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� Abstract In many growing filamentary structures such as neurons, roots, and stems, the intrinsic shapes

and material response is produced by differential growth of the tissue. Therefore, a key problem is to link

the growth field at the microscopic level to the macroscopic shape and properties of the filaments. Here,

starting with a morphoelastic tubular structure and assuming a local growth law on the growth tensor, we

use dimensional reduction to obtain the overall curvature, torsion, and material parameters of a growing

filament. Various examples of curvature and torsion generation are given and the impact of residual stress

on the generation of curvature is demonstrated.

1 Introduction

The shape of many biological filaments is dictated by differential growth. Consider the simple
situation of an initially straight cylinder lying horizontally and made of a biological material capable
of growing. Assume that points on the bottom half of the cross section grow faster along the axis
than points on the top part. This difference in growth will create stresses that are partially relieved
by modifying the shape of the central axis. In this simple case, the cylinder will curl up. Many such
examples are provided by the study of plants. For instance, it is well known that inclining a plant
will produce a gravitropic response where part of the stem will grow faster as to recover ascension
against gravity by locally creating curvature [1, 2, 3]. Similarly, for a twining vine to grow helically
around a pole, different points in the section normal to the axis must grow at different rates [4, 5]
in order to generate both torsion and curvature. Another interesting case of differential growth is
found in the main trunk of some trees that grow straight but twisted [6]. It is believed that this
twist comes from a balance between growth and anisotropic response of the wood similar to the
response found in some fungi such as phycomyces sporangium [7].

A natural question is then: If the local growth field of a filamentary structure is known at
each point, what is the curvature, torsion, and twist of its centreline? And, What are its stiffness
properties in response to bending, twisting, and stretching? We can look at this question as a
multiscale problem relating the microscopic knowledge of growth at the tissue and cell levels viewed
as a three-dimensional continuum to the macroscopic shape of the filament viewed as a simpler one-
dimensional elastic structure [8, 9]. The main advantage is that a morphoelastic rod [10, 11] is a
greatly simplified model that can easily be studied, even under complex deformations, to test
various hypotheses on developmental patterns and the response of biological organisms to external
stimuli [12, 13]. The observable shape of the filamentary structure is linked to its fundamental
growth processes.
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In the previous installments of this work [10, 11], we assumed that growth was only axial and the
curvatures were known. One of the important ingredients entering any rod theory is the curvature.
In growing systems, the curvatures are typically generated by a differential growth process and a
fundamental problem is to link explicitly differential growth to the generation of curvatures. This
is the main goal of this paper. Here, we treat the microscopic filament as a morphoelastic solid.
It is a hyperelastic continuum that can grow and remodel and support stresses [14, 15, 16]. The
macroscopic filament is then viewed as a morphoelastic rod: a one-dimensional elastic rod that can
grow and remodel [11, 10]. For both objects, we use the theory of morphoelasticity, which models
growth through a multiplicative decomposition of the deformation gradient; we mostly follow the
notations and definitions from [16].

Our approach consists in reducing the three-dimensional energy of a growing tubular structure
to a one-dimensional energy of an elastic rod by first minimizing the energy over possible defor-
mations in the cross section and, second, by averaging the resulting deformations over the tube’s
cross sections using the approach developed in [17] (see also [18, 19] for similar earlier theories).
The emphasis here is on the explicit construction of the curvatures and the relationship between
microscopic growth fields and macroscopic shape, noting that much of the resulting theory can be
obtained through the idea of Gamma convergence as has been done by multiple authors [20, 21, 22]
with results similar to [23] (see also [24] for similar ideas applied to plate theory). We consider
two cases: first, we assume that the growth tensor is close to the identity with a perturbation de-
pending on the small cross-sectional lengthscale. In this case, intrinsic curvatures can be obtained
systematically and we recover results from these studies. Second, we look at the case where the
growth tensor is the product of a finite deformation preserving the cylindrical symmetry and a
near-identity deformation inducing curvatures.

Inspired by the world of plants, we apply these ideas to simple scenarios of differential growth
in the section leading to changes in curvature and the formation of helical structures. Nevertheless,
these methods are universal for anelastic variations within a tubular section that can be described
by the multiplicative decomposition of the deformation gradient (thermo-elasticity [25], elasto-
plasticity [26], active processes [27], dislocations [28] and so on [29]). The paper is organized as
follows: In Section 2, we discuss the general step-by-step algorithm needed to obtain curvatures and
stiffnesses from the knowledge of the growth tensor and hyperelastic strain-energy density. Then,
we consider several important cases where analytic progress can be made and general formulas can
be obtained. First, we demonstrate the generation of curvature and torsion via incremental axial
growth in Section 3. The effect of finite growth and residual stress is then developed in Section 4.

2 General set-up

The dimensional reduction starts by assuming that the filament is a three-dimensional tubular body
that is allowed to grow. The initial structure is stress-free and growth is defined at every point as
a local change of a volume element. As a result, the body will develop residual elastic energy [30].
This build up of elastic energy due to growth is reduced by small deformations within the section
(reactive strains) and by deformation of the centreline (curvatures). Explicitly, the procedure is
decomposed into the following steps.

Step 1: The growth tensor. We define within a cylindrical structure a growth tensor, charac-
terizing at each point the local change of shape of a volume element by the addition, removal,
or redistribution of mass.

Step 2: Define a deformation gradient. We assume that this filamentary structure can be
deformed both by deformations within the section and deformation of the centreline. This
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step naturally introduces a small parameter ε defined as the ratio of the typical size of the
section R to the length L of the rod: ε = R/L� 1.

Step 3: Compute the energy. Given the deformation gradient, the energy density can be ex-
panded asymptotically in powers of ε.

Step 4: Minimize the energy over the section. To each order, we can minimize the energy
integrated over the section with respect to deformations within the section. These are the
reactive strains developed within the rod [31].

Step 5: Average over the section. Once the reactive strains are known, the energy density is
averaged over the cross section and an expression is obtained for the energy in terms of the
curvatures that can be identified with the energy of a rod.

2.1 Step 1: The growth tensor

We consider an initial tubular configuration B0 ⊂ R3 with material points (X,Y, Z) ∈ B0 as shown
in Figure 1. In this tubular description B0 can be decomposed as the product [0, L]×S of a segment
of the Z-axis between 0 and L and a family of cross-sections SZ whose centroids are on the Z-axis
and oriented so that ∫

SZ
X dXdY =

∫
SZ
Y dXdY =

∫
SZ
XY dXdY = 0. (1)

We note that in the case where SZ is independent of Z, one can always choose a system of coor-
dinates so that this assumption is satisfied. The general case is a bit more involved and can be
carried out at the expense of extra terms in the final result. We assume that the typical length
scale of each section is of order O(ε) and that each cross section is a slowly varying function of the
arc length Z, so that on short scales, the tubular structure is cylindrical.

We use the framework of morphoelasticity [16] and model growth through a tensor G. We
consider the deformation χ(X) from the initial configuration B0 to the current configuration B.
The associated deformation gradient is

F = Gradχ. (2)

where the gradient is taken with respect to the X coordinates. Following the fundamental assump-
tion of morphoelasticity [32], we assume that this deformation gradient can be decomposed into a
growth part G and an elastic part A so that F = AG. The elasticity tensor A describes the elastic
stretches that are governed by a strain-energy density function W = W (A). The growth tensor
G is considered to be an input in our problem and is given by an invertible tensor with strictly
positive determinant

G = Gij ei ⊗ ej , i, j ∈ {x, y, z}, (3)

where (e1, e2, e3) are the usual unit Cartesian basis vectors along X = (X,Y, Z) and, in general,
Gij = Gij(X,Y, Z).

In a biological context, this growth tensor expresses the local change or rearrangement of cells
due to growth or remodeling. For instance if cells are assumed to only grow by elongating in the
Z direction, then the growth tensor will be of the form G = diag(1, 1, γZ) with γZ > 1 describing
the change in length due to growth.

Here we consider growth tensors that are themselves a product

G = (1 + G1(X))G0(X), (4)
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Figure 1: In its undeformed configuration B0, a tubular body has a straight centroid axis and arbi-
trary cross-sections. Following growth and elastic relaxation, the body is described in configuration
B by a central curve r(Z) equipped with a local orthonormal frame {d1,d2,d3} (see Appendix A
for details).

of a finite growth deformation G0 that does not induce any curvature, and an incremental defor-
mation (1 + G1) that may induce curvature and torsion. The tensor G1 must be taken to be small
in a way that will be defined shortly.

We consider a particular family of possible deformations, mapping a straight tubular structure
to a filament in space B with centreline r(Z) (see Fig. 1). This centreline is the image of a segment
of the Z-axis defining the centreline of the initial configuration. As explained in details in Appendix
A, from this centreline, we define a local director basis (d1(Z),d2(Z),d3(Z)) where r′(Z) = ζd3

and ζ is the axial extension and ( )′ denotes derivatives with respect to the material coordinate Z.
From the director basis, we define the Darboux curvature vector u = u1d1 + u2d2 + u3d3. This
vector describes the evolution of the director basis along the filament, satisfiying

d′i(Z) = ζu× di. (5)

The mapping χ : B0 → B is then written

χ(X) = r(Z) +
3∑
i=1

ρi(X,Y, Z)di(Z), (6)

where the ρi are functions to be determined that describe the local deformation of the section;
these satisfy ρi(0, 0, Z) = 0 so that the Z-axis maps to the centerline r(Z). This particular form
(6) expresses the deformation of a tubular body in terms of its centreline and director basis, and is
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key to the development. Before we compute the gradient, we take advantage of the small parameter
ε and introduce the following scaling

X = εx, Y = εy, Z = Z, ρi = εαi. (7)

In these new variables, and using the notation α1x = ∂xα1 and so on, the deformation gradient
reads:

F = Fijdi ⊗ ej =

 α1x α1y (1 + εξ)ε(u2α3 − u3α2)
α2x α2y (1 + εξ)ε(u3α1 − u1α3)
α3x α3y (1 + εξ)(1 + ε(u1α2 − u2α1))

 , (8)

where ζ = 1 + εξ, so that ξ captures the (small) axial strain.

2.2 Step 3: The energy density

We assume that the growing material is hyperelastic with strain-energy density W = W (A).
The material may be be either compressible or incompressible and the equilibrium problem is to
minimize the energy

E =

∫
B0

(W (A)− p(J − 1))det G dV, (9)

over all possible deformations considered above. Here, J = detA and p is a Lagrange multiplier
to be determined in the minimization process if the material is incompressible. The factor det G
appears since the integral is written in the initial pre-grown configuration, while the energy density
is an energy per reference grown volume. In general, we define the potential

V = (W (A)− p(J − 1))det G, (10)

where p = 0 in the compressible case.
Using the decomposition of the deformation gradient F = AG and the invertibility of G, we

can express the potential as
V = V (FG−1,G). (11)

Then, the energy functional can be written

E = ε2

∫ L

0
F(Z) dZ, F(Z) =

∫
S̃
V dxdy, (12)

where S̃ denotes the scaled cross section (i.e. (X,Y ) ∈ S implies that (x, y) ∈ S̃).

2.3 Step 4: Minimization over the section

The problem now is to find the functions α = (α1, α2, α3) and p that minimize the energy over
each section. The main idea is to expand these variables in the small parameter ε:

α = α(0) + εα(1) + . . . (13)

p = p(0) + εp(1) + . . . (14)

For the incremental growth to have an effect on the energy at order O(ε2) (and not at lower order),
it must scale as G1 = εg1(x), so that

G = (1 + εg1(x))G0. (15)
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Then, for F given in (8), the strain-energy density can be expanded in ε

V = V0(α(0), p(0)) + εV1(α(0),α(1), p(0), p(1)) + ε2V2(α(0),α(1),α(2), p(0), p(1), p(2)) + . . . (16)

from which we define a sequence of minimization problems for the functionals

Fi[α(0), . . . ,α(k); p(0), . . . , p(k)] =

∫
S̃
Vi dxdy, i = 0, 1, 2, . . . (17)

For a cross-section S̃, the associated Euler-Lagrange equations for these problems take the form(
∂

∂x
,
∂

∂y

)
·

(
∂Vi

∂α
(k)
jx

,
∂Vi

∂α
(k)
jy

)
− ∂Vi

∂α
(k)
j

= 0, j = 1, 2, 3, (18)

(
∂

∂x
,
∂

∂y

)
·

(
∂Vi

∂p
(k)
x

,
∂Vi

∂p
(k)
y

)
− ∂Vi

∂p(k)
= 0, (x, y) ∈ S̃, (19)

with the natural boundary conditions(
∂Vi

∂α
(k)
jx

,
∂Vi

∂α
(k)
jy

)
· n = 0, j = 1, 2, 3, (20)(

∂Vi

∂p
(k)
x

,
∂Vi

∂p
(k)
y

)
· n = 0, (x, y) ∈ ∂S̃, (21)

where n is the unit external normal vector at the boundaries ∂S̃ of S̃. At each order εi, the
choice of k ≤ i, and thus the functions α(k), p(k) to be satisfied by the Euler-Lagrange equations,
depends on the solution at previous order. For instance, we will see that for i = 1 the equations
are automatically satisfied, hence α(1), p(1) is only solved at order ε2. By construction, the PDE
system (18)-(21) is linear in α(k), p(k) and can in principle be solved for a given growth tensor G
and strain-energy density W = W (A).

2.4 Step 5: Averaging over a section

Once the solution for α, p is known up to order ε, the energy takes the form

E = ε4

∫ L

0
dZ

∫
S̃
V2(α(0),α(1), p(0), p(1); u1, u2, u3, ξ) dxdy +O(ε5). (22)

The elastic energy of the rod is then obtained by integrating V2 over the cross sections. Having
expanded the strain-energy density to O(ε2), and since by construction α(1) and p(1) depend on the
curvature u and extensional strain ξ, once the integration over x and y is performed, (22) has the
form of an integral only along Z and with quadratic dependence on the quantities {u1, u2, u3, ξ}.
Thus, we have converted the energy to that of a Kirchhoff elastic rod with material variable Z = S.
It is then easy to identify, by comparison with a classic rod energy, the intrinsic curvatures giving
the unstressed shape of the rod and its stiffnesses. Rather than giving the most general form
for these intrinsic curvatures, we start with simple examples to illustrate the procedure and build
towards a general theory.
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3 Incremental axial growth

3.1 Generating curvature through a growth gradient for a circular section

We start with an elementary example capable of generating curvature but no torsion. We assume
that the material is isotropic and compressible (hence p = 0) and that the structure is initially
cylindrical with length L = 1 along the Z–axis and circular cross section S of radius R = ε � 1
and with uniform material properties (all elastic moduli are constant through the material). To
set the orientation of the local frame, throughout this paper we identify the local basis in the
undeformed state with the Cartesian basis {d1 = eX ,d2 = eY ,d3 = eZ}.

We assume no initial finite growth (G0 = 1) and take the incremental growth to be purely axial
with a gradient along the X axis:

G = diag(1, 1, 1 + γX) = diag(1, 1, 1 + εγx). (23)

A remarkable feature of the theory of rods is that since the strain-energy density is isotropic and
its contribution in the expression for V includes at most quadratic terms in the strains, we can use
without loss of generality the quadratic approximation of W :

W =
1

2

[
µ
(
tr
(
H.HT

)
+ tr(H2)

)
+ λtr(H)2

]
, (24)

where H = A− 1 and µ, λ are the Lamé parameters.
The expansion of

V = W (F(1 + G1)−1)det(1 + G1) = V0 + εV1 + ε2V2 + . . . , (25)

proceeds by using F given by (8) and the expansion α in (13). The Euler-Lagrange equations for
F0 are automatically satisfied with the choice

α(0) = xd1 + yd2, (26)

and we can verify explicitly that both V0 and V1 vanish identically on this solution. The information
about the curvatures are contained in the second-order term

V2 =
µ

2

(
2xu3α

(1)
3y − 2yu3α

(1)
3x + (α

(1)
1y )2 + 2(α

(1)
2y )2 + (α

(1)
3y )2 + 2(α

(1)
1x )2 + (α

(1)
2x )2 + (α

(1)
3x )2 + 2α

(1)
1y α

(1)
2x

+ x2u2
3 + 2 (yu1 − xu2 − γx+ ξ)2 + y2u2

3

)
+
λ

2

(
α

(1)
2y + α

(1)
1x − xu2 + yu1 − γx+ ξ

)2
.

(27)

The Euler-Lagrange equations for this problem are

λ
(
α

(1)
2xy + α

(1)
1xx − γ − u2

)
+ µ

(
α

(1)
1yy + α

(1)
2xy + 2α

(1)
1xx

)
= 0, (28)

λ
(
α

(1)
2yy + α

(1)
1xy + u1

)
+ µ

(
2α

(1)
2yy + α

(1)
1xy + α

(1)
2yy

)
= 0, (29)

α
(1)
3xx + α

(1)
3yy = 0. (30)

We use the parameterization of the circle (x, y) = (cos θ, sin θ), θ ∈ [0, 2π] which gives n =
(cos θ, sin θ) and the natural boundary conditions

λ sin θ
(
α

(1)
2y + α

(1)
1x + u− γx+ ξ

)
+ µ

(
2 sin θ α

(1)
2y + cos θ (α

(1)
1y + α

(1)
2x )
)

= 0, (31)

λ cos θ
(
α

(1)
2y + α

(1)
1x + u− γx+ ξ

)
+ µ

(
sin θ (α

(1)
1y + α

(1)
2x ) + 2 cos θ α

(1)
1x

)
= 0, (32)

sin θ α
(1)
3y + cos θ α

(1)
3x = 0, (33)
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where u := (u1 sin θ − u2 cos θ) and α(1) and its derivatives are evaluated on the unit circle. These
equations have an exact solution given by

α
(1)
1 =

λ

2(µ+ λ)

(
−xξ +

1

2

(
x2 − y2

)
(γ + u2)− xyu1

)
, (34)

α
(1)
2 =

λ

2(µ+ λ)

(
−yξ +

1

2

(
x2 − y2

)
u1 + xy(γ + u2)

)
, (35)

α
(1)
3 = 0. (36)

We note that the conditions ρ1(0, 0.Z) = ρ2(0, 0.Z) = 0 imply α
(1)
1 (0, 0.Z) = α

(1)
2 (0, 0.Z) = 0

and, by substituting x = y = 0, we can directly verify that our ansatz satisfies these conditions.
With the solutions for α(0) and α(1) known explicitly, we can then explicitly integrate the strain-
energy density V2(α(0),α(1), u1, u2, u3, ξ) over the cross-section. We find (using the original unscaled
variables and dropping terms O(ε5) and higher):

E =
1

2

∫ L

0

(
EπR2(ζ − 1)2 + E

πR4

4
u2

1 + E
πR4

4
(u2 + γ)2 + E

πR4

4(1 + ν)
u2

3

)
dZ. (37)

Here we have used ξ = (ζ − 1)/R and the standard conversion between Lamé parameters and the
Young’s modulus E and Poisson ratio ν:

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(ν + 1)
. (38)

By direct comparison with the energy of an extensible elastic rod (see Appendix A for details),

Erod =
1

2

∫ L

0

(
EA(ζ − 1)2 + EI1(u1 − û1)2 + EI2(u2 − û2)2 + µJ(u3 − û3)2

)
dS, (39)

we conclude that the morphoelastic rod has acquired through a growth gradient along the X
direction an intrinsic curvature û2 = −γ, as shown Fig. 2(a). We also see that the stiffnesses of the
grown rod are identical to the stiffness of the original rod since for a circular cross-section we have

A = πR2, I1 = I2 =
πR4

4
, J = 2I1 =

πR4

2
, (40)

and these dimensions have not changed in the grown rod.

3.2 Generating curvature, twist and torsion through growth in an isotropic
material

Next, we generalize the previous case by considering an axial incremental growth function for a rod
with section S and made out of an isotropic material. The computations in this case are very close
to the previous case and we merely outline the main results. Again, we assume no initial finite
growth (G0 = 1) and take an incremental growth of the form

G1 = diag(0, 0, εg(x, y)) = diag(0, 0, G(x/ε, Y/ε)). (41)

Since we can always rescale the overall length of the rod, we assume, without loss of generality,
that ∫

S̃
g(x, y) dxdy = 0, (42)
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d1

 d2

 d3

 1/ ̂ u2

growth

(a) (b)

Figure 2: Generation of curvature and torsion by incremental axial growth in a cylindrical rod. In
(a), a linear growth gradient γ in the eX direction generates a rod with intrinsic curvature γ. In
(b), the linear growth gradient γ twists along the Z axis at rate ω, thus generating both intrinsic
curvature γ and intrinsic torsion ω.

which implies that there is no change of unstressed length due to growth.
The expansion of V = V0 + ε2V2 + . . . proceeds as before and the resulting Euler-Lagrange

equations associated with V0 are again automatically satisfied by α(0) = xd1 + yd2, and V1 ≡ 0
again. The second-order term is

(43)
V2 =

µ

2

(
2xu3α

(1)
3y − 2yu3α

(1)
3x + (α

(1)
1y )2 + 2(α

(1)
2y )2 + (α

(1)
3y )2 + 2(α

(1)
1x )2 + (α

(1)
2x )2 + (α

(1)
3x )2

+2α
(1)
1y α

(1)
2x +x2u2

3 +2 (yu1−xu2−g+ξ)2 +y2u2
3

)
+
λ

2

(
α

(1)
2y +α

(1)
1x −xu2 +yu1−g+ξ

)2
.

A solution of the corresponding Euler-Lagrange equations is given by

α
(1)
1 =

λ

2(µ+ λ)

(
−xξ +

1

2

(
x2 − y2

)
u2 − xyu1 + 2f1

)
, (44)

α
(1)
2 =

λ

2(µ+ λ)

(
−yξ +

1

2

(
x2 − y2

)
u1 + xyu2 + 2f2

)
, (45)

α
(1)
3 = u3φ. (46)

Here, φ is the warping function of classical rod mechanics [16, p. 111]. It is a solution of

∆φ = 0, (x, y) ∈ S̃ (47)

n · (φx, φy) = n · (y,−x), (x, y) ∈ ∂S̃, (48)

where n is a unit outward normal vector to the boundary ∂S̃. The functions f1,2 are solutions of
the linear system

λ (f2xy + f1xx − 2gx) + µ (f1yy + f2xy + 2f1xx − 2gx) = 0, (49)

λ (f2yy + f1xy − 2gy) + µ (f2yy + f1xy + f2xx − 2gy) = 0, (50)
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with boundary conditions

(µ(f1y + f2x), λf2y + (λ+ 2ν)f1x + 2(λ+ ν)g) · n = 0, (51)

(λf1x − (λ+ 2ν)f2y − 2(λ+ ν)g), µ(f1y + f2x)) · n = 0. (52)

An explicit solution for the extraneous functions f1, f2 is given in Appendix B. However, we will
see that their particular forms are not important as these two functions do not enter the expression
of the curvatures. It is instructive to observe that the cross-sectional geometry and the form of

incremental growth, g(x, y), only impact the extraneous functions, while the terms in the α
(1)
i

that multiply the rod’s strain components {u1, u2, u3, ξ} are completely generic in that they do not
depend on cross-sectional geometry nor on the form of incremental growth. The dependence on the
cross-section and the growth function only enters through the form of the energy density at second
order. Indeed, evaluated on the solutions for α(0) and α(1), the energy density reads

V2 =
1

8(λ+ µ)2

(
−4(λ+ µ)gλ2

(
(f2y + f1x) + 6λµ (ξ − u2x+ u1y) + 4µ2 (ξ − u2x+ u1y)

)
+ λ2µ

(
f2

1y + 2f2
2y + 2f2

1x + f2
2x + 2f1yf2x + 4u2

3φ
2
y + 4u2

3φ
2
x + 8u2

3xφy − 8u2
3yφx + 12ξ2

+ 12u2
2x

2 + 4u2
3x

2 − 24ξu2x+ 24u1y (ξ − u2x) + 12u2
1y

2 + 4u2
3y

2
)

+ λ3 (f2y + f1x) 2

+ 4(λ+ µ)2(λ+ 2µ)g2 + 4λµ2
(
2u2

3φ
2
y + 2u2

3φ
2
x + 4u2

3xφy − 4u2
3yφx + 5ξ2 + 5u2

2x
2 + 2u2

3x
2

− 10ξu2x+ 10u1y (ξ − u2x) + 5u2
1y

2 + 2u2
3y

2
)

+ 4µ3
(
u2

3φ
2
y + u2

3φ
2
x + 2u2

3xφy − 2u2
3yφx + 2ξ2

+ 2u2
2x

2 + u2
3x

2 − 4ξu2x+ 4u1y (ξ − u2x) + 2u2
1y

2 + u2
3y

2
))
,

(53)

and we can now integrate this expression over the cross section. This integrand is a function of
the variables φ, f1, f2 and their derivatives. However, an important realization is that the terms
involving f1 and f2 in V2 do not contain any dependence on the strains. Therefore, we can write:

E = Emorphorod[ξ, u1, u2, u3; g] + Ereactive[g] (54)

where Ereactive is an energy term induced by the incremental growth that does not vary with the
deformation of the central axis of the rod. Therefore, it is not necessary to integrate the Ereactive

component in order to compute the properties of the equivalent Kirchhoff elastic rod (though for
completeness this is included below).

To evaluate E , we transform the integral by using integration by parts to transform nonlinear
terms, the equations and boundary conditions that φ, f1, f2 satisfy, and apply standard calculus
identities to simplify the final result. Expressed in unscaled variables, the energy Emorphorod has
the structure of a Kirchhoff elastic rod:

Emorphorod =
1

2

∫ L

0

(
K0(ζ − 1)2 +K1(u1 − û1)2 +K2(u2 − û2)2 +K3u

2
3

)
dZ, (55)

where we recover the usual quantities appearing in the classical rod theory

K0 =

∫
S
E dX dY, K1 =

∫
S
EY 2 dX dY, K2 =

∫
S
EX2 dX dY, (56)

K3 =

∫
S
µ(Y 2 +X2) dX dY +

∫
S
µ (XΦY − Y ΦX) dX dY. (57)

Here Φ is the unscaled warping function, i.e. a solution of

∆Φ = 0, (X,Y ) ∈ S (58)

n · (ΦX ,ΦY ) = n.(Y,−X), (X,Y ) ∈ ∂S. (59)
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In addition, we define

H1 =

∫
S
EY G(X,Y ) dX dY, H2 =

∫
S
EX G(X,Y ) dX dY, (60)

where G(X,Y ) = εg(X/ε, Y/ε). Then the unstressed curvatures are

û1 =
H1

K1
, û2 = −H2

K2
, û3 = 0. (61)

Finally, the reactive energy term is

Ereactive =
1

2

(
−K1H1 −K2H2 +

∫
S

ν − 1

2ν2 + ν − 1
EG2 dX dY

+

∫
S

ε2Eν2G

2ν2 + ν − 1

(
f2Y (

X

ε
,
Y

ε
) + f1X(

X

ε
,
Y

ε
)

)
dX dY

)
, (62)

though as stated, since it is independent of the strains, the reactive energy term does not contribute
to the specification of the rod shape during deformation and can be ignored in transforming the
grown structure to a 1D setting. We note that the form of the curvatures are similar to the results
in [20, 21].

3.2.1 A linear growth gradient

If we assume a linear growth gradient of the form g(x, y) = γ1x+ γ2y, then G(X,Y ) = γ1X + γ2Y
and from (60) and (61), we have simply that

û1 = γ2, û2 = −γ1. (63)

We conclude that the amplitude of a linear growth gradient in the section gives the intrinsic
curvature for all cross-sectional shapes of isotropic compressible materials.

3.2.2 Generating intrinsic torsion

At a first glance, it does not appear that the form of the curvatures allows for the generation of
intrinsic torsion. However, an important observation is that all of the calculations above still carry
through if the incremental growth field is a function of Z, so long as the rate of change in the
Z-direction is O(1) or lower. Using this fact, a natural way to develop both curvature and torsion
is for the growth gradient to twist along the axis. Consider, for instance, the growth field

G1 = diag(0, 0, γ(X cos(ϕZ) + Y sin(ϕZ))). (64)

In this case, following the ideas above, (61) gives

û1 = γ sin(ωZ), û2 = −γ cos(ωZ). (65)

To see that this form does in fact produce torsion, we note a fundamental relationship between
torsion, which is a property of the centerline, and twist, a property describing rotation of the
material frame (described further in Appendix A). The latter can be characterised by a function
ϕ(S) that describes the angle between the normal vector to the centerline and the vector d1. In
general, curvature κ, twist ϕ, and torsion τ are related to the curvature vector by

u = (κ sinϕ, κ cosϕ, τ +
∂ϕ

∂S
). (66)
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In the case of the curvatures (65) generated by (64), we have û3 = 0, hence

κ̂ =

√
û2

1 + û2
2 = γ, τ̂ = −∂ϕ̂

∂S
= −∂S (arctan(û1/û2)) = ω. (67)

That is, a linearly rotating growth gradient produces a helix as illustrated in Fig. 2(b).
There are other possible mechanisms to generate torsion. One is to have a growth field creating

residual shear in the section. This is obtained by having a growth tensor with non-diagonal compo-
nents coupling the axial direction with any direction in the section. The shear created is partially
removed by twisting the rod around its axis. By itself, this is not enough to generate torsion,
But, in the presence of curvature, such twisting creates torsion. Another possible mechanism is to
have an anisotropic material. For instance a fiber-reinforced material with helical fiber families will
naturally generate torsion during axial growth in the presence of curvature. We also note in [22] a
general formula for rods with prestrain oscillating on the lengthscale of the rod’s thickness is given.

3.2.3 Constant growth

We consider the simple but important case of constant axial growth in a finite number N of domains
Si such that S =

⋃N
i=1 Si (see [33] for a similar construction). We denote by γi the axial growth in

each domain, so that
G1,i = diag(0, 0, εγi). (68)

Following the procedure above, we can formulate the energy as a sum of integrals over each of the
domains. Defining αi as the deformation within the ith section generates a series of Euler-Lagrange
equations identical to (28)-(30); the only coupling between sub-domain appears in the boundary
conditions. Indeed, the natural boundary condition only applies on the outside edge ∂S, while
a matching condition is needed on each interior boundary. However, recall the structure of the
solutions (44)-(46): the geometry (and boundary conditions), as well as the growth, are contained
in the functions f1, f2, which do not impact the properties of the rod. Moreover, while the warping
function φ does depend on the geometry, it does not depend on the growth, hence this can be
computed by consideration only of the external geometry. Therefore, the formulas (56)-(61) are
still valid in the case of piecewise axial growth.

In particular, if we define the centroid of each domain (in unscaled variables) by (Xi, Yi), as
measured from the centroid of the full cross-section, so that∫

Si
(X −Xi)dXdY =

∫
Si

(Y − Yi)dXdY = 0,

then we obtain the intrinsic curvature components (see Eq. (60)) as sums of the first moments of
area of the sub-sections weighted by growth:

H1 =

∫
S
EY G(X,Y ) dXdY =

N∑
i=1

∫
Si
EiY εγi dX dY = ε

N∑
i=1

γiEiYiAi, (69)

H2 =

∫
S
EX G(X,Y ) dXdY =

N∑
i=1

∫
Si
EiXεγi dX dY = ε

N∑
i=1

γiEiXiAi, (70)

where Ai is the area and Ei the Young’s modulus of the ith domain. The intrinsic curvatures are
then given by the ratio

û1 =
H1

K1
, û2 = −H2

K2
(71)
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where

K1 =

∫
S
EY 2 dXdY =

N∑
i=1

∫
Si
EiY

2 dX dY

is a second moment of area, and similarly for K2.
An example is given in Fig. 3. We take a simple scenario of six circular domains Si, i ∈

{1, 2, . . . , 6}, inside a bounding circular domain S7. Constant axial growth is imposed in each
domain as illustrated in Fig. 3(b), where a negative value indicates a contraction of that region.
The curvature comes as a weighted average over the regions, and the resulting structure is plotted
in Fig. 3(c). If either the orientation of the regions, or the growth, varies in the Z-direction, then
growth can generate torsion. The former is demonstrated in Fig. 3(d). Here we have rotated the
domains along the Z axis in the pre-grown configuration, and the same piecewise growth produces
a structure with curvature and torsion.

1

2

3

-1

(a) (b)

(c) (d)

-2

Figure 3: Constant axial growth in discrete domains. The domains illustrated in (a) are subjected
to constant axial growth shown histographically in (b). (c) If the domains are uniform in the
Z-direction, the growth generates curvature. (d) If the domains twist in the Z-direction, the same
growth field produces torsion. Here S7 has radius 0.75, S1-S6 have radius 0.25, the total length
L = 10 in (c) and L = 12 in (d), ε = 0.1, and in (d) the domain rotates with rate 0.35 about the
long axis.
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4 Generating curvature with finite growth

We now turn to the more difficult case of computing the rod parameters when finite growth is
included, that is when G0 is not the identity. In the incompatible case, finite growth will generate
residual stresses that will contribute to the rod’s mechanics (see Section 4.2). In the compatible
case, finite growth creates a new tubular body without stresses and the problem is trivial in the sense
that one can define a new reference configuration and the previous discussion applies. However,
this problem is still interesting as it allows us to include arbitrary uniform longitudinal growth,
uniform twist, and uniform change of radius, and we solve this problem first.

4.1 Compatible finite growth

In cylindrical polar coordinates, we consider a deformation from {R0,Θ0, Z0} to {R,Θ, Z}. The
most general growth deformation is an inflation, extension, and twisting of the structure, for which
we have the map

R = λ1R0, (72)

Θ =
λ2

λ1
Θ0 + λ4Z0, (73)

Z = λ3Z0, (74)

where λ1,2,3,4 are constant. The corresponding growth gradient in cylindrical to cylindrical coordi-
nates

G0 = G0,αβ eα ⊗ eβ, α ∈ {R,Θ, Z}, β ∈ {R0,Θ0, Z0} (75)

is

G0 =

 λ1 0 0
0 λ2 λ4R
0 0 λ3

 . (76)

Following the deformation, the radius is stretched by a factor λ1, the rod has extended axially
by factor λ3, and a twist of the cross-sections has been induced, with twisting rate λ4. If this
growth were combined with a generic incremental axial growth, we would compute the same exact
curvatures as in Section 3.2, but the stiffnesses would be scaled by a factor of λ4

1 in the case
of bending and torsional stiffness and λ2

1 in the case of extensional stiffness, due to the change
in reference geometry. Also of interest here is that if an incremental axial growth gradient were
defined in the initial configuration, e.g. G1 = diag(1, 1, 1+εγR0 cos Θ0), then since the finite growth
induces a twist, the combination of twist and curvature would generate a torsion component τ̂ = λ4,
similar to the calculation of (67) above. Compare this with the equivalent incremental growth field
defined in the grown configuration, G1 = diag(1, 1, 1 + εγR cos Θ), which would not produce any
torsion. In the latter case growth may be thought of as an axial gradient that is uniform along
the Z axis, imposed on a structure which has undergone already a growth remodelling step that
twisted material points, but which is nevertheless stress-free.

4.2 Incompatible finite growth

Next, we consider the more complex scenario of combining incremental growth with incompatible
finite growth. The idea is illustrated schematically in Fig. 4. Conceptually, we imagine that a
cylindrical body undergoes an incompatible finite growth step G0, followed by an elastic response
A0. In this step residual stress is induced but curvature is not; e.g. the growth field G0 could
consist of radially symmetric inhomogeneous growth. The finite growth and elastic response maps
the initial stress-free state B0 to a state B1 with non-zero Cauchy stress T. The finite deformation
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uses no linearization, i.e. the full finite elasticity problem must be solved; this could be done by
solving div T = 0 with stress-free boundary conditions in the standard way (see e.g. [34]); though
we shall show that such a solution emerges naturally by simply following the steps we have outlined.

From the residually stressed but still cylindrical state B1, we then impose an incremental growth
field G1 of the form considered thus far in this paper, which maps the body to B2, a configuration
with non-zero intrinsic curvature. For instance, G1 could consist of axial growth with a cross-
sectional gradient. If the configuration B1 were stress-free, then we have already shown that if the
body in B2 were approximated as an elastic rod, its intrinsic curvature would exactly match the
growth gradient, and its stiffnesses would entirely be determined by the dimensions of configuration
B1. But B1 is not stress free, and so the fundamental question is to determine if and how curvatures
and stiffnesses are altered by the residual stress.

e.g.

e.g.

Figure 4: A cylindrical rod undergoes finite growth followed by curvature-inducing incremental
growth. The finite growth preserves the cylindrical shape but induces residual stress, so that after
an initial deformation F0 = A0G0, the Cauchy stress T 6= 0. An example would be a radially
symmetric growth field that is a function of radius, e.g. the outside grows more than the inside. In
this stressed but still cylindrical state, a non-uniform incremental axial growth 1 + G1 is applied,
which induces curvature.

Since the finite growth problem needs to be analytically tractable to make any progress, we
take the cross sections to be circular with initial radius R = ε in B0 and assume moreover that
the material is incompressible, isotropic, and with neo-Hookean constitutive law. It is convenient
to describe the configuration B0 by cylindrical polar coordinates {R̂,Θ, Ẑ}1, and, similarly, the
configuration B1 is described by {r, θ, z}. We write the growth tensor in cylindrical to cylindrical
variables:

G = (1 + G1)G0 = Gαβ eα ⊗ eβ, α ∈ {r, θ, z}, β ∈ {R̂,Θ, Ẑ}. (77)

While the ideas outlined below can be generalised to any finite growth step that preserves the
cylindrical geometry, for illustration we restrict our attention to a particular form of the finite

1The hat notation is introduced here to enable scaled variables below to be without hat.
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growth tensor:
G0 = diag(γ(R̂), γ(R̂), 1). (78)

For the incremental growth, we consider for now the generic axial form

G1 = diag(0, 0, εg(R̂,Θ)), (79)

satisfying ∫ 2π

0

∫ ε

0
g(R̂,Θ) R̂ dR̂dΘ = 0. (80)

While it may be more natural to define G1 in the variables of the deformed configuration B1 (and
we shall do so below), for computational simplicity we work in R̂, the variable corresponding to
the initial configuration, and where needed we may utilise the one-to-one map r(R̂) from B0 to B1.

The deformation from B0 to B2 may be thought of as a composition of maps, as pictured in
Fig. 4, i.e. F = F1F0 = A1(1 + G1)A0G0. Following the ideas in [35], since A0, G0, and G1 are
diagonal, these tensors commute and the deformation is equivalent to F = A1A0(1 + G1)G0, i.e.
this particular deformation can be simplified and treated with a single growth step G = (1+G1)G0

from the stress-free configuration B0, followed by elastic response tensor A = A1A0.
Using the scaling (7), we have R̂ = εR, and the deformation gradient F = AG = Fiαdi⊗eα, i ∈

{1, 2, 3}, α ∈ {R,Θ, Z} is given by

F =

 α1R
1
Rα1Θ λε(1 + εξ) (u2α3 − u3α2)

α2R
1
Rα2Θ λε(1 + εξ) (u3α1 − u1α3)

α3R
1
Rα3Θ λ(1 + εξ) (1 + ε(u1α2 − u2α1))

 , (81)

Aside from being written explicitly in cylindrical polar coordinates, the only difference in the form
of F at this stage is the presence of λ, which is the axial extension due to the finite growth.

The neo-Hookean energy is given by

W (A) =
µ

2

(
tr(AAT)− 3

)
, (82)

and, as before, we define the auxiliary energy density

V = (W (A)− p(J − 1))detG, (83)

where J = det A.

We proceed as before, expanding the inner variables α and p, with the auxiliary energy density
taking the form

V (FG−1,G) = V0(α
(0)
1 , α

(0)
2 , α

(0)
3 , p(0), λ) + ε2V2(α

(1)
1 , α

(1)
2 , α

(1)
3 , p(1)). (84)

where we have omitted the linear terms in ε as they vanish in the variational process as well as
higher order terms. The Euler-Lagrange equations are given by

∂

∂R

∂Vi

∂α
(k)
jR

+
1

R

∂Vi

∂α
(k)
jR

+
∂

∂Θ

∂Vi

∂α
(k)
jΘ

− ∂Vi

∂α
(k)
jΘ

= 0, j = 1, 2, 3, k = 0, 1, (85)

∂

∂R

∂Vi

∂p
(k)
R

+
1

R

∂Vi

∂p
(k)
R

+
∂

∂Θ

∂Vi

∂p
(k)
Θ

− ∂Vi

∂p
(k)
Θ

= 0, k = 0, 1. (86)
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with natural boundary conditions

∂Vi

∂α
(k)
jR

∣∣∣∣∣∣
R=1

= 0 j = 1, 2, 3, k = 0, 1, (87)

∂Vi

∂p
(k)
R

∣∣∣∣∣
R=1

= 0 k = 0, 1. (88)

We solve these equations order by order. At lowest order, the Euler-Lagrange equations are satisfied
by

α(0) = r(R)(cos Θ, sin Θ, 0), p(0) = P (R), (89)

with r(R) and P (R) solving

r′ =
Rγ2

λr
, (90)

P ′ = −
µ
(
−2λR3r2γγ′ − 2λR2r2γ2 + λ2r4 +R4γ4

)
λ3Rr4

, (91)

and boundary conditions

r(0) = 0, P (1) =
µγ2

1

a2λ2
. (92)

where γ1 = γ(1) and a = r(1) is the rod’s radius after finite growth. The constant λ is not prescribed
by this variational problem, but since the configuration B1 is assumed to be unloaded, the extra
condition appears from the consideration of null traction on the sectional face of the cylinder as
described in [16, p. 480]. Note that the boundary-value problem for r(R), P (R) is equivalent to
that obtained by considering G = G0 only and solving div T = 0 with T = A(∂W/∂A)− p1 and
T n = 0 on the boundary, with normal vector n.

At O(ε0) we have the same solution as (89)

α(0) = xd1 + yd2 (93)

but in the deformed configuration B1, so that x = r(R) cos Θ, y = r(R) sin Θ.
At O(ε), the Euler-Lagrange equations are again automatically satisfied, and we turn to the

more difficult problem of determining the solution to second-order.

At O(ε2), the key to making progress is to make the correct ansatz on the form of the α
(1)
i and

p(1). Based on the form of solution at leading order (89) and the symmetry of the problem, we use
the following ansatz:

α
(1)
1 = −1

2
rξ cos Θ− u1q1 sin 2Θ + u2(q3 cos 2Θ +

∫ R

q2(ρ)dρ) + f1, (94)

α
(1)
2 = −1

2
rξ sin Θ + u1(q1 cos 2Θ +

∫ R

q4(ρ)dρ) + u2q3 sin 2Θ + f2, (95)

α
(1)
3 = u3φ(R,Θ), (96)

p
(1)
1 = −ξq5 + u1q6 sin Θ + u2q7 cos Θ, (97)

where qi, i = 1, . . . , 7 are functions of R; these must satisfy a linear system of first order ODEs,
which is given in Appendix C, and f1,2, as before, are functions that only enter in the reactive part of
the energy and are not needed to compute the moduli and intrinsic curvature. The function φ(R,Θ)
is the same warping function that appears in the linear problem; but for cylindrical geometry we
have simply φ ≡ 0. We note that this ansatz yields an exact solution but it only provides a critical
point of the functional and not necessarily the global minimizer.
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4.2.1 Example: linear growth

To demonstrate the theory and the effect of finite growth on the rod’s parameters, we consider the
following form for the finite growth:

G0 = diag(γ(R), γ(R), 1), with γ(R) = 1 + cR, (98)

and prescribe incremental growth

G1 = diag(0, 0, εg(R,Θ)), with g(R,Θ) = r(R) cos Θ. (99)

The incremental growth is axial with a linear gradient in the deformed configuration B1, since
x = r cos Θ in B1. If c = 0, the finite growth is turned off, so r = R, and thus based on the
results of Section 3.2 we expect the incremental growth to produce a curvature û2 = −1, as well as
standard stiffnesses for a circular rod.

We compute the rod’s parameters as follows. For each value of c, we first determine the finite
deformation r(R), P (R) by solving the boundary value problem (90)-(92) via a numerical shooting
method. In doing this we must also determine the axial stretch λ by prescribing a zero traction
condition on the face of the cylinder. Using the constitutive relation for the Z component of the
Cauchy stress, tZZ = λ(∂W/∂λ)−p, for a neo-Hookean strain-energy density W this condition can
be written as ∫ 1

0
(µλ2 − P (R))r(R)r′(R) dR = 0. (100)

The solution {r(R), P (R), λ} is fed into the linear system for the qi(R), which is again solved

via numerical shooting. The result is a numerical representation of the α
(1)
i and p(1). Once these

have been determined, the second order energy density takes the form

V2 = A1(R,Θ)ξ +A2(R,Θ)ξ2 +B1(R,Θ)u1 +B2(R,Θ)u2
1 + C1(R,Θ)u2 + C2(R,Θ)u2

2 +D2(R,Θ).
(101)

The stiffnesses and curvatures are found by integrating over the cross-section and completing the
square. In particular, the intrinsic curvature and bending stiffness about d2 are given respectively
by

û2 = −
∫ 2π

0

∫ 1

0

C1(R,Θ)

2C2(R,Θ)
R dR dΘ, K2 =

∫ 2π

0

∫ 1

0
C2(R,Θ)R dR dΘ, (102)

and these integrals can be computed numerically as part of the shooting procedure. We note
that the equations for the qi decouple for each strain component, which can be used to simplify the
computation. Thus for instance the 3 functions that multiply u2 (q2, q3, q7) satisfy a coupled system
of 3 equations that is independent of the other qi. Determining û2 only requires computing these 3
functions. By the symmetry of the finite growth and the form of the incremental growth, K1 = K2

and û1 = 0, though these can also be verified computationally following similar calculations as
above.

In Fig. 5 we plot the (negative of the) intrinsic curvature (Fig. 5(a)) and bending stiffness
(Fig. 5(b)) as a function of the growth parameter c. At c = 0. we find û2 = −1, and the bending
stiffness K2 = Eπ/4, both as expected. For c > 0, the intrinsic curvature is higher (in absolute
value), and is lower for c < 0. This confirms that enhanced or diminished curvature may be
attained through residual stress. In terms of the stiffness, for any c 6= 0 the dimensions of the
cylinder in configuration B1 are changed due to the finite growth. Hence, to see the impact of the
residual stress, we compare the stiffness K2 as given by (102) to the stiffness of a circular rod with
the same dimensions and zero residual stress. That is, we compare K2 to the quantity Eπa4/4,
where a = r(1) is the radius in the deformed state B1. The latter is plotted as the dashed red
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Figure 5: Finite inhomogeneous radial growth γ = 1+cR is combined with incremental axial growth
with a constant gradient. The curvature (a) and bending stiffness (b) are plotted as functions of
the finite growth gradient c. In (b), the dashed red curve is the stiffness that would be obtained
based on the change in geometry alone due to the finite growth, i.e. if there were no residual stress.
In (c), the stress profiles following the finite growth are plotted for the marked points c = 1 and
c = −0.5.

line in Fig. 5(b), and we see that the rod with finite growth has increased stiffness compared to
an equivalent rod with no residual stress. The inset shows a zoom-in of this plot in the region
c < 0, and extended to c = −0.75; perhaps surprisingly the stiffness here is also increased due to
the residual stress, albeit by a very small amount.

Finally, in Fig. 5(c) we plot the stress components in configuration B1 at the marked points
c = 1 and c = −0.5. These two points show a qualitatively opposite behaviour: at c = 1 the outside
of the cylinder is in both compressive hoop stress and axial stress; while at c = −0.5 the outside
of the cylinder is in tensile hoop stress and axial stress; vice versa at the center of the cylinder.
It is evident that this qualitative difference in residual stress profiles is driving the qualitatively
different responses to an imposed linear gradient in axial growth, demonstrating the significant and
non-trivial impact of residual stress on curvature generation.

5 Conclusion

In this paper we have developed a framework for linking the microscopic growth of filamentary
structures to the macroscopic properties. At the microscopic scale, we model growth by a tensor
field that locally defines the increase or decrease of mass in each direction at each point in a
3-dimensional elastic material. From there, we mapped to an equivalent macroscopic structure,
treated as an elastic rod characterised by 4 stiffness moduli and an intrinsic curvature vector. Our
theory requires only two assumptions: (i) that the 3-dimensional structure has a small aspect ratio
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between the cross-sectional dimensions and its length, and (ii) that any curvature-inducing growth
is of the same order as the aspect ratio. From these two assumptions we have outlined a step-
by-step procedure for transforming from growth tensor to rod properties, and have demonstrated
the utility via a series of examples. Our analysis was first restricted to the case of incremental
growth only. Here we obtained a generic formula for the intrinsic curvatures in terms of integrals
involving the axial growth function; this uncovered the simple yet instructive result that a linear
growth gradient will produce an intrinsic curvature with matching gradient, for any cross-sectional
geometry.

Similar expressions for the curvature, without axial extension, have been obtained using Gamma
convergence [20, 21, 22] or asymptotic methods [36]. Here, our main objective was to derive such
results within the framework of morphoelasticity and asymptotic methods, and in a fashion that
could easily be applied to specific problems in biological growth and/or extended to have additional
finite growth. Indeed, with incremental growth combined with finite growth, we showed how the
same framework still applies. While the computations are complicated by the finite growth part,
in principle the problem can be solved, and the method was illustrated via an example. Here we
found the important result that residual stress, induced by the finite growth step, can alter both
the stiffness and the intrinsic curvature of the averaged macroscopic filament.

While our primary motivation was towards biological applications, the ideas and framework
we have outlined may also have significant relevance in engineering design, for instance in the
burgeoning field of soft robotics [37], or in morphing structures [38], where residual stress can be
built into the fabric of a material in order to achieve a design aim. In such contexts a robust map
between material properties at the microstructure and the material response at the macroscale
is critical. In terms of growing filamentary structures in biology, one obvious example, noted in
the introduction, is in tropic plant growth, in which parts of a plant develop curvature and/or
torsion in response to external stimuli such as gravity or light. This phenomenon is inherently a
multiscale process, whereby the global orientation of the plant in its external environment drives
cellular activities, which in turn generate differential growth at the tissue level, which then in
turn generates curvature and changes the global properties and orientation. While most models
of tropism focus on one scale, a full treatment of tropic growth could be achieved by linking a
model of cellular activities to the continuum micro to macro transformation we have described.
A less obvious but still relevant phenomenon is the incredible dexterity of the elephant’s trunk.
This is achieved through differential contraction of over 40,000 muscles. In an idealized view,
the contraction of any set of muscles could be modeled using the same tensorial field G with the
condition that no mass is added (det G = 1).

Any of the applications noted above would require significant efforts to be modelled appro-
priately. Nevertheless, at a fundamental level, these problems involve microscopic changes of a
filamentary structure creating a global change in properties that can be captured by the methods
outlined here, and viewed in this sense the realm for interesting potential future studies is vast.

Acknowledgments– This work was supported by the Engineering and Physical Sciences Research
Council grant EP/R020205/1 to Alain Goriely.

A A brief review of rod theory

Here we briefly recall the basic elements of rod geometry. A rod is a space curve r(S) ∈ R3,
known as the centerline, equipped with two additional unit orthonormal vector fields (d1(S),d2(S))
representing the orientation of a cross section at S. The general frame is obtained by defining
d3(S) = d1(S)×d2(S) and we note that {d1,d2,d3} forms a right-handed orthonormal basis. The
components of a vector a = a1d1 + a2d2 + a3d3 in the local basis are denoted by a = (a1, a2, a3).

20



We note that |a|= |a|.
We choose the material parameter S to be the arc length in a stress-free reference configuration,

r̂ of the space curve [39]. In the current configuration, we have

∂r

∂S
= v, (103)

where v is the stretch vector, with ‖v‖> 0. A complete kinematic description of the frame is given
by:

∂di
∂S

= U× di, i = 1, 2, 3, (104)

where U is the material Darboux vector. The first two components (U1,U2) of the Darboux vector
are associated with the Frenet curvature while U3 represents twisting, that is the rotation of the
basis (not the curve) around the d3 vector. It contains both information on the Frenet torsion τ
of the centerline and on the rotation of the cross section for increasing values of S.

If the rod is unshearable but extensible, then v1 = v2 = 0,, v3 = ζ and we can introduce the
current form of the Darboux vector as U = ζu. The components of this Darboux vector gives
the actual curvatures in the current deformation (rather than the curvatures with respect to the
material frame). We have then

∂di
∂S

= ζu× di, i = 1, 2, 3, (105)

which is the form used in this paper.
In particular, if the rod is assumed to be inextensible and unshearable, then v1 = v2 = 0, v3 = 1

and d3 is along the tangent. In this case, the Darboux vector is related to the usual notion of
Frenet curvature and torsion κ and τ are the by

cotϕ =
u2

u1
, (106)

κ =
√
u2

1 + u2
2, (107)

τ = u3 +
u′2u1 − u′1u2

u2
1 + u2

2

. (108)

where ϕ is the angle between the normal and the vector d1. The quantity ∂ϕ
∂S , the excess twist,

represents the rotation of the local basis with respect to the Frenet frame as the arc length increases.
We note that torsion and curvature are properties of the Frenet frame, while bend and twist are
properties of the material frame attached to the rod.

The contact force n(S) exerted on the back side of S(S) by the previous sections is called the
resultant force at S, and we define m(S) as being the resultant couple acting on a section at S due
to the adjacent segment with larger material coordinates.

A general model for the elastic response of the rod is governed by a strain-energy density (per
unit material length)

w = w(y, z) = w(u− û,v − v̂), (109)

where û, v̂ are the strains in the unloaded configuration, i.e. for which n = m = 0. Then the
constitutive relations for the resultant moment and force in the local basis are given by

m =∂yw(u− û, v − v̂) = f(u− û, v − v̂), (110)

n =∂zw(u− û, v − v̂) = g(u− û, v − v̂). (111)
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The case that is of interest for the analysis in this paper is an extensible but unshearable rod with
a quadratic elastic energy w. In this case, we have v1 = v2 = 0, and w can be written

w = yTKy +K0(ζ − 1)2, (112)

where the final term is the energy of an axial elastic stretch ζ ≡ v3 ≡ ∂s/∂S. The constitutive
relations for the moment in the local basis components are

m = K(u− û), K =

K1 K12 K13

K12 K2 K23

K13 K23 K3

 , K1 ≥ K2. (113)

The condition K1 ≥ K2 corresponds to the choice of labeling of the vectors d1 and d2. If, in a basis
K1 < K2 then a proper re-labeling of these vectors leads to K1 ≥ K2. Also, note that, in general,
we can choose the vector d1 so that, without loss of generality, we have K12 = K21 = 0. The
theory so far is an exact theory of one-dimensional systems as explained in [40, 16]. This theory
is not sufficient to specify the values of the stiffness coefficients Kij in terms of the geometric and
material properties of the underlying elastic material. They can be obtained by considering the
deformations of an elastic cylinder as done originally by Kirchhoff [41], by using a centre-manifold
approach [42] or by Gamma-convergence [17].

In the simplest and most widely used case, the constitutive equations have the form

m = K1(u1 − û1)d1 +K2(u2 − û2)d2 +K3(u3 − û3)d3, (114)

n3 = K0(ζ − 1). (115)

In this case, the Kirchhoff theory tells us that the stifnesses are

K0 = EA, K1 = EI1, K2 = EI2, K3 = µJ (116)

where E is the Young’s modulus, µ the second Lamé parameter and J , I1,2 depend on the cross-
sectional shape (see main text).

Note that since S is not the arc length, the Darboux vector u is scaled by an elastic stretch
factor ζ so that

u = ζ(κ sinϕ, κ cosϕ, τ +
∂ϕ

∂s
). (117)

However, the intrinsic Darboux vector û is given by the intrinsic geometric curvatures in the
reference configuration; it is not scaled by ζ since it is a material property of the rod in the
reference configuration. The elastic energy of the rod is then

Erod =
1

2

∫ L

0

(
K0(ζ − 1)2 +K1(u1 − û1)2 +K2(u2 − û2)2 +K3(u3 − û3)2

)
dS. (118)

B Solving the Euler-Lagrange equations

We look for a formal solution of the linear PDE for a given function g

µf1yy + (2µ+ λ)f1xx + µf2xy + λf2xy − 2(µ+ λ)gx = 0 (119)

(λ+ µ)f1xy + (2µ+ λ)f2yy + µf2xx − 2(µ+ λ)gy = 0 (120)
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Assuming that g is C∞ in a finite number N of domains Si such that S =
⋃N
i=1 Si, a formal solution

in each domain Si 3 (x, y) is given by

f1 =
1

2µ+ λ

∞∑
n=0

(−)n+1 ((2n− 1)λ+ (2n− 2)µ)

∫
d2n+1x

(
∂2n

∂y2n
g(x, y)

)
+

1

2µ+ λ

∞∑
n=0

(−)n+1((2n+ 1)λ+ (2n+ 2)µ)

∫
d2n+2y

(
∂2n+1

∂x2n+1
g(x, y)

)
(121)

f2 =
1

2µ+ λ

∞∑
n=0

(−)n+1((2n− 1)λ+ (2n− 2)µ)

∫
d2n+1y

(
∂2n

∂x2n
g(x, y)

)
+

1

2µ+ λ

∞∑
n=0

(−)n+1((2n+ 1)λ+ (2n+ 2)µ)

∫
d2n+2x

(
∂2n+1

∂y2n+1
g(x, y)

)
, (122)

This solution is exact if g is a polynomial in two variables. The case of a constant growth with
linear gradient g(x, y) = γ0 +γ1x+γ2y on a sub-domain is independent of the material parameters:

f1 = γx+ γ2xy +
1

2
γ1(x2 − y2), f2 = γy + γ1xy −

1

2
γ2(x2 − y2). (123)

C Solving the Euler-Lagrange equations with finite growth

Given a function γ = γ(R), the radial deformation r(R) is a solution of (90). Then the cross-
sectional variables qi are solutions of the linear system

(124)q′1 =
λq4r

2 − 2Rq1γ
2 +Rr2γ2

λr2
,

(125)
q′2 = −

R2γ4
(
r2 − 5q3

)
λ2r4

+
Rγ
(
r2 − 4q3

)
γ′

λr2
−

γ2
(
−λq7r − 2µRq2 + 8µq3 +

(
λ3 − 2

)
µr2
)

2λµr2
− Rq2 + q3

R2
,

(126)q′3 =
−λq2r

2 − 2Rq3γ
2 +Rr2γ2

λr2
,

(127)
q′4 =

R2γ4
(
r2 − 5q1

)
λ2r4

−
Rγ
(
r2 − 4q1

)
γ′

λr2
+

γ2
(
λq6r + 2µ (4q1 +Rq4) +

(
λ3 − 2

)
µr2
)

2λµr2
+
q1 −Rq4

R2
,

(128)q′5 =
2λR3r2γγ′ + 2λR2r2γ2 − λ2r4 −R4γ4

λ3Rr4
,

q′6 =
1

λ3Rr5

(
16λµR3q1r

2γγ′ + 4λµR3q4r
2γ2 + λ2R2q6r

3γ2 + 16λµR2q1r
2γ2 − 2λ2µR2r4q′4

)
+

1

λ3Rr5

(
4λ2µq1r

4−2λ2µRq4r
4−20µR4q1γ

4+5µR4r2γ4−6λµR3r4γγ′−6λµR2r4γ2+λ2µr6
)
,

(129)
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(130)
q′7 =

1

λ3Rr5

(
µ
(
−R2r2γ

(
8λRq3γ

′ + γ (8λq3 − 2λRq2) + 3R2γ3
)

+ λr4
(
−2λq3 + 4R3γγ′ +

(
λ3 + 4

)
R2γ2

))
+

1

λ3Rr5

(
+10R4q3γ

4 − λ2r6
))

.
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