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Abstract

Seashells grow through the local deposition of mass along the aperture. Many
mathematical descriptions of the shapes of shells have been provided over the
years, and the basic logarithmic coiling seen in mollusks can be simulated with
few parameters. However, the developmental mechanisms underlying shell coil-
ing are largely not understood and the ubiquitous presence of ornamentation
such as ribs, tubercles, or spines presents yet another level of difficulty. Here we
develop a general model for shell growth based entirely on the local geometry
and mechanics of the aperture and mantle. This local description enables us
to efficiently describe both arbitrary growth velocities and the evolution of the
shell aperture itself. We demonstrate how most shells can be simulated within
this framework. We then turn to the mechanics underlying the shell morpho-
genesis, and develop models for the evolution of the aperture. We demonstrate
that the elastic response of the mantle during shell deposition provides a natural
mechanism for the formation of three-dimensional ornamentation in shells.
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Seashells have intrigued scientists for centuries, in particular mathematicians
have long appreciated their beautiful patterns, regularity, and self similarity. Yet
underlying the elegant mathematical structure of the shape of shells is a growth
and development process which is still poorly understood. For instance, while
logarithmic coiling in shells was first mathematically described over a century
ago [1], the developmental bases of these shell forms remains unknown. Sim-
ilarly, the three-dimensional ornamentations on shells, which can be seen as a
deviation from simple coiling, emerge through largely unknown processes. Such
issues fall into the general problem of connecting the form of biological structures
to the underlying forces and mechanisms behind growth and development pro-
cesses [2]. Seashells, and mollusk shells in particular, provide an advantageous
case study for this problem due to their aesthetic appeal, their large variety and
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fossil record, and the relative simplicity of the growth process, whose history is
recorded in the shell shape.

There are various objectives in studies and models of shells. Much of the
early work was concerned with characterising the diversity of shells in terms of
morphological parameters [3, 4, 5, 6, 7, 8]. While these models were able to
describe the shape of shells, and sometimes provide very realistic representa-
tions, they were disconnected from the growth process. A number of studies
have since tried to connect shell shape to relative and absolute growth rate
[9], notably through growth vector models [10, 11]; however these representa-
tions often have the drawback of needing a large parameter space and/or rely
on geometric constructions disconnected from the underlying growth process.
In terms of the mechanisms behind the patterns and form of shells, previous
modeling approaches have focussed on activator-inhibitor systems [8, 12], and
neural based explanations [13], and although the genesis of biological form is
proximately a matter of forces, few studies have addressed the mechanical basis
of shell morphogenesis [14, 15, 16, 17, 18].

In this paper, we first present a framework to study and simulate shell
growth, by generalising a model for surface growth [19]. The descriptions is
focussed on the local environment of the shell aperture, where growth occurs.
Shell growth can be simulated for arbitrary and evolving aperture shape and
with a minimal number of parameters. The basic idea is that the evolution
of a shell can be seen as the result of two complementary processes. In one
process, the shell aperture undergoes coiling, dilation, translation, and rotation
(CDRT). This process forms the basic macroscopic shell form that is typically
very regular. That is, these rates are highly controlled throughout the shell
development, and the resulting shell form has the mathematical regularity (self-
similarity, e.g.) that has attracted so much attention. In the second process,
the aperture shape evolves, producing ornamentation such as ribs or spines on
the shell surface. The evolution of the aperture is governed by forces underlying
shell morphogenesis, and an understanding of the growth process is therefore
necessary. Hence, as a second step we develop a model for the evolution of the
aperture based on the mechanical environment of the shell deposition process.
In mollusks, the shell is secreted at the level of the aperture by a thin soft tissue,
the mantle, modelled here as an elastic tissue. In our model, the mechanical
response of the mantle governs the evolution of the aperture, which is then
coupled to the CDRT kinematics.

The organisation of this paper is as follows. First, we outline the mathe-
matical and computational basis of our approach to shell growth. Within this
framework, essentially any form of shell can be generated. We then incorporate
mechanics in the growth process and provide a biomechanical basis for orna-
mentation in shells. We produce two models for commarginal and antimarginal
ornamentation that govern the evolution of the aperture in the general growth
framework.
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Figure 1: Setup for modeling shell growth. a) A surface is constructed via the evolution of a
generating curve, dictated by a growth velocity field given in terms of a local basis. b) Each
growth step is decomposed as a CDRT step, which is described by simple local velocity rules,
and an aperture evolution step, which can arbitrarily change the shape of the aperture and is
driven by underlying mechanics.
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1. Shell growth via curve evolution

Shell growth is modelled via the evolution of a generating curve represen-
tative of the shell aperture [19]. At each point on the generating curve a local
vector field is defined that dictates the direction and rate of accretion. Through
this process, a surface r(σ, t) is created. Here σ is a material parameter, so that
at any time t0, the space curve r(σ, t0) is the aperture at that time (see Figure
1a) . The main difference between this and other growth models, [20, 11], is
that growth is described in a local basis attached to each point of the aperture,
and not on a fictitious centerline [21, 22, 23, 24]. Here, by attaching a frame
at each point of the aperture, growth is described entirely in terms of the lo-
cal geometry of the aperture, which apart from its mathematical elegance [19],
reduces the construction of shell shapes to a small number of parameters that
can be directly related to the growth process.

For the majority of seashells, the aperture remains planar or very nearly
planar, and for simplicity we restrict our attention to arbitrary planar curves.
A convenient choice of frame is the standard Frenet frame, where the local basis
vectors are the familiar (normal,binormal,tangent)=(ν,β, τ ). Growth is thus
dictated by three quantities, vν , vβ , vτ , which represent the growth velocity in
the normal, binormal, and tangent directions, respectively. Given these func-
tions, the evolution of the curve is dictated by

ṙ(σ, t) ≡ ∂tr = v = vν(σ, t)ν + vβ(σ, t)β + vτ (σ, t)τ . (1)

Equation (1) is coupled to a description of how the frames vary in time and
space. A full derivation of the system is given in [19] and summarized in A. The
general solution in local coordinates gives rise to 4 basic transformations of the
aperture under which the aperture shape is fixed. These are coiling, dilation,
rotation, and translation, which we abbreviate CDRT. Many surfaces can be
generated within this context, and realistic seashells can be created with simple
forms of the local velocity components vν , vβ , vτ . Here, we extend this model to
arbitrary local velocity rules, and more importantly we allow the shape of the
aperture to change. For an arbitrary curve evolution, the governing system is not
analytically tractable, a discrete time-step formalism is needed. This requires
proper descriptions of all geometric quantities in a discrete environment, using
the tools of discrete differential geometry [25].

Key to obtaining a framework for a general evolution, and a fundamental
idea in this work, is the notion that shell growth can be described via two
separate processes: CDRT, which does not change the aperture shape, and the
evolution of the aperture, which is driven by underlying biomechanical forces
(see Figure 1b). We capture this idea in the curve evolution framework in three
steps.

The first step is to determine the rules for CDRT in a discrete setting,
corresponding to the analytical rules found in the continuous case [19]. (Details
are given in B.) Within this class of a fixed aperture shape, a wide variety of
shells can be generated, as shown in Figure 2.
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Figure 2: Simulated seashells with fixed aperture shape constructed through discrete model.
Parameter values are given in F.

The second step is to allow the shape of the aperture to evolve (in between
CDRT steps). That is, we consider arbitrary velocities in the tangent and
normal directions (assuming the curve remains planar, an arbitrary velocity in
the binormal direction is not permissible). This has to be done carefully, as all
local quantities on the curve must be appropriately updated. For details, see C.

To complete the formulation, we combine CDRT with shape evolution. The
idea is that shape change can be seen as an added feature imposed on a shell
with an aperture evolving with fixed CDRT. Computationally, the key to this
process is to evolve two curves, the actual aperture embedded in R3 (i.e. the
curve r that satisfies (1)), which traces out the full surface, and a fixed plane
reference curve r̂ that tracks only the evolution of the aperture shape. This
process is easily implemented within a local formulation, as the local basis on
each curve provides the information necessary to map from the fixed plane curve
r̂ to the actual curve r. See D for details.

A key benefit of the local formulation is that complex surfaces may be sim-
ulated with a small number of parameters, as demonstrated in Figure 3. These
surface are generated as follows: first, an aperture shape and 4 CDRT param-
eters are chosen for the basic evolution without ornamentation. The ornamen-
tation is then added as a second feature. In Figure 3b), for example, the spines
are generated with a 5 parameter shape change velocity. Explicit formulas are
given in F.

2. Mechanics and ornamentation

The formulation we have described thus far is capable of generating a great
variety of forms found in nature. However, so far this is only a geometric
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Figure 3: Samples of shells simulated with a shape change function to produce ornamentation
layered on top of fixed coiling, dilation, rotation, and translation velocities. Parameter values
and shape change functions are given in F.

description. Central to this paper is a physical basis for the morphogenesis
of ornamenation based on the mechanics underlying the deposition process.
While several papers with reaction diffusion or neural based models have re-
produced pigmentation patterns in shells [13, 8, 12], a thorough mechanism for
ornamentation has not been given. The role of mechanics in the genesis of
three-dimensional ornamentation has been proposed on the basis of empirical
observations [14, 15, 18] as well as in theoretical papers [16, 17], but never in-
tegrated into a three-dimensional mechanical perspective. Mechanics was only
implicitly included in [16], and while the work of Morita [17] is perhaps the
only previous theoretical work that fully addresses shell growth from a mechan-
ical perspective, the elastic DMS tube model does not really take into account
accretionary growth.

Here we develop two mechanical models to account for the morphogenesis of
ornamentation, and incorporate the mechanics driven formation into the kine-
matics framework. The basic idea of our approach is as follows: molluskan shells
are formed by the deposition of material by a soft, skirt-like tissue called the
mantle. At the time of shell growth, the mantle adheres at the shell aperture and
adds a layer of shell material. The aperture acts as a sort of rigid template for
the mantle, potentially inducing stresses and strains that ultimately affect the
shape of the new layer and thus the evolution of the shell. Modeling the mantle
within the theory of elastic rods, we demonstrate below how this universal pro-
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Figure 4: Setup for the mantle growth model to produce commarginal ribs.

cess can lead to commarginal ribs and antimarginal ridges. We hypothesize that
the basic mechanisms we describe below are also behind more complex patterns
such as the sharp spines in Figure F; however, these spiny patterns require new
assumptions not easily covered here, and are explored fully in a separate paper
[28].

2.1. Commarginal ribs

Commarginal, or transverse ribs, are a common feature in a number of mol-
lusk shells, characterized by an oscillatory component to the dilation of the
aperture. We model the mantle as a circular growing elastic ring with a given
growth rate. When the mantle adheres to the current shell edge, it is subject to
a compression/stretching force, and an attachment force. We assume that the
mantle remains circular, and that the equilibrium diameter is a balance between
these two forces. In equilibrium, the mantle is not in a stress-free state, and
we assume that the deposition of new layer is controlled by the level of stress
through an adjustment of the angle of deposition (see Figure 4). Specifically, if
the mantle is in compression it increases the angle of deposition so to increase
the radius of the new aperture and therefore relieve its stress; put simply, if the
mantle “feels crowded”, it tries to build a bigger shell. Conversely, if the mantle
is in tension, it does the opposite, decreasing the angle, thereby decreasing the
rate of increase of aperture radius.

The setup for the model is pictured in Figure 4. Let kg be the growth rate,
i.e. in time ∆t, kg∆t is the length of material added to the shell. We will
assume kg to be a constant.1 The angle of material deposition is denoted by φ.
Denoting rs as the shell radius, it follows that

1When coiling is included, kg will vary along the aperture, since the length of material
added in the binormal direction is non-uniform (see B). In this case, we define kg to be the
point on the aperture where the growth rate is maximum, and still take it to be constant in
time. The growth rate at every other point is subsequently determined based on the coiling
parameters.
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ṙs =
drs
dt

= kg cos θ sinφ, (2)

where θ is the fixed angle of the growth vector between the normal and tangent
direction, and thus describes the amount of rotation. The key assumption is
that the mantle can change the angle φ based on its stress level. Let n3 be
the axial stress in the mantle edge; note n3 > 0 if the mantle is in tension and
n3 < 0 if the mantle is in compression. This axial stress n3 depends on the shell
radius rs as well as the diameter of the mantle edge in the unstressed state,
determined by the growth function γ. The value of n3 is found by computing
the equilibrium diameter of the mantle edge for given shell radius. Details are
provided in E. The general system is

drs
dt

= kg cos θ sinφ

dφ

dt
= H(n3(rs, γ)),

(3)

where the function H(n3(rs, γ)) describes the feedback of the mantle, and the
growth function γ = γ(t) is taken as input. For given functions H and γ and
initial values rs(0) and φ(0), the system of ordinary differential equations (3) can
easily be solved numerically. We consider 3 forms for H, and plot the resulting
shell radius rs(t) in Figure 5. In Figure 5a, a simple linear law is used,

H1 = −kφn3. (4)

In this case, a fairly uniform oscillation of the shell radius is produced. In many
species of rib producing shell, in particular ammonites, the oscillation is not
uniform but rather consists of wide valleys and sharp ridges. This suggests that
the mantle responds more strongly to tension than to compression. A feedback
law that takes this into account is

H2 = kφ
(
1− eKn3

)
. (5)

With this form, the change in growth angle φ is greater when the mantle is
in tension. The radius rs(t) for this form is shown in Figure 5b. Here we see
the expected effect of sharp ridges and wide valleys. However, this still does
not quite capture the pattern seen in most rib producing shells, because the
wavelength is nearly constant throughout development, whereas for instance in
ammonites the wavelength of the ridges increases with time. This may be due to
the increasing thickness of the mantle throughout development, that is a thicker
membrane may be less easily incrementally “reoriented” than a thin one. This
leads us to consider a third form,

H3 =
kφ
rs

(
1− eKn3

)
. (6)

Here, the feedback is still stronger when the mantle is in tension, but the feed-
back decreases through development as the mantle grows. The radius for this
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Figure 5: Solutions to the system (3). Shell edge radius plotted against time for a) linear
feedback model, Equation (4) with kφ = 15, b) nonlinear feedback, Equation (5) with kφ =
1.2, K = 40, and c) decreasing nonlinear feedback, Eq. (6) with kφ = 1.2, K = 40. The
dashed red line is the unstressed radius of the growing mantle. Other parameters are rs(0) =
0.8 in a), rs(0) = 0.7 in b) and c), and in all cases φ(0) = 0, γ = 1+0.05t, EA = 1, ks = 5000,
and kg = 2.

form is plotted in Figure 5c. In this case, the wavelength of the ridges increases
with time, and the amplitude does as well, which is consistent with observations
in ammonites. Note that there are examples of Ammonites in which the ampli-
tude decreases during development; however, these seem to be correlated with
a change in the shape of the shell cross-section. This trend forms the subject of
a separate paper [26].
3D simulation. The system (3) governs the evolution of the aperture – in this
case, the amount of dilation – based on the mechanical environment of the
mantle. Seashell growth can be simulated by combining this with CDRT. To
simulate an ammonite, a fixed rule for coiling is given, the oscillatory dilation
is governed by (3) and the feedback law by (6). The result, plotted in Figure 6,
shows a realistic ammonite displaying a typical ribbing pattern. Note that in the
simulated Ammonite, there is a small hole in the middle. Since the shell follows
a logarithmic spiral, a curve that spirals ever closer to but never actually reaches
the origin, mathematically there is always a “hole” in the middle. Of course,
physically an Ammonite does not spiral infinitely small, but rather begins as a
finite sized shell at the embryo stage, and the “hole”’ is plugged by the growing
matter, which has finite thickness as opposed to the idealized mathematical
shell.
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Figure 6: Left: the Ammonite Promicroceras. Right: Simulated ammonite. Stress in the
mantle governs the dilation of the shell edge, and is combined with a fixed rule for coiling.
Parameter values are given in F.

2.2. Antimarginal ornamentation

Antimarginal ornamentation are patterns orthogonal to the aperture. This
includes antimarginal ribs as well as more complex patterning such as spines
and fractal-like structures. The basic mechanism we have proposed for com-
marginal ornamentation, i.e. that the elastic response of the mantle adhering
to the aperture dictates the evolution, can explain antimarginal ornamentation
as well. Here, we extend a hypothesis previously proposed based on empirical
observations in bivalve shells [27]. The idea is as follows: since the growing
mantle will exhibit an excess of length compared to the previous growth in-
crement, it will be subject to a buckling force upon adhering to the aperture.
Thus, whereas in the previous subsection we assumed the mantle had a circular
shape and evolved via stress feedback, here we allow the shape of the mantle to
deform as well. The deposited layer of shell material takes the deformed shape,
and thus forms the template for the next growth increment. In this manner,
the mechanical deformation of the mantle dictates the evolution of the shape of
the aperture.

The model for the deformation of the mantle is shown in Figure 7. As
before, the mantle edge is treated as a planar elastic rod that attaches to a rigid
foundation (the current aperture) through an elastic spring force. For simplicity
and to isolate the effect of the deforming mantle and hence the evolving aperture,
we assume an inextensible rod. The centerline of the mantle is the curve r̂(σ)
with arclength L and the centerline of the aperture is f(σ) with arclength L0.
It is assumed that L > L0 to account for growth of the mantle.

The shape of the mantle is determined as the curve that minimizes the sum
of the bending energy and the foundation energy, subject to the given length
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Figure 7: Setup for mantle buckling model. The shape of the deformed mantle, described by
the curve r̂, is found as the minimizer of the sum of bending energy and spring energy due to
attachment to the foundation, given by the curve f .

constraint. The foundation energy takes the form

Ef =
ks
2

∫ L

0

|̂r− f |2 dσ, (7)

were ks is a stiffness parameter for the foundation. The bending energy depends
on the curvature κ of the mantle,

Eb =
EI

2

∫ L

0

κ2 dσ, (8)

where EI is the bending stiffness (the product of Young’s modulus and the
second moment of area).

As described in the appendix, shape evolution is coupled to CDRT by evolv-
ing two curves, the actual curve embedded in R3 and a fixed plane curve r̂
that tracks only the evolution of the aperture. Suppose at time t this curve is
given by r̂t, and that after the mantle deformation the curve is given by r̂t+∆t,
determined as the minimizer of the total energy E = Ef + Eb. The deformation
defines a velocity q = r̂t+∆t − r̂t, from which the local velocities qν and qτ can
be computed. It should be noted that while coiling, rotation, and translation
have no effect on the mantle buckling, dilation plays a role as it increases the
total length of the aperture; hence the dilation step must be incorporated within
the shape change evolution. Each growth increment, representing one physical
growth step, consists of the following 4 steps, illustrated in Figure 8:

Ia. The full curve undergoes CDRT.

Ib. The fixed plane curve undergoes dilation only.

IIa. Mantle growth leads to an increase in the arclength of the aperture.
The deformed mantle is computed via energy minimization. The fixed
plane curve is evolved.
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I.a I.b

II.a II.b

Figure 8: The computational steps to simulate mantle buckling with shell evolution. Each
growth step consists of two substeps. In the first substep, CDRT is applied to the full curve
(Ia) while only dilation is applied to the fixed plane curve (Ib). In the second substep, the
shape of the fixed plane curve is updated (IIa) by computing the mechanical deformation of the
mantle, after which the full curve is accordingly updated using the local frame correspondence.
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b)

Figure 9: Simulation of the growth of a giant clam shell. Mechanical deformation of the
mantle dictates the evolution of the aperture shape (a), and is combined with parameters for
coiling, dilation, and translation to simulate a three-dimensional shell (b). Parameter values
are given in F

IIb. The full curve is correspondingly evolved through translation of the
velocity into local coordinates.

Example - bivalve. As an example, we simulate the growth of a bivalve clam
shell. The initial foundation is taken to be a semi circle, with a fixed linear
increase in length occurring at each increment of mantle growth. Fixed rates of
coiling, dilation, and translation are imposed with the shape change. Figure 9
shows the evolution of the fixed plane curve, as well as the full surface produced
when the mechanics is coupled to kinematics. It can be noted that the folds
of the aperture deepen over time through the incremental mantle deformation
process.

3. Discussion

We have implemented a general model for the growth and morphogene-
sis of seashells. The underlying mathematical framework derived in Ref. [19]
was extended to a discrete setting where it could be applied to an arbitrary
evolution. Key to the formulation was the decomposition of growth to a non-
shape-changing step consisting of CDRT; and a step in which the aperture shape
evolves. Computationally, the implementation of this decomposition relies on
a description in terms of local variables. The evolution of the aperture shape
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may in general be governed by mechanical, biological, chemical, or environmen-
tal forces. The framework developed is well suited to investigate any of these
inputs. This approach is also applicable for other surface growth processes. In
this paper, we have focussed specifically on mechanical forces, on the premise
that biological morphogenesis is a mechanical process that connects genetic,
molecular, and cellular activities with the macroscopic deformations shaping
organisms.

In particular, we considered two related models coupling the mechanical en-
vironment of the mantle to the growth kinematics, and explored the formation
of three-dimensional ornamentation in shells. The soft mantle edge, where shell
deposition occurs, was modeled as an elastic rod, and the forces imposed on
the mantle due to adhering to the aperture governed the shape of the mantle
and hence the evolution of the aperture. In the first model, commarginal ribs
were produced by assuming a circular mantle with the amount of dilation dic-
tated by the mechanical stress induced by attachment to the aperture. In the
second model, the buckling of the mantle edge dictated the incremental change
in shape of the aperture, thereby simulating the formation of antimarginal ribs.
In each case, we demonstrated how the mechanics-driven shape evolution could
be coupled to CDRT to explain realistic shells from simple physical principles.

The characteristic of mollusk shells is that the shape is generated at the level
of a moving boundary, the form taken by the secreting mantle along the growing
shell front being fixed in the calcified edge, while this patterned calcified edge
biases the configuration of the secreting mantle at the next growth increment.
This dynamic shows that far from being only a passive recorder of processes
taking place within the secreting membrane, the shell is in fact involved in the
morphogenesis of its own ornamentation. Theoretical studies based on reaction-
diffusion systems do not integrate this dynamic, because within these models
the shell is no more than a record of a chemical pattern in the secreting mantle
edge. Within our framework we can investigate the correlation between the
general shell geometry and a range of ornamentation. Particularly, because real
mollusk shells are three-dimensional curved objects, one possible influencing
factor is the curvature of the growing front.

Mechanics also plays an important role in the emergence of spines that cor-
respond to a more elaborate form of antimarginal ornamentation generated in
Figure 9. The morphogenesis of these structures is explored in depth in a sepa-
rate paper [28], where it is shown that they can emerge as a consequence of the
same basic growth-induced buckling instability. Interestingly, these structures
are prevalent in a number of mollusk species and may be associated either with
commarginal or antimarginal ornamentation. Given the similarity in mechanism
between these two distinct forms of ornamentation, it is natural to ask whether
in fact each of these forms can be produced with different parameter regimes
within a single mechanical model. Within such a theory, shell morphogenesis
can be thought of as a trajectory unfolding in a shape space constrained by ge-
ometry and mechanics. This approach provides a new, far-reaching perspective
of the phenotypic evolution of the shells of the second largest phylum in the
animal kingdom.

14



A. Continuous system for surface growth kinematics

In this appendix we provide the governing equations for continuous aperture
evolution due to growth. Consider an initial curve r(σ, 0), where σ ∈ [0, L] is the
material parameter (not necessarily arclength), equipped with the orthonormal
Frenet basis D = (ν,β, τ ). The tangent vector τ is related to the spatial
derivative of r by a stretch factor λ,

r′ ≡ ∂σr = λτ . (9)

Recall the Frenet-Serret formulas

ν′ = u3β − u2τ

β′ = −u3ν

τ ′ = u2ν.

(10)

Here u2/λ and u3/λ are the geometric curvature and torsion, respectively. For
a general basis, there is also a third component u1, which completes the axial
vector u = (u1, u2, u3), but in the Frenet basis u1 = 0. Time derivatives of
the frame can be expressed in terms of the frame itself via the axial vector
w = (w1,w2,w3) as

ν̇ = w3β − w2τ

β̇ = −w3ν + w1τ

τ̇ = w2ν − w1β.

(11)

The curve evolution is governed by a growth velocity vector field v, defined in
terms of the local basis via

ṙ = v = vνν + vββ + vττ , (12)

where the velocity components (vν , vβ , vτ ) are continuous functions of σ and t.
Assuming that r(σ, t) is at least twice differentiable in σ and t, we have two sets
of compatibility conditions,

∂σ (∂tr) = ∂t (∂σr) (13)

∂σ (∂tD) = ∂t (∂σD) , (14)

which in component form simplifies to the following system

v′ν + u2vτ − u3vβ = λw2 (15)

v′β + u3vν = −λw1 (16)

v′τ + u1vβ − u2vν = λ̇ (17)

−w′1 = u2w3 − u3w2 (18)

u̇2 − w′2 = u3w1 − u1w3 (19)

u̇3 − w′3 = −u2w1. (20)
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For a given velocity, these equations form a set of 6 nonlinear first order
partial differential equations for the 6 dependent variables u,w, λ. Once u(σ, t)
and λ are known, the surface built through the accretive process can be obtained
by integrating the Frenet equations (10) together with (9). Alternatively, the
surface may be obtained from w(σ, t) and λ by integrating (11) together with
(12).

B. Discrete CDRT

With a discrete, finite time step, the velocity rules derived in [19] for CDRT
must be adapted. In this appendix we describe the procedure for converting
the continuous rules for CDRT to the discrete environment. We consider an
arbitrary planar curve that evolves such that it remains planar at all times.
This implies that u3 = 0. Let the material parameter σ ∈ [0, L] be discretised
with N points so that σi = i∆σ with ∆σ = L/N , and time discretised as
tj = j∆t where ∆t is the finite time step. Then the discrete surface is defined

by the points rji = r(σi, tj). Each point also has the accompanying data:

1. A set of three vectors (νji ,β
j
i , τ

j
i ), i.e. the local frame2.

2. A stretch factor λji , corresponding to the continuous definition ∂σr = λτ .

3. The quantity u2
j
i , the only non-vanishing component of the axial vector

in the Frenet basis, which describes the rotation of the frame along the
curve about the binormal. The product λu2 is the geometric curvature.

Without loss of generality (WLOG), let the initial curve be set in the x-y
plane,

r0(σ) = r(σ, 0) = [x0(σ), y0(σ), 0]. (21)

Hence the binormal only has a component in the z direction, and the normal
and tangent can be expressed in Cartesian coordinates as

ν(σ) = [νx, νy, 0], τ (σ) = [τx, τy, 0]. (22)

We derive below rules for the discrete evolution of the curve. The key is that
the shape does not change. Thus, we need only determine the velocity rules
for the first time step, the same rules remain valid at each time step thereafter
even though the curve is at a different location in space. This is a benefit of
describing the velocity in terms of local frames.

2Actually, computationally it is more convenient to define the frame in a slightly different
way. Note that if the curvature changes sign, then the binormal switches discontinuously
from ez to −ez and the normal will discontinuously change direction as well. To avoid such
discontinuities, we define the frame such that β is the same vector at all points on the curve.
Strictly speaking, this is not the Frenet frame, however for convenience we will continue to
use the notation (ν,β, τ ) to describe the local frame.
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Coiling. In the continuous case, coiling is obtained with a velocity only in the
binormal direction, and a linear function of distance along a growth axis [19].
WLOG, let the growth axis be the x-axis. Then coiling requires the velocity

vβ = b1 + b2x0. (23)

where b1 and b2 are constants.3 To find the analogue for the discrete case, we
must add correction terms to the velocity to ensure that the shape does not
change. This is accomplished as follows. Let vνc and vτc denote the correction
terms in the normal and tangential directions. In determining the correction
terms, we first must adjust the binormal velocity (23), since the correction terms
will affect the distance to the coiling axis. Defining

xnew = x0 + (vνcνx + vτcτx)∆t,

the binormal velocity becomes vβ = b1 + b2xnew.
After a finite time step ∆t the points on the y-axis must remain on the y-

axis and at the same y-value, i.e. they require no correction (if these points had
correction terms, twist would be introduced into the finite coiling step). This is
illustrated in Figure 10 - the point a∆t must be located directly above the point
a0 at a distance b1∆t. In the same way, if we defined the origin as the center
of the initial curve, then the center at time ∆t will be at the point [0, 0, b1∆t],
denoted c in Figure 10. In this way, we can use these two points as anchors
for the discrete step. For every other point, we require that the distance to the
center at time ∆t is equal to the initial distance, and that the angle between the
point, the center, and the point a does not change after the finite step. These
two conditions define a set of equations which can be solved for vνc and vτc .
We obtain, after some algebra,

v1c =
(g−1/2 − 1)τyx0

d̂∆t

v3c = − (g−1/2 − 1)νyx0

d̂∆t
,

(24)

where g := 1+b22∆t2 and d̂ := τyνx−τxνy. The binormal velocity then simplifies
to vβ = b1 + b2x0g.

The correction terms ensure that the shape of the curve does not change
during the coiling step. It is also necessary to properly update the frames after
the finite step. To do this, the binormal is first updated to the normal direction
of the plane of the new curve. The tangent and normal vectors are then rotated
to match the rotation of the binormal.

3It is occasionally desirable to have the scaling factor λ present (see [19]). The following
discussion is easily modified to account for such a term.
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Figure 10: Discrete coiling schematic. The point a0 and the origin move only in the binormal
direction, and are used to determine the correction velocities for all other points.

Dilation. In the continuous case and for the curve given by Equation (21) in
the x-y plane, dilation is achieved with a velocity of the form

vd = cr0er, (25)

where c is independent of σ, r0 = |r0|, and er is the radial unit vector in the x-y
plane. This is converted to the local basis by decomposing r0er = α1ν + α3τ ,
so that the local velocities are

vν = cα1, vτ = cα3. (26)

In this case, no correction terms are needed. The curve is updated as r∆t =
r0 + ∆t(vνν + vττ ), and the scaling factor λ is updated as λ∆t = (1 + ct)λ0.
The frames do not change with the dilation step.

Rotation. Rotation has a similar form to dilation, but with velocity in the
circumferential direction, namely

vr = br0eθ. (27)

In the same manner as dilation, we decompose r0eθ = γ1ν +γ3τ . For a discrete
rotation step, however, we must add a correction term in the radial direction.
That is, the velocity is br0eθ − vcr0er, where vc is to be determined. This is
illustrated in Figure 11. Imposing the requirement that the radius of any point
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Figure 11: Discrete rotation. A correction velocity of magnitude vcr0∆t must be added in
the radial direction.

does not change during the rotation step, a simple geometrical calculation yields
the formula

vc = (1−
√

1− b2∆t2)/∆t, (28)

and thus the local velocities are

vν = bγ1 − vcα1, vτ = bγ3 − vcα3. (29)

The frames undergo a rotation about the binormal. From Figure 11, it can be
seen that the rotation angle is θ = sin−1(b∆t).

Translation. The final form of growth within the context of the aperture shape
remaining fixed is a global translation. That is, a velocity vg(t), a velocity in the
same direction at all points on the generating curve. Such a velocity corresponds
to a pure translation, and requires no correction steps nor frame updating. In
the continuous case, the only step needed is to decompose the velocity into local
components, i.e. write

vg = vνν + vββ + vττ . (30)

In the discrete setting, the decomposition is not even necessary and the curve
can be immediately updated as rt+∆t = rt + vg∆t.

C. Discrete shape evolution

Here we describe the procedure for the discrete evolution of the shape of the
curve. Along with initial curve r0(σ) = [x0(σ), y0(σ), 0] and frames ν0(σ) =
[νx, νy, 0], τ 0(σ) = [τx, τy, 0], we also assume that we have the initial data
λ0(σ) = |∂r0/∂σ| = |r′0| as well as the value u20

= λ0κ0, where κ is the geometric
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curvature. Note that u2 describes the rotation in space of the local frame about
the binormal.

Let the evolution of the curve be dictated by the velocity

q = qνν + qττ , (31)

where the qi are arbitrary functions of σ and t. After time step ∆t, the curve
is r∆t = r0 + (qν0ν0 + qτ0τ 0)∆t. From this, we compute

r′∆t = (q′ν0 + u20
qτ0)∆tν0 + (λ0 + (q′τ0 − u20

qν0)∆t)τ 0 (32)

Define for convenience

A = (q′ν0 + u20qτ0)∆t, B = (λ0 + (q′τ0 − u20qν0)∆t). (33)

These quantities are known at every point from the initial data. From (32), we
compute

λ∆t = |r′∆t| =
√
A2 +B2, (34)

which gives a rule for updating λ. Next, from the relation

τ∆t = r′∆t/λ∆t =
Aν0 +Bτ 0

λ∆t
,

we determine that the frames rotate by the angle

θ = cos−1(τ∆t · τ 0) = cos−1(B/λ∆t). (35)

These formulas give exact updates for the frames and stretch λ, and agree with
the continuous case when expanded to first order in ∆t.

Thus far, we have advanced the points, frames, and stretch λ. The final
ingredient needed is a rule to update u2. One option is to recognize that u2

can be obtained from the curvature, which could be computed directly from the
updated curve. There are a number of methods to compute the curvature of a
discrete curve, see for instance [25]. However, such a method can be computa-
tionally expensive and does not utilise the previous data or the mathematical
structure inherent in the continuous equations. Instead, the method we propose
uses the concept of parallel transport, a familiar concept in differential geometry
and used in discrete differential geometry [29].

As stated above, u2 is the rotation of the frames about the binormal along
the curve for fixed time. In a discrete setting with frames defined at vertices,
u2 is naturally defined on edges as the angle of frame rotation from vertex
to vertex divided by the length of the edge. Consider three points at time
∆t, as shown Figure 12. Since the frames at each point are known via the
above calculations, the rotation about the binormal from point to point is easily
determined. Focusing on point i, let φ− denote the angle of rotation from i− 1
to i and φ+ the angle of rotation from i to i+1. Then, denoting u−2 as the value
of u2 on the edge preceeding the point i, and u+

2 for the edge following point i,
we have

u−2 =
φ−

λi−1∆σ−
, u+

2 =
φ+

λi∆σ+
, (36)
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Figure 12: Schematic for computation of u2 in discrete curve evolution. Curvature, and hence
u2 are determined by the rotation of frames from vertex to vertex and the length of edges.

where λi denotes λ∆t(σi), and ∆σ−, ∆σ+ come from the original discretization
of the spatial parameter σ. Note that λi−1∆σ− is the length of the edge between
points i − 1 and i, and similarly for λi∆σ

+. To define the value of u2 on the
vertices where it is needed for the next step, it suffices to take the average, i.e.

u2(σi,∆t) =
u−2 + u+

2

2
, (37)

an average which is already naturally weighted by the lengths of the edges
appearing in the definitions (36).

The formulas (34), (35), and (37) give the rules for updating all local data
for given arbitrary velocities.

D. Coupling shape evolution to CDRT

In this appendix we outline the procedure for coupling shape evolution to
CDRT in the discrete setting. We take as input an initial curve equipped with
frames, stretch λ, and u2. We also take as known the parameters for coiling (b1
and b2 in Equation (23)), dilation (c in Equation (25)), rotation (b in Equation
(27)), any global translation vg(t), and functions for shape evolution (qν(σ, t)
and qτ (σ, t) from Equation (31)).

Motivated by the notion that shape change can be seen as a secondary
layer, the key, computationally, is that we evolve 2 curves: r(σ, t) maps out
the “actual” surface, whle r̂(σ, t) stays in the x-y plane and only evolves due to
shape change, i.e. this curve ignores coiling etc. Along with this, we also must
equip each curve with frames, so that along with the frames (ν,β, τ ) attached
to r, we also have frames (ν̂, β̂, τ̂ ) attached to r̂. The key observation is that at
any time t, the curve r(σ, t) will be equivalent to r̂(σ, t) to within translation,
rotation, and dilation. Thus, while the frames do not coincide globally, locally
they correspond. The idea is illustrated in Figure 13.
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Figure 13: To couple shape change with CDRT, 2 versions of the curve are evolved: the full
version r (left) and a version r̂ which remains in the x-y plane and only tracks shape change.

For each time step, the algorithm works as follows: first, CDRT substeps are
completed. For these, only the full curve r is updated, but to do so, information
from r̂ is needed. Recall that coiling is defined by growth in the binormal
direction as a linear function along a growth axis. When the shape doesn’t
change, the velocities and correction terms only need to be determined for the
initial step; however once the shape is allowed to evolve the curve r does not
contain the information to define coiling. However, since r̂ remains in the x-y
plane, the velocity and correction terms are determined in the same way as
described in B. Once the local velocity rules and frame updates are known for
r̂, the same rules can be applied for the full curve r. In this way, the value
of the local description becomes apparent - there is no need to track global
quantities or determine global position, since the growth is fully contained in
local variables.

The situation is very similar for dilation and rotation. For dilation, the
velocity is in the “radial” direction, meaning locally radial, i.e. the direction
outward from the center of the curve. For r, this direction is not trivially
determined. It is, however, for r̂. Similarly, for rotation the local circumferential
direction is not known on the curve r, but is automatic on r̂. Thus, the local
velocity rules are determined via r̂ and the rules described in the B, and then
the same local velocities are applied to the full curve r while the curve r̂ does
not change. Finally, any global translation is trivially accounted for directly on
the curve r.

After the CDRT substep is completed, the last substep is to evolve the curves
with the shape change functions qi(σ, t). For this substep, both curves and their
frames must be updated. First, the curve and frames for r̂ are updated following
the approach outlined in the C. Then, r and its frames are updated equivalently,
with the only difference that a dilation factor must be accounted for in updating
r, since aside from dilation, the curves are locally identical. Finally, λ and u2

are updated on r̂.
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E. Mantle stress computation

In this appendix we compute the stress in the mantle due to adhering to
the shell edge. We model the mantle edge as a circular, extensible elastic rod
that attaches to the shell edge via a Hookean spring force. Let rs be the radius
of the circular shell edge, and let the mantle have radius a in its equilibrium
configuration, where a is to be determined. The mantle is assumed to grow
according to the function γ(t), starting from an initial radius a0. Hence, at
time t the unstressed radius of the mantle is γa0. The axial force n3

4 in the
rod due to compression/stretching depends on the ratio of the actual attached
radius a and the unstressed radius γa0. Defining

α =
a

γa0
, (38)

the axial force is a function of α that depends on the constitutive properties of
the material. We adopt the simplest and most widely used form,

n3 = EA(α− 1), (39)

where E is the Young’s modulus and A is the cross-sectional area, representative
of the thickness of the mantle edge. Attachment to the shell edge creates a body
force that is a function of the distance between the mantle edge and the shell
edge. As this distance is likely to be very small, we use a linear spring force

f = ks(a− rs), (40)

where ks is a spring stiffness constant, and f points in the radial direction,
i.e. the direction normal to the centerline of the rod. Mechanical equilibrium
requires that the internal force in the rod balances the attachment body force.
In this case, the force balance is

1

a
n3 + f = 0. (41)

Inserting n3 from (39) into (41) gives a quadratic equation that can be solved
for the equilibrium radius. This may be inserted back into (39) to obtain a
formula for the stress in the rod due to attachment.

F. Simulation parameters

In this appendix we provide the formulas and growth parameters used to
produce the shells simulated in this paper. In terms of CDRT, coiling requires
two parameters, b1 and b2 (see Eq. (23)), dilation and rotation require a single
parameter each, c and b, as per Eq.’s (25) and (27), respectively, and translation

4The notation n3 is used to signify the fact that this force acts along the tangent direction
of the rod, typically denoted the d3 direction in the theory of elastic rods.
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Table 1: CDRT parameter values

Figure Shape Coiling Dilation Rotation Translation
b1, b2 c b vg

2a 1, 10 0.25 0 [0, 1/π, 0]

2b 0.1, 8 0.3 0 [0,−0.6, 0]

3a 0.1, -1.5 0.1 0 [0,−0.1, 0]

3b 0.1, 5 + 0.5t 5 0 [0, 0, 0]

6 0.75, 0.351 NA 0 [0, 0, 0]

9 (initial shape) 0.25, 0.116 0.05 0 [0,−0.15, 0]
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requires a vector vg (Eq. (30)). Each simulated shell was created with given
values for each of these and an aperture shape. The values and shape are
provided in Table 1.

For the simulated shells with ornamentation in Figure 3, a shape changing
velocity produced ornamentation. Each spine in Figure 3 a) was produced with
a velocity that is spatially Gaussian and sinusoidal in time; that is a spine
appearing at time ti with the aperture material point σj was produced with the
velocity

vs = ae((σ−σj)/2c)2 sin(w(t− ti))si, (42)

where si is the direction of spine growth (given in the plane of the fixed plane
curve r̂)5. The ornamentation in Figure 3 b) was produced with a velocity both
spatially and temporally sinusoidal,

vs = (0.2 + 0.02 cos(20σ)) sin(16π(t− ti))x̂. (43)

For the simulated ammonite in Figure 6, the ribs were produced according
to the system (3) with feedback (6), and the stress n3 computed according to E.
The parameters used were a0 = 1, EA = 1, ks = 5000, γ = 1 + 0.05t, kφ = 1.2,
K = 40, kg = 2, and θ = 0.

For the simulated bivalve in Figure 9, the evolution of the aperture was
governed by mechanical energy minimization, with the energy the sum of foun-
dation energy and bending energy, Eq.s (7) and (8) respectively. The length
excess at each step used was L − L0 = 0.25, other parameters were EI = 0.1,
ks = 20.
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