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This paper considers the significant role of cross-sectional geometry on resistance in co-
axial pipe flows. We consider an axially flowing viscous fluid in between two long and thin
elliptical coaxial cylinders, one inside the other. The outer cylinder is stationary, while
the inner cylinder (rod) is free to move. The rod poses a resistance to the axial flow, while
the viscous fluid poses a resistance to any motion of the rod. We show that the equations
for flow in the axial direction – driven by a prescribed flux – and for flow within the cross-
section of the domain – driven by the motion of the rod – decouple in the asymptotic
limit of small cylinder aspect ratio into axial Poiseuille flow and transverse Stokes flow,
respectively. The objective of this paper is to calculate numerically the axial and cross-
sectional resistances and to determine their dependence on cross-sectional geometry – i.e.,
rod position and the ellipticities of the rod and bounding cylinder. We characterise axial
resistance, first for three reduced parameter spaces that have not been fully analysed in
the literature: I) a circle in an ellipse, II) an ellipse in a circle, and III) an ellipse in an
ellipse of equal eccentricity and orientation, before extending our geometric parameter
space to determine the overall optimal geometry to minimise axial flow resistance for
fixed cross-sectional area. Cross-sectional resistance is characterised via coefficients in a
Stokes resistance matrix and we highlight the interdependent effects of cross-sectional
ellipticity and boundary interactions.

1. Introduction

Fluid flow in annular geometries is prevalent, found in a range of apparatuses from oil
wells to surgical tools. Annular flows between a co-axial rod and outer cylinder motivate
fundamental design questions, such as:

1) How to position the inner cylindrical rod to maximise axial flow?
2) How will the inner rod move and rotate if free to do so?
3) How do the answers to 1 and 2 depend on the cylinders’ cross-sectional shapes?

A specific medical application of our work is found in a minimally invasive surgical
procedure for the removal of kidney stones, uretero-renoscopy. This involves the insertion
of long fibres, working tools, used to destroy or capture stones, through a long cylindrical
working channel along which there is an axially flowing saline solution. A minuscule
camera in the scope tip allows the surgeon to see inside the patient’s kidney and the
axially flowing fluid is required to clear the field-of-view and to open up the ureter,
see Figure 1. The working channel lies within the cylindrical shaft of a ureteroscope,
and another outer cylinder, an access sheath, surrounds the scope itself, allowing fluid
to flow back out of the kidney. Minimising the flow resistance posed by the working
tools can increase flow through the working channel and subsequent surgical accuracy
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Figure 1: A photograph of an isolated Boston Scientific ureteroscope (left) with the tip
of the scope circled and a zoomed-in schematic provided of the scope tip (right). The
scope lies within an access sheath, and a working tool sits inside the working channel. A
camera and a light are embedded in the scope wall. Dimensions of the scope shaft and
working channel are labelled.

by improving visibility within the kidney (Williams et al. 2019a). Minimising the flow
resistance through the access sheath leads to lower kidney pressures during uretero-
renoscopy (Williams et al. 2019b; Oratis et al. 2018) which is desirable as high pressures
have been linked to post-operative complications, such as sepsis (Wilson & Preminger
1990). This application in particular motivates us to address questions of flow optimality
in the sense of achieving the maximum flow rate for a prescribed axial pressure drop and
fixed cross-sectional area available for fluid flow. The possible design of elliptical access
sheaths, working channels, and working tools has been motivated by the ureteral opening
resembling an ellipse (Bergman 1981) and channels with elliptical cross-sections being
relatively easy to manufacture. Thus, we restrict attention to cylinders with elliptical
cross-sections. When designing an optimal device the ideal scenario would be to place
the inner cylindrical rod in the position that minimises axial flow resistance. A key
consideration is whether the surrounding fluid would then resist changes to the inner
rod position, or whether the device must be designed to constrain the inner rod to the
position that minimises axial flow resistance.

Our modelling framework comprises a solid cylindrical rod of mass m and effective
radius Ri, rotating about, and moving in a direction perpendicular to, its longitudinal
axis, within a coaxial outer cylinder of equal length, L, and comparable radius, Ro,
filled with an axially flowing viscous fluid of typical flow rate Q, density ρ, and dynamic
viscosity, µ. We take the cross-sections of the rod and outer cylinder to be ellipses of
varying eccentricities; this is both appropriate for our uretero-renoscopy application and
allows us to investigate the effects of non-axisymmetry. Typical parameter values for
ureteroscopy irrigation, which will guide our analysis here, are listed in Table 1. Defining
the radius-to-length ratio of the rod as ε = Ri/L and the Reynolds number of the flow
as Re = QLρ/µR2

i , the key parameters governing the behaviour of the fluid and the
inner rod are ε2, ε2Re, and the ratio of fluid-to-rod mass multiplied by the reduced
Reynolds number, α−1 = (m/ρR2

iL)ε2Re. Using typical values presented in Table 1, we
find ε2 = O(10−5 − 10−6), ε2Re = O(10−1), and α−1 = (100). These suggest that fluid
inertia is negligible while rod inertia is not. In this regime, we show that the axial fluid flow
through the annular region and the cross-sectional flows induced by the perpendicular
movement and rotation of the rod can be decoupled into axial Poiseuille flow and
Stokes flow in the cross-section. The motion of the rod is determined by conservation
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Symbol Value Unit

Scope in
sheath

Ro 1.9× 10−1 cm
Ri 1.6× 10−1 cm
L 3.6× 101 cm
m 6.1× 100 g

Tool in
working
channel

Ro 6.0× 10−2 cm
Ri 2.2× 10−2 cm
L 7.9× 101 cm
m 1.1× 100 g

Fluid
properties

Q 1.0× 10−1 cm3/s
ρ 1.0× 100 g/cm3

µ 1.0× 10−2 g/cm s

Table 1: Table of typical parameter values for ureteroscopy irrigation. For a scope in a
sheath, Ro is a typical effective radius of the access sheath (11/13 F Navigator, Boston
Scientific; 1 F corresponds to three times the diameter in millimeters) and Ri and m
are a typical effective radius of the scope shaft and its mass, respectively (LithoVue,
Boston Scientific). For a tool in a working channel, Ro is a typical effective radius of the
working channel (LithoVue, Boston Scientific) and Ri and m are a typical effective radius
of a working tool and its mass, respectively (ZeroTip 3.0 F, Boston Scientific). Fluid
properties are those of water, and the flow rate Q follows typical bench-top experiments
of flow through a working channel (Williams et al. 2019a).

of linear and angular momentum, incorporating the hydrodynamic resistance exerted
by the surrounding viscous fluid. Within this setup, our objective is to investigate the
nature of the resistance, both the cross-sectional resistance to the motion of the inner
rod and resistance to the axial flow, in terms of the geometry of the two cylinders. To
illustrate characteristic features of the flow and to investigate geometric effects, we will
focus primarily on three reduced parameter spaces, namely:

I) a circular rod inside an elliptical cylinder,
II) an elliptical rod inside a circular cylinder, and

III) an elliptical rod inside an elliptical cylinder of the same eccentricity and orienta-
tion.

We also briefly consider the generic ellipse in an ellipse case when determining the optimal
geometry to minimise axial flow resistance. The literature on viscous-dominated fluid
flows through annular pipes is vast. A description of relevant literature is given below and
summarised in Table 2. As our primary concern is the effect of cross-sectional geometry
on resistance, we have grouped references by geometry in Table 2, and have further
distinguished which previous works have studied axial versus cross-sectional flow and
motion of the inner rod.

1.1. Axial flow resistance

An analytical solution exists for the steady, fully-developed (Poiseuille) flow of a viscous
fluid through an annular region formed by concentric circles (Lamb 1916). By employing
conformal maps, analytical solutions have also been obtained in a domain bounded
by non-concentric circles (Piercy et al. 1933; Heyda 1959; Sastry 1964; Shivakumar &
Chuanxiang 1993; MacDonald 1982). Numerical solutions for the flow in these domains,
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together with the corresponding wall shear stress distributions, have also been obtained
(Redberger 1962; Ebrahim et al. 2013; Snyder & Goldstein 1965). These solutions
demonstrate that the distance between the centres of the bounding circles significantly
affects the velocity distribution, and that the total flux for fixed pressure drop increases
with this metric. Analytical solutions for steady, viscous flow through annular ducts
bounded by confocal ellipses (Piercy et al. 1933; Sastry 1964), and externally by an
ellipse and internally by a circle (with coincident centres) have also been determined by
employing conformal maps (Sastry 1964), although the dependence of the flow rate on
the geometry of the domain was not discussed. Shivakumar & Chuanxiang (1993) also
considered a region bounded internally by a circle and externally by a concentric ellipse
and noted a flux enhancement compared to cross-sections bounded by two concentric
circles or two confocal ellipses of the same cross-sectional area. Flow through an annular
region bounded by non-concentric ellipses or by an ellipse in a circle, which form key
components of our analysis, has not been previously considered (see Table 2).

1.2. Cross-sectional flow resistance

Two-dimensional Stokes flow between two circular cylinders has been well-studied
(Jeffrey 1922; Jeffrey & Onishi 1981; Frazer 1926; Chwang & Wu 1975; Wannier 1950;
Slezkin 1955). The dynamics of a viscous fluid confined in the gap between rotating
cylinders, i.e. Taylor-Couette flow, has many mechanical applications, e.g. to the lubri-
cation of rotary bearing systems. Stokes flow due to a line rotlet (a rotating circular
cylinder of infinitesimal radius) inside an elliptic cylinder was solved analytically by
Hackborn (1991). The results focussed on the resulting flow structure and it was found
that the number of eddies in the cross-section produced by the line rotlet increased
approximately linearly with the ratio of length to width of the outer elliptical cross-
section. Hackborn (1991) postulated that the flow features generated by a line rotlet
inside a fixed elliptic cylinder are expected to persist when the line rotlet is replaced by
a rotating circular cylinder. Stokes flow between rotating confocal ellipses has also been
considered (Saatdjian et al. 1994), and an analytical solution for the stream function
obtained using elliptical cylindrical coordinates. It was shown that for counter-rotating
ellipses, two hyperbolic points appear in the flow.

As the elliptical eccentricity of the outer cylinder cross-section tends to 1, the domain
approximates one of parallel plates. The motion of a rod of circular cross-section rotating
and translating in Stokes flow between parallel plates has been studied numerically
(Dvinsky & Popel 1987). The authors computed the position between the centreline and
the wall where the rod experienced the minimum translational drag. It was also found that
the torque on a cylinder rotating between parallel plates is minimised when the cylinder
is centred between the two walls. An asymptotic solution (for small gap between the
cylinder and the walls compared to the cylinder radius) for a circular cylinder rotating
between parallel plates was obtained by Yang et al. (2013). It was shown that if the
cylinder is centred between the two plates, rotation will only induce an opposing torque,
whereas if the cylinder is offset from the centreline, there is an additional force parallel
to the walls.

Two-dimensional Stokes flow in a bounded annular domain with a translating and
rotating inner rod has also been considered. Finn & Cox (2001) presented an analytical
solution for the stream function for such a flow when both the inner rod and outer cylinder
have circular cross-sections. The biharmonic equation for the stream function was solved
with complex variable methods. The motion of the cylindrical rod was prescribed as a
function of time, and the energy required to maintain the system in equilibrium was
determined. It was shown that the power input depends upon the position of the rod
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and the prescribed motion. As the two cylinders approach each other, the power input
required to maintain all motions diverges. Cox & Finn (2007) considered multiple rods
with elliptical cross-sections moving inside a circular cylinder via numerical methods.
In both Finn & Cox (2001) and Cox & Finn (2007) the fluid flow is quasi-static, with
temporal variation in the velocity field only occurring due to changes in domain geometry.

While the above works demonstrate the strong effect of geometry on rod motion, to our
knowledge the effect of geometry on an elliptical cylindrical rod translating and rotating
inside an elliptical cylinder has not been previously investigated. Due to the linearity of
Stokes equations, the velocity field resulting from any prescribed translational motion
(in any bounded or unbounded two or three-dimensional domain) can be calculated
by considering component motions directed along orthogonal axes and summing the
component solutions. The velocity field resulting from prescribed rotational motion in
these domains can also be considered separately, and for combined translational and
rotational motions the solution is obtained by adding the relative contributions. By
implementing the Lorentz reciprocal theorem, it can be shown that the magnitudes of the
hydrodynamic forces and torques on a particle moving in Stokes flow vary linearly with
the imposed translational and rotational velocities, respectively, and these relationships
can be captured by the coefficients of two symmetric resistance tensors (Brenner 1962c,
1963; Hinch 1972). An additional tensor characterises the interactions between translation
and rotation that can occur when particle or domain symmetry is broken (Brenner
1963; Hinch 1972). The general theory for the effect of finite domain boundaries on
the resistance tensors has been considered for the case where the particle is small in
comparison to its distance from the boundary (Brenner 1962a,b).

In two-dimensions, the three resistance tensors can be formulated as a single resistance
matrix. To illustrate this, consider a Cartesian coordinate system with orthogonal direc-
tions i, j, and k. For a given prescribed translational velocity, dx/dt i + dy/dt j, and
a prescribed angular velocity dθ/dt k, the resistance matrix provides the hydrodynamic
forces Fx i, Fy j and hydrodynamic torque τz k via

Fx

Fy

τz

 = −


Kxx Kxy Cx

Kxy Kyy Cy

Cx Cy Azz




dx/dt

dy/dt

dθ/dt

 . (1.1)

The scalar matrix coefficients Kij for i, j = x, y in equation (1.1) characterise the
resistive force in the i-direction due to motion in the j-direction, and equivalently, as the
matrix is symmetric, the resistance in the j-direction due to motion in the i-direction.
Coefficient Azz provides the linear relationship between a rotational motion in the cross-
section and the resistive torque. Finally, coefficients Cx and Cy describe the coupling
between translational and rotational motions, i.e., the rotation induced by translation
(and vice versa). The coefficients are all functions of the geometry of the domain (and
scale linearly with viscosity).

When considering translation without rotation, equation (1.1) reduces to[
Fx

Fy

]
= −

[
Kxx Kxy

Kxy Kyy

][
dx/dt

dy/dt

]
. (1.2)

The eigenvectors and corresponding eigenvalues of the matrix in equation (1.2) are the
directions and magnitudes of the minimum and maximum resistance, respectively. Using
principles of energy dissipation, it can be shown that the eigenvalues must be positive.
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This is proved for a three-dimensional particle of arbitrary shape moving in Stokes flow
in Brenner (1962c).

As a simple example of the resistance matrix for two dimensional flows, consider the
case of concentric circles of inner radius b and outer radius a. Stokes equations can be
solved analytically in this geometry for prescribed translational and rotational velocities
of the rod (Slezkin 1955, pp. 135, 163). The resulting resistance matrix components, Kxx,
Kxy, Kyy non-dimensionalised by µ, Azz by µb2, and Cx, Cy by µb, are

Kxy = Cx = Cy = 0, (1.3a)

Kxx = Kyy = 4π(1 + r2)/(1− r2 + (1 + r2) log r), (1.3b)

Azz = 4π/(1− (1/r)2), (1.3c)

where r = a/b. Due to the symmetry of the domain there is no coupling between
translation and rotation. Moreover, the two eigenvalues of the matrix in equation (1.2) are
given by Kxx = Kyy, i.e. there is equivalent resistance in all directions such that both the
translational and rotational resistance decreases monotonically as the ratio r increases.
A resistance matrix of the form given in equation (1.1) has been used to describe the
motion of a cylindrical rod of circular cross-section translating and rotating in Stokes flow
between parallel plates (Dvinsky & Popel 1987). More recently, resistance matrices have
been used to understand the interactions between swimming micro-organisms (Ishikawa
et al. 2006) and to control the movement of aqueous particles (Btait et al. 2019).

1.3. Resistance as the rod approaches the wall

For the cross-sectional flow problem it is important to mention a complexity that
arises if we are to consider the limiting behaviour that occurs when the rod touches
the bounding cylinder. At this point, an interesting paradox arises: the resistance to
motion in all directions tends to infinity; i.e., it will require infinite force to move the
rod in any direction, including away from, or along, the contacting boundary (Jeffrey
& Onishi 1981). To address this paradoxical behaviour, it is worthwhile to consider
the problem of a rod rolling or sliding along a plane wall in Stokes flow, as this will
approximate the behaviour of a moving rod touching a bounding cylinder close to the
point of contact. Even in this simplified scenario, theory detects a pathologic problem
with solutions to the incompressible Stokes equations at the contact point, indicating the
necessity for fluid compressibility or cavitation to limit the pressure drop across the point
of contact to a physically acceptable value. This results in an infinite lift force, opening an
interstice between the wall and the cylinder; the fluid dynamics through this narrow gap
can be studied through lubrication analysis (Merlen & Frankiewicz 2011). The creation
of cavitation bubbles for a rotating cylinder near a proximal wall has been confirmed
experimentally (Seddon & Mullin 2006), and these findings indicate a physical necessity
for a small gap between a moving rod and bounding cylinder. Thus, in Section 4, where
we discuss cross-sectional resistance, we limit to configurations where the rod is a located
a finite distance from the bounding cylinder. Fixing a finite distance for the rod from
the boundary also prevents divergence of numerical code, as mesh elements will become
degenerate at the point of contact. Within this framework, we seek the configuration
that maximises the minimum eigenvalue of the Stokes resistance matrix, as, for a given
instantaneous velocity, it will require the least work to perturb the position of the rod in
the direction of minimum resistance. Rod positions that incur high resistance to imposed
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Figure 2: A schematic of the set-up in a Cartesian coordinate system (x, y, z) with
corresponding coordinate directions i, j, k, where k is oriented along the common axis
of the cylinders of length L. At z = 0 the flow is driven by a flux, Q. The boundaries
of a cross-sectional slice of the cylinders are denoted Γi (inner) and Γo (outer), and the
fluid-filled area between them is Ω. The inset figure shows a cross-sectional slice, where
the position and orientation of the rod are given by X and Θ, respectively. The rod has
translational velocity Ẋ and angular velocity Θ̇.

instantaneous velocities are of interest to optimal design, as motion of the rod away from
these positions will be naturally retarded by the hydrodynamic forces imposed by the
fluid, without the need to mechanically fix the position of the rod.

1.4. Paper summary

This paper is organised as follows. In Section 2 we describe the model set-up. In
the regime in which both the aspect ratio of the cylinders and the reduced Reynolds
number are small, we show that at leading-order the axial and cross-sectional flows can
be decoupled into Poiseuille flow and Stokes flow, respectively. In Section 3 we solve
the axial flow equations and compute the flux for a given pressure drop as a function
of rod position and the cross-sectional shapes of the rod and bounding cylinder, with
an aim to determine configurations that minimise axial flow resistance. We will first
consider the three special cases I), II), and III), before extending, in Section 3.4, our
discussion of optimal axial flow to the full geometric parameter space of an elliptical rod
in an elliptical cylinder with fixed area available for the fluid. In Section 4 we solve the
cross-sectional Stokes flow equations and calculate the forces and torque exerted on the
rod by the surrounding viscous fluid when the rod undergoes a prescribed motion. We
calculate the resistance matrix coefficients as functions of cross-sectional geometry and
determine which configurations have high resistance to perturbations in the rod position.
For circles in ellipses and for ellipses in ellipses of the same eccentricity and orientation,
we find that the position of the rod that maximises the axial flow rate and compare this
to the position of highest minimal resistance. We conclude in Section 5.

2. Mathematical model

We consider an inner cylindrical rod which is free to move within a fluid-filled outer
cylinder. The rod is prescribed a small, instantaneous, translational motion in a direction
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Description
Example
Geometry

Poiseuille flow
Stokes flow
(rotation)

Stokes flow
(translation)

Centred circle
in circle

Lamb (1916) Lamb (1916)
Frazer (1926);
Chwang & Wu

(1975)

Offset circle
in circle

Piercy et al.
(1933); Heyda
(1959); Sastry

(1964);
Redberger

(1962); Ebrahim
et al. (2013);

Snyder &
Goldstein (1965);

Shivakumar &
Chuanxiang

(1993)

Jeffrey (1922);
Jeffrey & Onishi
(1981); Wannier
(1950); Slezkin
(1955); Finn &

Cox (2001)

Finn & Cox
(2001)

Fully offset
circle in circle

MacDonald
(1982)

N/A N/A

Centred circle
in ellipse

Sastry (1964);
Shivakumar

(1973)

Offset circle
in ellipse

Hackborn (1991)
(rod of

infinitesimal
radius)

Centred
ellipse in

circle

Centred
ellipse in

ellipse

Piercy et al.
(1933); Sastry

(1964) (confocal
ellipses)

Saatdjian et al.
(1994) (confocal

ellipses)

Offset ellipse
in circle

Cox & Finn
(2007) (including
multiple ellipse

case)

Cox & Finn
(2007) (including
multiple ellipse

case)

Offset ellipse
in ellipse

Circle
between

parallel plates
N/A

Dvinsky & Popel
(1987); Yang
et al. (2013)

Dvinsky & Popel
(1987)

Table 2: Summary of existing literature for relevant geometries.
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perpendicular to, and a rotation about, its longitudinal axis. The subsequent motion of
the rod is driven by the hydrodynamic forces exerted on the rod by the fluid. As the rod
moves, we assume that it remains coaxial with the outer cylinder. While the rod is able
to move in the direction perpendicular to its longitudinal axis, we assume that it does not
move axially. It is also able to rotate about its longitudinal axis. Both the translational
and angular velocities of the inner rod are constant along its length.

Both cylinders are of length L and have uniform elliptical cross-sections. The space
between the inner and outer cylinders is filled with an incompressible, Newtonian fluid of
viscosity µ and density ρ. Flow is driven by both an applied non-zero constant axial flux
and the motion of the cylindrical rod. We adopt a Cartesian coordinate system (x, y, z)
with corresponding coordinate directions i, j, k, where k is oriented along the common
axis of the cylinders and z = 0 is at the entrance to the annular region (See Figure 2).
With subscripts i and o denoting the inner and outer cylinders, respectively, we take the
characteristic radii of the cylinders to be

Ri =
√
Ai/π, Ro =

√
Ao/π, (2.1a,b)

where Ai and Ao are the respective cross-sectional areas. We assume that Ri and Ro
are comparable and much smaller than L. We denote the annular boundaries of a cross-
sectional slice of the cylinders as Γo and Γi, respectively. The coordinate position of
the geometric centre of the inner rod is given by (X(t), Y (t), L/2), where X and Y
are functions of time, and thus the position of the inner rod within the cross-section is
X(t) = (X(t), Y (t)). The orientation of the major axis of the rod’s cross-section, with
respect to the x-axis, is given by Θ(t), also a function of time (Figure 2).

2.1. Dimensionless system

As motivated in Section 1, we are interested in a regime where fluid inertia is negligible.
Thus, the fluid flow is governed by the Stokes and continuity equations. We define the
aspect ratio of the rod to be ε = Ri/L� 1 and non-dimensionalise the axial coordinate
by L and the cross-sectional coordinates by Ri = εL. We assume a non-zero constant flux
Q is applied at z = 0 and thus, non-dimensionalise the axial velocity by characteristic
velocity scale W = Q/R2

i . We choose the pressure scaling P = (Wµ/Lε2) to balance the
viscous terms in the Stokes equations and the cross-sectional force and torque are scaled
by εLµW and ε2L2µW , respectively. The dimensionless Stokes equations are given in
component form by

−px + ε2(uxx + uyy) + ε4uzz = 0, (2.2a)

−py + ε2(vxx + vyy) + ε4vzz = 0, (2.2b)

−pz + wxx + wyy + ε2wzz = 0, (2.2c)

ux + vy + wz = 0, (2.2d)

where we have adopted the subscript notation for partial derivatives. Due to the scaling
for velocity, the dimensionless flux scales to∫∫

Ω

w dΩ = 1, (2.3)

where Ω is the 2D region of the cross-section between the cylinders.
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No-slip conditions at the surfaces of the inner and outer cylinder give the dimensionless
boundary conditions

u = Ẋ − Θ̇(y − Y ),

v = Ẏ + Θ̇(x−X),

w = 0,


on Γi (2.4a-c)

and

u = 0, on Γo. (2.5)

To calculate Ẋ and Θ̇, where dots denote derivatives with respect to time, we consider
conservation of linear and angular momentum for the inner rod which gives, in dimen-
sionless form

Ẍ = αF (X, Θ, Ẋ, Θ̇), Θ̈ = α′τ(X, Θ, Ẋ, Θ̇), (2.6a,b)

where F and τ are the hydrodynamic force in the cross-section and z-component of
the torque exerted on the rod due to the motion of the fluid, obtained by integrating
contributions from the viscous pressure forces. Because the cylinders remain coaxial, τ
and F are the only non-zero force and torque components. The dimensionless constants
in equations (2.6a,b) are defined as

α = µL2/mW, α′ = R2
iµL

2/IW, (2.7a,b)

where m and I are the rod mass and the moment of inertia about the rod axis,
respectively, and α′ is the same size as α as I scales with R2

im. We note that α can be
rearranged to relate the fluid density to the material density of the inner rod multiplied
by the reduced Reynolds number. As discussed in the introduction, we will consider the
regime where this parameter is O(1). As dimensionless initial conditions for equation
(2.6) we prescribe

X(0) = X , Θ(0) = Φ, Ẋ(0) = U`, Θ̇(0) = ω, (2.8a-d)

where X is the initial location of the rod’s axis in the (x, y) plane, Φ is its initial
orientation angle, U is its initial velocity in a direction given by `, a unit vector in
the (x, y)-plane, and ω is its initial angular velocity about the z-axis. We assume X , U ,
Φ, and ω are all O(1); due to the chosen non-dimensionalisations, this requires the initial
imposed rod velocities to be ε times smaller than the axial velocity.

2.2. Asymptotic analysis

We take ε2 � 1 and seek expansions to our dimensionless variables of the forms

u = u0 + ε2u1 + · · · , p = p0 + ε2p1 + · · · (2.9a,b)

X = X0 + ε2X1 + · · · , Θ = Θ0 + ε2Θ1 + · · · . (2.9c,d)

Inserting (2.9a,b) into equations (2.2c), (2.2d) and equating O(1) terms gives

∇2
⊥w0 =

dp0
dz

, ∇⊥ · u⊥0 + w0z = 0, (2.10a,b)

where u⊥0 = u0 i + v0 j, and that dp0
dz is independent of x and y follows from equations

(2.2a) and (2.2b) at leading order. To determine the cross-sectional velocity components,
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u0 and v0, we consider equations (2.2a) and (2.2b) at O(ε2), and obtain the two-
dimensional Stokes equations

∇2
⊥u0 = p1x, ∇2

⊥v0 = p1y. (2.11a,b)

The leading-order flux condition is ∫∫
Ω

w0 dΩ = 1, (2.12)

and leading-order boundary conditions are

u0 = Ẋ0 − Θ̇0(y − Y0),

v0 = Ẏ0 + Θ̇0(x−X0),

w0 = 0,


on Γi (2.13a-c)

and

u⊥0 = 0 and w0 = 0, on Γo. (2.14a,b)

The equations of motion for the tool, (2.6), read at leading-order

Ẍ0 = αF 0(X0, Θ0, Ẋ0, Θ̇0), Θ̈0 = α′τ0(X0, Θ0, Ẋ0, Θ̇0), (2.15a,b)

where the leading-order expressions for the hydrodynamic forces and torque on the rod
are

F 0 =

∫ 1

0

[∮
Γi

σ0 ni ds

]
dz, (2.16a)

τ0 =

∫ 1

0

[∮
Γi

(x−X0)(σ0 ni) · j − (y − Y0)(σ0 ni) · i ds

]
dz, (2.16b)

for

σ0 =
[
−(p0/ε

2 + p1)I + (∇u⊥0 +∇u⊥0 )T
]
. (2.17)

The leading-order initial conditions for the rod motion are

X0(0) = X , Θ0(0) = Φ, Ẋ(0) = U , Θ̇ = ω. (2.18)

2.3. Leading-order solution

We seek a separable solution for w0 of the form

w0 = f(x, y)
dp0
dz

. (2.19)

Integrating equation (2.10b) over a cross-section of the fluid domain between the two
cylinders, using equations (2.13) and (2.14), and applying the divergence theorem gives∫∫

Ω

w0z dΩ = 0. (2.20)

Inserting the form (2.19) and using the imposed flux condition (2.3), we conclude that

d2p0
dz2

= 0→ dp0
dz

= const., (2.21)
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and it follows that

w0z = 0. (2.22)

Hence equation (2.10b) becomes

∇⊥ · u⊥0 = 0, (2.23)

and the governing equation for the axial fluid flow, (2.10a), is

∇2
⊥f(x, y) = 1, (2.24)

with no-slip boundary conditions, equations (2.13c) and (2.14b),

f = 0, on Γi, Γo. (2.25)

Additionally, using the flux condition (2.3) we can solve for the constant pressure gradient

dp0
dz

=

∫∫
Ω

f(x, y)dΩ

−1 , (2.26)

and thus

w0 = f(x, y)

∫∫
Ω

f(x, y)dΩ

−1 , (2.27)

combining (2.19) and (2.26).
As p0 is constant within a cross-section it has no contribution to the leading-order

hydrodynamic force and torque given by equations (2.16). Additionally, the bracketed
terms in equations (2.16) are independent of z, and hence equations (2.16) and (2.17) to
calculate the force and torque reduce to

F 0 =

∮
Γi

σ0 ni ds, (2.28a)

τ0 =

∮
Γi

(x−X0)(σ0 ni) · j − (y − Y0)(σ0 ni) · i ds, (2.28b)

for

σ0 =
[
−p1I + (∇u⊥0 +∇u⊥0 )T

]
. (2.29)

Henceforth, we will drop leading-order subscripts. We will retain the subscript on
the only first-order term that appears in our leading-order system, p1, to differentiate
the first-order pressure that drives flow in the cross-section, equations (2.11), from the
leading-order pressure that drives the axial flow, equation (2.10a).

2.4. Model summary and computational approach

Equations (2.24), (2.25), and (2.27) give rise to Poiseuille-flow, where the axial flow
resistance, R(X, Θ), is equal to the constant pressure gradient required to maintain the
axial flow through the annular domain at unit flux. This is given by

R(X, Θ) =

∫∫
Ω

f(x, y)dΩ

−1 , (2.30)
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a function of domain geometry. We note that for any given flux,

Q(X, Θ) =
1

R(X, Θ)

dp

dz
, (2.31)

and so, once R(X, Θ) is determined via equation (2.30), we can compute Q(X, Θ) for
any specified pressure gradient. Motivated by the urological application, in which it is
most natural to consider optimising flow rate for a given pressure drop, our approach in
Sections 3 and 3.4 will be to fix dp/dz = −1 as a model input and compute Q(X, Θ) and
the associated flow profile as primary outputs. In this view, minimising the resistance is
equivalent to maximising the flux.

The equations governing the cross-sectional flow are the Stokes equations (2.11) and
incompressibility (2.23), with no-slip boundary conditions (2.13a,b) and (2.14a). As
discussed in Section 1, the forces and torque on the inner rod, equations (2.28a,b), are
linearly related to the imposed velocities via resistance coefficients

F (X, Θ, Ẋ, Θ̇) = −[K(X, Θ)Ẋ +C(X, Θ)Θ̇], (2.32a)

τ(X, Θ, Ẋ, Θ̇) = −[Azz(X, Θ)Θ̇ + Cx(X, Θ)Ẋ + Cy(X, Θ)Ẏ ], (2.32b)

where K(X, Θ) is the two dimensional translation matrix and C(X, Θ) describes the
coupling between translation and rotation

K(X, Θ) =

[
Kxx Kxy

Kxy Kyy

]
, C(X, Θ) =

[
Cx

Cy

]
. (2.33a,b)

The resistance coefficients in equations (2.33a,b) are also functions of domain geometry.
We will compute these in Section 4. To explore the effect of geometry on both the axial
and cross-sectional resistances we consider configurations I), II), and III), as introduced
in Section 1. In each configuration, we will fix the cross-sectional areas of the cylinders
to constrain the space available for fluid. We do this by setting the characteristic radius
of the outer cylinder (scaled by Ri) which we denote Ro. This reduces the parameter
space, allowing for full interrogation of the axial and transverse flows on X, Θ, and the
shape of the elliptical cross-sections of the inner and outer cylinders. In Section 3.4, we
will consider a more complete optimisation problem for axial flow resistance, relaxing
our previous restrictions on the considered elliptical geometries.

3. Axial flow

We begin by considering the effect of cross-sectional geometry on axial flow by solving
equation (2.24) subject to conditions (2.25) for varying ellipse cross-sectional geome-
tries. Results were calculated numerically using an open-source finite element library,
oomph-lib (Heil & Hazel 2006). Details on the numerical elements and mesh are provided
in Section A.2.

Our objective is to explore how the flux is affected by the position and orientation of
the inner rod, X and Θ, respectively, and the elliptical eccentricity of the cross-sections.
The eccentricity is defined as

ei,o =
√

1− (bi,o/ai,o)2, (3.1)

where ai,o and bi,o are the major and minor axes of the inner and outer cylinder,
respectively. A zero eccentricity value therefore corresponds to a circle and e = 1 is
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a slit of zero width and infinite length. For fixed characteristic radii, see equations (2.1),
and given eccentricity, ei,o, we can calculate ai,o and bi,o

ai = (1− e2i )−1/4, bi = (1− e2i )1/4, (3.2a,b)

ao = Ro(1− e2o)−1/4, bo = Ro(1− e2o)1/4, (3.2c,d)

3.1. I) Circle in ellipse

In Figure 3a∗ we consider a circular rod (of dimensionless unit radius) inside a cylinder
of elliptical cross-section (with characteristic radius Ro = 2). We vary the eccentricity
of the outer cylinder’s cross-section while maintaining the cross-sectional area, using
equations (3.2) to determine the corresponding lengths of the major and minor axes.
When, for each value of eo, the rod is located at the position that maximises flux (see
Appendix B), we find that the flux initially increases with eo. The maximum flux over
all eo (data point (ii)) is nearly 50% higher than the flux for a circular outer cylinder of
the same cross-sectional area (data point (i)). The eccentricity at which the maximum
flux is achieved is eo ≈ 0.84 for Ro = 2. We might hypothesise that this coincides with
the value for eo where the rod and bounding cylinder match curvature at the cylinder’s
vertex, which we denote e? (Appendix B). However, for Ro = 2, e? ≈ 0.78, which is less
than the eo value where maximum flux is achieved. In fact, in configuration (ii) in Figure
3a, although hard to discern from the colourmap, the circular rod tangentially touches
the elliptic cylinder in two locations. The colorbar in Figure 3a gives the magnitude of
the axial velocity, and demonstrates that the maximum velocity within the cross-section
is also larger in configuration (ii), than in either (i) or (iii).

3.2. II) Ellipse in circle

When considering an elliptical inner rod and circular outer rod (eo = 0), we can, due
to the rotational symmetry of the outer domain, fix X = (X, 0) and vary the inner
rod’s position along the x-axis only, without loss of generality. Here, we fix Ro = 3, a
larger cross-section to allow for a wider range of feasible positions and orientations for
the inner rod, and vary X, Θ, and ei. We find, as anticipated, that Q increases with X
for all values of ei and Θ. Increasing ei can either increase or decrease Q depending on
the position and orientation of the inner rod. For example, when the rod is centred in
the outer cylinder – and the flux is independent of Θ due to the geometry of the domain
– the largest flux is obtained when the rod is circular, and decreases with ei. This effect
can be seen for ei = 0, ei = 0.7, and ei = 0.9 oriented at Θ = π/2 in the inset plot
in Figure 3b. In contrast, when the rod is sufficiently offset, the more eccentric rods at
Θ = π/2 cause less obstruction near the centre of the channel, allowing for higher flow
(see Figure 3b).

For a circular rod (ei = 0), we validate our numerical solution against the analytical
solution for offset circles (Piercy et al. 1933)† (dashed black line in Figure 3b) in addition
to confirming that our numerical solution approaches the limiting case of touching circles
(MacDonald 1982) as X approaches 2 (black cross in Figure 3b).

In Sections 3.1 and 3.2, we have considered the particular cases where one of the
cylinders has a circular cross-section. As anticipated, in both configurations, the maxi-

∗Figure 3a has previously appeared in Williams et al. (2019a), an endourological publication
to translate these relevant findings for a clinical audience.
†As Piercy et al. (1933) presents a solution for the flow rate in terms of an infinite sum, we

truncate this sum to determine the flow rate (see Appendix A.3).
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II) Ellipse in circle
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Figure 3: Dimensionless flow rate, Q with X = (X, 0), as a function of (a) eo, for ei = 0,
Ro = 2, and (b) X, for eo = 0, Ro = 3. In (a), for each eo, the inner circle is located
at the position that maximises the axial flux (see Appendix B). When eo = e?, the
ellipse matches curvature with the circle at the ellipse vertex. The colorbar provides the
magnitude of the axial velocity. Figure (b) plots Q as a function of X for ei = 0 (blue)
ei = 0.7 (red) ei = 0.9 (yellow) oriented at π/2. The inset plot provides a zoomed-in view
from X = 0 to X = 0.2. The dashed black line gives the analytical solution by Piercy
et al. (1933) and the black cross the solution by MacDonald (1982) (see Table 2 for more
details).

mum flux was achieved for a rod tangent to the outer boundary. Perhaps unexpectedly,
Figure 3a demonstrated that the optimal configuration may not be one where the
inner rod is tangent at a single point. We will explore this in more detail in Section
3.4, where we will determine the true optimal geometry that maximises axial flux (for
fixed area), relaxing all previous geometric restrictions. However, we will first consider
another reduced parameter space, namely elliptical rods in elliptical cylinders of the same
eccentricity and orientation; a configuration that allows for clear specification of the inner
rod’s position, and a discussion of the effects of eccentricity as a single parameter.

3.3. III) Ellipse in ellipse

We now consider cylinders with elliptical cross-sections of the same eccentricities e =
ei = eo and orientation (Θ = 0). We fix Ro = 2 and again seek configurations that
maximise the flux∗.

To describe the position of the inner ellipse relative to the outer ellipse we first define
θ to be the angle between the major axis of the outer ellipse and a line connecting the
centres of the two ellipses, see Figure 4. The effective radii of the inner and outer ellipses
are then defined as

ri = aibi/

√
a2i sin2 θ + b2i cos2 θ, ro = aobo/

√
a2o sin2 θ + b2o cos2 θ. (3.3)

With these definitions, the maximum distance, dmax between the centres at an angle θ

∗It is worthwhile to note, when comparing flux values between different geometries, that in
this section and in Section 3.4, Ro = 2, so the space available for fluid flow is the same as in
Figure 3a (a circular rod in an elliptical cylinder) but less than in Figure 3b (an elliptical rod
in a circular cylinder) where Ro = 3.
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φ = 0 φ = 0.5 φ = 1

θ
d = dmax

θ d

(a) (b) (c)

ro

ri

Figure 4: Schematic showing a sample geometry for e = 0.8, θ = π/4 and (a) φ = 0, (b)
φ = 0.5, (c) φ = 1. The shaded ellipse is the cross-section of the rod.

(when the rod and the outer cylinder touch) is given by

dmax = ro − ri. (3.4)

From this we define an offset parameter, φ, that is the ratio of the distance between the
centres of the two ellipses at an angle θ and dmax,

φ = d/dmax. (3.5)

Thus, the domain is characterised by three parameters; the eccentricity, e ∈ [0, 1), the
angle of offset, θ ∈ [0, π/2], and the relative offset, φ ∈ [0, 1] (see Figure 4).

In Figure 5a-d we fix e = 0.8 and θ = 0, and plot the velocity profiles (with
corresponding flux values indicated) for φ = 0.01, φ = 0.35, φ = 0.7, and φ = 0.99.
We observe that Q increases with φ, a result previously known for e = 0 (Piercy et al.
1933; Redberger 1962). The effects of θ and e on Q are less intuitive. In Figure 5e-h
we fix e = 0.8 and φ = 0.99 and vary θ, plotting the associated velocity colourmaps for
θ = 0, θ = π/6, θ = π/3, and θ = π/2. The flux is largest for θ = 0 and smallest for
θ = π/3 demonstrating, for the chosen parameters, non-monotonicity of Q with θ. We
vary e in Figure 5i -l for fixed θ = 0 and φ = 0.99. The flux is largest for e = 0.6 and
smallest for e = 0.9, also demonstrating, for the chosen parameters, non-monotonicity of
Q with e. For completeness, line-plots of Q as a function of independent variation of e,
φ, and θ can be found in Appendix C.

In Figures 6a-c, we show surface plots of Q in (φ, θ) space for three different ec-
centricities: e = 0, e = 0.7, and e = 0.9, respectively. Note that, as Q varies most
significantly with φ, we have restricted to 0.9 6 φ 6 0.99 to isolate the effects of θ and
e. When e = 0 (Figure 6a), Q is independent of θ due to the rotational symmetry of the
domain, and increases monotonically with φ. For eccentric domains, e = 0.7 and e = 0.9
(Figures 6b and Figures 6c, respectively), Q is minimal at an intermediate value of θ
and φ = 0.9 (the smallest φ value plotted). The maximum Q is seen in Figure 6b for
e = 0.7, further validating the existence of a nonzero eccentricity value that maximises
flux, emax. This existence of a non-zero eccentricity at which flux is maximised may be
of particular interest from an engineering design point of view (Williams et al. 2019a).
However, it is noteworthy that the optimal eccentricity itself will change based on the
outer geometry. We plot emax as a function of Ro in Figure 6d. As Ro → ∞, emax → 0.
As Ro characterises the ratio between outer and inner cross-sectional areas, the limit
as Ro → ∞ corresponds to a negligible obstruction within the channel, and hence, the
maximum flux will be attained for a circular cross-section (Williams et al. 2019a).

In this section we have determined that for equal eccentricities and orientations of the
outer and inner ellipses, there is a position for the inner ellipse and a non-zero eccentricity
value that maximises flux. We note that this may not be the configuration that maximises
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Figure 5: Dimensionless velocity colourmaps with flux values, Q, for ellipses of equal
eccentricities and orientations. Here Ro = 2. Axes are in (x, y) coordinates and these
vary with eccentricity so that the available space for fluid flow is constant. Colourbars
reflect different velocity values within the domains. The direction of the axis of minimal
resistance, kmin, is indicated by the dashed white line on each diagram. This will be
discussed in Section 4.
Plots (a)-(d) show the effect of offset, φ, for e = 0.8 and θ = 0. Offset values are (a)
φ = 0.01, (b) φ = 0.35, (c) φ = 0.7, and (d) φ = 0.99.
Plots (e)-(h) show the effect of angular position, θ, for e = 0.8 and φ = 0.99. Angular
position values are (a) θe = 0, (b) θ = π/6, (c) θ = π/3, and (d) θ = π/2.
Plots (i)-(l) show the effect of eccentricity, e, for φ = 0.99 and θ = 0. Eccentricity values
are (a) e = 0, (b) e = 0.3, (c) e = 0.6, and (d) e = 0.9.

flux for all values of ei, eo, X, Y , and Θ, and we consider this global optimisation problem
in more detail in the following section.

3.4. Optimal geometry for axial flow

When solving for axial flow in Section 3 we considered three reduced geometric
parameter spaces: I) circle in ellipse, II) ellipse in circle, and III) ellipse in ellipse of
the same eccentricity and orientation. We found, in each case, eccentricity values and
positions for the inner rod that maximised Q. In this section, we will relax all previous
assumptions on ellipse eccentricity and explore finding a global optimal geometry for
ellipses of fixed cross sectional area, Ro = 2.

For all configurations previously considered, we demonstrated that axial flow resistance
was lowered by increasing the distance between the centres of the inner and outer ellipses.
Intuitively, we might expect that the optimal configuration is one where the inner ellipse
touches the boundary of the outer ellipse and with matching curvature, i.e. when the inner
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Figure 6: Surface plots (a)-(c) give the dimensionless flow rate, Q, as a function of both
offset, φ, and angular position θ of the inner ellipse for three different eccentricity values:
(a) e = 0, (b) e = 0.7, and (c) e = 0.9. Here Ro = 2.
Plot (d) gives emax as a function of the characteristic radius Ro. The emax value is
calculated as the one that produces maximum flow over 100 values from 0.01 6 e 6 0.99
for each radius ratio.

ellipse ‘hugs’ the outer (although this was shown not to be the case for configuration I in
Section 3.1). This assumption enables a reduced parameter space that can be approached
analytically (see Appendix D). In Figure 7a we show a surface plot of Q as a function of
eo and θ produced by this calculation. We see that a global maximum occurs at θ = 0 and
eo ≈ 0.71 with corresponding Q = 2.62 (indicated by the red circle and corresponding
flow profile Figure 7b). (At this maximum, we also have ei ≈ 0.45, Θ = 0.)

The optimal configuration in Figure 7a shows a nearly 40% improvement in flux over
the optimal configuration computed in Section 3.3. However, it is still not sufficient to
claim this as the global optimum for ellipse geometries. In fact, the results in Figure
3a suggested that a ‘curve-hugging’ configuration may not be optimal. Motivated by
this, we relax assumptions about how the ellipses meet at the boundary and formulate
an optimisation problem to traverse the full parameter space. To this end, we define a
vector, g, containing the five parameters governing the geometry of the domain

g = (ei, eo, X, Y,Θ)T . (3.6)
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Figure 7: A plot of Q as a function of eo and θ for Ro = 2. Here the inner ellipse touches
the outer boundary tangentially at a single point, matching curvature. The red circle
indicates the presence of a global maximum.

The boundaries of the inner and outer ellipses, Γi and Γo, are

xTAx = 0, xTBx = 0, (3.7a,b)

respectively, where xT = (x, y, 1) and matrices A and B are functions of g. Thus, we
seek the solution to the optimisation problem

min
g
−Q, s.t. c > 0, (3.8)

where c is a vector of six non-linear constraints, dependent on A and B and hence g,
that ensure Γi is enclosed by Γo (see Appendix E for more details). We solve equation
(2.24) in FEniCS (Alnaes et al. 2015), and implement MATLAB’s optimisation routine,
fmincon, to solve the optimisation problem (3.8) with an interior-point method from
eight randomly generated starting points in the feasible five-dimensional parameter space.
As the optimisation routine seeks local minima, a multi-start approach allows for global
optimisation. The optimal geometry found through this method is shown in Figure 7c
with a corresponding flux, Q ≈ 2.80. The geometric parameters, see equation (3.6), are
g ≈ (0.68, 0.74, 1.49, 0, π/2)T . This global optimum gives a non-negligible (nearly 7%)
increase in flux compared with the ‘curve hugging’ optimum. Indeed, rather than perfectly
matching the geometries at the boundary, the global optimal geometry is tangent to the
outer boundary in two locations (this was also true in the results in Section 3.1.) It is
interesting to note that this divides the fluid domain into two separate regions, which may
be connected to previous results (Ranger 1994, 1996) that demonstrate flux enhancement
through creating multiply connected regions. (Ranger 1996) provides a short discussion on
the mechanism whereby disconnected regions can lead to increased total flux, discussing
the distribution of flux-per-unit-area for flow through a circular pipe. As flux-per-unit-
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area is low at the edge, removing these regions and replacing them with disconnected
areas of higher flux may lead to enhanced flow.

4. Cross-sectional flow

We now turn attention to the cross-sectional flow problem, governed by the Stokes
equations (2.11), (2.23), and the no-slip conditions (2.13a,b) and (2.14a). The objective
is again to explore the impact of cross-sectional geometry within the configuration space
of I), II), and III); but here the question is how the geometry impacts the resistance
coefficients for cross-sectional rod motion.

We solve the equations numerically using a finite element method implemented in
oomph-lib (Heil & Hazel 2006) (details in Section A.2), and subsequently compute the
dimensionless forces and torque on the rod due to the surrounding fluid via equations
(2.28). We validate our numerical solution by comparing with analytical solutions for
geometries where these are available in the literature.

We consider a cross-section of the domain illustrated in Figure 2 (i), where the rod is
given a prescribed instantaneous velocity, Ẋ = (Ẋ, Ẏ ) in the (x, y) plane and a rotation,
Θ̇ about the z-axis. The resulting forces and torques, F = (Fx, Fy) and τ , are linearly

related to (Ẋ, Ẏ ) and Θ̇ by a symmetric resistance matrix
Fx

Fy

τz

 = −


Kxx Kxy Cx

Kxy Kyy Cy

Cx Cy Azz



Ẋ

Ẏ

Θ̇

 , (4.1)

as discussed in Sections 1.2 and 2.4. If Θ̇ = 0 then[
Fx

Fy

]
= −

[
Kxx Kxy

Kxy Kyy

][
Ẋ

Ẏ

]
. (4.2)

The eigenvectors of the 2×2 matrix in equation (4.2) are the directions of minimum and
maximum opposing force experienced by the rod due to the flow. We will refer to these
as the directions of minimum and maximum resistance. The corresponding eigenvalues
give the magnitudes of the opposing forces that result from moving in the directions of
minimum and maximum resistance with unit velocity. These values are non-negative (see
Section 1.2) and are given by

Kmax = (1/2)
(
Kxx +Kyy +

√
(Kxx −Kyy)2 + 4K2

xy

)
, (4.3a)

Kmin = (1/2)
(
Kxx +Kyy −

√
(Kxx −Kyy)2 + 4K2

xy

)
, (4.3b)

with corresponding directions of minimum and maximum resistance

kmax,min = (Kxy,Kmax,min −Kxx). (4.4)
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The six unique scalars in the resistance matrix (4.1) can be computed by imposing:

Ẋ = (1, 0), Θ̇ = 0, → Kxx, Kxy and Cx, (4.5a)

Ẋ = (0, 1), Θ̇ = 0, → Kyy, Kxy and Cy, (4.5b)

Ẋ = (0, 0), Θ̇ = 1, → Cx, Cy and Azz, (4.5c)

where each calculation provides us with the coefficients indicated by the arrows. We note
that Kxy, Cx, and Cy can each be determined by two separate calculations, and we
perform both as validation (to within numerical error).

4.1. I) Circle in ellipse

The analytical solution for Stokes flow between concentric and offset circular cylinders
demonstrates a dependence of the forces and torque experienced by the rod on the
geometry of the domain (Finn & Cox 2001). We first consider how these results change
when the bounding cylinder is elliptical. To limit the candidate geometries, we position
the rod along the x-axis, i.e. X = (X, 0). We fix the cross-sectional area and set Ro = 2.

For a circular rod translating within a circular cylinder, Kxx and Kyy increase as the
rod approaches the edge of the bounding cylinder, and Kxy = 0, due to the symmetry
of the domain (Slezkin 1955). As expected, we find that for eo > 0, the same behaviour
occurs. The effect of eo on the resistance coefficients is not quite so straightforward as the
effect of position – as eo increases for fixed X, the proximity of the rod to the boundary
in the vertical direction decreases while the distance to the boundary in the horizontal
direction increases, and at nonequal rates. Due to these competing features, Kyy exhibits
an interesting dependence on eo for X = 0. In Figure 8a, we plot Kyy as a function of eo
for a centred rod, and we observe a non-monotonic behaviour, highlighting the complexity
of boundary interactions. Comparing resistance coefficients for X 6= 0 adds yet another
complexity: as the range of feasible X values increases with eo (as long as the rod can
still fit tangent to the vertex of the outer cylinder), we can either compare values at
absolute, X, or relative, X/(ao− 1), distance from the centre, which qualitatively affects
the observed trends. We find that, depending on the metric used, Kxx, Cy, and Azz can
also be non-monotonically related to eo when the cylinder is offset‡. We note that Cx = 0
for a rod centred on the x-axis, due to arguments of symmetry.

If, instead of fixing cross-sectional area, we fix the gap between the rod and the cylinder,
the domain approaches one of a rod between parallel plates as eo → 1. An asymptotic
approximation to the Stokes force and torque on a cylinder rotating between parallel
plates was obtained by Yang et al. (2013), where the ratio of gap width to cylinder
radius defines the small parameter, ε. To test whether the resistance coefficients for a rod
in an elliptic cylinder approach those for a rotating rod between parallel plates (Yang
et al. 2013), we consider a rod at X = 0 in an elliptic cylinder of fixed minor axis,
bo = 1.025, which sets the gaps between the rod and the cylinder at x = 0, to be 0.025.
In Figure 8b we plot Azz as a function of outer eccentricity (line ii), and we see that as
eo → 1 the resistance approaches the value for parallel plates with ε = 0.025 (Yang et al.
2013) (line i). As we increase eo with fixed minor axis, the cross-sectional area of the
elliptic cylinder is also increasing. Thus, as a further geometric comparison, line iii plots
Azz for a rod centred in a circular cylinder with increasing and equivalent cross-sectional
area (i.e. for each eo, the bounding circle has cross-sectional area equal to that of an
ellipse of eccentricity eo and minor axis bo = 1.025). Although Azz decreases with eo due
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Figure 8: Results for Ro = 2. (a) Rod translating with unit velocity in the y-direction,
centred at (0, 0). Kyy is plotted as a function of eo. Inset schematics are for (left-right)
eo = 0, eo = 0.63, and eo = 0.9 (b) Plot of Azz for a circular rotating rod centred at
(0, 0). The rod is rotating: (iv) between parallel plates with gap size ε = 0.025 (Yang
et al. 2013) (v) within an outer elliptic cylinder with bo = 1.025 (Ro not fixed) (vi)
within an outer circular cylinder of radius Ro = 1.025(1 − e2o)−1/4. Solution obtained
from equation (1.3c).

to the increase in cross-sectional area available for the fluid, Azz is larger when the outer
boundary is an ellipse compared to a circle of the same cross-sectional area.

4.2. II) Ellipse in circle

The next domain we consider is an ellipse in a bounding circle. As in Section 3.2, due
to the rotational symmetry of the outer domain, the number of unique combinations
of position and orientation of the rod can be reduced; it is sufficient to consider the
rod centred at X = (X, 0) and to vary X, Θ, and ei. In Figure 9 we investigate how
the resistance coefficients are influenced by the shape of the rod’s cross-section and its
orientation and proximity to the outer boundary. In Figure 9a-c, results are plotted as
functions of absolute offset, and the orientation of the rod, Θ, as well as its position, X,
determine the proximity of the boundary, and in a non-trivial way.

We first consider resistance to rotation. We find that Azz increases as a function
of offset for fixed ei and Θ. Results are shown in Figure 9a for three eccentricities,
ei = 0, ei = 0.7, and ei = 0.9, oriented at Θ = 0, Θ = π/4, and Θ = π/2. For
fixed position and orientation, rotational resistance increases with eccentricity. Without
boundary interactions, Azz would be independent of Θ; however due to the presence of
the bounding circular cylinder, for moderate X 6= 0, Azz is largest when Θ = π/2 and
smallest when Θ = 0. As evidenced by the crossing lines for ei = 0.9 in Figure 9a, when
X is sufficiently large, a rod oriented at Θ = 0 receives the largest opposing torque, which
is likely due to the proximity of the vertex of the major axis to the boundary. We note
that, if we increase the X range in Figure 9a, this effect is also seen for ei = 0.7‡.

Turning now to translational resistance, our results validate the intuition that when
the major or minor axis of the rod’s cross-section is aligned both with the direction of
motion and a radial line of the outer cylinder’s cross-section, the force on the rod acts
parallel to its direction of motion, and the lift force is zero. Brenner (1962a) proved this
to be true for the motion of a bounded arbitrary particle.

‡Results shown in Appendix F.
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Figure 9: Figure (a) and (b) give Azz and Kxy, respectively, as functions of X for ei = 0,
ei = 0.7, and ei = 0.9 and Θ = 0, Θ0 = π/4, and Θ = π/2. In (b), Kxy is identically
zero for Θ = 0 and Θ = π/2, so these are not shown as they coincide with the line for
ei = 0. Figure (c) displays Kmin for Θ = 0 and ei = 0, ei = 0.7, and ei = 0.9. Figure (d)
gives Cy as a function of ei for Θ = 0 and X = 1.45. Colormaps of pressure p1 near the
bounding wall, due to an imposed angular velocity, are shown for ei = 0 and ei = 0.7
with the colorbar providing the magnitude of p1, centred around p1 = 0. All plots have
a dimensionless outer radius of Ro = 3.

Of the three translational resistances, we first consider the lift force, Kxy. We find, that
for fixed ei andX away from the boundary,Kxy is maximised for Θ = π/4. Thus the outer
cylinder does not seem to change classic results for an elliptic cylinder in an unbounded
fluid (Lee & Leal 1986). To see how the lift force changes with inner eccentricity, in
Figure 9b we fix the orientation at the maximal value Θ = π/4 for eccentricities ei = 0,
ei = 0.7, and ei = 0.9, and plot Kxy as a function of X. We find a significant increase in
lift force with eccentricity, and also a non-monotonic relation with position in the case
of ei = 0.9.

Next, we analyse Kxx, Kyy, and Kmin. For relatively small offset, Kxx is smallest (and
Kyy largest) when Θ = 0. We restrict to this orientation, and plot Kxx (dotted line)
and Kyy (dashed line) as functions of X for ei = 0.7 and ei = 0.9 in Figure 9c. An
interesting feature is the non-monotonic behaviour of Kyy with X. The solid coloured
lines give the value of the minimum resistance, Kmin. Looking particularly at ei = 0.9
we see that for small values of X, Kmin coincides with Kxx (and thus the eigenvector
kmin = ex). However, near X = 1.2 the lines Kxx and Kyy cross, and the direction of
minimum resistance switches to be aligned with the y-axis. The same behaviour is seen
for ei = 0.7, with the switching occurring at a smaller offset (near X = 1). The solid
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lines denoting Kmin for each eccentricity also cross. When X is small, Kmin is largest for
ei = 0 and smallest for ei = 0.9 and vice versa for large X. Again, this can be explained
by the significance of boundary interactions: far from the boundary the more eccentric
ellipse has a direction of small resistance – its major axis – but closer to the boundary
the major vertex is in closer proximity to the boundary, compared to ellipses of smaller
eccentricity, hence the resistance in both the x- and y-directions rapidly increases. We
have also demonstrated that for Θ = π/2, kmin is aligned with the y-axis for ei = 0,
ei = 0.7, and ei = 0.9 (at least for 0 6 X 6 1.45)‡.

Finally, we consider the coupling between translation and rotation. We find, for fixed
ei and X away from the boundary, Cx is largest for Θ = π/4 and Cy is largest for
Θ = π/2‡. When the rod is oriented at Θ = 0, there is coupling between rotation and
translation in the y-direction (Cy 6= 0). This is known analytically for ei = 0 (Slezkin
1955), and in this classic case, Cy increases monotonically with X. Interestingly, for
more eccentric ellipses, this is no longer true; in fact, Cy can change sign as a function
of position along the X-axis. Alternatively, this behaviour can be illustrated by plotting
Cy as a function of eccentricity for fixed X sufficiently close to the outer boundary. This
is shown in Figure 9 for X = 1.45 (the furthest-right position in Figures 9 (a)-(c)). We
observe that Cy decreases as a function of ei, changing sign from positive to negative. To
explain this behaviour, consider a rotating rod with imposed angular velocity, in which
case Cy characterises the induced translational force in the y-direction. Example pressure
profiles for ei = 0 and ei = 0.775 near the proximal boundary are shown in the insets, and
these show that the pressure drop in the lubrication layer between the rod and the outer
boundary changes direction as a function of ei. Due to the proximity to the boundary,
we can appeal to Reynolds’ lubrication equation to understand this inversion in terms
of the behaviour of the fluid in the lubrication layer: for a circular surface rotating near
a fixed plane, the pressure drop is in the opposite direction compared to the pressure
drop for a highly curved surface moving parallel to the plane (Wannier 1950). For our
system, rotating an ellipse of high eccentricity is analogous to moving the vertex (and
point closest to the boundary) parallel to the boundary, whereas rotating an ellipse of
small eccentricity does not change significantly the minimal distance to the boundary
and hence behaves more like a rotating circle.

4.3. III) Ellipse in ellipse

In this section we revisit the configuration considered in Section 3.3, with both the
rod and bounding cylinder having elliptical cross-sections of the same eccentricity, e, and
orientation (Θ = 0). We set Ro = 2, and parameterise X by offset φ and angular position
θ, illustrated in Figure 4. Returning to Figure 5, the direction of minimum resistance is
marked with a dashed white line. We see that when the rod is centred in the outer
cylinder, kmin lies along the major axis of the ellipse. As we move towards the wall, this
direction switches to the minor axis, due to the build-up of pressure between the rod
and the proximal edge of the outer cylinder. As we break symmetry and vary θ, kmin no
longer lies along an axis of symmetry of the inner ellipse and for φ = 0.99 it varies from
vertical for θ = 0 to horizontal for θ = π/2, see Figures 5 (e)-(g).

Figures 6a-c showed the axial flow rate in the (φ, θ) parameter space for three different
eccentricity values, and in Figure 10a-c, we plot Kmin for the same domains. For both
e = 0.7 and e = 0.9, the smallest value of Kmin occurs at θ = π/2 and an intermediate
φ value 0 < φ < 1. Here Kmin is in the x-direction, aligned with the major axis of the
rod. This is similar to the behaviour determined by Dvinsky & Popel (1987) of a circular
cylinder translating between two plates, parallel to the boundaries, where the lowest force
was incurred at a position between the centreline and the wall, with the exact location
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Figure 10: Surface plots (a)-(c) give the value of Kmin as a function of both offset, φ, and
angular position θ (where these values are defined as in Section 3) of the inner ellipse for
three different eccentricity values: (a) e = 0, (b) e = 0.7, and (c) e = 0.9.
Plots (d) and (e), respectively, show the maximum and minimum value of Kmin gives
the minimum value of Kmin for a given equal inner and outer ellipse eccentricity value.
The geometries that provide the min(Kmin), (d), and max(Kmin), (e), for e = 0, e = 0.4,
e = 0.7, and e = 0.9 are demonstrated by diagrams and the white-dashed line on each of
these shows the direction of minimum resistance. Ro = 2.

being dependent upon the ratio of the radius of the cylinder to the distance between the
walls.

In Figure 10d, the minimum value of Kmin over (φ, θ)-space is plotted as a function
of e. Several points have been illustrated to show the domain that produces the value,
and the kmin axis is demonstrated on these by a dashed white line. We see that Kmin

has a local minimum near e = 0.7. Note also that the position where the minimum Kmin

is achieved changes with e, moving from the centre of the outer cylinder to the edge
with increasing eccentricity. Figure 10e shows the maximum value of Kmin for increasing
eccentricity, and again, the locations along with the kmin axis that produces these values
is demonstrated at four points. Here there is a monotonic increase with eccentricity, and
the location of the maximum Kmin always occurs on the major axis of the outer cylinder,
closest to the wall (θ = 0, φ = 0.99).

Connecting these results with those in Section 3.3, we find that for each e, the location
where Kmin is maximised coincides with the position where Q is maximised. This can be
seen by comparing Figures 10a-c with Figures 6a-c. Contour plots of Q, log(Kmin), and
log(Kmax) for eo = ei = 0.7, Θ = 0 are shown in Figure 11 as functions of (X,Y ). The
plots are computed for 0 6 φ 6 0.99, 0 6 θ 6 π/2, and the black boundary indicates
the edge of the outer ellipse. The coincident positions of max(Q) and max(Kmin) are
indicated in Figures 11a and 11b, respectively, by the red circles.

We note, by parametrising the position of the rod by φ, the minimum gap between the
rod and the bounding cylinder depends on the angular position θ. To test the sensitivity
– of positions of highest minimum resistance and maximum flux – to the minimum fixed
distance between the rod and the cylinder wall, we consider, in Appendix G, an absolute
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Figure 11: Figures (a), (b), and (c), show Q, log(Kmin), and log(Kmax) as functions of
position for ellipses of equal eccentricity eo = ei = 0.7, and equal orientation (Θ = 0).
The arrows in Figures (b) and (c) show the directions of kmin and kmax, respectively.
Red circles in Figures (a) and (b) indicate the coincident locations of maximum Q and
maximum Kmin.

minimum distance between the rod and bounding cylinder, rather than one that depends
on θ, as well as different maximum φ values. We find, for all considered minimum distances
between the rod and cylinder, that the correspondence between rod positions of highest
minimum resistance and maximum flux persists.

The resistance contours, Figures 11b and 11c, show increasingly narrow contours with
proximity to the edge of the outer ellipse, demonstrating a rapid increase in the gradient of
Kmin and Kmax, respectively. In contrast, the distances between neighbouring Q contour
lines in Figure 11a remain relatively constant. Thus, it is interesting to note that small
changes to the position of the inner rod when it is near the outer boundary may incur
vast changes to the resistance to cross-sectional motion, but only a small change to the
corresponding axial flux. The arrows in Figures 11b and 11c demonstrate the directions
of minimum and maximum resistance, respectively. Along the major axis of the outer
ellipse, and close to its centre, the direction of minimum resistance is towards the vertex
of the inner rod, demonstrating the effect of the rod’s streamlined elliptical cross-section.
However, the directions of the arrows change once the rod is sufficiently far from the
centre, and the competing effects of the bounding walls become significant. This is in
agreement with the results in Figure 9c. As anticipated, when the rod is near the outer
boundary, the direction of minimum resistance is tangent to the wall and the direction
of maximum resistance perpendicular to it. The arrows in Figures 11b and 11c allow
some conjecturing as to local trajectories of the inner rod; however, it is important to
recall that the results in Figure 11 are computed for fixed orientation of the inner rod
(Θ = 0). In actuality, torque will be induced by the translational motion of the rod, thus
changing the resistance contours. Although similar trends exist between Q, Kmin, and
Kmax, as shown in Figure 11, the non-monotonic contour shapes in Figure 11b, as well
as the difference in gradients, indicate that the apparent correspondence between axial
and cross-sectional resistance is complicated, even in the particular reduced parameter
space (of equal ellipse eccentricity and orientation) explored in Figures 10 and 11.

5. Discussion

We have considered in this paper the effect of geometry in an annular region, formed by
an elliptic rod and coaxial elliptic cylinder, on two types of resistance: the resistance to
axial flow, and the resistance to movement of the rod in the cross-section. This research
was motivated by questions of optimal device design: where to position the rod, and how
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to shape the cross-sections of the rod and the bounding cylinder, to maximise axial flux
and minimise movement of the rod. Motivated by the design of urological devices, we
have restricted to the parameter regime in which the fluid behaviour is dominated by
viscous forces, but in which inertia of the inner cylinder is non-negligible. In this regime,
we showed that the axial flow decouples from the cross-sectional flows. Therefore, we
can separately solve a Poiseuille flow problem for the axial flow and Stokes flow in the
cross-section, with the profile of the cross-sectional flow producing a net force and torque
that couple to the motion of the inner cylinder.

5.1. Axial flow resistance

For all configurations considered, the flux increases monotonically as the rod is posi-
tioned further from the centre of the outer cylinder, and the maximum flux is achieved
when the rod touches the boundary of the outer cylinder. For a circular rod in a circular
cylinder, the maximum flux is achieved when the circle touches the outer boundary
at a single point (Snyder & Goldstein 1965; MacDonald 1982). When either the outer
cylinder or the rod is elliptical, we found that flux can be increased from the circular
case by touching the boundary tangentially at two points. Even within the reduced space
of elliptical cylinders, the full optimisation problem is 5-dimensional and non-trivial,
containing many local minima. Along with the global optimum, we have also considered
several constrained optimisation problems; these are summarised in Table 3, grouped by
geometric constraint. Of particular relevance is the fact that the global optimum gives a
52% increase over the circle in circle case. Also of note is the observation that the true
optimum in the case of an ellipse in circle, circle in ellipse, and ellipse in ellipse, all occur
at configurations for which the inner cylinder meets the outer cylinder at two tangent
points and thus does not correspond to a matching of the curvature of the boundaries.

The existence of an optimal eccentricity value to minimise resistance for an outer ellip-
tic cylinder containing an inner circular rod is of particular interest to the endourological
community. It is important to note, however, that in a biomedical context, the value
of Ro varies with the particular medical device under consideration. Even within the
category of ureteroscopes, there are a variety of available sizes for working tools and
access sheaths, and hence, as the optimal geometry depends on the size of Ro, there is
no single optimal configuration. The system is further complicated by concurrent flows
through the working channel and access sheath, connected by pressure within the kidney.
We derive an irrigation systems model in Williams et al. (2019b) and discuss – based
on the fluid mechanics presented in Section 3.4 - the effects of modifying flow resistance
through the access sheath on flow rate and kidney pressure.

5.2. Cross-sectional flow resistance

The cross-sectional resistance to imposed translational and rotational movement of
the rod is fully characterised by six unique scalars. The behaviour of these resistance
coefficients is determined both by the shape of the rod’s cross-section and its proximity
to the bounding cylinder. When varying eccentricity, position, and orientation, and the
impact on 6 scalars, we are thus faced with a very high-dimensional parameter space to
investigate. Our results do not represent a complete sweeping of all configurations; rather
we have tried to uncover trends, to compare with classic results in particular limits,
and to focus on unexpected behaviour. One particularly interesting result was found for
an elliptic rod near the edge of a bounding circular cylinder, in which case we found
that the sign of the coefficient coupling translational and rotational motion changed
as the eccentricity of the inner ellipse increased. This result could be rephrased as a
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Description Optimal Configuration Geometry Q
Tangent
points

Circle in
circle

ei = 0 eo = 0

X = 1 Y = 0

Θ = 0
1.84 1

Ellipse in
ellipse

(ei = e0,
Θ = 0)

ei = 0.66 eo = 0.66

X = 1.15 Y = 0

Θ = 0

1.89 1

Ellipse in
ellipse
(‘curve

hugging’)

ei = 0.45 eo = 0.71

X = 1.44 Y = 0

Θ = π/2

2.62 1

Ellipse in
circle

eo = 0 ei = 0.87

X = 1.23 Y = 0

Θ = π/2

2.66 2

Circle in
ellipse

ei = 0 eo = 0.83

X = 1.65 Y = 0

Θ = 0

2.69 2

Ellipse in
ellipse

ei = 0.68 eo = 0.74

X = 1.49 Y = 0

Θ = π/2

2.80 2

Table 3: Summary of optimal configurations for Ro = 2.

change in motion being generated by a change in shape, and we might speculate whether
such a process could be harnessed in a micro-swimming context, where trajectories are
determined by principles of Stokes resistance (Lauga & Powers 2009).

It is important to note that all resistance coefficients diverge as the rod approaches the
outer boundary. Thus, positions for the rod which lead to high axial flux (close to the edge
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of the bounding cylinder) receive extremely high resistance to translational and rotational
motions. Thus, it is impossible to fully connect configurations of maximum axial flux to
positions of highest minimal resistance within our modelling framework, as the maximum
axial flow occurs when the rod touches the wall, and here the resistance always diverges.
Nevertheless, for the particular class of an elliptic rod in an elliptic cylinder of the same
eccentricity and orientation, we restricted the parameter space of rod positions to those
within a fixed relative distance to the boundary, and found a correspondence between
the position of maximum axial flux and highest minimum resistance.

Although we have uncovered coincident rod positions for optimal axial flow and highest
minimum resistance, a question still remains as to whether the rod will be driven to such
a position by the hydrodynamic forces and torque, a question that may have interesting
design implications. One could address this with rod trajectories calculated by integrating
forward the equations of motion for the rod. Within the parameter regime where rod
inertia is included while fluid inertia is neglected, one could quasi-statically update
the forces and torques on the rod after updating its position and resolving the Stokes
equations in the cross-section. While more work is needed to fully characterise how a
rod will move in these geometries, we can provide at least an answer to the question
of whether the rod will always naturally move to the position of maximum axial flow:
the answer is no, when one considers that the fluid is not really pushing the rod at all
but merely dissipating energy that has to be input to the rod from the external world.
However, as positions of near-contact between the rod and wall correlate both with high
axial flux and high cross-sectional resistance, we speculate that a large energy input is
required to move the rod if it originates in such a position. Of course, these conclusions
rely on the decoupling of axial and cross-sectional flow, which would cease to be the
case if one breaks the co-axial assumption. It would be interesting to consider how such
effects, as well as including fluid inertia, impact on our findings.

Low-Reynolds number flow in annular regions bounded internally and externally by
ellipses is a surprisingly rich area of research. There are many industrial flows through
cylinders containing a coaxial rod, such as oil wells and small-scale medical devices, and
in these applications, it is often important to maximise the flux. Our results indicate that
an understanding of the complex effect of geometry on resistance in annular domains can
enhance optimal device design. Our work has particular impact in the field of endourology,
where an understanding of the axial flow resistance and geometric configurations can help
guide the design of surgical tools.
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Appendix A. Numerical details

A.1. Elements

The finite elements are implemented with an open-source finite element library, oomph-
lib (Heil & Hazel 2006). In Section 3, the elements for solving the Poisson equation
are first-order triangular elements. In Section 4, the elements for solving the Stokes
equations are triangular Taylor-Hood elements (second-order for velocity and first-order
for pressure).

A.2. Mesh

An unstructured mesh of triangular elements is generated for each domain via the
use of the Triangle library within an oomph-lib driver code (Shewchuk 1996). A single,
automatic mesh adaptation is enabled, to allow elements to cluster where there is a
narrow gap between the rod and the outer cylinder. The maximum allowed element area
is set to be 0.1 and the minimum element area to be 10−6. A typical number of elements
is 4000.
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Figure 12: Equation (8) in Piercy et al. (1933) with the infinite sum truncated at n = N
as a function of N for φ = 0.01, φ = 0.5, and φ = 0.99.

A.3. Calculating the analytical flux for offset circles

A formula for the flow rate between a pair of offset circular cylinders is given in Piercy
et al. (1933, p. 650), equation (8). This equation can be made dimensionless by setting
Ri = dp

dz = µ = 1. The formula contains an infinite sum over n, and in Figure 12 we plot
Q(N) (which we define as the formula with sum truncated at n = N) as a function of
N , for Ro = 2 and three values of φ. We observe that the rate of convergence decreases
monotonically with φ. When validating our numerical solution for flow in an offset circular
annulus, and when plotting the analytical solution for Q in Figure 3b, we take N = 50.
For φ = 0.99 – the largest φ-value considered in this chapter, and thus the φ-value which
will have the largest error induced by truncating the sum – the relative error for N = 50
is

ε =
Q(50)−Q(49)

Q(50)
= O(10−8). (A 1)

Appendix B. Position that maximises flux (Section 3.1)

The rod position that maximises axial flux for a circular rod in an elliptic cylinder is
the position as close to the vertex of the bounding cylinder as geometrically possible.
This will be when the radius of the inner circle is less than the radius of curvature of the
ellipse at the vertex, which for a cylinder of major axis a and minor axis b is b2/a.

Thus, for a circle of radius r, if b2/a > r then the rod position that maximises flux
is a − r from the centre of the ellipse. If b2/a < r, we can solve for the position of
the circle centre where the circle and the ellipse are tangent in two locations. This is√
a2 − b2

√
1− r/b2 from the centre of the bounding ellipse.

Thus, for our configuration, the rod position that maximises flux is

X = ao − 1, if eo > e?, X = aoeo
√

1− b−2o , if eo < e?, (B 1a,b)

where

e? =

√
1−R−4/3o . (B 2)

A closer look at the ellipse vertex for configuration (ii) in Figure 3 (the configuration
that maximises flux over all eo for Ro = 2) is shown in Figure 13. The two points of
intersection between the rod and bounding cylinder are indicated by red dots. As the
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Figure 13: The geometry that maximises flux in Figure 3. A close-up of configuration
(ii).

eccentricity of the outer ellipse is greater that e?, the inner circle touches the outer ellipse
in two locations, rather than just at the vertex.

Appendix C. Additional results (Section 3.3)

Figures 6a-c show colourmaps of Q as a function of the position of the rod, parame-
terised by φ and θ, for an elliptical rod in an elliptical cylinder of the same eccentricity
e, and orientation Θ = 0. To highlight the behaviour of Q with respect to individual
variation of e, φ, and θ, in Figure 14 we fix two of our three parameters and plot Q as a
function of the third. Figure 14a shows a monotonic increase of Q with φ for θ = 0 and
e = 0, 0.4, 0.65, and 0.8. Figure 14b captures a zoomed-in view of Figure 14a between
0.9 6 φ 6 0.99, and shows that over this range of φ, for the four eccentricity values
plotted, e = 0.65 has the highest flux and e = 0 has the lowest. Figure 14c plots the
non-monotonic relationship between θ and Q indicated by Figures 5e-h for e = 0, 0.4,
0.65, and 0.8. The flux is largest for θ = 0 and has a minimum between θ = π/4 and
θ = π/2. For e = 0, Q is constant with respect to φ as expected due to the rotational
symmetry of the domain. Figure 14d shows Q as a function of e for fixed offset, φ = 0.99,
and θ = 0, π/4, and π/2. For θ = 0, the flux is maximum for e between 0.6 and 0.8. For
θ = π/4, there is a maximum Q near e = 0.3, whereas for π/2, Q decreases monotonically
with e. The results in Figure 14 suggest that φ = 0.99, θ = 0, and a non-zero value of e
lead to the maximum flux.

Appendix D. Curvature matching (Section 3.4)

The equations for Γi and Γo are

((x−X) cosΘ + (y − Y ) sinΘ)2

a2i
+

((x−X) sinΘ + (y − Y ) cosΘ)2

b2i
= 1,(D 1a,b)

x2

a2o
+
y2

b2o
= 1, (D 1a,b)

respectively, where ai,o and bi,o can be calculated from Ro, ei,o via equations (3.2). We
seek values for X, Y , Θ, and ei so that the inner ellipse will touch the outer ellipse
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Figure 14: Dimensionless flow rate,Q, as a function of (a) and (b) offset, φ, (c) eccentricity,
e, and (d), angular position, θ. Figure (b) displays the outlined section of (a). Here Ro = 2.

tangentially with matching curvature at a point

(x, y) = (ao cos θ, bo sin θ), (D 2)

with its centre located furthest from the centre of the outer ellipse. Transforming
coordinates

(x, y)→
(
x

ao
cosα+

y

bo
sinα,

x

ao
sinα− y

bo
cosα

)
:= (x̃, ỹ), (D 3)

where α = π/2− θ. the equations for the inner and outer ellipse are then

(x̃ cos Θ̃ + (ỹ − Ỹ ) sin Θ̃)2

ã2i
+

(x̃ sin Θ̃ + (ỹ − Ỹ ) cos Θ̃)2

b̃2i
= 1, (D 4a,b)

x̃2

ã2o
+
y2

b̃2o
= 1, (D 4a,b)

As the outer boundary is now circular, we seek without loss of generality, a geometry for
the inner ellipse that touches the outer boundary in a single point, (0, Ỹ ) with matching
tangent and curvature. As R is fixed, the major and minor axes of the ellipses are
determined by their eccentricity values. To maximise the distance between the centres of
the ellipse we take Θ̃ = 0 and the ellipse centres are a distance 1 − b̃i apart. Hence, we
have

ãi = R−2/3, b̃i = R−4/3, X̃ = 0, Ỹ = 1−R−4/3. (D 5)



35

Q = 2.59 Q = 2.44 Q = 2.14 Q = 1.99

Q = 2.50 Q = 2.53 Q = 2.61 Q = 2.37

0.6

0.3

0

−2.58 2.58 2.58 2.58 2.58−2.58 −2.58 −2.58

2−2 −2.05 2.05 2.24−2.24 −3.03 3.03

eo = 0.8
Vary θ

θ = 0
Vary eo

(a) θ = 0 (b) θ = π/6 (c) θ = π/3 (d) θ = π/2

(e) eo = 0 (f) eo = 0.3 (g) eo = 0.6 (h) eo = 0.9

Figure 15: Dimensionless velocity colourmaps with dimensionless flow rates, Q. Axes are
in (x, y) coordinates and these vary with eccentricity as the available space for fluid flow
is constant. Plots (a)-(d) show the effect of the position of the inner ellipse, θ, and plots
(e)-(h) show the effect of the outer ellipse eccentricity, eo. Given θ and eo, we solve for
X, Y , and Θ, so that the ellipses touch at a single point with matching tangent and
curvature.

We can therefore determine the position and orientation angle of the initial ellipse by
reversing the transformation (D 3). Some velocity colourmaps are shown in Figure 15.
The values for θ and eo in Figures 15a-h correspond to those in Figures 5e-l, respectively.
This comparison shows that Q is larger for ei, Θ that match the curvature of the outer
ellipse (Figure 15), compared to ei = eo and Θ = 0 (Figure 5).

Appendix E. Optimisation constraints (Section 3.4)

From equations (3.8), we have that the equations of the outer and inner ellipses can
be written respectively as

xTAx = 0, xTBx = 0,

where x = (x, y, 1)T and A and B are symmetric matrices of coefficients, functions of
the components of g (equation (3.6)). The intersections of two conics can be determined
by considering their pencil, λA+B (Casey 1893). Conditions to determine the relative
position of two ellipses were derived by Etayo & Gonzalez-Vega (2006), which we can
then write in terms of the components of g. The characteristic polynomial of the pencil
(once turned monic) is

f(λ) = λ3 + aλ2 + bλ+ c. (E 1)
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In order for the inner ellipse to be fully enclosed in the outer ellipse the following
conditions must hold

a > 0, −3b+ a2 > 0, 3ac+ ba2 − 4b2 > 0, (E 2a,b,c)

−27c2 + 18cab+ a2b2 − 4a3c− 4b3 > 0, (E 2d)

along with conditions

n22det(N) > 0, det(N11) > 0, (E 3a,b)

where N = vA + B = (nij) and N11 is the minor of N (Etayo & Gonzalez-Vega 2006).
Equations (E 2) and (E 3) provide a set of six nonlinear constraints on g. Thus, the
optimisation problem can be formulated as equation (3.8)

min
g
−Q, s.t. c > 0, (E 4)

where

c =



a

−3b+ a2

3ac+ ba2 − 4b2

−27c2 + 18cab+ a2b2 − 4a3c− 4b3

n22det(N)

det(N11)


. (E 5)

Appendix F. Additional results (Sections 4.1 and 4.2)

Sections 4.1 and 4.2 explore Stokes resistance to rod motion for a circular rod and a
circular outer cylinder, respectively. Although we fix the eccentricity of either the rod
or bounding cylinder in each section, the parameter space remains vast and comprises:
the position of the rod, the eccentricity of the rod or outer cylinder, and the six Stokes
coefficients. We have highlighted key results in Figures 8 and 9 and provide plots of
additional results (which we refer to in the main text) in this Appendix for completeness.

F.1. Section 4.1

We plot Kxx as a function of relative offset (which varies from 0 when the rod is
concentric to 1 when the rod touches the boundary∗) in Figure 16a for eo = 0, eo = 0.6,
and eo = 0.8 (lines i, ii, and iii, respectively). For each offset value, Kxx increases with
eo, though it should be noted that when plotting Kxx as a function of absolute offset
X, a crossing of the curves is observed (see inset plot in Figure 16a); this is due to the
fact that with higher eccentricity, there is a larger absolute distance to the edge. In all
cases we compute the lift force Kxy = 0 (to within numerical error), which is expected
by the symmetry of the domain. We next consider the coupling coefficients Cx and Cy.
For concentric circular cylinders, there is no coupling between translation and rotation,
i.e., Cx = Cy = 0 (see Section 1.2). However, coupling does occur when there is an
offset; e.g. when the rod is rotating and positioned away from the centre of the outer
cylinder, the viscous fluid provides both an opposing torque and a force orthogonal to
the minimal spacing. The force parallel to the minimal spacing in this scenario is zero

∗For all eo values shown, the rod can fit tangent to the vertex, so X/(ao−1) = 1 is achievable.
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Figure 16: Results for Ro = 2. (a) Rod of unit radius centred at (X, 0), translating with
unit velocity in the x-direction. Kxx is plotted both as a function of relative offset and
of X (inset) for three values of eo: (i) eo = 0 (ii) eo = 0.6 and (iii) eo = 0.8.
(b) Rod centred at (X, 0), rotating with unit velocity in the clockwise direction for (i)
eo = 0, (ii) eo = 0.6, and (iii) eo = 0.8. The solution for eo = 0 is compared against
the analytical solution – Slezkin (1955), dashed black line. The main plot is function of
relative offset, and inset is a function of X.

(Slezkin 1955). We now explore how these results extend for a circular rod in an outer
elliptical cylinder. We determine that, as with a circular outer cylinder, if the rod is offset
in the x-direction, the coupling coefficient Cx = 0, while Cy 6= 0 for all eo with X 6= 0. In
Figure 16b we plot Cy as a function of relative offset for eo = 0, eo = 0.6, and eo = 0.8
(lines i, ii, and iii, respectively). As observed by the crossing of the curves, for small
relative offset the coupling is highest for the circular rod, while for large offset the most
eccentric rod has the largest coupling coefficient. That is, as the inner rod approaches
the edge of the domain, the fluid couples rotation to vertical force (and likewise vertical
velocity to torque) more strongly for increased eccentricity. Again, the picture appears
differently when plotted against absolute offset, since a greater total distance is available
with increased eccentricity: for each absolute distance X, Cy decreases with eccentricity
(plotted in the inset).

F.2. Section 4.2

Figure 17a plots Azz as a function of absolute offset, 1.45 6 X 6 1.8, for ei = 0.7,
continuing the plot on Figure 9a for larger values of X. We observe the same line crossing
behaviour noted for ei = 0.9 in Figure 9a.

Figure 17b plots Kxx (dotted), Kyy (dashed), and Kmin (solid) for ellipses of eccen-
tricities ei = 0, ei = 0.7, and ei = 0.9, all oriented at angle Θ = π/2. We see that over
this range of offset values (0 6 X 6 1.45), Kmin = Kyy, and kmin = ey.

Figures 17c-h show either coupling or lift coefficients for ei = 0.7 (left column) and
ei = 0.9 (right column) as functions of absolute offset, X. The dashed black lines are
different Θ values, ranging from Θ = 0 to Θ = π/2 in steps of π/40. In each plot, the Θ
value that maximises the force coefficient (over the majority of the X range) is indicated
by a solid red line. Schematics indicate orientation for the minimal and maximal lines.

The coupling between rotation and translation in the x-direction is shown in Figures
17c-d. We see that for Θ = 0 and Θ = π/2, Cx = 0. Over the majority of the offset
values, Cx is maximal when Θ = π/4. However, for ei = 0.9, there is a region close to
the outer boundary, where smaller offset angles provide a higher coupling force.

The coupling between rotation and translation in the y-direction is shown in in Figure
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17e and Figure 17f. For both ei = 0.7 and ei = 0.9, Cy increases monotonically with Θ
from Θ = 0 to Θ = π/2 over the full range of offset values.

The lift force, Kxy is plotted in Figure 17g and Figure 17h. This is zero for Θ = 0 and
Θ = π/2 and maximal (over the majority of the offset values) for Θ = π/4. However, for
ei = 0.9, as with Cx, there is a region close to the boundary, where crossing of the lines
occurs.

Appendix G. Absolute vs. relative distance from the wall

In Figure 11, the closest distance to the wall at each value of angular position θ is
taken as φ = 0.99, with φ and θ defined as in Figure 4: φ = 0 corresponds to the rod
positioned in the centre of the outer cylinder (X = Y = 0) and φ = 1 denotes the rod
touching the cylinder wall. For each value of (φ, θ), the position of the rod is

X = φ(ro − ri) cos θ, Y = φ(ro − ri) sin θ, (G 1)

where ro and ri are the effective radii of the inner and outer ellipses at an angle θ, as
defined in equation (3.3). Because the radius of the inner and outer ellipses vary with
angular position θ, φ provides a ‘relative’ position for the rod; i.e., the absolute distance
between the edge of the rod and the cylinder is different for constant φ at each value of
θ. In Figure 18 we test the sensitivity to the fixed distance from the wall of the observed
correspondence between positions of highest minimum resistance and maximum axial
flux in Figure 11 (where ei = eo = 0.7, Θ = 0). Positions for the rod with an absolute
distance, δ, are

X = (ro − ri − δ) cos θ, Y = (ro − ri − δ) sin θ. (G 2)

We plot, as the solid lines in Figures 18a,c, Q and Kmin, respectively, for fixed values of
φ = 0.9, 0.925, 0.95, 0.99 (increasing φ correlates with decreasing distance between the
rod and the cylinder wall). We see that the position that provides both maximum flux
and highest minimum resistance is at θ = 0 for all values of φ. We compare this with flux
and resistance when the rod is positioned at an absolute distance from the edge of the
cylinder, δ. In Figures 18b,d, we again plot Q and Kmin, respectively, but now for fixed
δ = 0.1, 0.05, 0.025, 0.01 (dashed lines). We see that the qualitative nature of the curves
is unchanged, and that again, the position of both maximum flux and highest minimum
resistance is at θ = 0 for all values of δ.
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Figure 17: Figure (a) shows Azz as a function of offset for ei = 0.7 oriented at Θ = 0,
Θ = π/4, and Θ = π/2. Offset, X ∈ [1.45, 1.8] (a continuation from Figure 9a). Figure
(b) shows Kmin for ei = 0, ei = 0.7, and ei = 0.9 all oriented at Θ = π/2. Figures (c)-(h)
show coupling and lift force coefficients for ei = 0.7 (left column) and ei = 0.9 (right
column). Orientation angles vary between Θ = 0 and Θ = π/2 in steps of π/40.
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Figure 18: Plots of Q (a,b) and Kmin (c,d) as functions of angular position θ (see Figure
4) for different offset values from the wall. Figures (a) and (c) with solid lines show
relative distances, denoted with φ (Figure 4) and absolute distances, δ.


