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A simulation tool for physics-informed control of
biomimetic soft robotic arms

Bartosz Kaczmarski1, Alain Goriely2, Ellen Kuhl1, and Derek E. Moulton2

Abstract—Due to an infinite number of degrees of freedom, soft
robotic arms remain challenging to control when underactuated.
Past work has drawn inspiration from biological structures–for
example the elephant trunk–to design and control biomimetic soft
robotic arms. However, to date, the models used to inform the
control of biomimetic arms lack generalizability, and largely rely
on qualitative assumptions. Here, we present a computationally
efficient methodology to control fiber-based slender soft robotic
arms inspired by the theory of active filaments. Our approach
seeks to optimize fibrillar activation under prescribed control
objectives. We evaluate the methodology under various control
objectives, and consider several distinct fiber architectures. Our
results suggest that we can efficiently compute fibrillar activations
required to match the imposed control objective. Based on our
findings, we discuss the effect of actuator complexity on actuation
capabilities as a function of the number and arrangement of
fibers. Our method can be applied universally towards the control
and design of slender soft robotic arms with embedded fibers.

Index Terms—Soft robotics, physics-informed control, fiber-
reinforced robotic arms, continuum modeling, optimization.

I. INTRODUCTION

IN the field of robotics, we distinguish four primary classes
of robotic arms: rigid, discrete hyper-redundant, hard con-

tinuum, and soft arms [1]. While optimal control methods
for rigid serial manipulators have been well-established in
the past several decades [2]–[5], the control of soft robotic
arms remains a significant challenge, and constitutes an area of
active investigation [6], [7]. The challenges in the control and
mathematical modeling of soft structures lie in the mechanical
intricacies governing their continuous deformation. Specifi-
cally, in contrast to rigid robots with a finite number of degrees
of freedom, soft-robotic arms are generally underactuated and
described by an infinite number of degrees of freedom [8], as
every material point in the elastic continuum of the soft robot
can, in principle, undergo arbitrary deformations.

Designing control methods for underactuated systems with
an infinite number of degrees of freedom is a non-trivial
task [9], so computational mechanics models are invaluable
for describing the deformations of soft-robotic arms as a
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function of the actuation input. That is, having access to
an explicit relationship between the actuation input and the
resulting deformation of a given soft-robotic arm enables the
development of a robust mechanical control framework for
that robotic design. A considerable body of work has been
committed to formulating such models [10].

In particular, researchers have devoted special attention to
designing and modeling soft-robotic arms inspired by biolog-
ical structures in the animal kingdom, such as the elephant
trunk or the octopus arm [11]–[14]. However, the models and
control methods developed for these biomimetic designs lack
generalizability, as their assumptions are specialized for their
respective engineering implementations. Further, they often
rely on a geometrical discretization of the domain to represent
the infinite-degree-of-freedom system using a simplified model
with a finite number of degrees of freedom, which can sacrifice
model fidelity. Finally, theoretical models of biomimetic actu-
ators are frequently developed under qualitative assumptions
that are difficult to validate for generic soft robot designs.
For instance, they assume purely kinematic descriptions of the
underlying actuation or employ linear elasticity formulations
that do not generalize to finite deformations.

To improve upon the past modeling approaches for
biomimetic robots, we propose a computational tool for the
quasi-static control of biomimetic soft-robotic arms based on
the active filament model [15] and the morphoelastic rod the-
ory [16]. Most slender biological arms—that could be readily
used as a biomimetic inspiration for soft actuator architecture
design—consist of some arrangement of muscle fibers. As
such, our model considers a family of soft-robotic arms that
are actuated via the activation of a fiber field embedded in the
slender soft arm. Our approach is similar to some of the past
modeling developments for soft manipulators [17]–[19], in that
it utilizes dimensional reduction to characterize the slender
structure of the robotic arm as a one-dimensional Kirchhoff
rod [20]. However, the active filament model employed in this
work is derived from a rigorous three-dimensional continuum-
mechanics formulation of the fiber-reinforced arm, for a gener-
alized geometry of the embedded fiber field. Thus, any notable
loss in fidelity of the control framework presented here is
only due to the dimensional reduction; otherwise, the model is
mechanically accurate with respect to the physical phenomena
governing the deformations of the filamentary arm.

II. FIBER-BASED SOFT ARM MECHANICS
Before describing the control approach itself, we briefly

summarize the morphoelastic filament theory [16] and the
active filament model [15].
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Fig. 1. Schematic description of the active filament model. (a) The morphoelastic filament theory in [16] considers the continuum mechanics of a filament
with a deformation map χ : B0 → B. The form of χ is restricted to represent the dimensionally reduced geometry of the filament consisting of the centerline
r(Z) and the director basis functions {d1(Z),d2(Z),d3(Z)}. (b) The active filament model in [15] assumes an activation tensor field G acting along a
fiber field embedded in the filament. Our analysis focuses on helical fiber fields activated in tubular regions of B0. The uniaxial field is a special case of
the helical fiber field with α = 0. (c) Piecewise uniform activation functions γ(1)(θ), . . . , γ(M)(θ) are assumed for robotic arm control. R(i)

1 , R(i)
2 are the

inner and outer radii of the i-th ring, respectively. The activation in the j-th annular sector of the i-th ring is denoted γ
(i)
j . In the i-th ring, θ(i)0 is the angular

offset of all N(i) activated sectors, and σ(i) defines the angular width of each sector. (d) The active annular sectors in each ring (shown in red) wind around
the tubular body of the filament, as dictated by the prescribed helical fiber field. The visualized filament consists of M = 2 rings of helical fibers. Subfigure
(a) is adapted from [16], and subfigures (b)-(d) are adapted from [15].

A. Morphoelastic filament theory

We use the theory of morphoelasticity to describe the
mechanics of a fiber-based robotic arm [16]. This continuum-
based theory considers a general three-dimensional tubular
body B0 ⊂ R3 representing the filament. We describe the
active material change at each point in the continuum B0

through a local tensor field G, which creates a deformation
χ, producing the current configuration B ⊂ R3 (Fig. 1a).

Importantly, the specific form of χ is limited to deforma-
tions pertinent to a dimensionally reduced representation of the
filament. This facilitates the interpretability of the simulation
results and significantly improves the computational efficiency
of the implementation. Specifically, we reduce the three-
dimensional continuum B to a space curve r : [0, L] → R3,
the centerline, where L is the length of the filament in the
reference configuration B0. The argument of the centerline
function is the material coordinate Z. The director basis
{d1,d2,d3} : [0, L] → R3 is attached to r(Z) for all Z,
and represents the material orientation of the cross section as
a function of Z. Fig. 1a visualizes this dimensional reduction,
which is similar to the well-established Kirchhoff theory for
the mechanics of thin rods [20]. However, the advantage of the

morphoelastic theory is that it considers the complete contin-
uum mechanics of finite deformation, starting from a rigorous
construction of the deformation gradient F = Grad χ.

The mathematical procedure describing the deformation χ
relies on the commonly applied multiplicative decomposition
of the deformation gradient F into the elastic part A and the
growth part G, i.e., F = AG. For a given growth tensor
G, the form of F is then derived under the assumption of
a limited family of permissible deformations χ dictated by
the previously described dimensional reduction. To obtain the
deformed configuration of the filament, we minimize the total
energy of the system over all deformations permitted by the
form of χ. The minimization leads to explicit expressions for
the intrinsic curvatures û1, û2, û3, and extension ζ̂ of the
filament. Importantly, these quantities are intrinsic, i.e., they
characterize the unloaded filament configuration resulting from
a prescribed growth field. To obtain the intrinsic shape r of the
robotic arm, we integrate the curvatures and extension using
the differential relations

r′(Z) = ζ̂(Z)d3(Z), d′
i(Z) = ζ̂(Z)û(Z)× di(Z), (1)

for i = 1, 2, 3, where û = (û1, û2, û3) [16].
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For given intrinsic properties of the filament and given exter-
nal loading, we can integrate the filament’s equilibrium shape
by using the filament force and moment balance equations
[21]. This allows us to incorporate any loading scenario into
the mechanics of the simulated system.

This generalized treatment provides a framework for com-
puting the deformation of filaments subject to arbitrary growth
tensor fields G. The active filament model adopts this frame-
work under a particular choice of G that describes a distributed
activation of fibers embedded in the filament.

B. Active filament model

The active filament model [15] is a specialized application
of the general theory of morphoelastic filaments. Namely, the
model assumes that the tensor field G satisfies the constraint
det(G) = 1. From now on, we refer to the tensor field G
as activation rather than growth, since the imposed constraint
implies no deposition of new material in B0. Instead, an acti-
vation G effectively quantifies the local effort of the material
to induce deformation throughout B0. Combined with the
assumption of incompressibility, this condition is particularly
applicable to soft-robotic actuation mediated by the activation
of contractile or extensible fibers. The prevalence of such a
robotic design warrants further specification of the form of
the activation G in the model. Specifically, we consider an
active fiber architecture following a fiber direction field m
that is embedded in the filament body [15], and express the
fiber field in a cylindrical basis,

m = sinα sinβ eR + sinα cosβ eΘ + cosα eZ , (2)

where α and β are arbitrary functions of the radius R, the
polar angle Θ, and the material coordinate Z.

Fiber geometries in soft robots are usually not arranged
arbitrarily, but often follow helical architectures [22]. The the-
ory of active filaments [15] narrows the underlying mechanics
down to a specialized case of the activation field. In particular,
we prescribe G

• in a set of concentric, tubular regions R(i) = {R ∈
[R

(i)
1 , R

(i)
2 ], Θ ∈ [0, 2π), Z ∈ [0, L]} ⊂ B0 called rings,

• along a helical fiber field m(i) in each R(i), such that
α(i) ∈ (−π/2, π/2) and β(i) = 0,

for i = 1, . . . ,M . Importantly, a helical angle α(i) = 0
is a special case of a helical field m corresponding to a
uniaxial fiber field. Fig. 1b illustrates the activation geometry
for M = 1. In this setting, the deformation of the filament
is generated by the contraction or extension of the helically-
arranged fibers embedded in R(1), . . . ,R(M). To characterize
the fiber activation throughout the entire filament body, we
define an activation function γ(i)(θ) in the cross section
of each R(i). Following [15], we then obtain the analytical
expressions for û and ζ̂ as functions of γ(i)(θ), α(i), and the
geometries of R(i) to integrate the shape of the filament for
an arbitrary activation:

ζ̂ = 1 +
1

2R2
0

M∑
i=1

a
(i)
0 δ

(i)
0 , (3)

û1 = − 4

3R4
0

M∑
i=1

A(i)δ
(i)
1 sin

(
φ(i) − Z

R
(i)
2

tanα
(i)
2

)
, (4)

û2 = − 4

3R4
0

M∑
i=1

A(i)δ
(i)
2 cos

(
φ(i) − Z

R
(i)
2

tanα
(i)
2

)
, (5)

û3 =
2

R4
0

M∑
i=1

δ
(i)
3 a

(i)
0 , (6)

where a
(i)
0 , a(i)1 , b(i)1 are the first three Fourier coefficients of

the activation distribution γ(i)(θ), R0 is the outer radius of the
filament, δ(i)j = δ

(i)
j (R

(i)
1 , R

(i)
2 , α

(i)
2 , ν(i)) for j ∈ {0, 1, 2, 3},

α
(i)
2 = α(i)(R = R

(i)
2 ) is the helical angle of the fiber field

on the outer surface of the i-th ring, ν(i) is the Poisson’s
ratio of the i-th ring, and A(i) and φ(i) are such that a(i)1 =

A(i) cos(φ(i)), b
(i)
1 = −A(i) sin(φ(i)) [15]. As a final step,

using (3)-(6) and (1), we compute the deformed filament shape
given the activation γ(i)(θ) of each ring.

While the proposed approach permits any form of γ(i)(θ),
we consider the case of a piecewise uniform activation
γ(i)(θ; γ̄(i), σ(i), θ

(i)
0 ), in which N (i) annular sectors are acti-

vated, and the activation is zero in the rest of the i-th ring. The
parameter set γ̄(i) = (γ

(i)
1 , . . . , γ

(i)

N(i)) represents the activation
values in the activated sectors of the i-th ring, while both σ(i)

and θ
(i)
0 define the geometry of the annular sectors, as depicted

in Fig. 1c. The activation function γ(i)(θ) directly mimics
the actuation of a fiber-based soft continuous robot, in which
macro-scale fibers are embedded in a helical pattern within
an elastic continuum. Fig. 1d illustrates the three-dimensional
structure of a deformed active filament. The physical fiber
actuators of the soft arm are represented in the visualization
by the helically winding regions of piecewise activation.

III. CONTROL METHODOLOGY

A. General quasi-static control approach

In this work, we construct the physics-based control ap-
proach under the quasi-static assumption. That is, we assume
that the typical time scale of fiber activation in an actuator is
long enough, so that dynamic effects can be neglected. As a
result, the motion of the continuum arm can be approximated
as a sequence of static configurations. To ensure transient
stability of these intermediate configurations in an engineered
robotic solution, a PD setpoint controller paradigm established
in [23] could be adapted for the active filament physics to
dampen the short-scale vibrations of the soft manipulator.

Our quasi-static control methodology for fiber-based soft
arms is physics-based and purely mechanistic, since we di-
rectly apply the active filament model to relate the motion of
the arm to the fiber activation. In particular, in our control
approach, we solve the inverse problem of computing the ac-
tuation input that causes the robotic arm to match a prescribed
geometric objective G. Most generally, we define a geometric
objective as a function of the manipulator’s centerline and
its derivatives. In the context of the active filament theory,
the activation functions γ(i)(θ) are the actuation inputs to
a soft arm that generate a certain deformation. Given some
activation, we compare the resulting deformation against G
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to assess how well the deformed shape of the arm fulfils the
assigned objective. To quantify this comparison, we require a
metric designed to measure how closely a given deformation
matches the objective G.

The closeness of a match between the arm’s deformed
configuration and G is quantified by a cost function metric JG ,
chosen for a particular G. The goal is then to minimize JG

with respect to Γ = (γ(1)(θ), . . . , γ(M)(θ)), so that feeding Γ
into the active filament model yields a configuration matching
G. In general, for a given objective, there exist infinitely many
γ(i)(θ) (for each i) that achieve that objective, making the
optimization of JG non-convex. This ill-defined nature of the
inverse problem is caused by the hyper-redundant property
of underactuated soft-robotic arms with an infinite number
of degrees of freedom. Therefore, we have to take special
care in the minimization procedure in order to ensure that it
converges to the desired optimum; e.g., by imposing optimiza-
tion constraints or applying multi-start methods. Further, since
computing the manipulator’s centerline requires numerical
integration, the gradient of JG cannot be explicitly derived.
Thus, given the non-convexity of the cost function and since
an explicit form of ∇JG is unavailable, we utilize the Nelder-
Mead simplex method to perform the global optimization with
multiple randomized activation initializations. Exploring the
initialization space reduces the chance of the optimization
method becoming stuck in an undesirable local minimum, and
strengthens the credibility of any general conclusions drawn
from the optimization results. Despite the highly complex
cost function landscape, soft arm control via the described
optimization framework is not computationally expensive—it
can be performed in real-time thanks to the analytical forms
of û and ζ̂.

Given the generalized description of the optimization prob-
lem, we particularize our approach by restricting the allow-
able forms of γ(i)(θ) to the piecewise uniform activation
function γ(i)(θ; γ̄(i), σ(i), θ

(i)
0 ) described earlier. Under this

piecewise activation assumption, we seek to minimize JG

with respect to the set of all sector-wise activation values
Γ = (γ̄(1), . . . , γ̄(M)) to obtain the minimizing activation pa-
rameter set Γ G . Consequently, the continuous quasi-static path
of the arm towards the objective G can be generated naturally
as a sequence of scaled parameter sets γ̄(i) = γ0γ̄

G(i), where
γ0 ∈ [0, 1].

Finally, as an optional element of the control methodology,
the optimization procedure can be subject to an arbitrary set
of constraints C(Γ ; r, r′, . . .). The motivation for constrained
optimization is twofold. Firstly, the constraints can be used to
limit the parameter space according to physical requirements.
For instance, we can prevent the simulated manipulator from
entering a restricted region D (i.e., enforce obstacle avoidance
through C = {r(Z) /∈ D}) or ensure that the activation
values and arm geometry stay within a range feasible from
an engineering standpoint—e.g., C = {γ(i)

j ∈ [γmin, γmax]}
for activation parameters, or C = {∥û(Z)∥ ≤ Umax} for the
arm curvature. Secondly, imposing constraints can guide the
global optimization process to yield more desirable optima,
e.g., when multiple robotic arm configurations can match the

same G perfectly (with JG = 0).

B. Classification of optimization objectives

The design of a particular cost function form is informed
by the chosen G. Optimization objectives relevant for spatial
control of robotic arms are most readily derived from distance
cost metrics. Thus, in our analysis, we distinguish three main
objective classes based on such metrics, motivated by real-
world actuation use cases.

Target endpoint position. This objective is used for the
manipulator’s endpoint to reach a specified target endpoint
position rGend. The cost function is the squared Euclidean
distance from the prediction to the target, i.e.,

JG(Γ ) =
∥∥rGend − r(L;Γ )

∥∥2 . (7)

We distinguish this type of an optimization objective based
on a class of robotic tasks in which an arm has to reach a
specified location with its end effector.

Target configuration. The goal of optimizing under this
objective is to match a desired integral shape rG(Z) of the
whole arm. To allow additional control over the optimized
result, the cost function is defined as a weighted sum of
squared Euclidean distances from discrete points Zi ∈ Z along
the centerline prediction to points Si ∈ S along the target
centerline. That is,

JG(Γ ) =
∑

Si∈S, Zi∈Z
wi

∥∥rG(Si)− r(Zi;Γ )
∥∥2 , (8)

where wi are the weights associated with each pair of points.
A potential use case of this objective is a task in which
a continuum robotic arm has to achieve a particular target
shape. For example, such a task could require the soft arm
to form a tight spiral around an object to be grappled, or to
assume specific configurations allowing it to navigate through
obstacles.

Complex objectives. The simple objectives listed here can
be modified and combined into a complex objective. For
instance, combining multiple cost function forms via weighted
superposition would yield complex objectives describing more
intricate control goals. The cost function could also incorporate
higher-order derivatives of r to, e.g., penalize deviations from
a target orientation of the manipulator’s end effector. Alter-
natively, a target end effector orientation could be imposed
directly in the constraint set C.

Almost all optimization objectives relevant from an en-
gineering perspective can be assigned to one of the three
classes described here. Throughout our work, we utilize this
classification to gain insight into the behavior and performance
of our optimization framework.

IV. RESULTS AND DISCUSSION

We evaluate the control approach computationally for the
objective classes listed above.1 We further demonstrate and
discuss the effect of the chosen fiber field architecture on
the behavior of the fiber-based soft-robotic arm under opti-
mization. Throughout the computations reported below, it is

1Open-source code at https://github.com/brtk-k/Soft-robotic-arms.

https://github.com/brtk-k/Soft-robotic-arms
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Fig. 2. Results of optimizing the fiber-based actuation input for single-ring helical fiber fields given a target endpoint objective rG
end = 1

3
(L,L, L). Four

fiber field architectures were evaluated: (a) uniaxial (α2 = 0), (b) right-handed helical (α2 = π/8), (c) left-handed helical (α2 = −π/8), (d) right-handed
helical (α2 = π/5). The uniaxial and helical fiber arrangements exhibit different geometrical methods of achieving the objective—the filament in the uniaxial
case reaches the target endpoint through curvature, while the filaments with helical fibers deform primarily via torsion. The arms with fiber fields in (a) and
(b) achieve the target endpoint location perfectly, but the filaments in (c) and (d) achieve the control objective with a distance deviations of 0.027L and
0.085L, respectively. In each case, we enforce the optimization constraints C = {−8 ≤ γi ≤ 0,∀Z ∈ Z : ∥û(Z)∥ ≤ 2.2}, where Z is a discrete set of
uniformly spaced coordinates Z ∈ [0, L] with spacing ∆Z = L/10. The γ(θ) forms were prescribed such that N = 3, θ0 = 0 and σ = π/4 in all cases.
The intermediate motion paths for each of the four cases were computed using scaled activation inputs γ̄ = γ0γ̄G , for γ0 ∈ {0, 0.25, 0.5, 0.75}. For all
cases, L = 10, R1 = 0.3, R2 = 0.4, E = 1, and ν = 1/2.

assumed that r(0) = (0, 0, 0), d1(0) = (1, 0, 0), d2(0) =
(0, 1, 0), and d3(0) = d1(0) × d2(0), such that the arm is
clamped at the origin with a fixed director basis.
A. Single-ring fiber fields

The activation inputs to arms with four different single-ring
fiber fields (M = 1, Γ = γ̄) are optimized to match the target
endpoint position rGend = 1

3 (L,L,L), such that the orientation
of the end effector is free and unconstrained. We evaluated
the following fiber fields: (a) uniaxial (α2 = 0), (b) right-
handed helical with α2 = π/8, (c) left-handed helical with
α2 = −π/8, (d) right-handed helical with α2 = π/5. We
enforce optimization constraints on the activation parameters
with γ ∈ [−8, 0], and restrict the maximum curvature by
setting Umax = 2.2. The resulting optimal arm configurations
are visualized in Fig. 2, together with their respective quasi-
static motion paths computed via γ̄ = γ0γ̄

G . Refer to the
included video for continuously animated motion paths of
all evaluated simulation experiments. The minimized cost
function values JG were 0 in scenarios (a) and (b), while the
endpoint distance deviation ∥r(L)− rGend∥ in (c) was 0.027L,
and 0.085L in (d). The corresponding minimizing parameter
sets γ̄G are reported in Table I.

The results demonstrate that there exists a solution γ̄G that
perfectly achieves the target endpoint position for fiber fields
(a) and (b). We emphasize that the chosen rGend is attainable in
these cases partly because of the assumed filament extensibil-
ity, which permits shortening of the centerline for sufficiently
negative γ̄. Specifically, the series of shortening intermediate
configurations along the actuation path shown in Fig. 2a
illustrates that centerline contraction constitutes an important

factor in achieving the prescribed G. The ratios LΓ /L of the
length of the activated centerline to the initial length of the
centereline are reported in Table I for all evaluated simulation
scenarios. We recognize that some soft robotic arm designs
might not allow such contraction magnitudes. Setting ζ̂ = 1
could accommodate this design constraint, as it limits the
optimization to only inextensible filaments. If some limited
extensibility is permitted, we could enforce the maximum
extension magnitude by adding a constraint ζ̂(Z) < ζmax.

Moreover, while the arm with uniaxial fibers reached G by
increasing curvature, the arms with helical fibers attempted
to match G primarily through torsion. Formally, uniaxial
fiber architectures cannot produce torsion, since the uniform
longitudinal fiber contraction results in a geometric mismatch
that causes bending of the arm only along axes contained in
the XY -plane. As a result, assuming uniform activation with
respect to Z, curvature is the only mode of actuation that
a uniaxial fiber field can utilize to match the prescribed G.
On the other hand, in agreement with the obtained results,
fiber contraction along a helix woven around the manipulator
should intuitively result in filament torsion. The helical fiber
architectures can generate torsion since the local contraction
directions of all fibers are oblique and they twist around the
robotic arm with respect to the arc length.

The obtained minimizing solutions γ̄G were influenced
by the enforced constraints. In particular, the purpose of
restricting the range of activation parameters to −8 ≤ γi ≤ 0
was to avoid physically unrealistic activation magnitudes and
to permit only fiber contraction rather than extension. This
choice is motivated by biomimicry, as muscle fibers in animals,
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for instance, rely purely on contraction to produce strains
necessary for biological actuation [10].

The enforced constraints have a particularly noteworthy
impact on matching the prescribed control goal in the case
of the left-handed fiber field. Specifically, for the arm with
the fiber fields in (c) and (d), the optimization process failed
to find a parameter set γ̄ that would enable a perfect matching
of the target endpoint objective. The reason for such a result
in (c) is that, under the imposed set of constraints C on the
activation parameters, the left-handedness of the helical fiber
field generates a left-handed helical shape of the manipulator’s
deformed configuration. Consequently, the handedness of the
manipulator’s centerline that is feasible under C, combined
with the origin boundary conditions (for r and {d1,d2,d3}),
requires a configuration with a higher torsion to achieve the
desired control objective. When attempting to reach the same
target endpoint position, the total length of the centerline also
needs to become larger in a configuration with a higher torsion.
However, the constraint γmax = 0 implies that ζ̂ ≤ 1, i.e., the
centerline can only contract in all four of the evaluated fiber
fields. Thus, the fibrillar contraction in arm (c) cannot produce
a deformed configuration that achieves both sufficiently high
torsion, and small enough centerline contraction for the target
endpoint position to be reached exactly. If the negative activa-
tion constraint was relaxed to permit extensile fibers, then arm
(c) would indeed achieve the prescribed control goal perfectly.

While the helical fiber field in (d) is right-handed, it still
cannot reach the target endpoint with the given constraints.
For this fiber architecture, such a limitation is due to the larger
fiber angle α2 = π/5 which generally generates a significantly
larger amount of twist compared to |α2| = π/8. As a result,
the centerline curls into a high-torsion shape before it is able
to reach the target location.

The prescribed fixed-end boundary conditions also have a
considerable effect on the optimization results. In particular,
the fixed-end director basis {d1(0),d2(0),d3(0)} could be
rotated around eZ to reflect axial rotation of the entire robotic
arm. Choosing an appropriate rotation of the fixed-end director
basis in the arm in Fig. 2c can result in perfect matching of
the optimization objective with JG = 0. Indeed, permitting
an arbitrary boundary condition basis {d1(0),d2(0),d3(0)}
vastly expands the subspace of R3 reachable by the endpoint
of the manipulator. As such, we enforce a fixed director basis
{d1(0),d2(0),d3(0)}, because we seek to investigate the
differences in actuation techniques developed by various fiber
architectures, and these differences become occluded entirely
whenever arbitrary {d1(0),d2(0),d3(0)} are permitted.

B. Multi-ring fiber fields

Introducing additional rings with distinct fiber fields to the
filament increases its actuation versatility. To evaluate this
claim, we consider the control of filaments with four two-ring
fiber fields: (a) uniaxial and right-handed helical, (b) uniaxial
and left-handed helical, (c) left-handed helical and right-
handed helical, (d) uniaxial and right-handed helical with a
large helical angle. The optimization objectives for these two-
ring fiber fields are more complex, and require more involved
configurations. In particular, the four fiber fields are evaluated

for two optimization objectives: (i) a target endpoint position
rGend = 1

3 (L,L,L) with the constraint C = {r(Z) /∈ D}, where
D represents a cylindrical obstacle, (ii) a target configuration
given by a target curve rG(t). In both cases, we imposed the
additional constraint γ ∈ [−8, 0] for the activation parameters.
The deformed configurations of the filaments (a)-(d) optimized
under the objectives (i) and (ii) are shown in Fig. 3. The
translucent visualizations of the quasi-static motion paths are
again computed through the linear scaling Γ = γ0Γ

G of
the optimized activation. Table I contains the minimizing
parameter sets Γ G corresponding to the eight cases considered
in Fig. 3.

In objective (i), filaments (a)-(c) achieved the target end-
point position perfectly with JG = 0 without intersecting
the introduced cylindrical obstacle. Nonetheless, the scaled
activation Γ = γ0Γ

G for fiber field (c) results in the intersec-
tion of the obstacle at intermediate activation distributions. To
mitigate this issue, the optimization could be split into several
intermediate subproblems with endpoint positions interpolated
between the initial and final desired locations, such that the
obstacle avoidance constraint is imposed in each intermediate
optimization problem. In general, the resolution of this inter-
mediate problem discretization, that continuously achieves no
obstacle intersection, is a function of the objective, the arm’s
architecture, and the obstacle geometry.

While the centerlines of the optimized configurations in
cases (a)-(c) are qualitatively similar, the geometrical distri-
bution of the activated fiber regions varies greatly between
the three deformed filaments. Further, the optimized activation
parameters Γ G differ significantly among the three fiber fields,
despite the piecewise activation forms γ(i)(θ) being defined by
the same parameters N (i), θ(i)0 , and σ(i) (i = 1, 2) in each fiber
field. The activation distribution in fiber field (a) is dominated
by the activity in the helical fiber ring, while the activation
magnitudes in (b) are larger in the uniaxial fiber ring. The
activation is roughly evenly distributed across the two rings in
the case of the fiber field (c).

Interestingly, the fiber field in (d) generated the only optimal
activation where the filament wraps clockwise around the
obstacle. Under the prescribed constraints, the filament in (d)
does not reach the target endpoint by wrapping counterclock-
wise, since the larger right-handed helical angle of π/5 yields
too large of a torsion when curling counterclockwise upon
fibrillar contraction. As a result, the manipulator in (d) cannot
reach the target endpoint, given that the clockwise path around
the obstacle requires a longer centerline.

From an actuation standpoint, the target configuration ob-
jective (ii) is much more challenging to achieve exactly with
JG = 0, since an exact match would require all points Z of the
manipulator’s centerline to overlap with the points S on the
target curve. As such, it is generally considered satisfactory
to achieve an arbitrary target configuration in an approximate
sense. In fiber fields (a) and (b), the optimized activation
results in a very close match between the deformed filament
and the target curve. However, in the case of fiber fields (c)
and (d), the optimization procedure did not locate a satisfactory
minimum of JG under the imposed constraints.

The quality of the target configuration match for fiber field
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Fig. 3. Results of optimizing fiber activation in soft arms with multi-ring fiber fields under more involved optimization objectives. Four two-ring fiber fields are
considered: (a) uniaxial and right-handed helical (α(2)

2 = π/8), (b) uniaxial and left-handed helical (α(2)
2 = −π/8), (c) left-handed helical (α(1)

2 = −π/8)
and right-handed helical (α(2)

2 = π/8), (d) uniaxial and right-handed helical (α(2)
2 = π/5). The filaments with each of the four fiber fields are optimized

under two optimization objectives: (i) a target endpoint position objective with rG
end = 1

3
(L,L, L) with the constraint C = {r(Z) /∈ D}, where D represents a

cylindrical obstacle, (ii) a target configuration defined by a target curve rG(t), which the centerline r is meant to match. Fiber fields in (a) and (b) successfully
fulfill objective (i), and their centerlines approximately match the target configuration in objective (ii). However, the filament in (c) does not achieve objective
(ii), and the filament in (d) fails to fulfill both objectives. The radius of the cylindrical obstacle region D is augmented by a scalar corresponding to the
outer radius of the filament, so that the filament body does not intersect the obstacle. The target curve in objective (ii) is given by rG(t) = Rr̃G(t), where
r̃G(t) = (−1.2 + 1.2 cos(2t), 2.4 cos(t) sin(t), 2.8 + 0.35(−2 + t)3), and R is a clockwise rotation transformation by an angle 5π/6. The sets Z and S
use 17 uniformly-spaced points in the intervals Z ∈ [0, L] and t ∈ [0, 3], respectively.

(c) is worse likely because it does not contain rings that
permit distinct modes of actuation. In particular, for both (a)
and (b), the first ring with uniaxial fibers is responsible for
generating curvature, while the second ring with helical fibers
generates curvature as well as twist and torsion, as previously
demonstrated in Fig. 2. In contrast, both rings in fiber field
(c) contain only helical fibers, reducing the amount of direct
control over the curvature of the filament. Nonetheless, it
should be noted that fiber field (c) provides more versatile
actuation than a single-ring helical fiber field. That is, the inter-
action of two rings with helical fibers of opposite handedness,
such as cancellation of components contributing to torsion
generation, can result in configurations otherwise unachievable
by a single-ring filament.

Notably, the robotic arm in (d) also does not achieve a
satisfactory match with the target configuration, even though
it contains both uniaxial and helical fiber rings. In this case,
the decreased matching quality occurs because the multi-ring
field in (d) contains densely packed helical fibers due to the

higher helical angle of π/5. The dense fiber helix generates
larger twist for the same activation magnitudes compared to
lower helical angle values, making it less effective at matching
low-torsion configurations, e.g., the chosen rG(t).

V. CONCLUSION

In this letter, we propose a physics-informed methodology
for the control of fiber-reinforced soft robotic arms. By using
the reduced-order active filament model, we can predict the
shape of a fiber-reinforced arm in real time. Importantly, the
model that we used to describe the soft arm mechanics follows
rigorous continuum mechanics developments, such that any
compromises in model fidelity stem only from the employed
dimensional reduction. Motivated by the real-time computa-
tional capabilities of the model, we applied the active filament
theory to tackle the quasi-static control of fiber-reinforced
filamentary robotic arms. In particular, we stated the control
problem as a minimization of the deviation of the current
arm shape properties from the desired target properties of the
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TABLE I
MINIMIZING ACTIVATION PARAMETERS AND CENTERLINE CONTRACTION

FOR ALL EVALUATED FIBER FIELDS AND OBJECTIVES.

Scenario Activation parameters LΓ /L

Fig. 2(a) γ̄G ≈ −(2.170, 2.048, 1.716) 0.6755
Fig. 2(b) γ̄G ≈ −(1.486, 0.223, 1.108) 0.8732
Fig. 2(c) γ̄G ≈ −(0.094, 1.965, 0.000) 0.9073
Fig. 2(d) γ̄G ≈ −(3.521, 0.000, 1.066) 0.8584

Fig. 3(a)(i) γ̄G(1) ≈ −(0.000, 1.696, 0.099)

γ̄G(2) ≈ −(0.016, 0.000, 3.219, 2.865)

0.8940

Fig. 3(b)(i) γ̄G(1) ≈ −(3.250, 0.001, 2.925)

γ̄G(2) ≈ −(1.964, 1.715, 2.705, 0.754)

0.8046

Fig. 3(c)(i) γ̄G(1) ≈ −(0.003, 6.096, 0.001, 4.204)

γ̄G(2) ≈ −(3.380, 3.975, 2.028, 6.565)

0.7060

Fig. 3(d)(i) γ̄G(1) ≈ −(0.000, 4.395, 2.004)

γ̄G(2) ≈ −(1.722, 1.191, 0.552, 0.962)

0.8516

Fig. 3(a)(ii) γ̄G(1) ≈ −(1.541, 0.000, 2.896)

γ̄G(2) ≈ −(3.913, 0.000, 0.000, 4.729)

0.8167

Fig. 3(b)(ii) γ̄G(1) ≈ −(5.727, 0.000, 0.000)

γ̄G(2) ≈ −(1.408, 0.000, 3.026, 2.403)

0.8162

Fig. 3(c)(ii) γ̄G(1) ≈ −(8.000, 0.000, 0.000, 4.298)

γ̄G(2) ≈ −(4.422, 0.680, 0.970, 6.014)

0.7341

Fig. 3(d)(ii) γ̄G(1) ≈ −(4.623, 0.000, 1.931)

γ̄G(2) ≈ −(5.293, 0.000, 0.000, 7.163)

0.7828

arm’s shape. Our optimization approach considers the space
of all admissible fibrillar activations to compute one possible
solution to the inverse problem of control objective matching.
To evaluate the performance of the proposed methodology, we
presented the results of several computational experiments for
both single-ring and multi-ring fiber fields. We found that the
low computational cost of the utilized model permitted almost
instantaneous computation of the optimal fibrillar activation.
The computational experiments demonstrated that arms with
single-ring helical fiber fields might not be able to access
a range of positions with their end effectors if feasibility
constraints are imposed on the fiber activation magnitudes. On
the other hand, introducing an additional ring with a different
fiber field architecture to the soft arm could greatly enrich the
space of reachable configurations, and enable more advanced
control, e.g., involving reliable obstacle avoidance.

We performed the evaluation of the control methodology
in a computational environment, so the proposed approach
would benefit from experimental validation using matching
soft-robotic prototypes. Further, eqs. (3)-(6) do not provide
the internal stresses in the manipulator developed due to
fibrillar activation, but they do inform the energy required
for the deformation. Using the system’s energy, all stresses
could be extracted by integrating the Kirchhoff equations
[16], including the forces that the manipulator exerts on its
surroundings. For a given actuation model, the energy would
also describe the force-generation requirements of the fibers
in an engineering implementation. Finally, our method relies
on the assumption of quasi-static deformation in response
to fibrillar activation. Thus, future work could incorporate
actuation dynamics into the utilized active filament model to
enable the use of state-of-the-art feedback control solutions.
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