍)
𝐾∗
𝑖 (𝑍)

,

𝗅𝑖(𝑍) =

⎧

⎪

⎨

⎪

⎩

𝐋 ⋅ 𝐝𝑖
𝐿 −𝑍𝐰

for 𝑍 ∈ [𝑍𝐰, 𝐿]

𝟎 otherwise,

(15)

for 𝑖 ∈ {1, 2, 3}, where 𝐾∗
𝑗 (𝑍), 𝑗 ∈ {0, 1, 2, 3}, are the new stiffness coefficients in the activated configuration, 𝜌lin,0(𝑍) is the 

linear density along 𝐞𝑍 of the trunk in the initial configuration, and 𝐠 = 𝑔𝐞𝑍 is the gravitational acceleration. We assume that 
the contributions of body couples generated by the distributed load 𝐰(𝑍) are negligible due to the slenderness of the structure. 
We also assume that the distribution of frictional forces does not have a significant effect on the integral shape of the deformed 
configuration, since the contact region  is small compared to 𝐿 in our analysis. As such, we omit the effects of the potentially 
complex frictional interactions when solving the boundary value problem. Note that, to ensure consistency of centerline extensions 
across the initial, activated, and deformed configurations, we make the substitution 𝜁 ← 𝜁 for the 𝐫′ differential equation and 𝜁 ← 𝜁
for the 𝐝′ differential equation in Eq. (1) to express the kinematics in the boundary value problem in Eq. (14).

We solve the differential system in Eqs. (14) and (15) using the ‘colnew’ collocation method (Ascher et al., 1995), which we 
found to outperform the shooting method equipped with various initial value problem solvers.
6 
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Fig. 3. Trunk model geometry constructed from cross-sectional magnetic resonance images of the trunk of an Asian elephant. (a) Magnetic resonance images 
of transversal sections of the trunk (left column), and the corresponding segmented muscle groups (right column) at three points along the length of the trunk. 
The magnetic resonance images and the muscle segmentation are adapted from Dagenais et al. (2021). (b) Cross sections of the assumed muscular subdomains 
𝑆
𝑖,𝑀 based on the images in (a). The three cross sections correspond to the three images in (a) and to the starting points 𝑍1,1 (top), 𝑍1,2 = 𝑍2,1 (middle), and 

𝑍1,3 = 𝑍2,2 (bottom) of the three segments in the model. We omit the transverse muscle group shown in green in (a). (c) Dorsal visualizations of the five muscle 
groups, from top to bottom, in all three segments of the trunk model. (d) Exploded view of all 28 muscular subdomains used in the trunk model. We use the 
same color coding of all muscles across the subfigures (a)–(d).

3. The elephant trunk representation

3.1. Muscular subdomains

Based on the magnetic resonance images, dissection, and analysis of the trunk of an Asian elephant reported in Dagenais 
et al. (2021), we can approximate the architecture of the elephant trunk and the associated fibrillar activation functions using 
a three-variable piecewise constant construction in 𝑅, 𝛩, and 𝑍. In particular, we distinguish five muscle groups based on their 
fiber architecture and location in the cross section: dorsal longitudinal, outer ventral oblique, inner ventral oblique, dorsal radial, 
and ventral radial (Dagenais et al., 2021; Longren et al., 2023). We omit the transverse muscle architecture, since its mechanical 
contributions are equivalent to those of the radial muscle group and it is not straightforward to represent in a cylindrical basis. 
To represent accurately the trunk’s musculature while preserving model simplicity, we split the structure lengthwise into 𝑁 = 3
piecewise segments 𝑍 ∈ [𝑍1,𝑖, 𝑍2,𝑖], 𝑖 ∈ {1, 2, 3}, and into symmetric right and left portions denoted by superscripts R and 
L, respectively. We show in Fig.  3a three segmented magnetic resonance images of the transversal sections of the trunk which 
correspond to the boundaries of the three 𝑍-segments at 𝑍2,1, 𝑍2,2, and 𝑍2,3 (Dagenais et al., 2021).

To build a generalized piecewise constant representation of the elephant trunk that follows the magnetic resonance image 
segmentation in Fig.  3a, we define the following 30 cylindrical regions: 

𝑆
𝑖,𝑀 = {(𝑅,𝛩,𝑍) ∣ 𝑅 ∈ [𝑅𝑆1,𝑖,𝑀 (𝑍), 𝑅𝑆2,𝑖,𝑀 (𝑍)], 𝛩 ∈ [𝛩𝑆1,𝑖,𝑀 , 𝛩

𝑆
2,𝑖,𝑀 ], 𝑍 ∈ [𝑍1,𝑖, 𝑍2,𝑖]}, (16)

where 𝑖 ∈ {1, 2, 3} are the indices corresponding to the three 𝑍-segments, 𝑆 ∈ {R, L} denotes the right or left side of the trunk, and 
the symbol 𝑀 assumes one of the five muscle group identifiers. We use the following identifiers for the muscle groups: 𝑀 = ‘dl’ for 
7 



B. Kaczmarski et al. Journal of the Mechanics and Physics of Solids 200 (2025) 106102 
the dorsal longitudinal group, 𝑀 = ‘ovo’ and 𝑀 = ‘ivo’ for the outer and inner ventral oblique groups, and 𝑀 = ‘dr’ and 𝑀 = ‘vr’
for the dorsal and ventral radial groups, respectively. For notational brevity, we define a set  = {dl, ovo, ivo,dr, vr} of muscle 
group identifiers. Consequently, region 𝑆

𝑖,𝑀  corresponds to the muscle group 𝑀 ∈  on side 𝑆 in the 𝑖th piecewise 𝑍-segment. The 
regions in Eq. (16) assume that the inner and outer radii 𝑅𝑆1,𝑖,𝑀  and 𝑅𝑆1,𝑖,𝑀  do not vary in 𝛩, so every cross section with a normal 
𝐞𝑍 of a region 𝑆

𝑖,𝑀  is an annular sector, as shown in Fig.  3b. To account for all other tissue surrounding the muscles of the trunk, 
each muscular subdomain 𝑆

𝑖,𝑀  is a subset of the overall trunk region 

trunk = {(𝑅,𝛩,𝑍) ∣ 𝑅 ∈ [0, 𝑅0(𝑍)], 𝛩 ∈ [0, 2𝜋], 𝑍 ∈ [𝑍1,1, 𝑍2,3]}, (17)

where 𝑅0(𝑍) is the outer radius of the trunk.
Based on the elephant trunk’s muscle architecture, we can assume that the left and right sides are symmetric along the axis going 

through the center of the dorsal longitudinal muscle region and the center of the cross-section. Under this assumption, 
𝛩L1,𝑖,𝑀 = 2𝜋 − 𝛩R2,𝑖,𝑀 ,

𝛩L2,𝑖,𝑀 = 2𝜋 − 𝛩R1,𝑖,𝑀 ,

𝑅L1,𝑖,𝑀 (𝑍) = 𝑅R1,𝑖,𝑀 (𝑍) = 𝑅1,𝑖,𝑀 (𝑍),

𝑅L2,𝑖,𝑀 (𝑍) = 𝑅R2,𝑖,𝑀 (𝑍) = 𝑅2,𝑖,𝑀 (𝑍),

(18)

where 𝑖 ∈ {1, 2, 3}, 𝑍 ∈ [𝑍1,𝑖, 𝑍2,𝑖], and 𝑀 ∈ {dl, ovo, ivo,dr, vr} indicates the muscle architecture and location. As such, we obtain 
a complete definition of the muscular subdomain geometry by prescribing 𝛩R1,𝑖,𝑀 , 𝛩R2,𝑖,𝑀 , 𝑅1,𝑖,𝑀 (𝑍), and 𝑅2,𝑖,𝑀 (𝑍). We report in 
Section 3.6 the numerical choices and their justifications for all parameters necessary for the explicit construction of the regions in 
Eqs. (16) and (17). We note that a given muscular group might not exist in a particular subset of trunk based on anatomical data, 
so, for some 𝑖, 𝑀 , 𝑆, having 𝑆

𝑖,𝑀 = ∅ is generally possible and effectively reduces the total number of subdomains.

3.2. Fiber architecture

Following the definitions of the 𝑆
𝑖,𝑀  subdomains and assuming symmetry, we can fully describe the fiber architecture in the 

pre-tapered space 𝛼̃, 𝛽 as the following piecewise functions of 𝐏 = (𝑅,𝛩,𝑍):

𝛼̃𝑖(𝐏) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, for 𝐏 ∈ R
𝑖,dl ∪L

𝑖,dl,

−𝛼̃𝑖,ovo(𝑅,𝑍), for 𝐏 ∈ R
𝑖,ovo,

𝛼̃𝑖,ovo(𝑅,𝑍), for 𝐏 ∈ L
𝑖,ovo,

𝛼̃𝑖,ivo(𝑅,𝑍), for 𝐏 ∈ R
𝑖,ivo,

−𝛼̃𝑖,ivo(𝑅,𝑍), for 𝐏 ∈ L
𝑖,ivo,

𝜋∕2 + 𝜙(𝑅,𝑍), for 𝐏 ∈ R
𝑖,dr ∪L

𝑖,dr ∪R
𝑖,vr ∪L

𝑖,vr,

(19)

𝛽𝑖(𝐏) =
{

𝜋∕2, for 𝐏 ∈ R
𝑖,dr ∪L

𝑖,dr ∪R
𝑖,vr ∪L

𝑖,vr,

0, otherwise,
(20)

for 𝑖 ∈ {1, 2, 3}, such that 𝑍 ∈ [𝑍1,𝑖, 𝑍2,𝑖] in 𝐏 for 𝛼̃𝑖 and 𝛽𝑖. We emphasize that, in contrast to 𝛼̃𝑖(𝐏), 𝛼̃𝑖,ovo and 𝛼̃𝑖,ivo are only functions 
of 𝑅 and 𝑍, and not 𝛩. Within a given oblique muscle region 𝑆

𝑖,ovo or 𝑆
𝑖,ivo, they obey the following geometric property that 

governs the helical angle variation in 𝑅: 

tan(𝛼̃𝑖,𝑀 (𝑅,𝑍)) = 𝑅
𝑅2,𝑖,𝑀 (𝑍)

tan(𝛼̃2,𝑖,𝑀 ), (21)

where 𝑖 ∈ {1, 2, 3}, 𝑍 ∈ [𝑍1,𝑖, 𝑍2,𝑖], 𝑀 ∈ {ovo, ivo}, and 𝛼̃2,𝑖,𝑀 = 𝛼̃𝑖,𝑀 (𝑅2,𝑖,𝑀 (𝑍), 𝑍) is a constant angle on the outer radius 𝑅2,𝑖,𝑀 (𝑍)
of 𝑆

𝑖,𝑀  that fully defines a given helical architecture. Using Eq. (21), we can then express the fiber architecture in Eq. (19) in terms 
of the constant outer-helical angle quantities 𝛼̃2,𝑖,𝑀 .

Further, in the elephant trunk, the outer ventral oblique muscles are left-handed helical on the right side and right-handed helical 
on the left side (Dagenais et al., 2021). On the other hand, the inner ventral oblique muscles are right-handed helical on the right 
side and left-handed helical on the left side (Longren et al., 2023; Dagenais et al., 2021). Therefore, we chose the negative signs in 
Eq. (19) such that both 𝛼̃2,𝑖,ivo and 𝛼̃2,𝑖,ovo are positive. The tapering of the non-tapered fiber field given by 𝛼̃ and 𝛽 occurs through 
Eq. (10) and the following rule for the inclination of the tapered field 

tan(𝜙(𝑅,𝑍)) = 𝑅
𝑅0(𝑍)

tan(𝜙0(𝑍)), (22)

where 𝜙 (𝑍) is the tapering angle on the outer surface of the trunk.
0
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3.3. Fiber activation functions

To prescribe the activation in all muscle groups, we construct a piecewise structure for the fibrillar activation function 𝑔̂(𝑅,𝛩,𝑍)
that is similar to Eqs. (19) and (20). We assume that, within each muscular subdomain, the activation does not depend on 𝑅, which 
gives the general form 

𝑔̂𝑖(𝐏) =
{

𝑔̂R𝑖,𝑀 (𝛩,𝑍),  for 𝐏 ∈ R
𝑖,𝑀 ,

𝑔̂L𝑖,𝑀 (𝛩,𝑍),  for 𝐏 ∈ L
𝑖,𝑀 ,

(23)

for 𝑀 ∈ {dl, ovo, ivo,dr, vr}, 𝑖 ∈ {1, 2, 3}, and 𝑍 ∈ [𝑍1,𝑖, 𝑍2,𝑖]. Importantly, the symmetry assumption concerns only the muscular 
subdomain geometry and fiber architectures—the activation is generally different in the right and left sides of the trunk.

3.4. Activated extension and curvatures

Based on the split of the integration regions into 𝑆
𝑖,𝑀  and the general form of activation formulas in Eq. (6) for the disk 

solution, the 𝐻0, 𝐻1, 𝐻2, and 𝐻3 numerator terms of the activated extension and curvatures become piecewise functions in the 
three 𝑍-segments such that 

𝐻𝑗 (𝑍) =

⎧

⎪

⎨

⎪

⎩

∑

𝑀∈ 𝐻𝑗,1,𝑀 (𝑍),  for 𝑍 ∈ [𝑍1,1, 𝑍2,1],
∑

𝑀∈ 𝐻𝑗,2,𝑀 (𝑍),  for 𝑍 ∈ [𝑍1,2, 𝑍2,2],
∑

𝑀∈ 𝐻𝑗,3,𝑀 (𝑍),  for 𝑍 ∈ [𝑍1,3, 𝑍2,3],
(24)

where 𝑗 ∈ {0, 1, 2, 3},  = {dl, ovo, ivo,dr, vr}. We give all pertinent functional forms for Eq. (24) in Appendix  A.

3.5. Uniform activation and linear tapering

Assuming that the activation is uniform in each muscular subdomain, i.e., 𝑔̂𝑅𝑖,𝑀 (𝛩,𝑍) = 𝛾R𝑖,𝑀  and 𝑔̂𝐿𝑖,𝑀 (𝛩,𝑍) = 𝛾L𝑖,𝑀 , the activation 
terms, provided in Eq. (A.3) for general 𝑔̂, simplify to

R
1,𝑖,𝑀 = 𝛾R𝑖,𝑀 (cos𝛩R1,𝑖,𝑀 − cos𝛩R2,𝑖,𝑀 ), L

1,𝑖,𝑀 = −𝛾L𝑖,𝑀 (cos𝛩R1,𝑖,𝑀 − cos𝛩R2,𝑖,𝑀 ),

R
2,𝑖,𝑀 = 𝛾R𝑖,𝑀 (sin𝛩R2,𝑖,𝑀 − sin𝛩R1,𝑖,𝑀 ), L

2,𝑖,𝑀 = 𝛾L𝑖,𝑀 (sin𝛩R2,𝑖,𝑀 − sin𝛩R1,𝑖,𝑀 ), (25)

R
3,𝑖,𝑀 = 𝛾R𝑖,𝑀 (𝛩R2,𝑖,𝑀 − 𝛩R1,𝑖,𝑀 ) = R

0,𝑖,𝑀 , L
3,𝑖,𝑀 = 𝛾L𝑖,𝑀 (𝛩R2,𝑖,𝑀 − 𝛩R1,𝑖,𝑀 ) = L

0,𝑖,𝑀 .

We note that, in the case of symmetric muscular activations 𝛾𝑅𝑖,𝑀 = 𝛾𝐿𝑖,𝑀  for given 𝑖 and 𝑀 , the corresponding activation terms obey 
the relations 𝑅

1,𝑖,𝑀 = −𝐿
1,𝑖,𝑀 , 𝑅

2,𝑖,𝑀 = 𝐿
2,𝑖,𝑀 , and 𝑅

0,𝑖,𝑀 = 𝐿
0,𝑖,𝑀 = 𝑅

3,𝑖,𝑀 = 𝐿
3,𝑖,𝑀 . In the case of symmetric 𝛾𝑆𝑖,𝑀 , these relations 

are due to the symmetries in the general form of Eq. (A.3), which, in turn, stem from the symmetries assumed in Eq. (18). In general, 
the assumption of uniform activation within each subdomain permits discontinuities in the fibrillar activation field across muscular 
subdomain boundaries. The analytical integration step in Eq. (A.3) treats the discontinuities in 𝑔̂ along 𝛩, while the discontinuities 
along 𝑍 enter the activated extension and curvature functions in the boundary value problem.

We further assume that the tapering profile of the trunk representation is linear, which is a sufficiently good approximation of 
the geometry of a real trunk. In particular, we set the tapering angle evolution on the outer surface of the trunk to be constant, 
i.e., 𝜙0(𝑍) = 𝜙0. Then, the outer radius 𝑅0(𝑍) of the trunk region obeys the linear relationship 

𝑅0(𝑍) = 𝑅0(0) −𝑍 tan(𝜙0), (26)

and the internal tapering of the fiber architectures in all muscular subdomains follows 

tan(𝜙(𝑅,𝑍)) = 𝑅
𝑅0(𝑍)

tan𝜙0, (27)

based on Eq. (22). This form of 𝜙(𝑅,𝑍) enters the 𝑐𝜙 function needed to compute the 𝛿 functions in Eq. (A.4). Further, for a linear 
tapering profile, we can readily express the linear density integral that enters Eq. (15) as 

∫

𝐿

𝑍
𝜌lin,0(𝑍′) 𝑑𝑍′ =

𝜋𝜌vol
3𝐿2

[

(𝐿 −𝑍)3𝑅2
0(0) + (𝐿 −𝑍)2(𝐿 + 2𝑍)𝑅0(0)𝑅0(𝐿) + (𝐿3 −𝑍3)𝑅2

0(𝐿)
]

, (28)

where 𝜌vol is the volumetric density of the trunk material, assuming that 𝜌vol is uniform throughout the trunk. We also make the 
assumption that the muscle fibers in a subdomain 𝑆

𝑖,𝑀  initiate at 𝑍1,𝑖 and terminate only at 𝑍2,𝑖, with no fibers terminating in the 
interior 𝑍1,𝑖 < 𝑍 < 𝑍2,𝑖 of each segment. With a non-zero tapering angle field 𝜙(𝑅,𝑍), this assumption imposes a condition on 
the tapered geometry of the muscular subdomains. Specifically, given the linearly tapered fiber field in Eq. (27), we prescribe a 
compatibility condition 

𝑅1,𝑖,𝑀 (𝑍) = 𝑅1,𝑖,𝑀 (0)𝑓 (𝑍),

𝑅2,𝑖,𝑀 (𝑍) = 𝑅2,𝑖,𝑀 (0)𝑓 (𝑍),

𝑓 (𝑍) = 1 − 𝑍 tan𝜙0,
(29)
𝑅0(0)
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Table 1
Geometry parameters for the 28 muscular subdomains in three segments based on magnetic resonance images (Dagenais et al., 
2021).
 Segment 𝑖 = 1 Segment 𝑖 = 2 Segment 𝑖 = 3 
 
Dorsal longitudinal

𝑅1,𝑖,dl(0)∕𝐿 0.0869 0.1016 0.0901  
 𝑅2,𝑖,dl(0)∕𝐿 0.1185 0.1185 0.1185  
 𝛩R1,𝑖,dl 0.0000 0.0000 0.0000  
 𝛩R2,𝑖,dl 1.7279 2.0944 0.7854  
 
Outer ventral oblique

𝑅1,𝑖,ovo(0)∕𝐿 0.1027 0.1016 0.1024  
 𝑅2,𝑖,ovo(0)∕𝐿 0.1185 0.1185 0.1185  
 𝛩R1,𝑖,ovo 1.7279 2.0944 1.9635  
 𝛩R2,𝑖,ovo 2.9845 2.9217 3.1416  
 
Inner ventral oblique

𝑅1,𝑖,ivo(0)∕𝐿 0.0869 0.0596 –  
 𝑅2,𝑖,ivo(0)∕𝐿 0.1027 0.1016 –  
 𝛩R1,𝑖,ivo 1.7279 1.0472 –  
 𝛩R2,𝑖,ivo 3.1416 3.1416 –  
 
Dorsal radial

𝑅1,𝑖,dr(0)∕𝐿 0.0580 0.0680 0.0579  
 𝑅2,𝑖,dr(0)∕𝐿 0.0869 0.1016 0.0876  
 𝛩R1,𝑖,dr 0.0000 0.0000 0.0000  
 𝛩R2,𝑖,dr 1.5708 1.0472 0.7854  
 
Ventral radial

𝑅1,𝑖,vr(0)∕𝐿 0.0470 0.0281 0.0318  
 𝑅2,𝑖,vr(0)∕𝐿 0.0761 0.0596 0.0766  
 𝛩R1,𝑖,vr 1.5708 1.0472 1.5708  
 𝛩R2,𝑖,vr 3.1416 3.1416 3.1416  

for 𝑖 ∈ {1, 2, 3} and 𝑀 ∈  , which ensures that the tangents of the inner surface 𝑅 = 𝑅1,𝑖,𝑀 (𝑍) and the outer surface 𝑅 = 𝑅2,𝑖,𝑀 (𝑍) of 
a muscular subdomain 𝐷𝑆

𝑖,𝑀  are the same as the fiber directions on those inner and outer surfaces, respectively, for all 𝑍 ∈ [𝑍1,𝑖, 𝑍2,𝑖].
With the condition (29), we can fully define the trunk representation from 5 + 2𝑁 + (4 ⋅ 5)𝑁 + 2𝑁 parameters. The five global 

parameters are: the Young’s modulus 𝐸; the Poisson’s ratio 𝜈; the volumetric density 𝜌vol; the outer-surface tapering angle 𝜙0; and 
the proximal trunk radius 𝑅0(0). The 2𝑁 parameters 𝑍1,𝑖 and 𝑍2,𝑖 define the bounds of the trunk segments. For each muscular 
subdomain we must specify the proximal radii 𝑅1,𝑖,𝑀 (0) and 𝑅2,𝑖,𝑀 (0), and the muscular subdomain angles 𝛩R1,𝑖,𝑀  and 𝛩R2,𝑖,𝑀 . For 
the oblique muscle groups, we need to define 2𝑁 helical angles 𝛼̃2,𝑖,ovo and 𝛼̃2,𝑖,ivo.

3.6. Image-informed trunk construction

We choose the values of the parameters that define the trunk representation based on the magnetic resonance images, dissection, 
and analysis of the trunk of an Asian elephant reported in Dagenais et al. (2021). First, the length of the imaged trunk is 𝐿 = 1.75 m, 
and the ratio of the proximal outer radius to the total length is 𝑅0(0)∕𝐿 ≈ 0.1185. We estimate the ratio of the proximal outer radius 
to the distal outer radius as 𝑅0(0)∕𝑅0(𝐿) ≈ 3.46. Assuming a linear tapering profile, the outer-surface tapering angle then becomes 
𝜙0 = 4.81◦ based on 𝑅0(0), 𝑅0(𝐿), and 𝐿.

Second, as indicated before, we choose 𝑁 = 3 for the number of 𝑍-segments, which results in a total of 30 independent muscular 
subdomains. We consider three segments to be sufficient to resolve, in an average sense, the otherwise highly complex muscular 
architecture and non-uniform activations of the real elephant trunk. Although choosing a much larger number of segments, such 
as 𝑁 ∼ 102, would result in an accurate correspondence with the real anatomy, it would significantly reduce the interpretability 
of muscular activation distributions, e.g., due to noisy activations extracted from the inverse problem. Further, a large 𝑁 would 
increase the computational cost of inverse problem solutions, as the dimensionality of the problem is directly proportional to 𝑁 .

We choose the segment coordinates as 𝑍1,1 = 0, 𝑍1,2 = 𝑍2,1 = 𝐿∕2, 𝑍1,3 = 𝑍2,2 = 0.85𝐿, 𝑍2,3 = 𝐿. The segment boundaries at 
𝑍1,1, 𝑍1,2, and 𝑍1,3 correspond to the three primary magnetic resonance images segmented along the length of the trunk in Dagenais 
et al. (2021), as shown in Fig.  3a–c. At each segment boundary, we re-define the muscular subdomain geometry through 𝑅1,𝑖,𝑀 (0), 
𝑅2,𝑖,𝑀 (0), 𝛩R1,𝑖,𝑀  and 𝛩R2,𝑖,𝑀  according to the three images. Based on the image that dictates the anatomy of the third segment, the 
inner ventral oblique muscle group is not present in that segment, which reduces the total number of muscular subdomains in the 
model to 28 and the total number of parameters to 72. Even though the third segment of the imaged trunk is very short, we elongated 
it to amount to 15% of the total length to emphasize the local effect of the non-existence of the inner ventral oblique muscles and 
to visualize the muscular contributions of the trunk’s tip in the simulations. We show an exploded view of the resulting 28-muscle 
representation of the trunk in Fig.  3d and report the extracted geometry parameters in Table  1.

Finally, we used the upper bound of the 20◦–30◦ range for the fiber angles provided in Dagenais et al. (2021), such that 
the unsigned helical angles are 𝛼̃2,𝑖,ovo = 30◦ for 𝑖 ∈ {1, 2, 3}, and 𝛼̃2,𝑖,ivo = 30◦ for 𝑖 ∈ {1, 2}. We assume a homogeneous 
incompressible material with 𝜈 = 0.5, a Young’s modulus of 𝐸 = 1 MPa (Wilson et al., 1991), and a volumetric density of 
𝜌 ≈ 1059.7 kg∕m3 (Méndez, 1960).
vol
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3.7. Incompressibility effects

The elephant trunk is a muscular hydrostat, and its incompressibility is critical to enable various biomechanically desirable 
phenomena (Kier and Smith, 1985; Goriely, 2017). For instance, contraction of non-longitudinal muscle groups can directly reduce 
the cross-sectional area which, in turn, results in axial extension due to incompressibility. Combined with other mechanical effects, 
the elephant trunk can exploit this mechanism to reach extensional strains larger than 30% (Dagenais et al., 2021). As another 
example, the asymmetric contraction of radial muscles can induce localized reduction in cross-sectional area leading to an extension 
mismatch in the cross section which, in turn, causes bending.

Eqs. (5)–(7) and (24)–(A.4) already incorporate some of the hydrostatic effects, as the activation terms 𝐻𝑗,𝑖,𝑀  depend on the 
Poisson’s ratio 𝜈. For instance, Eqs. (24)–(A.4) capture the bending deformation mode induced by radial muscles when 𝜈 = 0.5. 
However, those expressions alone do not consider the change in the geometry of the activated configuration caused by the hydrostatic 
effects. To incorporate the change in the outer radius profile due to incompressibility, we assume that the muscular contractions 
throughout 𝑍 ∈ [0, 𝐿] have an integral effect on the cross-sectional size of the trunk at all 𝑍. Specifically, we scale the outer radius 
profile 𝑅0(𝑍) by a prefactor dependent on the muscular activation, so that the volumes of the activated and initial configurations 
are the same. Under the assumption of linear tapering, scaling 𝑅0(𝑍) by a constant prefactor implies that the activated configuration 
remains a conical frustum, which effectively averages the localized effects of the otherwise variable extension 𝜁 (𝑍). To ensure that 
the volumes of the conical frustums are the same before and after activation, we employ the following scaling to compute the outer 
radius 𝑅∗

0(𝑍) in the activated configuration 

𝑅∗
0(𝑍) =

[

∫

𝐿

0
𝜁 (𝑍) 𝑑𝑍

]−1∕2

𝑅0(𝑍). (30)

We use this updated radius profile 𝑅∗
0(𝑍) to compute the stiffness coefficients 𝐾∗

𝑗 (𝑍) of the activated configuration, which enter 
Eq. (15). For visualization of the final configuration with external loading, we use Eq. (30) with 𝜁 (𝑍) in place of 𝜁 (𝑍) to compute 
the outer radius profile of d.

3.8. Real-time simulation and precomputation

We emphasize that the computation of the activated curvature and extension according to Eq. (5) is purely analytical, given our 
stated assumptions. That is, obtaining 𝐮̂(𝑍) and 𝜁 (𝑍) does not require any iterative procedures, and we can consider computing 
these functions to be a nearly instantaneous operation. This analytical aspect of the computation of  enables real-time prediction 
of the deformations due to muscular activation in the absence of external loading. We can also achieve real-time computation of 
the externally loaded configuration d, which requires a numerical solution to Eqs. (14) and (15), by optimizing the computational 
structure of the model and implementing precomputation measures wherever possible.

First, we observe that the functions 𝛿𝑗,𝑖,𝐴 and 𝐾𝑗—where 𝐴 ∈ {lo,he, ra} indicates the type of fiber architecture as in Eq. (A.4)—do 
not depend on the muscular activations 𝛾𝑆𝑖,𝑀 , for all 𝑖 ∈ {1, 2, 3}, 𝑗 ∈ {0, 1, 2, 3}, 𝐴 ∈ {lo,he, ra}, 𝑀 ∈  , and 𝑆 ∈ {R, L}. Thus, we 
precompute all 𝐾𝑗 and 𝛿𝑗,𝑖,𝐴, evaluated at arguments given in Eq. (A.2), with uniform discretizations over the intervals 𝑍 ∈ [𝑍1,𝑖, 𝑍2,𝑖]
consisting of 𝑛 points, such that

𝛥𝑗,𝑖,1,𝑙 = 𝛿𝑗,𝑖,lo (𝑅1,𝑖,dl (𝑍𝑙), 𝑅2,𝑖,dl (𝑍𝑙), 𝑍𝑙),

𝛥𝑗,𝑖,2,𝑙 = 𝛿𝑗,𝑖,he(𝑅1,𝑖,ovo(𝑍𝑙), 𝑅2,𝑖,ovo(𝑍𝑙),−𝛼̃2,𝑖,ovo, 𝑍𝑙),

𝛥𝑗,𝑖,3,𝑙 = 𝛿𝑗,𝑖,he(𝑅1,𝑖,ivo (𝑍𝑙), 𝑅2,𝑖,ivo (𝑍𝑙), 𝛼̃2,𝑖,ivo, 𝑍𝑙),

𝛥𝑗,𝑖,4,𝑙 = 𝛿𝑗,𝑖,he(𝑅1,𝑖,ovo(𝑍𝑙), 𝑅2,𝑖,ovo(𝑍𝑙), 𝛼̃2,𝑖,ovo, 𝑍𝑙), (31)
𝛥𝑗,𝑖,5,𝑙 = 𝛿𝑗,𝑖,he(𝑅1,𝑖,ivo (𝑍𝑙), 𝑅2,𝑖,ivo (𝑍𝑙),−𝛼̃2,𝑖,ivo, 𝑍𝑙),

𝛥𝑗,𝑖,6,𝑙 = 𝛿𝑗,𝑖,ra (𝑅1,𝑖,dr (𝑍𝑙), 𝑅2,𝑖,dr (𝑍𝑙)),

𝛥𝑗,𝑖,7,𝑙 = 𝛿𝑗,𝑖,ra (𝑅1,𝑖,vr (𝑍𝑙), 𝑅2,𝑖,vr (𝑍𝑙)),

and 
𝑗,𝑙 = 𝐾𝑗 (𝑍𝑙), (32)

for 𝑍𝑙 = 𝑍1,𝑖 + 𝑙(𝑍2,𝑖 − 𝑍1,𝑖)∕(𝑛 − 1), 𝑙 ∈ {0,… , 𝑛 − 1}. In the 𝛥 quantities in Eq. (31), following the assumed indexing convention, 
𝑗 corresponds to the associated 𝐻𝑗 function, 𝑖 corresponds to the 𝑖th 𝑍-segment, the third index distinguishes different muscle 
architectures, and the index 𝑙 points to the value of 𝛿𝑗,𝑖,𝐴 at 𝑍𝑙 in the discretization of the 𝑖th 𝑍-segment. We note that, due to 
the symmetry conditions in Eq. (18) and the properties of the assumed muscle architectures, Eq. (31) needs to define only seven 
architectural classes of discretized 𝛥 quantities required for precomputation. It is also worth noting that we require four architectural 
classes, denoted with indices 2, 3, 4, and 5 in Eq. (31), for the oblique muscle subdomains because the helical fiber handedness is 
opposite between the corresponding right and left oblique muscle groups.

Second, we can decompose the fractional terms 𝐻𝑗∕𝐾𝑗 in Eq. (5) as 
𝐻𝑗 (𝑍)
𝐾 (𝑍)

=
∑ ∑

𝑗,𝑖,𝑘𝑆 (𝑍)𝑆
𝑗,𝑖,𝑀 , for 𝑍 ∈ [𝑍1,𝑖, 𝑍2,𝑖], (33)
𝑗 𝑆∈{R,L}𝑀∈
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where 𝑗,𝑖,𝑘𝑆 (𝑍) are cubic interpolating functions over 𝑍 ∈ [𝑍1,𝑖, 𝑍2,𝑖] with values 

𝑗,𝑖,𝑘𝑆 (𝑍𝑙) =
𝐸𝛥𝑗,𝑖,𝑘𝑆 ,𝑙

𝑗,𝑙
, 𝑙 ∈ {0,… , 𝑛 − 1}, (34)

at the control points, and 𝑘R = 𝑘L = 1 for 𝑀 = dl, 𝑘R = 2 and 𝑘L = 4 for 𝑀 = ovo, 𝑘R = 3 and 𝑘L = 5 for 𝑀 = ivo, 𝑘R = 𝑘L = 6
for 𝑀 = dr, 𝑘R = 𝑘L = 7 for 𝑀 = vr. The conceptual meaning of the indices 𝑗, 𝑖, and 𝑙 in 𝑗,𝑖,𝑘𝑆 (𝑍𝑙) is equivalent to that used in 
Eq. (31). We use the index 𝑘𝑆 to associate 𝑗,𝑖,𝑘𝑆 (𝑍) with the muscle architecture corresponding to 𝛥𝑗,𝑖,𝑘𝑆 ,𝑙 on side 𝑆 ∈ {R, L} of the 
trunk. In particular, for fibrillar architectures that are equivalent between the right and left side, we have 𝑘R = 𝑘L. On the other 
hand, the oblique muscle groups require 𝑘R ≠ 𝑘L, so that we can index into the 𝛥 quantities corresponding to helical architectures 
that are distinct between the right and left side.

We can then use the interpolating functions 𝑗,𝑖,𝑘𝑆 (𝑍) in their precomputed form regardless of the applied fibrillar activation. 
Therefore, after the precomputation phase, we only need to obtain the trivial activation terms 𝑆

𝑗,𝑖,𝑀  in Eq. (25) for a given set of 
muscular contractions before proceeding with the numerical solution of the boundary value problem. As a result, the computation 
time for the trunk deformation with external loading and arbitrary muscular activation is only on the order of 0.1 s on a standard 
desktop computer.

3.9. Motion of the trunk’s proximal base

While an elephant relies primarily on the deformation of its trunk due to the internal trunk muscles, many motion tasks involve 
movement of the elephant’s head which, in turn, moves and rotates the proximal base of the trunk. We model the motion of the 
base of the trunk as an evolution of the boundary conditions 𝐫0 and 𝐝𝑖0, 𝑖 ∈ {1, 2, 3}, in Eq. (14). In particular, we assume that the 
motion of the trunk base occurs on a sphere of radius 𝑟S ≈ 𝐿∕4 based on the approximate anatomical distance from the proximal 
end of the trunk to its center of rotation located approximately at the cranial end of the elephant’s neck. To provide a reference for 
subsequent transformations that govern the motion and rotation of the trunk’s base, we define the default location 𝐫D = 𝟎 of the 
base and a constant center 𝐒 of the sphere. In particular, the center of the sphere is always at 

𝐒 = 𝐫D − 𝑟S 𝐬̂D = 𝐫0 − 𝑟S 𝐬̂, (35)

where 𝐬̂D is a unit vector pointing from the center of the sphere to the default location of the base, while 𝐬̂ is a unit vector from 𝐒
to 𝐫0 at a given time point. We express the default vector 𝐬̂D through the transformation 

𝐬̂D = 𝐑(𝜉𝑍 , 𝐞𝑍 )𝐑(𝜉𝑌 , 𝐞𝑌 )𝐞𝑍 , (36)

where 𝐑(𝜉, 𝐞) denotes a rotation transformation by an angle 𝜉 about an axis 𝐞, and the constant angles 𝜉𝑍 , 𝜉𝑌  effectively define 𝐒
relative to the default location 𝐫D. Then, we can define the motion as 𝐫0 = 𝐒 + 𝑟S 𝐬̂ with 

𝐬̂ = 𝐑(𝜓𝑍 , 𝐞𝑍 )𝐑(𝜓𝑌 , 𝐞𝑌 )𝐬̂D, (37)

where 𝜓𝑍 and 𝜓𝑌  are the spherical angles controlled by the motion of the elephant’s head that describe the position of the trunk’s 
base on the sphere. Since the centerline tangent 𝐝30 at the base of the trunk is not necessarily normal to the sphere, we introduce 
an angle 𝜉𝐝 that defines a set of default clamping directions 𝐬̂𝐝,D,𝑖 for the directors 𝐝𝑖0, i.e., 

𝐬̂𝐝,D,𝑖 = 𝐑(𝜉𝑍 , 𝐞𝑍 )𝐑(𝜉𝐝, 𝐞𝑌 )𝐞𝑖, 𝑖 ∈ {𝑋, 𝑌 ,𝑍}, (38)

and the following dependence of the director basis at 𝑍 = 0 on the motion angles 𝜓𝑍 and 𝜓𝑌 : 
𝐝𝑖0 = 𝐑(𝜓𝑍 , 𝐞𝑍 )𝐑(𝜓𝑌 , 𝐞𝑌 )𝐬̂𝐝,D,𝑖. (39)

As a result, Eq. (38) prescribes a constant angular offset between the trunk base directors 𝐝𝑖0 and the sphere tangent
𝐑(𝜓𝑍 , 𝐞𝑍 )𝐑(𝜓𝑌 , 𝐞𝑌 )𝐞𝑍 at 𝐫0, for any 𝜓𝑍 and 𝜓𝑌 . This ensures the rigidity of the orientation of the trunk’s base relative to the 
elephant’s head. We inform the value of 𝜉𝐝 by the musculoskeletal anatomy of the elephant’s head, which gives an approximation 
𝜉𝐝 ≈ 30◦. We set the default position of the trunk’s base as 𝜉𝑍 = 0◦ and 𝜉𝑌 = 100◦.

We note that applying another fixed offset rotation to 𝐝𝑖0, in addition to 𝐑(𝜉𝐝, 𝐞𝑌 ), is not necessary to fully define the geometry 
of the system since the tangent direction of the trunk’s base lies in the sagittal symmetry plane of the elephant’s head. Further, given 
that we consider two rotation angles 𝜓𝑍 and 𝜓𝑌  in Eqs. (37) and (39) rather than three, we effectively assume that the motion of 
the elephant’s head does not induce a twist of the director basis around the normal vector 𝐬̂.

4. Biomechanical principles of the trunk representation

The analytical results in Eqs. (5) and (A.1)–(A.4) as well as the physiological parameters in Table  1 provide insights into the 
fundamental biomechanical principles that govern the elephant trunk motion. Specifically, we can infer the isolated mechanical 
effect, e.g., the induced deformation modes and their directions, for each individual muscle group. In this section, we present a 
quantitative discovery of muscle group-specific effects by using our trunk model.

To investigate the effect of each individual muscle group on the trunk’s deformation, we analyze the contribution of a given 
group to the extension 𝜁 , the curvatures 𝗎̂  and 𝗎̂ , and the twist density 𝗎̂ . Since muscular activation is contractile, we assume that 
1 2 3
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Table 2
Contributions of individual muscle groups to the deformation of the elephant trunk. The map derives from the analytical elephant 
trunk model and assumes uniform fibrillar activation within a given muscular subdomain. The designations ‘R’ and ‘L’ correspond 
to the contributions of the right and left trunk muscle groups, respectively.
 𝜁 𝗎̂1 𝗎̂2 𝗎̂3 𝜏  
 extension bending bending twist density isolated 
 around 𝐝̂1 around 𝐝̂2 torsion  

 Dorsal longitudinal R < 0

L < 0

R < 0

L > 0

R > 0

L > 0

R = 0

L = 0

R = 0

L = 0
 

 Outer ventral oblique R < 0

L < 0

R < 0

L > 0

R < 0

L < 0

R > 0

L < 0

R > 0

L < 0
 

 Inner ventral oblique R < 0

L < 0

R < 0

L > 0

R < 0

L < 0

R < 0

L > 0

R < 0

L > 0
 

 Dorsal radial R > 0

L > 0

R > 0

L < 0

R < 0

L < 0

R = 0

L = 0

R = 0

L = 0
 

 Ventral radial R > 0

L > 0

R > 0

L < 0

R > 0

L > 0

R = 0

L = 0

R = 0

L = 0
 

the uniform activations 𝛾𝑆𝑖,𝑀  that enter Eq. (25) are non-positive. Due to the additive property of the 𝐻𝑗,𝑖,𝑀  functions in Eq. (24), we 
quantify the contribution of a muscle group 𝑀 to 𝜁 , 𝗎̂1, 𝗎̂2, and 𝗎̂3 using the terms 𝐻0,𝑖,𝑀∕𝐾0, 𝐻1,𝑖,𝑀∕𝐾1, −𝐻2,𝑖,𝑀∕𝐾2, and 𝐻3,𝑖,𝑀∕𝐾3, 
respectively. We observe that, given Eq. (25) and the angular bounds 𝛩R1,𝑖,𝑀  and 𝛩R2,𝑖,𝑀  of the muscular subdomains in Table  1, the 
signs of the individual contributions of each subdomain to any given deformation mode are the same in all segments and for all 𝑍
within a given segment. Thus, we can discuss the directions of the mechanical effects of each muscle type for all three segments 
and for all 𝑍 ∈ [0, 𝐿] simultaneously.

Further, we introduce the torsion 𝜏 of the activated trunk configuration as 

𝜏(𝑍) = 1
𝜁 (𝑍)

(

𝗎̂3(𝑍) +
𝗎̂′2(𝑍)𝗎̂1(𝑍) − 𝗎̂′1(𝑍)𝗎̂2(𝑍)

𝗎̂21(𝑍) + 𝗎̂22(𝑍)

)

, (40)

which characterizes the non-planarity of the trunk’s centerline (Moulton et al., 2013). The cases of 𝜏(𝑍) > 0 and 𝜏(𝑍) < 0 correspond, 
respectively, to the right-handed and left-handed helicity of the trunk’s activated shape at a given 𝑍. On the other hand, the sign 
of 𝗎̂3 describes the direction of twist of the trunk around the tangent 𝐝̂3.

It is important to note that while we can discuss the contributions of individual muscle groups to 𝜁 , 𝗎̂1, 𝗎̂2, and 𝗎̂3 in an additive 
manner – e.g., conclude that the dorsal longitudinal muscles increase 𝗎̂2 upon contraction with other arbitrary muscular contractions 
present – the changes in torsion due to additional muscular activations are nonlinear and nontrivial due to the curvature-torsion 
coupling. For instance, the torsion can generally change due to activation of the dorsal longitudinal muscles, even though these 
muscles produce no torsion in the absence of other muscular contractions. Therefore, we consider the isolated torsion contributed 
by each muscle group, i.e., the torsion generated by a given muscle group with no other muscular activations in the trunk.

From our analysis, we directly obtain that the right and left dorsal longitudinal muscles always induce negative and positive 
bending around 𝐝̂1, respectively, and only positive bending around 𝐝̂2. The longitudinal muscles also do not introduce any twist and 
they do not generate any torsion on their own. The outer ventral oblique muscles have the same effect on bending around 𝐝̂1 as the 
dorsal longitudinal group, but the opposite effect on bending around 𝐝̂2, i.e., both the right and left outer ventral oblique muscle 
groups have negative contributions to 𝗎̂2. In addition, the right outer ventral oblique muscles induce positive twist and torsion, 
while the left muscles contribute negative twist and torsion. The signs of the contributions of the inner ventral oblique muscles to 
𝗎̂1 and 𝗎̂2 are the same as for the outer ventral oblique group. The difference between the two groups lies in the direction of the 
twist and torsion—the inner ventral oblique muscles contribute twist and torsion of the opposite sign compared to the outer ventral 
oblique muscles. In contrast, the radial muscle groups do not contribute any twist and do not produce any torsion in isolation. 
However, while the longitudinal and oblique muscles cause overall contraction of the trunk’s centerline, the radial muscles extend 
the trunk due to the muscular-hydrostat effect. Further, both dorsal and ventral radial muscle groups contribute bending around 𝐝̂1
in the opposite direction compared to both the longitudinal and oblique muscles. For bending around 𝐝̂2, both right and left dorsal 
radial muscles have a negative contribution, while both right and left ventral radial muscles have a positive contribution to 𝗎̂2. We 
summarize all these findings in Table  2.

The derived properties of the muscular contributions are consistent with the intuition that the shortening of the dorsal section 
causes the trunk to bend around 𝐝̂2 in the dorsal direction towards +𝐝̂1, while shortening of the right and left sections induces 
rightward and leftward bending around 𝐝̂1 towards +𝐝̂2 and −𝐝̂2, respectively. Shortening of the ventral section has the same effect 
on bending around 𝐝̂1 as that of the dorsal section; however, ventrally located muscles lie on the opposite side of the 𝐝̂2 axis, which 
reverses their contributions to bending around 𝐝̂2. The directions of all these effects further reverse when we replace the shortening 
process with an elongation, which occurs in radial muscles that indeed demonstrate a reversed set of contribution signs. For oblique 
muscles, the signs of the mechanical effects also depend on their helical angles 𝛼̃2,𝑖,ovo and 𝛼̃2,𝑖,ivo. In particular, the signs of the 
effects on the twist and isolated torsion reverse when the sign of the helical angle changes; hence the opposite signs for the 𝗎̂  and 𝜏
3
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Table 3
Ranking of the magnitudes of individual muscle group contributions to the defor-
mation of the trunk, as predicted by the model. Within each 𝑍-segment, we order 
the five muscle groups according to the magnitudes, from lowest to highest as 
indicated by the arrows, of their corresponding contributions to different deformation 
measures. For adequate comparison, all contributions result from the same muscular 
activation magnitude. The ‘(0)’ designation indicates that the given muscle groups do 
not contribute to that measure.

𝜁 𝗎̂1 𝗎̂2 𝗎̂3
|𝐻0,𝑖,𝑀∕𝐾0| |𝐻1,𝑖,𝑀∕𝐾1| |𝐻2,𝑖,𝑀∕𝐾2| |𝐻3,𝑖,𝑀∕𝐾3|

Segment 𝑖 = 1

dl dl dl ovo
dr ovo ovo ivo
ovo ivo ivo vr, dr, dl (0)
vr dr dr
ivo vr vr

Segment 𝑖 = 2

ivo dl dl ivo
dl ivo ivo ovo
dr ovo dr vr, dr, dl (0)
vr dr ovo
ovo vr vr

Segment 𝑖 = 3

dl dl dl ovo
vr ovo ovo vr, dr, dl (0)
ovo vr vr
dr dr dr

contributions between the outer and inner oblique muscles. Additionally, above a certain helical angle magnitude 𝛼̃⋆2,𝑖,𝑀  for a given 
muscular subdomain (Kaczmarski et al., 2022), the signs of the contributions to 𝜁 , 𝗎̂1, and 𝗎̂2 flip. The signs for the twist and isolated 
torsion contributions remain the same regardless of the helical angle magnitude. We note that the critical helical angles 𝛼̃⋆2,𝑖,𝑀  are 
conceptually the same as the special angle of 54.73◦ encountered in McKibben actuators (Klute et al., 1999). However, in the model 
considered here, they are no longer a single constant since the tapering of the fiber fields and the helical angle variation in Eq. (21) 
render them more involved functions of 𝜙0 as well as 𝑅1,𝑖,𝑀 (𝑍) and 𝑅2,𝑖,𝑀 (𝑍). All oblique muscular subdomains in the particular 
trunk representation constructed here do not exceed their corresponding critical helical angle magnitudes, i.e., |𝛼̃2,𝑖,ivo| < 𝛼̃⋆2,𝑖,ivo and 
|𝛼̃2,𝑖,ovo| < 𝛼̃⋆2,𝑖,ovo, for all 𝑖 ∈ {1, 2, 3}.

The analysis so far considered only the signs of the contributions of the individual muscle groups. The complete representation 
of the elephant trunk, however, also provides an explicit ranking of the magnitudes of the contributions to 𝜁 , 𝗎̂1, 𝗎̂2, and 𝗎̂3 for 
a given muscular activation 𝛾 held constant across all groups. Further, as a consequence of assuming a constant tapering angle, 
we can apply to all 𝑍 in a given segment any conclusion regarding the contribution magnitudes derived at one particular 𝑍 in 
that segment. In Table  3, we report the ranking of the muscle groups within each segment sorted according to the magnitudes of 
their contributions |𝐻0,𝑖,𝑀∕𝐾0|, |𝐻1,𝑖,𝑀∕𝐾1|, |𝐻2,𝑖,𝑀∕𝐾2|, |𝐻3,𝑖,𝑀∕𝐾3| to 𝜁 , 𝗎̂1, 𝗎̂2, and 𝗎̂3, respectively. For a fixed range of muscular 
activations, the dorsal longitudinal muscles dominate the bending curvatures 𝗎̂1 and 𝗎̂2 in all segments, but they cannot provide any 
twist. The oblique muscles are the most versatile, as they contribute high-magnitude effects to both bending in 𝗎̂1 and 𝗎̂2 as well as 
twisting in 𝗎̂3.

The contributions to bending of both dorsal and ventral radial muscles are the smallest, which agrees with the intuition that 
the local elongation due to the muscular-hydrostat effect has a smaller impact on the bending curvature than the shortening due to 
direct contraction of longitudinal fibers. Further, the smaller contributions of the radial muscles to bending are also consistent with 
the fact that the radial muscle groups reside closer to the central axis of the trunk. In contrast, the longitudinal muscles are closer 
to the trunk’s outer surface, thus requiring smaller muscular activations to achieve the same extent of bending. Finally, between the 
three segments, the ranking of effect magnitudes for the extension 𝜁 is the most variable primarily due to the different cross-sectional 
areas of each muscle type across the three segments.

5. Construction of trunk motions

5.1. The inverse motion problem

Next we seek to identify the underlying muscular activations in the elephant trunk model during a set of given motion tasks. 
While previous sections tackled the forward problem of computing the deformed configuration for a given trunk design and muscular 
activations, finding the muscular activations that achieve a desired motion is an inverse problem. Previous work investigated various 
inverse problems in the control and design of active slender structures (Kaczmarski et al., 2023a,b), particularly how they become 
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ill-posed when the number of independently activatable fibrillar regions is greater than three (Kaczmarski et al., 2024b). Importantly, 
the fibrillar activation solution to an inverse problem with four or more activation regions can generally become non-unique, 
meaning an infinite number of fibrillar activation arrangements can reach the same point in space.

With 28 muscular subdomains, our trunk representation is clearly a highly redundant system capable of achieving a given 
functional task, such as moving objects between two points, with an infinitely diverse variety of muscular activity. While the 
physiological constraints on the muscular contraction magnitudes limit this diversity, the trunk representation still provides a vast 
set of potential fiber contraction arrangements that yield the same functional result. In this work, we seek to identify a single solution 
of the inverse problem for a given motion task, while acknowledging that a large family of other solutions can be equally valid.

5.2. Optimization method

In addition to the ill-posedness aspect, the complexity of Eqs. (14) and (15) implies that a closed-form solution to the inverse 
problem is not possible. Therefore, we resort to an automatic optimization method to obtain one possible solution to the inverse 
problem.

In particular, we define a given motion task as a function  that defines discrete geometrical properties at points 𝑍𝑝 ∈ [0, 𝐿] of 
the deformed configuration d that we would like the trunk to achieve at a discrete time index 𝑇 ∈ {1,… , 𝑇max}, 

(𝑍𝑝, 𝑇 ) = (𝐫 (𝑍𝑝, 𝑇 ),𝐝1 (𝑍𝑝, 𝑇 ),𝐝

2 (𝑍𝑝, 𝑇 ),𝐝


3 (𝑍𝑝, 𝑇 )), (41)

for 𝑝 ∈ {1,… , 𝑁𝑝}, where 𝐫 (𝑍𝑝, 𝑇 ) is the desired time evolution of the centerline point 𝐫 at 𝑍𝑝, and {𝐝𝑖 (𝑍𝑝, 𝑇 )} is the desired 
evolution of the director basis {𝐝𝑖} at 𝑍𝑝. We assume that every motion starts at a fixed state (𝑍, 0) defined by zero fibrillar 
activation, boundary conditions with 𝜓𝑍 = 𝜓𝑌 = 0, and only the external loading due to the weight of the trunk. Further, we will 
use ‘◦’ in place of any of the four elements in (𝑍𝑝, 𝑇 ) to denote that the corresponding element of (𝑍𝑝, 𝑇 ) can take on arbitrary 
values, and it is not relevant to the motion.

To identify the muscular activation that leads to a quasi-static motion  , we solve the following sequence of optimization 
problems for 𝑇 ∈ {1,… , 𝑇max}:

minimize
𝐱∈𝑇

𝐽𝑇 (𝐱; ,),

where 𝐽𝑇 (𝐱; ,) =
𝑁𝑝
∑

𝑝=1

[

𝑤𝐫,𝑝‖𝐫 (𝑍𝑝, 𝑇 ) − 𝐫(𝑍𝑝; 𝐱)‖2 +
3
∑

𝑗=1
𝑤𝐝,𝑗,𝑝‖𝐝𝑗 (𝑍𝑝, 𝑇 ) − 𝐝𝑗 (𝑍𝑝; 𝐱)‖2

]

+ 𝐽𝜁 (𝜞 ),

𝐱 = [𝜞 , 𝜓𝑍 , 𝜓𝑌 ]

𝜞 = [𝜞 R
1 ,𝜞

R
2 ,𝜞

R
3 ,𝜞

L
1 ,𝜞

L
2 ,𝜞

L
3],

𝜞 𝑆
𝑖 = [𝛾𝑆𝑖,dl, 𝛾

𝑆
𝑖,ovo, 𝛾

𝑆
𝑖,ivo, 𝛾

𝑆
𝑖,dr, 𝛾

𝑆
𝑖,vr], 𝑖 ∈ {1, 2}, 𝑆 ∈ {R, L}, (42)

𝜞 𝑆
3 = [𝛾𝑆3,dl, 𝛾

𝑆
3,ovo, 𝛾

𝑆
3,dr, 𝛾

𝑆
3,vr], 𝑆 ∈ {R, L},

𝐽𝜁 (𝜞 ) = [[∃𝑍 ∈ [0, 𝐿] ∶ 𝜁 (𝑍;𝜞 ) < 𝜁min ∨ 𝜁 (𝑍;𝜞 ) > 𝜁max]]𝐽penalty,

 = {𝐰𝐫 ,𝐰𝐝,1,𝐰𝐝,2,𝐰𝐝,3},

𝐰𝐫 = [𝑤𝐫,1,… , 𝑤𝐫,𝑁𝑝 ], 𝐰𝐝,𝑗 = [𝑤𝐝,𝑗,1,… , 𝑤𝐝,𝑗,𝑁𝑝 ], 𝑗 ∈ {1, 2, 3},

where 𝐱 ∈ R30 is a vector with respect to which we minimize the objective function 𝐽𝑇  at time 𝑇 , 𝑇  is the feasible set for 𝐱 at 
time 𝑇 , 𝑤𝐫,𝑝 is the weight for the Euclidean norm deviation in 𝐫 at 𝑍𝑝, 𝑤𝐝,𝑗,𝑝 is the weight for the Euclidean norm deviation in 𝐝𝑗
at 𝑍𝑝, {𝐫(𝑍; 𝐱),𝐝1(𝑍; 𝐱),𝐝2(𝑍; 𝐱),𝐝3(𝑍; 𝐱)} is the solution to the boundary value problem in Eqs. (14) and (15) computed for a given 
activation 𝜞  and trunk base rotation {𝜓𝑍 , 𝜓𝑌 }, 𝐽𝜁 (𝜞 ) is a penalty term added whenever 𝜁 violates the 𝜁min < 𝜁 < 𝜁max condition 
at any 𝑍 ∈ [0, 𝐿] for a given activation 𝜞 , [[𝑃 ]] is the Iverson bracket returning 1 if 𝑃  is true and 0 if 𝑃  is false, and 𝐽penalty > 0
dictates the magnitude of the additional penalty term.

In other words, the objective function in Eq. (42) measures a weighted 𝐿2-norm deviation between the deformed configuration 
d and the desired properties of that configuration at a time 𝑇 . Finding 𝐱 ∈ 𝑇  such that 𝐽𝑇 ≈ 0 corresponds to identifying the 
muscular activations and the trunk base rotation that match the desired properties of the deformed shape. Including the penalty term 
𝐽𝜁  ensures that the computed muscular activations do not produce a non-physiological axial strain in any of the three 𝑍-segments. 
In our simulations, we set 𝜁min = 0.67, 𝜁max = 1.35 based maximum contractile and extensile strains observed physiologically in 
elephant trunks (Wilson et al., 1991; Dagenais et al., 2021), with a penalty factor of 𝐽penalty = 103.

We solve the optimization problem at each time 𝑇  using the Julia Optimization.jl package (Dixit and Rackauckas, 2023) by 
using either (1) the NOMAD blackbox optimization scheme (Audet et al., 2022) from the NOMAD.jl package (Montoison et al., 
2020) for global optimization, or (2) the Sbplx scheme (Rowan, 1990; Johnson, 2007) from the NLopt library (Johnson, 2007) for 
local optimization in a close neighborhood of the initial guess. We prescribe the feasible set 𝑇  as a hyperrectangle defined by the 
intervals [𝑥𝑖,min(𝑇 ), 𝑥𝑖,max(𝑇 )] for each of the 30 components of 𝐱. While we explicitly choose the values of 𝑥𝑖,min(0) and 𝑥𝑖,max(0) for 
the first time point, the feasible sets 𝑇  at all subsequent time points 𝑇  generally depend on the optima found at the previous time 
points 𝑇 − 1 or optima computed without external loading. For all optimization problems in this work, we restrict the muscular 
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activations to be contractile only, such that 𝑥𝑖 ≤ 0, 𝑖 ∈ {1,… , 28}, and to not exceed a prescribed maximum activation magnitude 
|𝛾|max, i.e., |𝑥𝑖| ≤ |𝛾|max, 𝑖 ∈ {1,… , 28}. Defining sufficiently constrained feasible sets is critical to achieve computational feasibility 
in solving the optimization problem. Refer to Appendices  B and C for a more detailed description of how we construct the feasible 
sets, choose the initial guesses, and select the optimization schemes to compute the trunk motions.

Since  is discrete over the time indices 𝑇 , we interpolate the muscular activations and trunk base rotations between subsequent 
indices 𝑇  with a continuous time parameter 𝑡 to generate a continuous motion of the trunk. In particular, we define a time interval 
𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1] for any pair of discrete time indices (𝑖, 𝑖+1), 𝑖 ∈ {0,… , 𝑇max−1}. We then compute the continuous motion between 𝑇 = 𝑖
and 𝑇 = 𝑖+1 using an interpolation 𝐱(𝑡) = 𝑖(𝑡; 𝑡𝑖, 𝑡𝑖+1, 𝐱∗(𝑖), 𝐱∗(𝑖+1)) over 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1] with values 𝐱∗(𝑖) at 𝑡𝑖 and 𝐱∗(𝑖+1) at 𝑡𝑖+1, where 
𝐱∗(𝑖) and 𝐱∗(𝑖 + 1) are the outputs from the minimization of 𝐽𝑖 and 𝐽𝑖+1, respectively. We specify the particular form of 𝑖 for each 
analyzed motion independently, depending on the qualitative characteristics of the motion. We emphasize that the interpolations 
𝑖 are fundamentally different than the interpolations 𝑗,𝑖,𝑘𝑆  in Eq. (34). While 𝑗,𝑖,𝑘𝑆 (𝑍) interpolate sets of precomputed quantities 
at 𝑍𝑙 with 𝑙 ∈ {0,… , 𝑛 − 1}, 𝑖(𝑡) interpolate the outputs of the optimization procedure at 𝑡𝑖 and 𝑡𝑖+1.

Critically, we note that the constraints on the activations 𝜞  and the angles 𝜓𝑍 , 𝜓𝑌 , as well as the specificity of a given motion 
definition  all serve to isolate a desired set of configuration shapes in an otherwise vast family of possible trunk motions that 
achieve  . For any particular deformation at a given time point within a motion, there are generally infinitely many other activation 
sets that achieve the exact same deformation due to redundancy. Apart from the activation-level redundancy, there are generally 
infinitely many sets of deformations {𝐫(𝑍),𝐝1(𝑍),𝐝2(𝑍),𝐝3(𝑍)} that exactly fulfill a given motion definition  . As such, to guide the 
optimization process, we take special care in designing both the definitions  and the feasible sets, so that the motions computed 
through optimization bear physiological resemblance. Upon choosing  and the feasible sets, we seek to identify, at each 𝑇 , the 
most desirable 𝐱∗(𝑇 ) that is not only a minimum of 𝐽𝑇 , but rather a global minimum that also results in a sufficiently small 
value 𝐽𝑇 (𝐱∗(𝑇 ); ,). In the case that even the global minimum produces a 𝐽𝑇  that indicates insufficient matching of the desired 
configuration, we revise the feasible set to allow other minima to emerge.

6. Analysis of three motion tasks

6.1. Picking and eating a fruit

The first elephant trunk motion that we simulate involves picking a fruit from a tree branch and eating it. We place the fruit at 
a high position relative to the distal end of the trunk to explore the muscular contractions needed for the trunk to overcome its own 
weight in upward-bending configurations. The fruit picking motion consists of three phases: (1) reaching the fruit location with the 
tip of the trunk, (2) increasing the pulling force on the fruit until a prescribed threshold tension force, (3) picking the fruit from 
the branch and moving it to the elephant’s mouth.

We define the first phase as 
(𝐿, 1) = (𝐫fruit, ◦, ◦,−𝐞𝑍 ), (43)

where 𝐫fruit is the location of the fruit, with the loading conditions consisting of only gravitational forces acting on the trunk, 
i.e., 𝐕 = 𝐖 = 𝐋 = 𝟎. Eq. (43) guides the trunk to reach the point 𝐫fruit with its distal end at 𝑍 = 𝐿 while enforcing the centerline 
tangent 𝐝3 at the distal end to point upwards. The functions  for the second phase, 

(𝐿, 𝑇 + 1) = (𝐫fruit, ◦, ◦,𝐝∗3(𝐿)), for 𝑇 ∈ {1,… , 𝑁pick}, (44)

are almost the same as in Eq. (43), with the exception that the desired centerline tangent is the optimum 𝐝∗3(𝐿) established by 
minimizing 𝐽1. The motion in the second phase consists of multiple states (𝐿, 𝑇 + 1), 𝑇 ∈ {1,… , 𝑁pick}, where 𝑁pick is the 
number of intermediate states for the increasing tension exerted on the fruit during the picking process. In particular, we set 
𝐕 = (𝑇𝐹pick∕𝑁pick)(𝐝∗3(𝐿)), where 𝐹pick is the threshold tension that leads to separation of the fruit from the branch. We note 
that, during the picking process, the weight of the fruit does not cause a force on the trunk, since the fruit is still hanging from 
the branch. Further, in the picking phase, we also have 𝐖 = 𝐋 = 𝟎. In the final phase, the fruit detaches from the branch, and the 
motion ends according to 

(𝐿,𝑁pick + 2) = (𝐫mouth, ◦, ◦,𝐝3,mouth), (45)

where 𝐫mouth is the approximate location of the elephant’s mouth, and 𝐝3,mouth is a desired orientation of the distal end of the trunk 
at the mouth location. The weight of the fruit itself causes a force 𝐕 = 𝑚fruit𝑔𝐞𝑍 acting on the endpoint 𝑍 = 𝐿 of the trunk, where 
𝑚fruit is the mass of the fruit. The tension force from the picking phase is no longer present in the final phase.

We define the particular fruit-picking motion evaluated here with the following parameter choices: 𝐫fruit = [0.7m, 0.3m,−0.2m], 
𝐹pick = 100N, 𝐫mouth = [−0.2m, 0m, 0.16m], 𝐝3,mouth = 𝐑(−3𝜋∕4, 𝐞𝑌 )𝐞𝑍 , 𝑡0 = 0, 𝑡𝑖 = (3∕2) + (𝑖 − 1)(2∕3)∕𝑁pick for 𝑖 ∈ {1… , 𝑁pick + 1}, 
𝑡𝑁pick+2 = (3∕2) + (2∕3) + 2, 𝑁pick = 20, and 𝑚fruit = 8 kg. As a result, the durations of the three motion phases are approximately 
1.5, 0.67, and 2.0, respectively. We use cosine interpolation for both 0 and 𝑁pick+1, and no interpolation for 𝑖, 𝑖 ∈ {1,… , 𝑁pick}, 
since the number of explicit intermediate points 𝑁pick = 20 is sufficient to approximate a continuous motion between 𝑇 = 2 and 
𝑇 = 𝑁pick + 1. We use an exaggerated mass 𝑚fruit = 8 kg for the fruit to emphasize the effects of its mass on the motion and 
demonstrate the ability of the model to handle external loads. The exaggerated mass of the fruit also prevents the significant weight 
of the trunk from dominating the muscular activations necessary to reproduce the third phase of the motion. Throughout the three 
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Fig. 4. Simulation of an elephant trunk picking and eating a fruit. (a) First phase of the motion in which the trunk reaches the position of the fruit while 
achieving a prescribed endpoint tangent −𝐞𝑍 . (b) Third phase of the motion in which the trunk moves the fruit towards the elephant’s mouth after picking. (c) 
Back view of the third phase of the motion. (d) Muscular activation magnitudes in 28 muscular subdomains plotted throughout the motion. The rows correspond 
to different muscle groups and the columns correspond to the three 𝑍-segments. The solid and dotted lines represent the activations in the right and left trunk, 
respectively. (e) Rotation angles of the proximal base of the trunk plotted throughout the motion. The light blue, light orange, and gray shaded regions in (d) 
and (e) correspond to the three motion phases, while the circular markers indicate transition points between consecutive phases.

phases,  acts only on the endpoint 𝑍 = 𝐿, so 𝑁𝑝 = 1 in the definition of the optimization problem. We set |𝛾|max = 3.0 and assign 
the weights 𝐰𝐫 = [8.0] and 𝐰𝐝,3 = [1.0] to promote exact matching of the endpoint location, with a smaller emphasis on the accuracy 
of the tangent matching.

Fig.  4 shows one possible motion that accomplishes the defined fruit-picking task. In Fig.  4d and e, we demonstrate the underlying 
activations in the 28 muscular subdomains and the rotation angles of the proximal base that result in the motion visualized in Fig. 
4a–c. Fig.  4a shows the first phase of the motion, while Fig.  4b and c visualize the third phase. We omit the visualization of the second 
phase, i.e., increasing the force applied on the fruit, as it results in very small changes in the geometry of the trunk. The shaded 
regions in the plots of the muscular activation in Fig.  4d and the plots of the angles 𝜓𝑍 and 𝜓𝑌  in Fig.  4e delineate the three motion 
phases. In Fig.  5, we show the isolated muscular subdomains during the fruit-picking motion to visualize the deformed muscle 
geometries with additional clarity. We color the subdomains in Fig.  5 according to the magnitudes of their respective muscular 
activations at multiple time points in both the first and third phase of the motion.

The trunk reaches the fruit location primarily through muscular activation with minor contributions to the motion from the 
movement of the elephant’s head, as indicated in Fig.  4e by the small ranges of rotation angles throughout the motion. In the 
first phase of the motion, based on Figs.  4d and 5a and b, the trunk uses mainly the longitudinal, right oblique, dorsal radial, and 
right ventral radial muscle groups. The large contraction of the longitudinal muscles in segment 1 bends the entire trunk upwards 
towards the elevated fruit location, while the similar activations of the right outer and inner oblique muscles roughly cancel the 
twisting of the trunk in that segment. Despite the large activations of the oblique muscles, the contributions of the longitudinal 
muscles dominate the bending motion of the first segment. The radial muscles counteract the large axial contraction along the 
trunk’s centerline due to the longitudinal and oblique muscle activations, which ensures that the trunk’s tip can reach sufficiently 
far along the 𝑋 direction. The contributions of the radial muscles are small to positive bending around 𝐝1 and negligible to bending 
around 𝐝2 in the first segment. The deformation of the trunk in segment 2 is densely torsioned thanks to the large activations of inner 
ventral oblique muscles and small longitudinal muscle contractions. The large twist and torsion in that segment allows the trunk to 
move closer towards the fruit along the 𝑌  direction, while orienting itself such that the 𝑍 = 𝑍2,2 cross section points upwards in the 
𝐝3 = −𝐞𝑍 direction towards the fruit. As a result, the short third segment of the trunk does not require much further deformation to 
reach the fruit location. In addition to the high torsion generated by the oblique muscles in the second segment, the dorsal radial 
muscles contribute a measurable amount of negative bending around 𝐝 , which facilitates the curling motion in segment 2. Similar 
2
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Fig. 5. Isolated views of the individual muscle groups during the fruit-picking motion. We color-code the muscular subdomains according to their corresponding 
activation magnitudes at multiple time points in the (a) right trunk during the first motion phase, (b) left trunk during the first motion phase, (c) right trunk 
during the third motion phase, and (d) left trunk during the third motion phase. We show four and three consecutive deformations in the first and third phases, 
respectively. Each column corresponds to one muscle group associated with one color bar legend.

to segment 1, the activation of the dorsal radial muscles further counteracts the axial contraction due to the inner ventral oblique 
muscles. In the third segment, the bending curvatures generated by the outer oblique and radial muscles approximately cancel each 
other throughout the motion, leading to a roughly straight shape of that segment which successfully reaches the fruit location. In 
particular, while the twist generated by the right oblique muscle group in segment 3 does not play a functional role in the motion, 
the activation of this muscle is critical in balancing the bending and axial extension contributions due to the ventral radial muscles.

In the second motion phase, the trunk imparts an increasingly large tensile force on the fruit until reaching a threshold force 
value that detaches the fruit from the branch. The changes in the underlying activations and base rotations are almost negligible 
throughout this phase, with very small increases in the muscular activations in the right dorsal radial and right outer ventral oblique 
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groups of the first segment. These small changes are understandable since the activations required to lift the heavy trunk itself in such 
a highly curled deformed configuration significantly outweigh the activations needed to account for the threshold fruit detachment 
force of 100 N.

The trunk then proceeds to the third motion phase in which it moves the fruit to the location of the elephant’s mouth. We note 
that, immediately after picking the fruit, the trunk’s endpoint shifts to a slightly lower position relative to the original location 
of the fruit. The are two reasons for this shift. First, at the end of the second phase, some of the activations are slightly different 
than at the beginning of the second phase due to the endpoint tension force and the need to maintain the same endpoint location 
during activation optimization. Consequently, when the tension force vanishes upon picking the fruit, the new activations result 
in a different deformed shape of the trunk. Second, in addition to the vanishing of the tension force, picking the fruit results in a 
change of the boundary conditions whereby the weight of the fruit itself now acts on the endpoint of the trunk. As such, factors 
both on the activation level and the boundary condition level result in the change in the trunk’s shape immediately after picking 
the fruit.

In the third phase, the extent of the contributions of each muscle type is highly dependent on the segment in which it resides. 
To reach the mouth, the trunk seeks to curl the proximal segment towards the body of the elephant. It achieves this curling motion 
through large contractions, roughly balanced between the right and left trunk, of both the outer and inner ventral oblique muscles 
in the first segment. The activation of the left longitudinal muscle group also bends the trunk away from the median plane, which 
provides space for the rest of the trunk, i.e., segments 2 and 3, to reach the mouth without interpenetration. The radial muscles 
contribute small activations to the deformation of the proximal segment. On the other hand, in the second segment, the radial 
muscles contract with much higher activations, leading to large contributions to the axial extension of the segment in addition to 
further bending towards the mouth induced by the oblique muscles. The large activations of the oblique muscles, however, induce 
overall shortening of the centerline in this segment, despite the large radial contractions. The left oblique muscles assume higher 
activations compared to the right side of the trunk, which, as indicated in Table  2, provides positive contributions to bending 
around 𝐝1 from both the outer and inner oblique muscle groups. Given that, by the end of the motion, the second segment curls in 
a plane close to the horizontal plane, increasing 𝗎̂1 prevents the second segment from dropping too far down due to its own weight 
and that of the remaining third segment. The longitudinal muscles contract to a negligible extent in the second segment, as larger 
activations would unnecessarily oppose the bending direction contributed by the oblique muscles. By the end of the second segment 
at 𝑍 = 𝑍2,2 and at the end of the motion, the trunk curls by a total angle greater than 180◦ relative to 𝐝3 at 𝑍 = 0. As a result, 
in contrast with the first segment, the dorsal side of the trunk’s third segment moves closer to the mouth than the ventral side. 
Consequently, large activations of the longitudinal muscles bend the third segment towards the mouth; the ventral radial muscles 
further amplify the bending in this direction. The additional contractions of the outer ventral oblique muscles introduce some 
bending in the opposite direction, i.e., they impart negative 𝗎̂2 contributions, but these are not sufficient to balance the positive 
bending due to the longitudinal and ventral radial muscles. The contractions of the muscles in the last segment are asymmetric 
between the right and left trunk, because the non-zero 𝑌  component of the tangent 𝐝3 has to transition to zero at 𝑍 = 𝐿, so that 
the distal tangent 𝐝3(𝐿) = 𝐝3,mouth resides in the 𝑋𝑍-plane.

6.2. Lifting a log

We proceed with the analysis of the motion consisting of the trunk lifting a cylindrical wooden log. As in the case of the fruit-
picking task, we split the motion into three phases: (1) moving the trunk until it just touches the log by wrapping around it from 
the bottom, (2) establishing full contact until the net force exerted by the trunk on the log equalizes the weight of the log, (3) lifting 
the log to a prescribed elevated location. We assume that the log is stationary before the lifting phase with its weight supported by 
an extraneous structure.

We define the first phase as 
(𝑍𝑝, 1) = (𝐫 (𝑍𝑝, 1), ◦, ◦,𝐝3 (𝑍𝑝, 1)), (46)

for 𝑍𝑝 = 𝑍𝐰 + (𝑝 − 1)(𝐿 −𝑍𝐰)∕(𝑁𝑝 − 1), 𝑝 ∈ {1,… , 𝑁𝑝}, where 

𝐫 (𝑍𝑝, 1) = 𝐜log,1 + 𝑟𝐰(𝑍𝑝)𝐑(𝜃(𝑝), 𝐞𝑌 )𝐞𝑍 , (47)

are the points in the discrete log-wrapping trajectory for the 𝑍 ∈ [𝑍𝐰, 𝐿] portion of the trunk’s centerline before lifting the log, 
𝐜log,1 is the initial center point of the log located in its 𝑋𝑍 symmetry plane, 𝜃(𝑝) = 𝜃𝐰 + (𝑝 − 1)(𝜃𝐿 − 𝜃𝐰)∕(𝑁𝑝 − 1) are the discrete 
angles defining the wrapping trajectory with 𝜃𝐰, 𝜃𝐿 ∈ [−𝜋, 𝜋], 𝑟𝐰(𝑍𝑝) = 𝑅log + 𝑅0(𝑍𝑝) is the distance from the center of the log to 
the wrapping trajectory at 𝑍𝑝 that accounts for the tapering profile 𝑅0(𝑍) in defining the contact curve, and 𝑅log is the radius of 
the cylindrical log. We assume that the wrapping trajectory 𝐫 (𝑍𝑝, 1) results from establishing a one-dimensional contact curve with 
the log at the intersection of the median plane with the outer surface of the ventral trunk. We define the desired tangents in the 
wrapping trajectory as

𝐝3 (𝑍1, 1) =
𝐫 (𝑍2, 1) − 𝐫 (𝑍1, 1)

‖𝐫 (𝑍2, 1) − 𝐫 (𝑍1, 1)‖
, (48)

𝐝3 (𝑍𝑁𝑝 , 1) =
𝐫 (𝑍𝑁𝑝+1, 1) − 𝐫 (𝑍𝑁𝑝 , 1)

‖𝐫 (𝑍𝑁𝑝+1, 1) − 𝐫 (𝑍𝑁𝑝 , 1)‖
, (49)
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where 𝐫 (𝑍𝑁𝑝+1, 1) = 𝐜log,1 + 𝑟𝐰(𝑍𝑁𝑝 )𝐑(𝜃𝐿 + (𝜃𝐿 − 𝜃𝐰)∕(𝑁𝑝 − 1), 𝐞𝑌 )𝐞𝑍 is a fictitious trajectory point extrapolated beyond 𝑍𝑁𝑝 . For 
𝑝 ∈ {2,… , 𝑁𝑝−1}, we set 𝐝3 (𝑍𝑝, 1) = ◦, since the entry and exit tangents 𝐝3 (𝑍1, 1) and 𝐝3 (𝑍𝑁𝑝 , 1) alone provide sufficient definition 
of the wrapping trajectory. In the first phase, the trunk experiences gravitational forces only, i.e., 𝐕 = 𝐖 = 𝐋 = 𝟎.

Since, in the second phase, the trunk develops contact with the log until reaching a sufficient lifting force, the function 
remains the same as in the first phase. In particular, (𝑍𝑝, 2) = (𝑍𝑝, 1) because, for simplicity, we consider only one time point in 
the second phase and construct the intermediate motion through interpolation. We found that interpolation results in satisfactory 
wrapping geometry around the log without solving explicit optimization problems at intermediate loading conditions. In this phase, 
the weight of the log causes a loading 𝐖 = 𝑊log𝐞𝑍 on the trunk, while 𝐕 = 𝐋 = 𝟎 due to the absence of any point loads and 
since the contact region lies in the 𝑋𝑍 symmetry plane. Assuming a uniform volumetric density 𝜌log of the cylindrical log, we have 
𝑊log = 𝜋𝑅2

log𝐿log𝜌log𝑔.
In the third phase, the trunk lifts the log along a given path, 

(𝑍𝑝, 𝑇 ) = (𝐫 (𝑍𝑝, 𝑇 ), ◦, ◦,𝐝3 (𝑍𝑝, 𝑇 )), for 𝑇 ∈ {3,… , 𝑁lift + 2}, (50)

where 𝑍𝑝 and 𝑝 are the same as in the first two phases, and

𝐫 (𝑍𝑝, 𝑇 ) = 𝐜log(𝑇 ) + 𝑟𝐰(𝑍𝑝)𝐑(𝜃(𝑝), 𝐞𝑌 )𝐞𝑍 , (51)

𝐝3 (𝑍𝑝, 𝑇 ) = 𝐝3 (𝑍𝑝, 1), (52)

where 
𝐜log(𝑇 ) = (1 − 𝑡2(𝑇 ))𝐜log,1 + 2(1 − 𝑡(𝑇 ))𝑡(𝑇 )𝐩log + 𝑡2(𝑇 )𝐜log,end, 𝑡(𝑇 ) = 𝑇 − 2

𝑁lift
, (53)

outlines the discrete motion of the log’s center along a quadratic Bézier curve path defined by the points 𝐜log,1, 𝐩log, and 𝐜log,end. 
We emphasize that the path 𝐜log(𝑇 ) of the log’s center omits the start point 𝐜log,1, i.e., 𝑡(3) = 1∕𝑁lift > 0, since 𝐜log,1 generates the 
same wrapping trajectory as 𝐫 (𝑍𝑝, 1) and 𝐫 (𝑍𝑝, 2) in the first two phases. In the third phase, the loading conditions are the same 
as in the second phase, i.e., 𝐖 = 𝑊log𝐞𝑍 , and 𝐕 = 𝐋 = 𝟎. We note that the loading description in both the second and third phases 
assumes frictionless contact between the trunk and the log.

Here we set the parameters of the motion and loading as: 𝑍𝐰 = 𝑍1,3 − 𝐿∕20, 𝑁𝑝 = 6, 𝐜log,1 = 𝐫(𝐿; 𝟎) + [−0.4 m, 0.0 m,−0.45 m], 
𝑅log = 𝐿∕24, 𝜃𝐰 = 𝜋∕2, 𝜃𝐿 = −𝜋∕3, 𝐩log = 𝐜log,1 + [0.0 m, 0.0 m,−0.4 m], 𝐜log,end = 𝐜log,1 + [0.2 m, 0.0 m,−0.6 m], 𝐿log = 𝐿∕2, 
𝜌log = 1009 kg∕m3, 𝑡0 = 0, 𝑡1 = 1.0, 𝑡2 = 1.4, 𝑡𝑖 = 1.4+ (𝑖−2)∕𝑁lift for 𝑖 ∈ {3,… , 𝑁lift +2}, 𝑁lift = 8. The durations of the three motion 
phases are then 1.0, 0.4, and 1.0, respectively. We use cosine interpolation for 0 and 1, and cubic Hermite spline interpolation 
for 𝑖, 𝑖 ∈ {2,… , 𝑁lift + 1}. In the optimization problem, |𝛾|max = 3.5, 𝐰𝐫 = [7.0, 1.0, 1.0, 1.0, 1.0, 5.0], and 𝐰𝐝,3 = [1.0, ◦, ◦, ◦, ◦, 1.0]. We 
set the weights associated with the centerline locations at 𝑍1 and 𝑍𝑁𝑝  to larger values to ensure satisfactory matching of the entry 
and exit points in the wrapping trajectory. We found this distribution of weights to be the most effective at facilitating convergence 
of the optimization scheme to a desirable optimum for the evaluated motion and loading conditions.

In Fig.  6, we show the trunk motion that follows the three phases of the log lifting task defined by  . Fig.  6c and d show 
the magnitudes of activations in the 28 muscular subdomains and the rotations 𝜓𝑍 and 𝜓𝑌  of the trunk base as functions of time 𝑡
throughout the motion visualized in Fig.  6a and b. As in the case of the fruit-picking motion, we omit the visualization of the second 
phase, since, during contact development between 𝑇 = 1 and 𝑇 = 2, the changes in the centerline of the deformed configuration 
are negligible. The three motion phases correspond to the three consecutive shaded regions in the plots of the muscular activations 
and base rotations in Fig.  6c and d. To more clearly depict the evolution of the muscular activations during the lifting of the log, 
we show in Fig.  7, as before, the isolated muscular subdomains color-coded according to their activations during the third motion 
phase.

We begin our interpretation of the results with several general observations that hold throughout the motion. In contrast to the 
fruit-picking motion, the rotation of the trunk’s proximal base is more significant in the log lifting scenario. For more restrictive 
feasible sets imposed on 𝜓𝑍 and 𝜓𝑌 , the optimization method could not find optima with sufficiently small objective function values, 
which suggests that non-negligible rotation of the elephant’s head is inherent in this motion, given the chosen constraints on the 
activations 𝜞 ; see Appendix  B. Throughout the motion, the trunk activates the longitudinal muscles to the smallest extent out of 
all the muscle groups. Specifically, the solution of the inverse problem yields small longitudinal muscle activations since they can 
only provide positive contributions to 𝗎̂2, while lifting the log requires a curling motion towards the log which translates to negative 
𝗎̂2. Measurable activations are still present, however, in the first segment of the dorsal longitudinal muscles, which contributes an 
overall lifting action to the rest of the trunk.

We observe moderate-to-high activations in the oblique muscle groups, with the largest contractions in the outer ventral oblique 
muscles of the third segment. The third segment 𝑍 ∈ [𝑍1,3, 𝑍2,3] is primarily responsible for wrapping around the log since the 
wrapping trajectory uses 𝑍 ∈ [𝑍1,3 − 𝐿∕20, 𝑍2,3]. Segment 3 achieves the wrapping shape through large contractions of the ventral 
oblique muscles that provide negative bending contributions to 𝗎̂2, which translates to bending around the log. Further, the trunk 
ensures minimal torsion in the third segment – which is a property of the desired wrapping trajectory – through approximately 
symmetric contractions between the respective right and left muscles in all muscle groups. Interestingly, large activations in the 
left inner ventral oblique muscles of the first segment induce significant positive twist, which is visually evident in the rotated 
proximal cross section of the second segment. The twisting of the first segment likely ensures a more desirable rotation of the 
second segment, so that the trunk establishes the trajectory entry condition {𝐫 (𝑍1, 1),𝐝3 (𝑍1, 1)} by the end of the first phase and 
maintains it throughout the third phase with the additional contact loading.
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Fig. 6. Simulation of an elephant trunk lifting a wooden log. (a) First motion phase during which the trunk curls to achieve a prescribed wrapping shape 𝐫 (𝑍𝑝 , 1)
in the interval 𝑍 ∈ [0.8𝐿,𝐿]. The trunk then establishes contact with the log in the second phase while seeking to preserve the same wrapping trajectory. (b) 
Third motion phase in which the trunk lifts the log along a prescribed path defined by the movement of the log’s center 𝐜log. (c) Muscular activation magnitudes 
for the 28 muscular subdomains in the right and left trunk plotted throughout the motion as solid and dotted lines, respectively. (d) Rotation angles of the 
proximal base of the trunk plotted throughout the motion. In (c) and (d), the light blue, light orange, and gray shaded regions correspond to the three motion 
phases, the circular markers indicate transition points between phases, and the semi-transparent triangular markers indicate the eight time points 𝑇 ∈ {3,… , 10}
along the lifting path.

Among all muscle groups, the radial muscles exhibit the highest activations. In all segments, the large radial activations provide 
extensile contributions to the trunk that counteract the centerline contraction due to other muscles which, in turn, enables reaching 
the distant log while still matching the wrapping trajectory. In particular, high radial contractions are the most predominant in 
the third segment, where the large activations of the outer ventral oblique muscles alone would otherwise make it impossible 
to match the wrapping trajectory due to centerline contraction. Concretely, large shortening of the third segment would cause an 
incomplete wrapping geometry, likely leading to the log falling. Noteworthy is also the right-left asymmetry in the activations of the 
ventral radial muscles of the first two segments. The contractions of the right ventral radial muscles in the second segment provide 
measurable positive contributions to the bending curvature 𝗎̂1 with little to no opposing contributions from the corresponding left 
group. Further, the left ventral radial muscles in the first segment contribute negative bending to 𝗎̂1 in the first and second phase, 
with no opposing activation in the right group. In the third phase, the asymmetry in the activations of the ventral radial muscles of 
the first segment reduces as a result of a significant decrease in the activations of the left ventral radial group. The decrease in the 
activation in that radial subdomain is likely since the lifting motion brings the log to a higher position, requiring smaller extensile 
contributions from the group.

Perhaps the most striking feature of the extracted muscular activation profiles is the high degree of non-monotonicity of the 
activation magnitudes in the third phase. While the optimization at multiple intermediate points during the lifting part of the 
motion is certainly a factor in producing this non-monotonic behavior, there are other critical mechanisms that yield such variation 
of muscular activations in time.

First are the constraints imposed on the muscular activations, the trunk base rotation angles, and the activated centerline 
extension. The penalty function 𝐽𝜁  effectively limits the trunk extension to be in the range 𝜁 ∈ [0.67, 1.35]. The activation magnitudes 
cannot exceed |𝛾|max = 3.5. Further, both the trunk base angles 𝜓𝑍 , 𝜓𝑌  and the activation magnitudes obey additional restrictions 
of the form 𝑥𝑖(𝑇 ) ∈ [𝑥𝑖,min(𝑇 ), 𝑥𝑖,max(𝑇 )]; see Appendix  B. These constraints limit the space of accessible configurations. As a result, if 
one of the quantities seeks to cross into the infeasible region to achieve the desired configuration properties, then all muscles need 
to search for another optimal arrangement, so that all activations ultimately stay within the constraint boundaries. In the limit of 
a continuous-time problem with the number of optimization runs 𝑇max approaching infinity, the global optimum can shift abruptly 
between consecutive time points due to the constraints despite a designation  that is continuous in time. In other words, even 
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Fig. 7. Isolated views of the individual muscle groups and their activations during the log lifting task. We color-code the muscular subdomains according to 
their corresponding activation magnitudes at three time points in the (a) right and (b) left trunk during the third motion phase. Each column corresponds to 
one muscle group associated with one color bar legend.

though the sequence of consecutive optima (𝐱∗(𝑇 ), 𝐱∗(𝑇 + 1),…) often exhibits small changes between successive 𝐱∗, encountering 
the boundary can force the optimization scheme to search in an entirely different area of the objective function landscape to identify 
the global optimum. How far the potentially more desirable area of the objective function can be relative to the original area depends 
on the choice of the additional constraint 𝑥𝑖(𝑇 ) ∈ [𝑥𝑖,min(𝑇 ), 𝑥𝑖,max(𝑇 )]. As an example, the activation in the dorsal radial muscles in 
segment 3 reaches the |𝛾|max = 3.5 boundary already by the start of the third phase. To move the log in an upward motion while still 
satisfying the constraints, the activations in the dorsal radial muscles of the third segment decrease to move away from the |𝛾|max
boundary, while the activations of other muscle groups adjust in either positive or negative directions. The new global minimum 
lies in an area more removed from the feasible set boundary. A similar process repeats once the dorsal radial muscles in segment 3 
reach the |𝛾|  boundary again in the middle of the third phase.
max
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Second, the variation in muscular activations during the lifting phase is also due to a phenomenon unrelated to constraining 
the design variables. In particular, the objective function landscape changes as a function of time since every optimization problem 
defines a different function 𝐽𝑇  constructed based on  at a given 𝑇 . If we again assume a continuous time domain for  with 
an infinite number of consecutive optimization problems, the local minimum locations vary continuously in time, while the global 
minimum locations can change discontinuously due to the evolving objective function landscape. As such, in the discrete time setting, 
abrupt changes between the successive optima 𝐱∗(𝑇 ) and 𝐱∗(𝑇+1) can occur purely because points 𝐱 at 𝑇+1 that have lower objective 
function values than the previous optimum 𝐱∗(𝑇 ) emerge in other regions of the feasible set. The previously mentioned additional 
constraints 𝑥𝑖(𝑇 ) ∈ [𝑥𝑖,min(𝑇 ), 𝑥𝑖,max(𝑇 )] on the muscular activations and the trunk base angles prevent such jumps across the design 
space from becoming excessively distant.

The general process of reorganization of the fibrillar activation throughout the trunk could likely occur in the real elephant 
trunk as well. However, it would presumably be a smoother process, as the activation rearrangements would most likely occur in 
anticipation of the boundary being approached, rather than after reaching the boundary. That is, an elephant might have some 
intuitive foresight into which solution branch of the inverse problem to pursue before lifting the log, so that it does not need to 
frequently reorganize the activation distribution throughout the trunk. In contrast, the optimization process in our model responds 
to constraint boundaries only upon reaching them, as future points along  do not inform the optimization at the current time point.

6.3. Asymmetric lifting of a log

Finally, we investigate the effect of asymmetric lifting on the underlying muscular activations. The setup of this motion is almost 
identical to the symmetric log-lifting scenario with the main exception being that the center of the wrapping trajectory is no longer 
aligned with the center of the cylindrical log. In particular, the center of the wrapping trajectory is at a distance 𝑑offset from the 
center of the log in the 𝐞𝑌  direction. While the definition of  remains the same as in the symmetric case, the offset wrapping 
trajectory gives rise to a couple 

𝐋 = −𝑑offset𝑊log𝐞𝑋 (54)

imposed on the trunk along 𝑍 ∈ [𝑍𝐰, 𝐿] in the second and third phases of the motion. The equal and opposite couple −𝐋 ensures 
moment balance for the log during these phases. To emphasize the effect of the resulting couple, we set 𝑑offset = 0.3𝐿 and elongate the 
cylindrical log length to 𝐿log = 0.75𝐿. For the optimization procedure, the maximum permissible activation magnitude is |𝛾|max = 3.5
as in the symmetric lifting scenario. We decrease the weights for the tangent director to 𝐰𝐝,3 = [0.5, ◦, ◦, ◦, ◦, 0.25] because, as long 
as the distal end of the trunk matches the wrapping trajectory 𝐫 , we do not seek to penalize tilting resulting from the external 
couple.

Figs.  8 and 9 show the resulting motion of the elephant trunk lifting the log with off-center contact. We generate the plots and 
visualizations in these figures equivalently to the respective Figs.  6 and 7 for the symmetric lifting case. The motion, the activations, 
and the trunk base angles in the first phase shown in Fig.  8 are identical to those in Fig.  6 since the loading conditions and the 
motion specification  is the same in both cases at 𝑇 = 1. The asymmetric lifting scenario deviates from the symmetric case in 
the second phase, during which the trunk develops contact with the log and the external couple 𝐋 emerges. We observe that the 
couple and the muscular activations that achieve the wrapping trajectory result in tilting of the trunk towards +𝐞𝑌  which acts as 
leverage against the applied couple. To achieve a satisfactory matching of the lifting motion, we permit larger deviation ranges for 
the trunk base angles at each 𝑇  relative to the solution at 𝑇 − 1; see Appendix  B for the discussion of feasible sets as functions 
of 𝑇 . Consequently, the contributions of the rotations of the trunk’s proximal base are the most significant in this motion with 
𝜓𝑌  reaching about 30.5◦. Nevertheless, the deformation due to muscular activity still largely dominates the qualities of the motion 
that lead to the lifting of the log. Similar to the symmetric case, the muscular activations in the third phase are non-monotonic in 
time with moderately large changes between subsequent time points. The explanation of non-monotonicity for the symmetric lifting 
motion applies to the asymmetric scenario as well. The activation rearrangement behavior observed in the symmetric case is also 
present in this motion, as evidenced by the activation curves in the dorsal radial muscles of the third segment. However, for some 
muscle groups in the third phase, the changes in activation magnitudes between consecutive time points are larger compared to the 
symmetric case since the feasible activation ranges used in this motion are wider. As in the case of the trunk base angles, we found 
that less restrictive constraints were necessary to yield sufficiently low objective values for a reasonable number of optimization 
runs.

One of the primary differences between the symmetric and asymmetric lifting cases is the effect of the applied external couple on 
the underlying muscular activations. In addition to the relatively large range swept by the angle 𝜓𝑌 , we note the significant change 
in the muscular activations in the second phase relative to the first phase. The couple considerably shifts the desirable minimum 
in the design space relative to the couple-free minimum, which requires large changes in the muscular activations to achieve the 
desired wrapping trajectory with sufficient accuracy. As such, for the optimization problem at 𝑇 = 2, we permit values of muscular 
activations in the entire range 𝑥𝑖[−|𝛾|max, 0], 𝑖 ∈ {1,… , 28}, irrespective of the optimization result at 𝑇 = 1; see Appendix  B. By 
doing so, we allow a minimum 𝐱∗(𝑇 = 2) to emerge with a sufficiently small 𝐽2.

Importantly, the addition of the external couple results in extensive asymmetries in the activations between the right and left 
trunk in the third phase. Since 𝐋 acts along the −𝐞𝑋 axis, the trunk needs to oppose the couple with differential activation along 
𝐞𝑌 , which translates to vastly different activations required in the right and left muscle groups. In particular, compared to the large 
activations in the respective opposing muscle group, we observe significantly lower activations in the right outer ventral oblique 
muscles in segments 1 and 3, right inner ventral oblique muscles in segment 1, and right ventral radial muscles in segment 1. 
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Fig. 8. Asymmetric lifting of a wooden log. (a) Side view of the first and last configurations in the first motion phase. (b) First motion phase in which the trunk 
curls around the offset wrapping trajectory without any contact forces or couples. (c) Third motion phase in which the trunk lifts the log while wrapping around 
it according to an offset trajectory, which gives rise to a non-zero couple in addition to the distributed load due to the weight of the log. (d) Side view of the 
first and last configurations in the third motion phase. (e) Rotation angles of the trunk’s proximal base plotted throughout the motion. (f) Muscular activation 
magnitudes for the 28 muscular subdomains plotted throughout the motion. We visualize the plots in (e) and (f) in the same manner as in Fig.  6d and c.

Notable right-left asymmetries are also present in the dorsal radial muscles in segment 2 and ventral radial muscles in segment 3. 
From a functional standpoint, the mismatch between the right and left activations has the most prominent effect on the generation 
of twist and torsion by the oblique muscles. For equal activations in the right and left oblique muscle groups, the twist and torsional 
contributions cancel each other resulting in pure bending. In contrast, the significantly larger activations in the left outer ventral 
oblique muscles in segment 3 introduce large negative contributions to twist and torsion. Nevertheless, little twist emerges in the 
first segment, despite much larger activations in the left oblique muscles compared to the right oblique groups. The signs of the twist 
contributions of the outer and inner ventral oblique muscles are opposite, see Table  2, which leads to cancellation of mechanical 
effects across different muscle architectures rather than across the two sides of the trunk.

Beyond the asymmetries between the right and left trunk, we note the differences in the overall activation magnitudes between 
the symmetric and asymmetric lifting motions. Specifically, in the lifting phase, the following activation curves exhibit much lower 
values as compared to the symmetric scenario: right outer ventral oblique in segments 1 and 3, left inner ventral oblique in segment 
1, left dorsal radial in segment 2, and right ventral radial in segments 2 and 3. These lower activation magnitudes might be in part 
due to higher contributions of the 𝜓𝑌  angle to the lifting action as compared to the symmetric case.

7. Conclusions

We have created a model of the elephant trunk to simulate the biomechanics of the trunk’s soft musculature by using formal 
continuum-mechanics arguments. The geometrically exact formulation of the elephant trunk as an extensible Kirchhoff rod ensures 
reliable predictions for large deformations. We used magnetic resonance images (Dagenais et al., 2021) to inform the cross-sectional 
anatomy of the trunk’s musculature throughout its length. By representing the trunk as an active slender structure, the dimensional 
reduction in the deformation map results in closed-form formulas for the activated curvatures and extension. These analytical 
expressions provide real-time simulation functionality, whereby the computation of a deformed trunk configuration takes only a 
fraction of a second on a standard desktop computer. The low computational cost of the model enables efficient solution of the 
inverse motion problem of predicting the muscular activations required to match a desired deformation.

To solve the inverse motion problems, we used global optimization with an objective function that quantifies the deviations from 
the desired geometry. The high performance of the model is critical to the employed optimization methodology, as it evaluates a 
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Fig. 9. Isolated views of the individual muscle groups and their activations during asymmetric log lifting. As in Fig.  7, the color-coding corresponds to the 
activation magnitudes in (a) right and (b) left trunk during the third motion phase.

large number of muscular activation candidates to converge to a solution that matches the target deformation. By solving a time 
series of optimization problems with varying deformation targets, we can construct a quasi-static motion of the trunk that achieves 
a given physiologically relevant task. Since the motion construction involves solving the inverse problem, we automatically obtain 
the underlying time series of muscular activations.

Using this method, we evaluated three trunk motions and analyzed the muscular biomechanics governing each motion. In our 
analysis, we uncovered general principles that might govern the biomechanics of the real elephant trunk, such as: mid-motion 
rearrangement of muscular activations, amplifying or counterbalancing the mechanical contributions of other muscles, moving the 
trunk’s proximal base to enlarge the space of achievable function, or exploiting architectural and geometrical asymmetries to either 
amplify other biomechanical effects or induce asymmetry in the deformation.
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Our study has several limitations. First, the automatic optimization method generally requires problem-dependent adjustments 
to achieve minima with sufficiently low objective function values. Instead, one might reasonably resort to manually searching the 
activation space for the muscular activations that result in a sufficiently close matching of the prescribed task. However, adjusting 
the muscular contractions manually is extremely difficult since activating any proximal muscle fibers has a snowball effect on the 
remaining distal portion of the trunk. Further, the interactions of the longitudinal, oblique, and radial muscles produce complex 
coupling mechanisms between extension, bending curvatures, and torsion. These couplings are non-trivial to employ or bypass 
intuitively during manual activation design. Our trunk model and the associated inverse problem solution method provide a feasible 
pathway to extract the muscular activations for different motions, which enables quantitative discovery of the underlying muscular 
principles.

Second, our trunk representation uses three segments, each of which employs a single muscular geometry setup informed by the 
corresponding magnetic resonance image (Dagenais et al., 2021). This piecewise structure of the trunk model is approximate and 
provides only an averaged biomechanical behavior for each segment. The three-segment simplification could potentially occlude 
more localized muscle activation patterns that might otherwise be present in the real elephant trunk motions. For instance, in 
highly restrictive environments with a large number of obstacles, the real trunk could activate its muscle fibers with a much 
higher spatial resolution and local variance to contort adaptively around the obstructions. We recognize that our elephant trunk 
representation would be less effective at describing such motions due to the uniformity of activation, mechanical properties, and 
fibrillar architecture within each muscular subdomain of a given segment. In principle, we could split the trunk into more segments 
and inform each of them by the corresponding magnetic resonance images. However, since each segment involves at least eight 
independent muscular activations, doing so would proportionally increase the dimensionality of the design space in the optimization 
problems which, in turn, could make the computation of the motions infeasible. Alternatively, we could permit non-uniform fibrillar 
activation in each of the three segments by setting 𝑔̂𝑆𝑖,𝑀 (𝛩,𝑍) to functions interpolating unknown two-dimensional activation data 
in each muscle. However, increasing the number of interpolation points would again translate to increased computational cost of 
solving the inverse problem.

Third, the evaluated motions are quasi-static since the deformed configurations derive from solving the equilibrium boundary 
value problem at each time point. By considering a non-zero right-hand side in Eq. (11), we could also consider the dynamics of 
the motion, albeit at an increased computational expense and conceptual complexity in the inverse problem solution approach. 
Fourth, the muscular activation patterns computed throughout each motion would strongly benefit from additional comparison 
with experimental measurements. In particular, although experimental research concerning the biomechanics of the elephant trunk 
is scarce, future work could involve comparing the electromyographic activity in different muscle regions during one of the trunk 
motions analyzed in this work. Such a comparison would provide invaluable biomechanical insights, indicating which muscular 
synergies are common between the model predictions and the electromyography results. We further note that the extracted muscular 
contractions might exceed the physiological regime, because the constraint |𝛾|max derives from the empirically smallest feasible set 
that still enables the construction of a given motion. Future work could entail experimental validation of the model, in which 
recorded muscular activations and observed deformations of the trunk would quantitatively contextualize the pre-strain measure 𝑔̂
in a physiological setting. Nevertheless, we emphasize that the trunk’s physiology still directly informs the permissible activations 
in our model since we prohibit activations that result in leaving the physiologically-informed range 𝜁 ∈ [0.67, 1.35] for the trunk’s 
contraction or extension.

Finally, the muscular activation rearrangement phenomenon discussed in this study could be a manifestation of a limitation in our 
optimization methodology. In particular, in our optimization approach, we solve each optimization problem at a given time point 
without considering the potential biomechanical requirements of future time points, given the imposed constraints. To simulate 
the intent and foresight of the elephant seeking to perform a particular task, each optimization problem should, through some 
quantitative planning process, incorporate the context of the remaining part of the motion. We emphasize that the emergence of 
the activation reorganization phenomenon is a result of mathematical modeling and it does not necessarily constitute evidence 
of real physiological behavior. Past research suggests that similar neurophysiological mechanisms occur in human motor control. 
Specifically, in the human musculoskeletal system, different muscles activate and deactivate at different stages throughout a given 
motion, resulting in temporal reorganization of the muscular activation patterns (Neilson and Neilson, 2005; Signorile et al., 2002). 
Reorganization can also occur as a result of extraneous factors, such as nociceptive stimulation, that reorganize muscle activations 
during a motion while preserving the desired kinematics (Muceli et al., 2014). Further research could aim to confirm whether such 
reorganization can occur spontaneously in elephants as a result of reaching physiological constraints on activation and motor unit 
recruitment.

Our work provides quantitative insights into the biomechanical intricacies of the elephant trunk through reduced-order modeling. 
This complex and fascinating structure remains a subject worthy of further investigation. In tackling the formidable challenge 
of trunk mechanics, we also come closer to completing our essential understanding of other active slender structures in nature. 
Remarkably, the musculature of the octopus arm shares many of the architectural and mechanical features exhibited by the muscles 
of the elephant trunk (Kier, 1988). One could readily adapt our model to represent the helically winding muscular layers of the 
octopus arm and gather quantitative insights about this structure by expanding the analysis presented in this work. Beyond extending 
the fundamental science, a thorough understanding of these biological marvels could prove invaluable for inspiring the material 
science of flexible structures, guiding the design of soft robots, improving manipulator versatility, and creating flexible prosthesis 
and assist devices.
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Appendix A. Activated extension and curvatures

Here we give the explicit form of the activation terms 𝐻𝑗 in Eq. (24). Recall that, based on the split of the domain into 𝑆
𝑖,𝑀  and 

the activation formulas in Eq. (6), the 𝐻𝑗 numerator terms of the activated extension and curvatures become piecewise functions 
in the three 𝑍-segments such that 

𝐻𝑗 (𝑍) =

⎧

⎪

⎨

⎪

⎩

∑

𝑀∈ 𝐻𝑗,1,𝑀 (𝑍),  for 𝑍 ∈ [𝑍1,1, 𝑍2,1],
∑

𝑀∈ 𝐻𝑗,2,𝑀 (𝑍),  for 𝑍 ∈ [𝑍1,2, 𝑍2,2],
∑

𝑀∈ 𝐻𝑗,3,𝑀 (𝑍),  for 𝑍 ∈ [𝑍1,3, 𝑍2,3],
(A.1)

where 𝑗 ∈ {0, 1, 2, 3},  = {dl, ovo, ivo,dr, vr}. Assuming a homogeneous Young’s modulus 𝐸 and Poisson’s ratio 𝜈, we have 
𝐻𝑗,𝑖,dl(𝑍) = 𝐸𝛿𝑗,𝑖,lo(𝑅1,𝑖,dl(𝑍), 𝑅2,𝑖,dl(𝑍), 𝑍)(R

𝑗,𝑖,dl(𝑍) +L
𝑗,𝑖,dl(𝑍)),

𝐻𝑗,𝑖,ovo(𝑍) = 𝐸
[

𝛿𝑗,𝑖,he(𝑅1,𝑖,ovo(𝑍), 𝑅2,𝑖,ovo(𝑍),−𝛼̃2,𝑖,ovo, 𝑍)R
𝑗,𝑖,ovo(𝑍)

+ 𝛿𝑗,𝑖,he(𝑅1,𝑖,ovo(𝑍), 𝑅2,𝑖,ovo(𝑍), 𝛼̃2,𝑖,ovo, 𝑍)L
𝑗,𝑖,ovo(𝑍)

]

,

𝐻𝑗,𝑖,ivo(𝑍) = 𝐸
[

𝛿𝑗,𝑖,he(𝑅1,𝑖,ivo(𝑍), 𝑅2,𝑖,ivo(𝑍), 𝛼̃2,𝑖,ivo, 𝑍)R
𝑗,𝑖,ivo(𝑍)

+ 𝛿𝑗,𝑖,he(𝑅1,𝑖,ivo(𝑍), 𝑅2,𝑖,ivo(𝑍),−𝛼̃2,𝑖,ivo, 𝑍)L
𝑗,𝑖,ivo(𝑍)

]

,

𝐻𝑗,𝑖,dr(𝑍) = 𝐸𝛿𝑗,𝑖,ra(𝑅1,𝑖,dr(𝑍), 𝑅2,𝑖,dr(𝑍))(R
𝑗,𝑖,dr(𝑍) +L

𝑗,𝑖,dr(𝑍)),

𝐻𝑗,𝑖,vr(𝑍) = 𝐸𝛿𝑗,𝑖,ra(𝑅1,𝑖,vr(𝑍), 𝑅2,𝑖,vr(𝑍))(R
𝑗,𝑖,vr(𝑍) +L

𝑗,𝑖,vr(𝑍)),

(A.2)

for 𝑗 ∈ {0, 1, 2, 3}, 𝑖 ∈ {1, 2, 3}, where 

R
1,𝑖,𝑀 (𝑍) = ∫

𝛩R2,𝑖,𝑀 (𝑍)

𝛩R1,𝑖,𝑀 (𝑍)
𝑔̂R𝑖,𝑀 (𝛩,𝑍) sin𝛩𝑑𝛩,

L
1,𝑖,𝑀 (𝑍) = ∫

2𝜋−𝛩R1,𝑖,𝑀 (𝑍)

2𝜋−𝛩R2,𝑖,𝑀 (𝑍)
𝑔̂L𝑖,𝑀 (𝛩,𝑍) sin𝛩𝑑𝛩,

R
2,𝑖,𝑀 (𝑍) = ∫

𝛩R2,𝑖,𝑀 (𝑍)

𝛩R1,𝑖,𝑀 (𝑍)
𝑔̂R𝑖,𝑀 (𝛩,𝑍) cos𝛩𝑑𝛩,

L
2,𝑖,𝑀 (𝑍) = ∫

2𝜋−𝛩R1,𝑖,𝑀 (𝑍)

2𝜋−𝛩R2,𝑖,𝑀 (𝑍)
𝑔̂L𝑖,𝑀 (𝛩,𝑍) cos𝛩𝑑𝛩,

R
3,𝑖,𝑀 (𝑍) = R

0,𝑖,𝑀 (𝑍) = ∫

𝛩R2,𝑖,𝑀 (𝑍)

𝛩R1,𝑖,𝑀 (𝑍)
𝑔̂R𝑖,𝑀 (𝛩,𝑍) 𝑑𝛩,

L
3,𝑖,𝑀 (𝑍) = L

0,𝑖,𝑀 (𝑍) = ∫

2𝜋−𝛩R1,𝑖,𝑀 (𝑍)

R
𝑔̂L𝑖,𝑀 (𝛩,𝑍) 𝑑𝛩,

(A.3)
2𝜋−𝛩2,𝑖,𝑀 (𝑍)
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for 𝑖 ∈ {1, 2, 3}, 𝑀 ∈  , and, assuming that 𝜙(𝑅,𝑍) ∈ (0, 𝜋∕2],

𝛿0,𝑖,lo(𝑅1, 𝑅2, 𝑍) = 1
2

(

𝜈(𝑅2
1 − 𝑅

2
2) −

1 + 𝜈
𝑐2𝜙(𝑅2, 𝑍)

log
𝐵2(𝑅2, 𝑍,𝑅1)
𝐵2(𝑅2, 𝑍,𝑅2)

)

,

𝛿1,𝑖,lo(𝑅1, 𝑅2, 𝑍) = 𝜈
3
(𝑅3

1 − 𝑅
3
2) +

1 + 𝜈
𝑐2𝜙(𝑅2, 𝑍)

(𝑅2 − 𝑅1)

+ 1 + 𝜈
𝑐3𝜙(𝑅2, 𝑍)

(arctan(𝑐𝜙(𝑅2, 𝑍)𝑅1) − arctan(𝑐𝜙(𝑅2, 𝑍)𝑅2)),

𝛿2,𝑖,lo(𝑅1, 𝑅2, 𝑍) = 𝛿1,𝑖,lo(𝑅1, 𝑅2, 𝑍),

𝛿3,𝑖,lo(𝑅1, 𝑅2, 𝑍) = 0,

𝛿0,𝑖,he(𝑅1, 𝑅2, 𝛼̃2, 𝑍) = 1
2

(

𝜈(𝑅2
1 − 𝑅

2
2) −

1 + 𝜈
𝐴2(𝛼̃2, 𝑅2, 𝑍)

log
𝐵2(𝑅2, 𝑍,𝑅1)𝐶(𝛼̃2, 𝑅2, 𝑅2)
𝐵2(𝑅2, 𝑍,𝑅2)𝐶(𝛼̃2, 𝑅2, 𝑅1)

)

,

𝛿1,𝑖,he(𝑅1, 𝑅2, 𝛼̃2, 𝑍) = 1
3
(𝑅3

1 − 𝑅
3
2)𝜈 −

1 + 𝜈
𝑐𝛼̃(𝛼̃2, 𝑅2)𝑐𝜙(𝑅2, 𝑍)𝐴2(𝛼̃2, 𝑅2, 𝑍)

⋅

⋅
[

𝑐𝜙(𝑅2, 𝑍) arctan(𝑐𝛼̃(𝛼̃2, 𝑅2)𝑅1) − 𝑐𝛼̃(𝛼̃2, 𝑅2) arctan(𝑐𝜙(𝑅2, 𝑍)𝑅1)

−𝑐𝜙(𝑅2, 𝑍) arctan(𝑐𝛼̃(𝛼̃2, 𝑅2)𝑅2) + 𝑐𝛼̃(𝛼̃2, 𝑅2) arctan(𝑐𝜙(𝑅2, 𝑍)𝑅2)
]

𝛿2,𝑖,he(𝑅1, 𝑅2, 𝛼̃2, 𝑍) = 𝛿1,𝑖,he(𝑅1, 𝑅2, 𝛼̃2, 𝑍),

𝛿3,𝑖,he(𝑅1, 𝑅2, 𝛼̃2, 𝑍) =
𝐵(𝑅2, 𝑍,𝑅2) − 𝐵(𝑅2, 𝑍,𝑅1)

𝑐𝛼̃(𝛼̃2, 𝑅2)𝑐2𝜙(𝑅2, 𝑍)
+ 1
𝑐2𝛼̃(𝛼̃2, 𝑅2)𝐴(𝛼̃2, 𝑅2, 𝑍)

⋅ (A.4)

⋅
[

arctan
( 𝑐𝛼̃(𝛼̃2, 𝑅2)𝐵(𝑅2, 𝑍,𝑅1)

𝐴(𝛼̃2, 𝑅2, 𝑍)

)

− arctan
( 𝑐𝛼̃(𝛼̃2, 𝑅2)𝐵(𝑅2, 𝑍,𝑅2)

𝐴(𝛼̃2, 𝑅2, 𝑍)

)]

,

𝛿0,𝑖,ra(𝑅1, 𝑅2) =
𝜈
2
(𝑅2

1 − 𝑅
2
2),

𝛿1,𝑖,ra(𝑅1, 𝑅2) =
𝜈
3
(𝑅3

1 − 𝑅
3
2),

𝛿2,𝑖,ra(𝑅1, 𝑅2) = 𝛿1,𝑖,ra(𝑅1, 𝑅2),

𝛿3,𝑖,ra(𝑅1, 𝑅2) = 0,

𝑐𝜙(𝑅2, 𝑍) =
tan(𝜙(𝑅2, 𝑍))

𝑅2
,

𝑐𝛼̃(𝛼̃2, 𝑅2) =
tan(𝛼̃2)
𝑅2

,

𝐴(𝛼̃2, 𝑅2, 𝑍) =
√

𝑐2𝜙(𝑅2, 𝑍) − 𝑐2𝛼̃(𝛼̃2, 𝑅2),

𝐵(𝑅2, 𝑍,𝑅) =
√

1 + 𝑐2𝜙(𝑅2, 𝑍)𝑅2,

𝐶(𝛼̃2, 𝑅2, 𝑅) = 1 + 𝑐2𝛼̃(𝛼̃2, 𝑅2)𝑅2,

for 𝑖 ∈ {1, 2, 3}, and 𝑍 ∈ [𝑍1,𝑖, 𝑍2,𝑖]. The 𝑆
𝑗,𝑖,𝑀  quantities are the integrals of the activation in muscle 𝑀 on side 𝑆 that enter 

the corresponding 𝑗th curvature component in the 𝑖th 𝑍-segment. The 𝛿 functions are prefactors that depend on the geometry 
and fiber architecture of a given muscular subdomain, and the Poisson’s ratio of the trunk. The designations ‘lo’, ‘he’, and ‘ra’ in 
the subscripts of the 𝛿 functions dictate the different prefactor forms for the longitudinal, helical, and radial fiber architectures, 
respectively. Splitting the 𝛿 quantities into these three groups simplifies the form of Eq. (A.2).

Appendix B. Feasible sets and initial guesses

Constructing sufficiently restrictive feasible sets is critical to achieve suitable computational performance in solving the 
optimization problems. The functional landscape of 𝐽𝑇  at every time point 𝑇  generally exhibits numerous local minima, so identifying 
the global minimum over R30 can be costly for a large feasible set. At the same time, restricting the feasible set can inadvertently 
remove minima with lower objective function values, which correspond to better matching of the desired configuration properties. 
As such, choosing an appropriate feasible set size is critical for locating a minimum with a low objective function value while 
maintaining a reasonable computational effort.

Our approach for constructing the feasible sets is largely heuristic and depends on the behavior of a chosen optimization scheme 
for a particular trunk motion. In all cases, we use computational information either from previous time points or from auxiliary 
optimization results to inform the feasible set or the initial guess in each optimization problem. Given a reference minimum 
𝐱∗ref(𝑇 ) = [𝑥∗ref,1(𝑇 ),… , 𝑥∗ref,30(𝑇 )] for a time 𝑇  obtained from auxiliary optimization or optimization at a previous time point, we 
build neighborhood sets for the muscular activation and the trunk base angles around that reference point as the Cartesian products 
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 𝛾
𝑇 =

28
∏

𝑖=1
[𝑥∗ref,𝑖(𝑇 ) − 𝛥𝑥

−
𝑖 (𝑇 ), 𝑥

∗
ref,𝑖(𝑇 ) + 𝛥𝑥

+
𝑖 (𝑇 )],

 𝜓
𝑇 =

30
∏

𝑖=29
[𝑥∗ref,𝑖(𝑇 ) − 𝛥𝑥

−
𝑖 (𝑇 ), 𝑥

∗
ref,𝑖(𝑇 ) + 𝛥𝑥

+
𝑖 (𝑇 )],

(B.1)

where 𝛥𝐱−(𝑇 ), 𝛥𝐱+(𝑇 ) ∈ R30
≥0 are vectors of admissible deviations from the reference point at a time 𝑇 . Together with the contractile 

activation constraint 𝑥𝑖 ≤ 0, 𝑖 ∈ {1,… , 28}, and the maximum activation magnitude constraint |𝑥𝑖| ≤ |𝛾|max, 𝑖 ∈ {1,… , 28}, the 
feasible sets become 

𝑇 = ( 𝛾
𝑇 × 𝜓

𝑇 ) ∩

[( 28
∏

𝑖=1
[−|𝛾|max, 0]

)

× R2

]

, (B.2)

for 𝑇 ∈ {1,… , 𝑇max}. We note that the penalty function 𝐽𝜁  further restricts the viable regions of each feasible set during optimization.
Since each evaluated motion poses different computational challenges and exhibits a distinct behavior in the optimization 

process, we use different approaches to define 𝐱∗ref(𝑇 ), 
𝛾
𝑇 , and 

𝜓
𝑇  depending on the motion. Importantly, computing the activated 

configuration  is equivalent to solving an initial value problem, which is significantly faster than solving the boundary value 
problem for the deformed configuration d. We can compute the activated extension and curvatures using Eq. (5) and then rapidly 
integrate the kinematics equations to obtain the activated centerline 𝐫̂ and directors 𝐝̂𝑖, 𝑖 ∈ {1, 2, 3}. We refer to an optimization 
problem without external loading and with the substitutions 𝐫 ← 𝐫̂ and 𝐝𝑗 ← 𝐝̂𝑗 in 𝐽𝑇  in Eq. (42) as an auxiliary optimization 
problem. We call the original form of Eq. (42) the main optimization problem. We denote the minima obtained from the auxiliary 
and main problems as 𝐱∗ivp(𝑇 ) and 𝐱∗(𝑇 ), respectively. Wherever applicable, 

𝛾
ivp,𝑇  and 

𝜓
ivp,𝑇  are the sets used in the auxiliary 

problem, and 𝐱∗ivp,ref(𝑇 ), 𝛥𝐱−ivp(𝑇 ), 𝛥𝐱+ivp(𝑇 ) are the auxiliary quantities defined as in Eq. (B.1).
Below, we include the specifics of the feasible set construction and the initial guess selection methodology. For some optimization 

problems, we define the  -sets explicitly and without a reference point. In all motions, we seek to limit the potential functional 
dominance of the trunk base rotation over the muscular activations, since the biomechanical effects of muscular contractions 
constitute the primary subject of this study. As a result, our choices of  𝜓

𝑇  are appropriately more restrictive. We emphasize that 
the methods and parameters described here are not the only ones that yield satisfactory motion results. Nonetheless, in our heuristic 
investigation, the choices provided below generated the most desirable motion features out of numerous other choices tested.

B.1. Picking a fruit

In the first phase, we use the optimum 𝐱∗ivp(1) obtained from the auxiliary problem at 𝑇 = 1 only as an initial guess for the 
main optimization problem and not as a reference point. The feasible set 1 follows simply from the condition 𝑥𝑖 ∈ [−|𝛾|max, 0], 
for 𝑖 ∈ {1,… , 28}, and an additional restriction 𝜓𝑍 , 𝜓𝑌 ∈ [−𝜋∕16, 𝜋∕16] on the trunk base angles. Then,  𝛾

1 = R28 and  𝜓
1 =

[−𝜋∕16, 𝜋∕16] × [−𝜋∕16, 𝜋∕16] which yields 1 through Eq. (B.2). We use the same feasible set to obtain the auxiliary 𝐱∗ivp(1) itself. 
Throughout the motion, we set |𝛾|max = 3.0.

In the second phase, the reference points are not the solutions to the auxiliary problems, but rather the solutions to the main 
optimization problems at the previous time points. Specifically, we set 𝐱∗ref(𝑇 ) = 𝐱∗(𝑇 −1), for 𝑇 ∈ {2,… , 𝑁pick +1}, where 𝐱∗(𝑇 −1)
is the solution to the main optimization problem at 𝑇 −1. We then define the deviations 𝛥𝑥+𝑖 (𝑇 ) = 𝛥𝑥−𝑖 (𝑇 ) = 0.4∕𝑁pick, 𝑖 ∈ {1,… , 28}, 
and 𝛥𝑥+𝑖 (𝑇 ) = 𝛥𝑥−𝑖 (𝑇 ) = 0, 𝑖 ∈ {29, 30}. The optimum 𝐱∗(𝑇 − 1) also serves as the initial guess for the main optimization problem at 
time 𝑇 .

At 𝑇 = 𝑁pick + 2, we use the optimum 𝐱∗ivp(𝑁pick + 2) from the auxiliary optimization problem as an initial guess for the main 
optimization and to build the muscular activation set  𝛾

𝑇 . The auxiliary problem that yields 𝐱∗ivp(𝑁pick + 2) uses a feasible set with 
 𝛾
ivp,𝑁pick+2

= R28 and  𝜓
ivp,𝑁pick+2

= {0}× [11𝜋∕160, 21𝜋∕160]. For the main problem, we prescribe 𝛥𝑥+𝑖 (𝑁pick +2) = 𝛥𝑥−𝑖 (𝑁pick +2) =
0.3, 𝑖 ∈ {1,… , 28}, and  𝜓

𝑁pick+2
= {0} × [11𝜋∕160, 21𝜋∕160].

B.2. Lifting a log

Throughout this motion, we set |𝛾|max = 3.5. In the first phase, we use 𝐱∗ref(1) = 𝐱∗ivp(1), where the auxiliary problem uses a 
feasible set defined by  𝛾

ivp,1 =
∏28

𝑖=1[𝛾ivp,𝑖, 0], where 

𝛾ivp,𝑖 =

⎧

⎪

⎨

⎪

⎩

−3.5  for 𝑖 ∈ {12, 13, 14, 26, 27, 28}
0  for 𝑖 ∈ {11, 25}
−3.0  for 𝑖 ∈ {1,… , 30} ⧵ {11, 12, 13, 14, 25, 26, 27, 28},

(B.3)

and  𝜓
ivp,1 = [−𝜋∕32, 𝜋∕32] × [−𝜋∕12, 𝜋∕12]. For the main optimization problem, 𝛥𝑥+𝑖 (1) = 𝛥𝑥−𝑖 (1) = 0.4, 𝑖 ∈ {1,… , 28}, and 

𝛥𝑥+𝑖 (1) = 𝛥𝑥−𝑖 (1) = 0, 𝑖 ∈ {29, 30}. The auxiliary 𝐱∗ivp(1) is the initial guess for the main optimization problem.
Similarly, in both the second and third phases, we use the auxiliary problem optima as the reference points, i.e., 𝐱∗ref(𝑇 ) = 𝐱∗ivp(𝑇 ), 

𝑇 ∈ {2,… , 𝑁 +2}. Each 𝐱∗ (𝑇 ) is also the initial guess for the main optimization problem at time 𝑇 . For a given auxiliary problem at 
lift ivp

29 



B. Kaczmarski et al. Journal of the Mechanics and Physics of Solids 200 (2025) 106102 
time 𝑇 , we use the previous auxiliary optimum as the initial guess and the auxiliary reference point, so that 𝐱∗ivp,ref(𝑇 ) = 𝐱∗ivp(𝑇 −1), 
𝑇 ∈ {2,… , 𝑁lift + 2}. We set 𝛥𝑥+ivp,𝑖(𝑇 ) = 𝛥𝑥−ivp,𝑖(𝑇 ) = 0.4, 𝑖 ∈ {1,… , 28}, 𝛥𝑥−ivp,29(𝑇 ) = 𝛥𝑥+ivp,29(𝑇 ) = 𝛥𝑥+ivp,30(𝑇 ) = 𝜋∕64, and 
𝛥𝑥−ivp,30(𝑇 ) = 0 to build  𝛾

ivp,𝑇  and 
𝜓
ivp,𝑇 . Then, for the feasible sets in the main optimization problems we choose 𝛥𝑥+𝑖 (𝑇 ) =

𝛥𝑥−𝑖 (𝑇 ) = 0.4, 𝑖 ∈ {1,… , 28}, and restrict the trunk base angles in the main problem to follow the obtained auxiliary optima exactly, 
i.e., 𝛥𝑥+𝑖 (𝑇 ) = 𝛥𝑥−𝑖 (𝑇 ) = 0, 𝑖 ∈ {29, 30}.

B.3. Asymmetric lifting of a log

Similar to symmetric lifting, the asymmetric lifting motion includes the activation magnitude constraint |𝛾|max = 3.5. In the first 
phase, the motion is equivalent to the symmetric case since the trunk only experiences gravitational forces due to its own weight. 
As such, the main problem optimum 𝐱∗(1) in this motion is the same as 𝐱∗(1) obtained for symmetric lifting.

From the second phase onward, the trunk experiences the additional external couple. In contrast to the symmetric scenario, the 
couple generally causes the main problem optimum to lie far from the auxiliary problem optimum. As a result, it is less effective 
to use the auxiliary optima as reference points for the main optimization problem. Instead, we proceed with sequential solution of 
the main optimization problems for 𝑇 ∈ {3,… , 𝑁lift + 2} by using the previous optima 𝐱∗(𝑇 − 1) as reference points. That is, we 
set 𝐱∗ref(𝑇 ) = 𝐱∗(𝑇 − 1), for 𝑇 ∈ {3,… , 𝑁lift + 2}. To obtain a valid starting reference point 𝐱∗ref(3) = 𝐱∗(2) for the problem at 𝑇 = 3, 
we first use 𝐱∗(1) as the initial guess for the problem at 𝑇 = 2. The optimization at 𝑇 = 2 utilizes a non-restrictive  𝛾

2 = R28 for 
the muscular activations and  𝜓

2 = [−𝜋∕12, 𝜋∕12] × [−𝜋∕12, 𝜋∕12] for the trunk base angles. For the feasible sets in subsequent 
optimization problems, we choose:

• 𝛥𝑥+𝑖 (𝑇 ) = 𝛥𝑥−𝑖 (𝑇 ) = 0.7, for 𝑖 ∈ {1,… , 28} and 𝑇 ∈ {3, 4, 6, 7, 8, 9, 10},
• 𝛥𝑥+𝑖 (𝑇 ) = 𝛥𝑥−𝑖 (𝑇 ) = 1.0, for 𝑖 ∈ {1,… , 28} and 𝑇 = 5,
• 𝛥𝑥−29(𝑇 ) = 𝛥𝑥+29(𝑇 ) = 𝛥𝑥−30(𝑇 ) = 𝛥𝑥+30(𝑇 ) = 𝜋∕32, for 𝑇 ∈ {3, 4},
• 𝛥𝑥−29(𝑇 ) = 𝛥𝑥+29(𝑇 ) = 𝛥𝑥−30(𝑇 ) = 𝛥𝑥+30(𝑇 ) = −𝜋∕64, for 𝑇 ∈ {5, 6, 7, 8, 9, 10},

with 𝑁lift = 8 used in the third phase. The initial guesses for the optimization problems at 𝑇 ∈ {3,… , 𝑁lift + 2} are the optima 
𝐱∗(𝑇 − 1) at the respective previous time points with additional random perturbations 𝝃 ∈ R30

≥0 added to each 𝐱∗(𝑇 − 1). With 
each subsequent restart of the optimization scheme at 𝑇  as described in Appendix  C, we sample 𝜉𝑖, 𝑖 ∈ {1,… , 30}, from a uniform 
distribution  [0, 0.01]. We then clamp to 0 any fibrillar activation 𝑥∗𝑖 (𝑇 − 1) + 𝜉𝑖 > 0, 𝑖 ∈ {1,… , 28}, to ensure a contractile initial 
guess.

Appendix C. Choice of optimization schemes

We found different optimization schemes to exhibit varying degrees of performance across the evaluated motions and their 
constituent phases. Here, we provide a list of the optimization schemes that we utilize throughout the study. In the list below, we 
employ the algorithm naming convention from the Julia Optimization.jl package (Dixit and Rackauckas, 2023).

• Main optimization problems:
– Global optimization:

∗ NOMADOpt: Mesh Adaptive Direct Search algorithm (MADS) for blackbox optimization (Audet et al., 2022) from 
the NOMAD.jl package (Montoison et al., 2020).

– Local optimization:
∗ LN_SBPLX: Sblx algorithm from the NLopt library (Johnson, 2007) based on the Subplex algorithm (Rowan, 1990).

• Auxiliary optimization problems:
– Global optimization:

∗ G_MLSL_LDS: Multi-Level Single-Linkage (MLSL) multistart algorithm (Rinnooy Kan and Timmer, 1987a,b) using 
Low-Discrepancy Sequences (LDS) (Kucherenko and Sytsko, 2005) from the NLopt library (Johnson, 2007) together 
with the Nelder–Mead method (Nelder and Mead, 1965) as the local optimization scheme LN_NELDERMEAD from 
NLopt (Johnson, 2007).

∗ BBO_adaptive_de_rand_1_bin_radiuslimited: multi-threaded adaptive differential evolution optimizer 
with radius-limited sampling from the Julia blackbox optimization package BlackBoxOptim.jl (Feldt, 2018).

We apply these optimization schemes to compute the different motion phases as follows:

• Picking a fruit:
– First and third phases:

∗ Main optimization problems: local minimization using LN_SBPLX.
30 
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∗ Auxiliary optimization problems: global minimization using G_MLSL_LDS with the LN_NELDERMEAD local 
optimization scheme.

– Second phase:

∗ Main optimization problems: local minimization using LN_SBPLX.
∗ Auxiliary optimization problems: not applicable.

• Lifting a log:
– All three phases:

∗ Main optimization problems: local minimization using LN_SBPLX.
∗ Auxiliary optimization problems: global minimization using BBO_adaptive_de_rand_1 _bin_
radiuslimited.

• Asymmetric lifting of a log:
– First phase: solution 𝐱∗(1) obtained from the symmetric lifting scenario.
– Second and third phases:

∗ Main optimization problems: global minimization using NOMADOpt. We replaced LN_SBPLX with the NOMADOpt
global optimization scheme since minimizing locally around auxiliary optima was no longer a viable approach for 
the asymmetric lifting case.

∗ Auxiliary optimization problems: not applicable.

Data availability

Data will be made available on request.
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