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Abstract
Tumour spheroids have been the focus of a variety of mathematical models, ranging
from Greenspan’s classical study of the 1970s through to contemporary agent-based
models. Of the many factors that regulate spheroid growth, mechanical effects are
perhaps some of the least studied, both theoretically and experimentally, though exper-
imental enquiry has established their significance to tumour growth dynamics. In this
tutorial, we formulate a hierarchy of mathematical models of increasing complexity
to explore the role of mechanics in spheroid growth, all the while seeking to retain
desirable simplicity and analytical tractability. Beginning with the theory of mor-
phoelasticity, which combines solid mechanics and growth, we successively refine
our assumptions to develop a somewhat minimal model of mechanically regulated
spheroid growth that is free from many unphysical and undesirable behaviours. In
doing so, we will see how iterating upon simple models can provide rigorous guar-
antees of emergent behaviour, which are often precluded by existing, more complex
modelling approaches. Perhaps surprisingly, we also demonstrate that the final model
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considered in this tutorial agrees favourably with classical experimental results, high-
lighting the potential for simple models to provide mechanistic insight whilst also
serving as mathematical examples.

Keywords Morphoelasticity · Mathematical modelling · Tumour dynamics ·
Stress-dependent growth

1 Introduction

Cancer is a disease that impacts the lives of tens of millions of people worldwide each
year and represents a leading cause of death (Sung et al. 2021). The growing preva-
lence and severity of the disease have driven rapid advancements in our understanding
of the biology that underpins tumour growth, as highlighted by the evolving character-
isation of the Hallmarks of Cancer in the renowned works of Hanahan and Weinberg
(2000, 2011). A subset of this vast body of research has considered the broad range of
stimuli that are known to affect the behaviour of biological cells and tissues, including
cancer cells. These stimuli include, but are not limited to, the availability of nutri-
ents for growth, mechanical forces acting on tissues, and electric fields (Vaupel et al.
1989; Pavlova and Thompson 2016; Northcott et al. 2018; Sengupta and Balla 2018;
Kolosnjaj-Tabi et al. 2019). Whilst the study of a single stimulus is often difficult or
intractable in vivo, experimental assays have provided a means to focus on one or two
stimuli at a time. For instance, a common approach for studying the early stages of
avascular tumour growth is to consider three-dimensional collections of cancer cells
known as tumour spheroids (Hirschhaeuser et al. 2010), which are thought to bet-
ter emulate in vivo environments than alternative two-dimensional assays whilst still
enabling the targeted study of tumour growth stimuli. Spheroid assays have been used
to study the impact on tumour growth of multiple stimuli, such as how nutrient avail-
ability affects cancer development (Kunz-Schughart et al. 1998; Murphy et al. 2022),
and to gain insight into the mechanical inhibition of growth, as in the now-classical
work of Helmlinger et al. (1997), which we consider in detail below.

In addition to the range of experimental investigations that have involved the use
of tumour spheroids, a multitude of mathematical models have been developed to
study spheroids. These efforts, which are part of the emergent field of mathematical
oncology, range fromsimple single-compartment ordinary differential equation (ODE)
models to complex, multiscale schemes and hybridised partial differential equation
(PDE) and agent-based methods, which differ in complexity, spatial resolution, and
scale. One of the earliest and best known models is that of Greenspan (1972), which
considers how the composition of a tumour spheroid evolves as the growing tumour
limits the availability of diffusing nutrients (in this case oxygen) to the central core of
the spheroid. Greenspan’s PDE approach, in which the behaviour of cells is driven by
the local nutrient concentration, has since been adapted by many authors and adds to
the breadth of mathematical methods that have been employed in the study of cancer.
The reviews of Araujo and McElwain (2004), Roose et al. (2007), and Bull and Byrne
(2022) provide a comprehensive summary of these theoretical approaches.
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SinceGreenspan’s earlywork,manymathematicalmodels have focussed on explor-
ing how nutrient availability and spatial constraints limit tumour growth (Ward and
King 1997; Sherratt and Chaplain 2001; Murphy et al. 2022). In contrast, however,
the notion of mechanical feedback remains relatively unexplored in theoretical works,
despite mechanical effects being increasingly appreciated as significant in many bio-
logical settings. For instance, the work of Helmlinger et al. (1997) demonstrated that
mechanical resistance to growth can markedly limit the growth of tumour spheroids,
with resistance in this case being imparted via an agarose gel that surrounds the
spheroids. More recent experimental studies add weight to Helmlinger et al.’s conclu-
sions, such as that of Cheng et al. (2009), which considered the effects of externally
imposed stresses on tumours and measured the impacts of mechanical stress on cell
proliferation and apoptosis. Notwithstanding these experimental results, there is no
consensus about how mechanical cues alter growth dynamics on the tissue and cell
scales. This uncertainty has spawned a range of phenomenological continuummodels
of mechanically influenced tumour growth (Chen et al. 2001; Roose et al. 2003; Byrne
andDrasdo 2009;Ambrosi andMollica 2004, 2002;Ambrosi et al. 2017;Ambrosi and
Preziosi 2009; Byrne 2003), which have successfully reproduced both tumour growth
curves and profiles of accumulated solid stress (Nia et al. 2018). These theoretical
studies have made different modelling choices, most notably in the posited constitu-
tive couplings between mechanics and growth. A key challenge is finding a coupling
that represents the least complex relation needed to generate experimentally observed
profiles of growth and stress. Such simplicity is often desirable in mathematical mod-
els when detailed understanding of the biological mechanisms is lacking, and such
‘minimal ingredients’ models generally facilitate both ready interpretation and analyt-
ical study, the latter of which can provide rigorous characterisation of model dynamics
and behaviours. Such characterisations are largely absent from existing solid mechan-
ical models of spheroid growth. In particular, it remains to be established whether
agreement between numerical solutions of existing mechanical tumour models and
experimental data depends strongly on the particular parameter regimes employed, or
whether they reproduce the observed phenomena more generally.

Motivated by these observations, the scientific aim of this tutorial is to develop a
minimal model of tumour spheroid growth that reproduces observed growth dynam-
ics, under varying external conditions, and permits rigorous characterisation of model
behaviours. In pursuit of this goal, we will adopt an iterative and expository approach
to model development, beginning with a simple, established foundation and succes-
sively posing extensions and modifications in order to realise a number of desirable
properties. To facilitate the development of such a simple mathematical model, each
of our models will be based on the solid mechanical framework of morphoelasticity,
introduced by Rodriguez et al. (1994) and reviewed by Ambrosi et al. (2011) and
Kuhl (2014). The theory of morphoelasticity has been applied broadly to problems of
biological growth and often leads to models that are analytically tractable and numer-
ically straightforward, such as a recent model of the human eye (Kimpton et al. 2021),
as described by Goriely (2017).

Throughout our exploration of tumour growth models, we will seek a model that
exhibits a number of properties, each of which will focus on robustly reproducing fea-
tures of experimentally observed tumour dynamics and having behaviour consistent
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Fig. 1 Mechanically influenced tumour spheroid growth. Experimentally observed growth dynamics of
tumour spheroids in various extracellular media are indicated by empty circles, as reported by Helmlinger
et al. (1997), digitised by Yan et al. (2021). Tumours growing in agarose gels of higher concentration
experience reduced growth compared to evolution in free suspension (shown black). Classical models of
spheroid growth are capable of capturing growth in free suspension to excellent accuracy, as highlighted
by the least-squares fit of a Greenspan-inspired model to the free-suspension data, shown in black. Details
of the fitting are found in Appendix A

with our understanding of tumour growth. Before we describe these properties, it will
be helpful to first illustrate a known impact of mechanical factors on tumour growth
dynamics. To this end, in Fig. 1we showcase a selection of the experimental data
reported by Helmlinger et al. (1997), as digitised by Yan et al. (2021); various growth
curves correspond to differing levels of mechanical resistance exerted on growing
spheroids embedded in agarose gels of various concentrations and, hence, stiffnesses.
From these datapoints alone, it is clear that the mechanical properties of the exter-
nal medium can significantly impact tumour growth dynamics in this system, with
increasing stiffness reducing a spheroid’s capability to grow.

The simplest models of tumour growth neglect mechanical effects and assume that
growth depends only on the availability of diffusing nutrients, such as oxygen. Such
models have proved successful in reproducing the growth of tumour spheroids in
free suspension. We illustrate this by fitting a model inspired by Greenspan’s seminal
model (Greenspan 1972) of nutrient-limited growth to the free-suspension growth
curve in Fig. 1; full details of the employed model are provided in Sect. 3.1, and
the fitting process is summarised in Appendix A. Whilst the mathematical model
exhibits excellent agreement with the experimental observations of Helmlinger et al.
(1997) for tumour growth in free suspension, it is not able to simultaneously fit all
three datasets shown, as mechanical effects are neglected. Motivated by this, a further
aim of this tutorial is to formulate Greenspan’s classical approach within a solid
mechanical framework. In particular, we will seek to capture the phenomena reported
by Helmlinger et al., with the specific goal of fitting a mechanical model to the full
range of dynamics shown in Fig. 1.

With this additional goal in mind, we specify a basic requirement of any model
that we will develop: it must give rise to growth curves that are qualitatively similar
to those of Fig. 1. More specifically, growth curves must be monotonic and should
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capture a profile of development that is approximately of exponential, linear, then sat-
urating character, as observed in Helmlinger’s et al. experiments and as is canonical of
tumour spheroid growth (Bull and Byrne 2022). Here, we define saturating dynamics
to be those whose growth rate tends monotonically to zero, noting that this does not
guarantee that the tumour size itself is bounded1. However, a stable nonzero steady
state of tumour size is often associated with these growth curves, the existence of
which we will also look to guarantee analytically.

As solid mechanics will necessarily play a key role, we will also seek certain
properties that relate to the mechanical stress within the spheroid. A minimal such
requirement is that the solid stresses in the tumour should be bounded, so that a model
will not predict that a tumour experiences arbitrarily large internal stresses as time
increases. Whilst this intuitive property might seem to be elementary to realise, we
will show that it does not necessarily hold in even simple cases and therefore, requires
appropriate consideration. Finally, we will also seek out the ability of a model to
reproduce profiles of solid stress that are similar to those that have been estimated
from experimental data. In particular, we will aim to qualitatively match profiles of
residual stress, the term given to solid stresses accumulated in a tumour during growth
that remain present when the tissue experiences no external mechanical load. These
mechanical properties, along with the features introduced above, are summarised in
Table 1.

In summary, in this tutorial we will seek to develop a continuummodel of avascular
spheroid growth, one in which growth is regulated by mechanical effects and nutrient
availability. In attempting to realise the noted desirable properties, wewill describe and
explore a number of intermediate models, highlighting how an iterative, minimalistic
approach to model construction can provide insight into emergent behaviours and
facilitate the development of mathematical models that are simple, interpretable, and
robust.Wewill begin by incorporating the established foundation of Greenspan (1972)
within the framework of morphoelasticity, striving throughout for simplicity in order
to enable exploratory and analytical study.

2 ContinuumMechanical Framework

2.1 Geometry and Set-Up

Throughout this tutorial, we will model a tumour spheroid as a morphoelastic solid
(Goriely 2017), considering its deformation due to the processes of growth and elastic
relaxation whilst assuming strict spherical symmetry, as illustrated in Fig. 2. Defor-
mations are captured by the time-dependent gradient tensor F, which encodes the
mapping from the Lagrangian spherical coordinates (R,�,�) of the initial spheroid,
assumed to be stress free, to the Eulerian spherical coordinates (r , θ, φ) that repre-
sent the deformed configuration of the spheroid. With our assumption of spherical

1 Consider, for instance, y = √
t , which has dy/dt → 0 but y unbounded as t → ∞.
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Fig. 2 Geometry and set-up. The initial, stress-free configuration of the spheroid, parameterised by the
Lagrangian radial coordinate R ∈ [0, B], deforms to a loaded Eulerian configuration at time t with
radial coordinate r ∈ [0, b(t)], preserving spherical symmetry. An extracellular medium imparts a uniform
compressive radial stress on the surface of the deformed spheroid

symmetry, the deformation gradient, written in the orthonormal spherical bases, reads

F = ∂(r , θ, φ)

∂(R,�,�)
=

⎡
⎣

∂r
∂R 0 0
0 r

R 0
0 0 r

R

⎤
⎦ , (1)

where r = r(R, t) is a function of time t ≥ 0 and the Lagrangian radial coordinate R ∈
[0, B], with r(R, 0) = R and where B is the initial radius of the spheroid. Throughout,
we assume that the mapping between the initial and deformed configurations is such
that det F(R, t) > 0 for all t ≥ 0 and all R ∈ [0, B], so that the deformation preserves
the orientation of the material and is locally injective for all t . We also assume that
the spheroid undergoes no topological changes, so that r(0, t) = 0, and we denote the
outer radius of the deformed tumour by b(t) := r(B, t).

2.2 Morphoelasticity

FollowingGoriely (2017), the central assumption ofmorphoelasticity is that the tensor
F can be multiplicatively decomposed into two components: one that represents the
growth of the material and another that captures the elastic response of the grown
material:

F = AG , (2)

where A and G are second-order tensors that represent the effects of elasticity and
growth, respectively. Appealing to spherical symmetry, this relation can be explicitly
written as ⎡

⎣
∂r
∂R 0 0
0 r

R 0
0 0 r

R

⎤
⎦ =

⎡
⎣

αr 0 0
0 αθ 0
0 0 αφ

⎤
⎦

⎡
⎣

γr 0 0
0 γθ 0
0 0 γφ

⎤
⎦ , (3)

where αr , αθ , αφ and γr , γθ , γφ are non-negative scalar elastic stretches and growth
stretches, respectively. In particular, γr capturesmaterial growth in the radial direction,
whilst γθ ≡ γφ encodes circumferential growth. The equivalence between γθ and γφ
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is a consequence of spherical symmetry and, analogously, we have αθ ≡ αφ . Here, a
growth stretch larger than one corresponds to the addition ofmaterial, whilst resorption
occurs when the growth stretch is less than 1 (but larger than 0).

Taking the determinant of Eq. (3) yields the following quasistatic partial differential
equation for the radial coordinate

r2
∂r

∂R
= αrα

2
θ γrγ

2
θ R

2 , (4)

where we have replaced αφ and γφ by αθ and γθ , respectively. Henceforth, for simplic-
ity and consistent with our goal of pursuing a minimal model of spheroid growth, we
will assume that thematerial is incompressible, so that elastic deformations do not alter
the volume. With this being equivalent to imposing the condition det A = αrα

2
θ = 1,

Eq. (4) now takes on the simplified form

r2
∂r

∂R
= γrγ

2
θ R

2 , (5)

and elasticity no longer plays an explicit role in the instantaneous configuration of
the spheroid. In particular, given the instantaneous growth stretches, one may readily
integrate this equation, with the condition r(0, t) = 0, to determine r(R, t), with-
out further consideration of mechanical effects. From this, one might be tempted to
neglect mechanics altogether; however, we will see that incorporating mechanics in
an evolution law for the growth stretches is needed in order to reproduce the properties
listed in Table 1.

Writing αr = α−2
θ and defining α := αθ , the decomposition of Eq. (3) then yields

∂r

∂R
= α−2γr , (6a)

r

R
= αγθ , (6b)

which will later enable us to eliminate the elastic stretch α from calculations and to
transform between Lagrangian (R) and Eulerian (r ) coordinates.

2.3 Mechanics and Constitutive Assumptions

We will assume that the spheroid is composed of an isotropic hyperelastic material,
such that it is characterised by a strain energy function W . WithW thereby a function
of the principal stretches, which are the eigenvalues of the right Cauchy–Green tensor
AAT , we may generically write W = W (αr , αθ , αφ). The Cauchy stress tensor σ is
then given by

σ = A
∂W

∂A
− p I , (7)

where the pressure p is the Lagrange multiplier required to enforce incompressibility
and the (i, j)th entry of ∂W/∂A is defined to be the derivative of W with respect to
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the ( j, i)th entry of A. In our spherically symmetric system, we write

σ =
⎡
⎣

σr 0 0
0 σθ 0
0 0 σθ

⎤
⎦ , (8)

leading to the scalar relations

σr = αr
∂W

∂αr
− p , (9a)

σθ = αθ

∂W

∂αθ

− p (9b)

for the radial stress σr (R, t) and the hoop stress σθ (R, t). Eliminating the Lagrange
multiplier and defining W̃ such that W = W̃ (α), we obtain the single equation

σθ = σr + α

2

dW̃

dα
(10)

relating the stresses in the circumferential and radial directions. In the absence of body
forces, conservation of linear momentum reads

∇ · σ = 0 , (11)

where the divergence operator is with respect to the Eulerian coordinate system. Using
the assumed spherical symmetry and the relation of Eqs. (10), (11) gives

∂σr

∂r
= α

r

dW̃

dα
(12)

where we are treating σr as a function of r , recalling that r = r(R, t). Seeking
simplicity, we suppose that the tumour is a neo-Hookean material, so that

W̃ = μ

2

(
α−4 + 2α2 − 3

)
, (13)

where μ > 0 is the material-dependent shear modulus and α−4 + 2α2 is the first
invariant (trace) of the right Cauchy–Green tensor in our simplified setting. Hence,
the conservation equation for the radial stress becomes

∂σr

∂r
= 2μ

α2 − α−4

r
. (14)

Transforming to Lagrangian coordinates using Eq. (6a) and eliminating α via Eq. (6b),
we obtain a quasistatic Lagrangian PDE for the radial stress,

∂σr

∂R
= 2μγr

r6 − γ 6
θ R

6

r7
. (15)
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Tomodel resistance to expansion due to external material, we prescribe a compressive
radial stress on the boundary of the spheroid that opposes growth. Specifically, we
impose

σr (B, t) = −κ
b(t) − B

B
, (16)

whereκ ≥ 0 encodes the stiffness of the surroundingmedium, thoughwenote that gen-
eralisations of this relation are straightforward to accommodate. With this boundary
condition, which reduces to growth in free suspension when κ = 0, we can integrate
Eq. (15) inwards from the boundary to yield σr , with integration being performed
numerically in practice. We can then construct σθ via

σθ = σr + μ
(
α2 − α−4

)
, (17)

or, equivalently,

σθ = σr + r

2

∂σr

∂r
. (18)

2.4 Growth Dynamics

It remains to specify how the growth stretches evolve with time from their common
initial value of unity. Even in the case of isotropic growth, which we will assume here-
after, it is unclear how the growth of tissue should depend on the state of the tumour.
Indeed, it is this dependence that we will explore and vary throughout this tutorial,
seeking a phenomenological growth law that gives rise to the canonical growth dynam-
ics defined earlier (exponential, linear, saturating) whilst being free from unphysical
behaviours. Each growth lawwill take the same basic form, which we state generically
in terms of γ := γr = γθ as

1

γ

∂γ

∂t
= k f (σ , c) (19)

for a fixed rate constant k and initial condition of unity, where the function f encodes
the dependence of growth on the stress tensor σ (r , t) and a generic diffusible nutrient
with concentration c(r , t).We interpret this nutrient as oxygen, as inGreenspan (1972).

Seeking to model the growth of an avascular tumour, so that the only source of
nutrients is via diffusion from the outer boundary of the spheroid, we suppose that the
non-negative nutrient concentration c(r , t) is governed by the PDE

∂c

∂t
= D∇2c − λ , r ∈ [0, b(t)] (20)

wherever c is nonzero, where D is the diffusion coefficient of the nutrient in the tumour
medium and λ is the constant consumption rate of nutrient by the tissue.We impose the
simple boundary condition c(b(t), t) = c∞ at the surface of the tumour, which allows
us to define the diffusive lengthscale L := √

Dc∞/λ and characteristic timescale
T = 1/kc∞ of the spheroid problem. Seeking a quasistatic solution of Eq. (20) that is
a function purely of the Eulerian coordinate r , noting that the timescales of diffusion
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are typically much shorter than those of biological growth, Eq. (20) reduces to

1

r2
∂

∂r

(
r2

∂c

∂r

)
= λ

D
. (21)

At the centre of the tumour, symmetry considerations imply a no-flux condition
∂c/∂r(0, t) = 0, which leads to the solution

c(r , t) = λ

6D

[
r2 − b(t)2

]
+ c∞ . (22)

However, as the nutrient concentration must be non-negative, this solution is not valid
if b(t) is sufficiently large, with c predicted to be negative at the core of the spheroid.
There are at least two resolutions to this problem. One route simply modifies the
consumption term in the differential equation to include a dependence on the nutrient
concentration itself, with the simplest specifying that the consumption is proportional
to the concentration. This gives rise to a non-negative solution that can be written
in terms of hyperbolic functions. Alternatively, if we suppose that Eq. (21) holds
whenever c > 0, one can obtain an appropriate piecewise solution that only differs
from Eq. (22) whenever b(t) > b̂ := √

6Dc∞/λ = √
6L , which we explore in more

detail in Appendix B. However, both of these options give rise to tumour dynamics that
are essentially indistinct from those of Eq. (22). Hence, we will assume that Eq. (22)
applies without further consideration, seeking simplicity in the analysis that follows
and implicitly considering spheroids that are sufficiently small so as to justify this
assumption. It is straightforward, but notationally cumbersome, to pursue our analysis
with either of the alternative nutrient profiles and relax this assumption of smallness.

2.5 Governing Equations

For completeness, we now state the full system of equations governing the evolution
of the solid tumour, incorporating each of the assumptions detailed above:

r2
∂r

∂R
= γ 3R2 , (23a)

∂σr

∂R
= 2μγ

r6 − γ 6R6

r7
, (23b)

1

γ

∂γ

∂t
= k f (σ , c) , (23c)

c(r , t) = λ

6D
(r2 − b(t)2) + c∞ , (23d)

along with the boundary and initial conditions

σr (B, t) = −κ
b(t) − B

B
, r(0, t) = 0 , r(R, 0) = R , γ (R, 0) = 1 . (24)
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Integrating Eq. (23a) in space, taking a Lagrangian time derivative, and changing
integration variable yield the degenerate partial differential equation

r2
∂r

∂t
= 3

R∫

0

γ 2 ∂γ

∂t
R̃2 d R̃ = 3

r∫

0

1

γ

∂γ

∂t
r̃2 dr̃ = 3k

r∫

0

f (σ , c)r̃2 dr̃ (25)

for r = r(R, t).

3 In Search of a Realistic Minimal Growth Law

3.1 AMinimal Nutrient-Limited GrowthModel

Our first model for tumour growth draws inspiration from the classical model of
Greenspan for nutrient-limited growth. In Greenspan’s model, the rate of growth is
determined by the local nutrient concentration, and thresholds of nutrient concentra-
tion determine whether a tissue is classified as proliferating, quiescent, or necrotic.
Adopting this principle leads to the minimal growth law

1

γ

∂γ

∂t
= k(c − ĉ) , (26)

where ĉ ∈ (0, c∞) is a fixed nutrient threshold, below which tissues reduce in size
due to lack of nutrient availability. This simple form captures the notion that, given
greater nutrient availability, growth will be accelerated, whilst a lack of nutrient results
in cell death and decay. In particular, we will define necrotic tissue via the nutrient
threshold condition c < ĉ, whilst tissues with c ≥ ĉ will be referred to as proliferating
or growing. Of note, we have simplified Greenspan’s original model by omitting a
threshold for quiescence, instead distinguishing only growing and necrotic regimes.

3.1.1 Steady States of Growth

Inserting this growth law into our governing equations modifies Eq. (25) to the simple
relation

r2
∂r

∂t
= 3k

r∫

0

(c − ĉ)r̃2 dr̃ . (27)

With c(r , t) given by Eq. (23d), this integral can be evaluated explicitly, yielding the
temporal evolution equation

∂r

∂t
= kr

[
λ

30D
(3r2 − 5b2) + c∞ − ĉ

]
(28)
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Fig. 3 Nutrient-driven growth of a spheroid. a The evolution of the tumour radius b(t) to steady state (black,
solid), alongside the paths of internal material points (grey, solid). Material points move away from the
steady outer edge of the spheroid and towards the necrotic core after the initial growth. The analytically
predicted steady state for the outer edge is shown as a dotted black line and the radius at which c(r , t) = ĉ
is shown as a thin dotted curve. b A slice through the centre of the spheroid at steady state, shaded by c.
The threshold for necrosis, ĉ, is shown as a dashed white curve. Here, ĉ/c∞ = 4/5 and λB2/Dc∞ = 1,
giving B = L and b∗

N = √
3L

for material points. In particular, taking R = B gives an explicit ODE for the outer
radius b(t) of the spheroid,

db

dt
= kb

[
− λ

15D
b2 + c∞ − ĉ

]
. (29)

We may solve this equation to give the cumbersome but elementary explicit form

b(t) =
√

15D(c∞−ĉ)
λ√

1 +
(
15D(c∞−ĉ)

λB2 − 1
)
e−2(c∞−ĉ)kt

, (30)

valid for a positive initial radius B and ĉ < c∞, illustrated in Fig. 3a. Alternatively, a
direct analysis of Eq. (29) yields the steady states of the dynamics, at which db/dt = 0.
These steady solutions are readily seen to be b = 0 and b = b∗

N , where b
∗
N is defined

by

b∗
N :=

√
15D(c∞ − ĉ)

λ
=

√
15(c∞ − ĉ)

c∞
L , (31)

and it is straightforward to show that these states are linearly unstable and stable,
respectively. Hence, so long as B = b(0) > 0, the tumour evolves to the state b = b∗

N ,
with growth limitedbynutrient availability. Thenonzero steady state features a necrotic
core at the centre of the tumour, surrounded by a proliferative rim of tissue. The steady
radius of the necrotic core, denoted by rĉ, can be computed as

rĉ = 3

√
c∞ − ĉ

c∞
L , (32)
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so that rĉ/b
∗
N = 3/

√
15 and the necrotic region occupies approximately 46% of the

tumour volume, independent of the model parameters. In line with this analysis, the
distribution of nutrient in the tumour at steady state is shown in Fig. 3b.

3.1.2 Material Turnover

Though we have described the spheroid as being at steady state when b = b∗
N , the

tissue inside the tumour is far from idle. In particular, assuming that b(t) = b∗
N , the

spatial ODE of Eq. (28) is trivially modified to

∂r

∂t
= kr

[
λ

30D
(3r2 − 5(b∗

N )2) + c∞ − ĉ

]
, (33)

which captures the non-steady dynamics ofmaterial within the spheroid.When viewed
as an ordinary differential equation in time for r(R, t) for fixed R, this equation admits
the same steady states as that for b(t), so that the steady states are simply r = 0 and
r = b∗

N . However, for R ∈ [0, B), the linear stability of these stationary solutions is
reversed, with r = b∗

N being unstable whilst r = 0 is stable. Hence, material points in
the interior of the spheroidmove away from the outer proliferating rim and towards the
central necrotic region. This behaviour, which might be expected of nutrient-limited
growth, is illustrated in Fig. 3a andmotivates a feature of the numerical implementation
later used to simulate the governing equations, as described in Appendix A.

3.1.3 The Growth of Solid Stress

Whilst the simple growth law of Eq. (26), which does not incorporate mechanics,
produces a plausible growth curve, we now consider whether it predicts realistic
mechanical stress. Numerical solution of the governing equations of solid stress is
straightforward, and the details of our implementation are discussed in Appendix A.
In Fig. 4 , we show an illustrative stress profile at an instant during growth. Hoop
stresses are compressive at the proliferating boundary and become tensile towards the
centre of the tumour, whilst the radial stress is tensile throughout, with κ = 0 in this
figure.

Turning our attention to the evolution of the solid stress, we recall that, even at
a steady state of b(t), there is a constant turnover of material within the tumour.
In particular, the tissue at the outer boundary of the spheroid, which remains there
throughout the dynamics, grows continuously, with c = c∞ on r = b(t). Noting the
simplicity that this boundary condition affords, we can explicitly write the evolution
of the growth stretch at the boundary as

γ |R=B = ek(c∞−ĉ)t . (34)

This then yields the elastic stretch

α|R=B = r

γ R

∣∣∣∣
R=B

= b

B
e−k(c∞−ĉ)t , (35)
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Fig. 4 Accumulated stresses in a
nutrient-driven spheroid. The
radial and hoop stresses σr and
σθ at an instant during growth
are plotted as a function of r ,
shown as solid and dashed
curves, respectively. Tensile
radial stress increases in
magnitude towards the centre of
the spheroid, whilst the hoop
stress is compressive at the outer
boundary of the tumour and
becomes tensile at the core.
Here, we have adopted the
parameters of Fig. 3, taken
κ = 0, and sampled at time
t/T = 10

which in turn allows us to evaluate the derivative of σr via Eq. (14) as

∂σr

∂r

∣∣∣∣
R=B

= C1e
−2k(c∞−ĉ)t − C2e

4k(c∞−ĉ)t (36)

for positive constants C1 and C2. Perhaps surprisingly, the derivative of radial stress
eventually increases in magnitude exponentially with time, driven by the exponential
growth of the spheroid at the boundary, even at a steady state of the spheroid radius.
Further, noting from Eq. (16) that σr is constant on the boundary at a steady state of
b(t) and that σθ is a linear combination of σr and ∂σr/∂r , we can also conclude that
σθ is eventually compressive and grows exponentially in time. Specifically,

σθ |R=B = −κ
b∗
N − B

B
+ b∗

N

2

[
C1e

−2k(c∞−ĉ)t − C2e
4k(c∞−ĉ)t

]
∼ −C2b∗

N

2
e4k(c∞−ĉ)t

(37)
as t → ∞. Hence, this model predicts that the solid stress in the tumour is unbounded,
growing exponentially. Numerically, we observe similar behaviour in the radial stress.

The existence of this behaviour, which is confirmed to be present across param-
eter regimes via numerical simulations, lends itself to two distinct interpretations.
One sees this prediction of ever-accumulating stress as capturing the phenomenon of
spheroid shedding, whereby material is seen to break off from a tumour accompa-
nying the destabilisation of the spherical structure (Giverso and Ciarletta 2016). In
this context, one might interpret the unlimited stresses as indicative of a symmetry-
breaking or topology-changing instability, though such events are beyond the reach of
our framework.

Alternatively, the growing stresses might be seen instead as an unphysical con-
sequence of our modelling assumptions. We adopt such a viewpoint, seeking not to
overreach in the interpretation of this model and its emergent dynamics. Hence, we
will explore alternative growth laws that replace the minimal form of Eq. (26), with
our goal being to preclude the generation of unbounded stress.
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3.2 Coupling Growth to Stress

3.2.1 A Modified Growth Law

Motivated by experimental evidence of stress-mediated regulation of cell proliferation
(Delarue et al. 2014; Helmlinger et al. 1997), and building on previous works in which
stress has been incorporated into the regulation of spheroid growth (Ambrosi et al.
2012, 2017; Ciarletta et al. 2013; Ambrosi and Mollica 2004), we now couple the
growth dynamics to stress. Explicitly, we pose

1

γ

∂γ

∂t
= k

{
n · (c − ĉ) , c ≥ ĉ ,

c − ĉ , c < ĉ ,
(38)

where n is an as-yet-undefined non-negative function of σ that encodes the effects
of stress on growth. This form captures the intuitive principle that stress may modify
the dynamics of growing tissues, whilst the decay of necrotic material is unaltered
and consistent with Greenspan’s assumptions. It is unclear how the stress modifier n
should depend on the stresses experienced by the tumour: should it be a function of the
radial stress, the hoop stress, or some other measure? Here, recalling that we impose
a condition on the radial stress at the boundary and as a first exploration, we will
suppose that n = n(σr ), so that growth is affected by the local radial stress, though
we later explore an alternative.

In specifying the functional form of n, we note that, unless the infimum of n is
zero, the stress accumulation argument of the previous section would hold with minor
modification, with this growth law therefore also leading to unbounded stresses at
steady state. Seeking to avoid such an unphysical phenomenon, we consider

n(σr ) =
⎧⎨
⎩
0 , σr ∈ (−∞, σ̂ ) ,

1 − σr
σ̂

, σr ∈ [σ̂ , 0) ,

1 , σr ∈ [0,∞) ,

(39)

where σ̂ ≤ 0 is a threshold parameter. This piecewise linear function, which is weakly
increasing inσr , prohibits local growthwhenσr is sufficiently negative but has no effect
when σr is non-negative. This amounts to the hypothesis that compressive stresses
restrict growth, with tensile stresses having no similar effect, qualitatively in line with
the observations of Cheng et al. (2009), Delarue et al. (2014), Helmlinger et al. (1997).

3.2.2 Impact of Stress-Limited Growth

By design, this law prohibits the growth of material that is under too much radial
compression. At first glance, this might appear to solve the problem of unbounded
stresses, with our argument for exponentially growing stress at the boundary no longer
applying. However, with solid stress being an inherently non-local quantity, we will
see that the locality of our growth law still allows for stress accumulation past any
given threshold. Indeed, we exemplify such stress-limited dynamics in Fig. 5, taking
σ̂ /μ = −100 and incorporating the compressive effects of the surrounding medium
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Fig. 5 Development of a stress-limited spheroid. a The growth curve of a tumour where growth is restricted
by the local radial stress, with the outer radius b(t) and the boundary of the necrotic core shown as solid and
dotted curves, respectively. The tumour radius initially appears to saturate, though experiences an increase
in growth rate around t/T = 100, qualitatively distinct from the nutrient-driven model of Fig. 3. b The
radial stress σr at the centre of the tumour is shown as a function of time, from which an approximately
exponential accumulation of stress is apparent, despite our stress-limited growth law. Inset is the dynamics
at early times, with the stress initially compressive. c The spheroid composition at t/T = 200, shaded by
growth rate, highlighting a large quiescent rim of tissue whose growth has been arrested by accumulated
radial stress. Beneath this rim is a region of proliferation, shaded red, with a decaying necrotic core being
present inside the grey dashed curve. Here, ĉ/c∞ = 4/5, κ/μ = 316.2, σ̂ /μ = −100, and B = L

by taking κ/μ = 100. The configuration of the spheroid at the final simulated time is
shown inFig. 5c, shadedbygrowth rate, fromwhichwenote the presence of a quiescent
outer rim of tissue whose growth has been arrested by compressive radial stress, in line
with our posited growth law. However, Fig. 5b highlights the rapid accumulation of
solid radial stress in the interior of the spheroid, with the now-internal proliferative rim
driving material turnover into the necrotic core. Hence, in spite of our stress-limited
framework, growing stresses remain a realisable and undesirable behaviour.

This example also showcases another unrealistic consequence of this growth law.
In particular, focusing on the growth curve of Fig. 5a, we note that the dynamics near
saturation are not reminiscent of typical growth profiles, with the rate of tumour growth
visibly increasing, rather than decreasing, around t/T = 100. These dynamics are due
to the relaxation of accumulated stress in the proliferating rim of the tumour, the latter
driven by the decay of the necrotic core and causing the corresponding increase in the
stress-modulated growth rate. This leads us to question our treatment of necrosis.

3.3 A Different Approach to Necrosis

3.3.1 A Modified, History-Dependent Growth Law

A basic assumption of our growth laws thus far has been the decay of necrotic tissue,
drawing inspiration fromGreenspan’s classical work. However, with no precise notion
of material clearance present in our model, it is not clear that having such a sink of
tumour mass is appropriate. The shrinkage of material also appears to be partly driving
stress accumulation in the spheroid, along with the generation of atypical growth
curves, as we saw in Sect. 3.2. Hence, recalling our assumption of incompressibility,
we will adopt an alternative approach to necrosis, supposing instead that necrotic
material simply ceases to proliferate, a condition that is permanent. This model of
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Fig. 6 Growth of a stress-limited spheroid with persistent necrotic tissue. a The tumour growth curve and
the necrotic radius r(RN (t), t). b The stress-driven saturation of radial stress at the centre of the spheroid. c
The composition of the tumour and the distribution of radial stress as it approaches steady state. The spheroid
consists of a central necrotic region surrounded by a wide rim of stress-arrested tissue The dashed circle
marks the current boundary of the necrotic region, with radius r(RN ) at steady state. The approximately
uniform radial stress distribution entails that the hoop stress is approximately equal to the radial stress, with
the two quantities being indistinguishable at the resolution of these plots. Here, ĉ/c∞ = 9/10, κ/μ = 1,
σ̂ /μ = −100, and B = L/100

nutrient-starved tissues also overcomes a potential limitation ofGreenspan’s approach,
which allows necrotic tissue to return to a proliferating state. Concretely, we pose

1

γ

∂γ

∂t
= k

{
n(σr ) · (c − ĉ) , R ≥ RN ,

0 , R < RN ,
(40)

where RN (t) denotes the radius of the necrotic core of the spheroid. This law prevents
the growth or decay of necrotic tissue, whilst leaving the dynamics of perfused tis-
sue unaltered from the stress-dependent law of Sect. 3.2.1. Formally, the Lagrangian
quantity RN is defined via the somewhat cumbersome expression

RN (t) = max

({
R : c(r(R, t), t) = ĉ

} ∪
{

sup
t̃∈[0,t)

RN (t̃), 0

})
, (41)

with the intuitive interpretation that RN (t) is non-decreasing and bounded below
by Greenspan’s nutrient-determined necrotic radius at time t . This weakly increas-
ing quantity captures the desired permanence of necrosis, whilst incorporating the
principle of Greenspan’s threshold-based definition.

The growth law of Eq. (40) has an immediate consequence: the growth rate is
always non-negative. Hence, the growth rate must vanish everywhere in order for
the tumour to attain a steady state. This contrasts our previous explorations, which
had the potential to admit a steady state of tumour radius where proliferation was
balanced by the supposed decay of necrotic material. The absence of such a behaviour
in our modified model results directly from the persistence of necrotic tissue, with
no mechanism of material clearance being present in this simple model. However, a
steady state is still attainable, resulting from the total arrest of nutrient-rich tissues by
the imposed external stress. Sample growth dynamics corresponding to this model are
presented in Fig. 6 and exemplify the desired exponential–linear–saturating growth
curve. Further, the stress evolution shown in Fig. 6b demonstrates the saturation of
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Fig. 7 Stress-modulated tumour growth without a steady state. a A growth curve corresponding to a model
tumour whose growth, whilst limited in theory by compressive radial stress, is accelerating after a period
of apparent saturation. b The stress profile at t/T = 450, highlighting a region of rapid transition between
high-magnitude stresses in the core and compressive radial stresses at the boundary. c The composition of
the tumour at t/T = 450, with the narrow but persistent region of proliferation shown red, shaded by growth
rate. The inner grey region corresponds to the necrotic core, whilst the outermost rim of the tumour has
been arrested due to the compressive stress from the external medium. Here, ĉ/c∞ = 4/5, κ/μ = 102.4,
σ̂ /μ = −100, and B = L

mechanical stress within the spheroid as it approaches steady state, with the entire
spheroid becoming quiescent as t → ∞, as illustrated in Fig. 6c.

3.3.2 The Potential for Unbounded Evolution

Though our refined model appears promising, the lack of a decay-driven steady state
raises a new issue: it is not guaranteed that there is a non-negative steady state in
all parameter regimes. Indeed, we realise such a case in Fig. 7, where the evolution
of the tumour radius deviates from the saturating profile that is typical of tumour
spheroids, instead growing indefinitely. In particular, after what appears to be the
onset of saturation, the tumour experiences an increase in growth rate, with a thin
proliferating band of tissue growing within an outer quiescent rim. This appears to be
the result of tensile radial stresses building up inside the tumour at a faster rate than can
be compensated for by the linearly compressive boundary condition, yielding a narrow
non-vanishing region between the necrotic core and the stress-arrested tissue where
the growth rate is not identically zero. Such a persisting region of mild solid stress is
visible in Fig. 7c, with the corresponding radial and hoop stresses being illustrated in
Fig. 7b. To remove this possibility and guarantee the existence of a nonzero steady
state in all parameter regimes, as per the desired properties set out in Table 1, we
further modify our growth law, focusing on the consequences of locality.

3.4 Recovering a Robust Steady State

With the previous stress-dependent spheroid model having forgone any guarantee of a
steady state in favour of stress-dependent growth and the persistence of necrotic tissue,
it remains to recover the desired growth curve in all parameter regimes where external
resistance is applied. In modifying our growth law appropriately, it is instructive to
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further consider the stress distribution in the ever-growing tumour of Fig. 7, as illus-
trated in Fig. 7b. In particular, we note that the compressive radial stress arrests growth
only in the outer portion of the tumour, where σr < σ̂ , with the rest of spheroid able
to grow if sufficiently perfused with nutrient. It is this locality of the stress modulation
that allows for this varied composition. Hence, we will modify the local nature of our
stress dependence, insteadmodulating the growth rate by a non-localmeasure of stress.
With reference to the biological tissues that we seek to model, such a non-local effect
may be interpreted as the result of inter-cell signalling (Maia et al. 2018; Aasen et al.
2016). In particular, noting that the lengthscale of the proliferating region of tissue is
dictated by the diffusion of nutrients, the diffusion of signalling molecules represents
a plausible mechanism for cell-cell communication within the well-perfused regions
of the spheroid.

With this interpretation in mind, we propose the following non-local growth law:

1

γ

∂γ

∂t
= k

⎧⎪⎨
⎪⎩
n

(
min

R̃∈[0,B]
{σr (R̃, t), σθ (R̃, t)}

)
· (c − ĉ) , R ≥ RN ,

0 , R < RN .

(42)

Here, in place of the local radial stress, we have adopted a measure that is both global,
in that it accounts for the stress throughout the tumour, and directionally unbiased, with
min R̃{σr (R̃, t), σθ (R̃, t)} being the largest magnitude compressive stress experienced
by the tissue in any direction. This latter property arises as σr andσθ are the eigenvalues
of the (diagonal) stress tensor. In practice, with reference to the composition of the
spheroid shown in Fig. 7, this growth law prevents the formation of narrow bands of
proliferating tissue within an arrested outer rim.

Equation (42) is identical in structure to that of Sect. 3.3 and, hence, inherits the
desirable properties of each of our considered models. In particular, it maintains a
nutrient dependence reminiscent of Greenspan’s seminal work, modified to consider
a persistent core of necrotic tissue in the absence of material clearance. This law also
enables solid stress to regulate growth within the tumour, whilst also guaranteeing the
existence of a steady state.

This latter assertion warrants justification. As the rate of growth under our new law
is non-negative, r(R, t) is weakly increasing in time for all material points, which
follows immediately from Eq. (25). In particular, the outer radius of the tumour is
weakly increasing in time, with its rate of change being zero precisely at a steady state.
Supposing that the tumour grows in a resistive external medium, so that κ > 0, the
compressive boundary condition of Eq. (16) implies that σr at the boundary decreases
as the spheroid radius increases. Hence, assuming that the tumour does not attain a
steady state by another means, the radial stress at the boundary necessarily approaches
the threshold σ̂ . Thus, owing to the now-global dependence of the growth rate on the
radial solid stress, tumour growth arrests throughout the entire spheroid, so that a steady
state necessarily exists. This argument also places an upper bound on the tumour radius
that at which σr (B, t) = σ̂ , as specified by the compressive boundary condition of
Eq. (16).Of note, this reasoning applies to any formof radial stress boundary condition,
subject to the assumption that it is strictly decreasing and unbounded below in the

123



Minimal Morphoelastic Models of Solid Tumour Spheroids: A Tutorial Page 21 of 35    38 

Fig. 8 Simulated dynamics using the robust spheroidmodel of Sect. 3.4. Adopting the parameters of Figs. 5,
6 and 7 in turn, each row of panels reports the simulated growth curves (a, d, g), the evolution of radial stress
at the centre of the tumour (b, e, h), and the distribution of radial stress at the final simulated timepoint (c,
f, i). In all cases, we observe qualitatively plausible saturating growth curves, accompanied by saturating
radial and hoop stresses (not shown)

tumour radius. In the absence of a compressive external stress, i.e. κ = 0, the above
argument does not apply, though an alternative argument involving the hoop stress
allows us to partially recover the guarantee of a steady state in this case, discussed
briefly in Appendix C.

In order to exemplify the robustness of our proposed model and that it generates
qualitatively plausible growth dynamics, we present a number of simulated spheroids
in Fig. 8, adopting the parameters of Figs. 5, 6 and 7 in turn, two of which previously
gave rise to undesirable growth curves or ceaselessly accumulating stresses.

3.5 Generating Plausible Residual Stresses

The above model satisfies all but one of the criteria set out in the Introduction, giving
rise to plausible growth curves in all parameter regimes and being free from singular
or inadmissible behaviours. However, we have not yet considered the plausibility of
the generated stress profiles, except for guaranteeing that they remain bounded. In
particular, we now seek to augment Eq. (42) in order to qualitatively match experi-
mentally determined profiles of residual stress, i.e. stress in the absence of external
loads. In particular, the radial component σ R

r of the residual Cauchy stress tensor σ R

satisfies
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∂σ R
r

∂R
= 2μγ

r6 − γ 6R6

r7
, σ R

r (B, t) = 0 , (43)

whilst the corresponding residual hoop stress σ R
θ satisfies

σ R
θ = σ R

r + r

2

∂σ R
r

∂r
. (44)

In a theoretical study inspired by experimental works, it has been predicted that the
residual hoop stresses in tumours may be tensile (σ R

θ > 0) at the boundary of the
spheroid and compressive (σ R

θ < 0) further inside the tumour (Stylianopoulos et al.
2012). When such a spheroid is cut radially, the relaxation of these stresses leads to an
opening of the tumour, measurements of which lead to estimates for the residual hoop
stresses (Stylianopoulos et al. 2012; Ambrosi et al. 2017; Guillaume et al. 2019). As
the final goal of this tutorial, we seek to replicate key features of this qualitative profile
of residual hoop stress, specifically that the residual hoop stress can be compressive
within the tumour whilst also satisfying σ R

θ > 0 at the surface.
To make progress, we note that the growth stretch associated with this model

increases monotonically in R for all times t , a property that it inherits from the nutrient
profile, so that ∂γ /∂R ≥ 0 everywhere. This immediately implies r ≤ γ R, which
may be deduced via the integral formula

r(R, t)3 = 3
∫ R

0
γ 3 R̃2 d R̃ ≤ 3γ (R, t)3

∫ R

0
R̃2 d R̃ = γ (R, t)3R3 . (45)

The first equality in Eq. (45) results from the integration of Eq. (23a) in R, whilst the
inequality stems from themonotonicity of γ in R. Hence, Eq. (43) gives ∂σ R

r /∂R ≤ 0,
so that ∂σ R

r /∂r ≤ 0 also. Separately, noting Eq. (44) and the stress-free boundary
condition on σ R

r at R = B, we can identify σ R
θ = r(∂σ R

r /∂r)/2 at R = B. Hence,
the residual hoop stress σ R

θ has the same sign as the spatial derivative of σ R
r . Thus,

we have that σ R
θ ≤ 0 at the boundary, so that the residual hoop stress at the surface of

the spheroid is never tensile in the model of Sect. 3.4.
From this analysis, it is clear that themonotonicity of γ poses a barrier to generating

a realistic profile of residual stress. However, this guarantee of monotonicity was not
present in some of our earlier models, in particular those of Sects. 3.2 and 3.3, which
each employed a coupling of the growth rate to the local stress. Motivated by the
rapidly varying profiles of hoop stress shown in Fig. 7b, we now reintroduce a local
stress coupling to our growth law.

In order to retain the many desirable properties of our previous model, we augment
the robust growth law of Sect. 3.4 to

1

γ

∂γ

∂t
= k

⎧⎪⎨
⎪⎩
n

(
min

R̃∈[0,B]
{σr (R̃, t), σθ (R̃, t)}

)
· ñ · (c − ĉ) , R ≥ RN ,

0 , R < RN ,

(46)

123



Minimal Morphoelastic Models of Solid Tumour Spheroids: A Tutorial Page 23 of 35    38 

Fig. 9 Accumulated residual stresses and growth stretches in a tumour with both local and non-local stress
dependence, following the model of Sect. 3.5. a The residual stress profile at steady state. At and near
the boundary of the spheroid, the residual hoop stress is tensile, in line with experimental observations,
and becomes compressive further inside the tumour. Accordingly, we see that the residual radial stress is
increasing towards the boundary. b The growth stretches at steady state, whose non-monotonicity near the
boundary is associated with the tensile residual hoop stresses shown in a. Here, ĉ/c∞ = 1/4, κ/μ = 0.1,
σ̂ /μ = −1, β = 6.25, and B = L

where ñ couples the growth rate to the locally experienced stress, analogous to n of
Sect. 3.2. This growth law thereby captures both local and non-local stress responses,
in addition to enabling nutrient availability to regulate growth. Further, and by design,
this growth law retains the robustness properties of the previous model whilst the local
stress term allows for nuanced and, notably, non-monotonic growth stretches, as we
demonstrate below.

As with n, there are countless choices of the function ñ, including its argument.
Here, we have taken ñ = n(βσr ) for a parameter β > 0 that determines the relative
sensitivity of the local stress response compared to the global term, so that the local
response depends on the experienced radial stress, emphasising that the local and
global stress responses may be wholly distinct in form. Even in this minimal case,
the introduction of local stress dependence can give rise to profiles of residual stress
with the desired features, though we note that such a profile is not guaranteed by
this form of growth law. As an example, in Fig. 9a we illustrate the residual stress
profiles in a simulated tumour at steady state, which displays tensile hoop stresses on
the boundary and a compressive region within the tumour. Commensurate with the
stress at the boundary is the non-monotonic profile of the growth stretch, as shown in
Fig. 9b.

4 Summary and Evaluation

Having constructed a model that satisfies the criteria set out in the Introduction, in
Table 2 we summarise the iterative process that led to this final spheroid model. In this
table, we identify each model by the subsection of Sect. 3 in which it was introduced,
and highlight the relevant features.
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Fig. 10 Fitting the refined model to the experimental data of Helmlinger et al. (1997). The experimentally
observed tumour growth dynamics described in Fig. 1 are shown in terms of the spheroid radius alongside
fitted dynamics of the model of Sect. 3.4, with the latter displayed as solid curves. The good agreement
between the experimental data and the model fits highlights the ability of the constructed model to capture
the phenomenon of mechanically influenced growth. In particular, we have varied only the initial conditions
and external stiffness parameters between datasets during fitting the model, so that differences in dynamics
can be directly attributed to these factors

As a final evaluation of the model of Sect. 3.5, we return to the experimental
data of Helmlinger et al. (1997) illustrated in Fig. 1. Recalling the inability of the
minimal classical model of Greenspan to capture the evidenced mechanical influences
on tumour growth, we now fit our final model to the three displayed growth curves
simultaneously, as described in Appendix A. During this fitting process, we vary
only the initial condition B and external stiffness parameter κ between the three
growth curves, with all other model parameters shared. The fitted dynamics displayed
in Fig. 10 show good agreement between the model and experimental data. This
agreement highlights the ability of our finalmodel to capture the range ofmechanically
driven behaviours observed by Helmlinger et al. (1997), with these behaviours being
directly linked to the mechanical parameters of our framework.

5 Discussion

In this tutorial, we have explored a sequence of models of solid spheroid growth, rang-
ing from simple nutrient-limited growth dynamics to more complex stress-dependent
growth laws. Inspired by the classical model of Greenspan (1972), we began our
exploration of tumour development by assuming a minimal threshold-based approach
to determine the growth rates of tissues within the spheroid, distinguishing between
proliferating and necrotic cells via the local concentration of an abstracted nutrient.
The resulting growth law, when coupled to the solid framework of morphoelasticity,
enabled a thorough theoretical analysis of the emerging dynamics, with simplic-
ity affording significant tractability in this case. However, this analysis uncovered
an unavoidable and unphysical behaviour in the tumour dynamics, with solid stress

123



   38 Page 26 of 35 B. J. Walker et al.

increasing unboundedly, even at steady states of spheroid size. Thus, we conclude that
the principles of Greenspan’s approach are not well-suited to the modelling of solid
spheroids, at least in the context of the considered framework and without appropriate
refinement.

Following on from our analysis of a Greenspan-inspired growth law, we considered
a range of refinements and modifications, introducing a dependence on both local and
non-local solid stress andmodifying the treatment of necrotic tissue.We demonstrated
several unexpected consequences of ourmodifications, such as the limitless accumula-
tion of stress in a model where stress limits and even halts tissue growth. This example
particularly highlights how the non-locality ofmechanical stress can complicatemodel
analysis, with stress building up in non-growing regions of the spheroid due to growth
elsewhere in the tumour. Nevertheless, despite the presence of this mechanical com-
plication, we have been able to concretely reason about the behaviours of our final
two models of tumour growth, concluding in both cases that the emergent dynamics
necessarily reach a steady state of tumour size and solid stress, except for a subset
of dynamics for growth in free suspension. This analysis highlights the benefits of
employing minimal models, especially in the context of solid mechanics, with this
reasoning rendered tractable by the simplicity of the morphoelastic framework in a
spherical geometry.

A further benefit of themodelling framework explored in this tutorial is the readiness
with which we have been able to explore and experiment with different growth laws.
In particular, even when analysis has not been tractable, numerical solution has been
straightforward, with only the solid stresses necessitating care in order to integrate
a removable singularity. In turn, this has enabled a thorough consideration of the
consequences of employing solid stress as a regulator of tumour growth, from which
we have seen that stress appears feasible as a factor that affects spheroid development,
in support of previous experimental and theoretical works (Helmlinger et al. 1997;
Delarue et al. 2014; Ambrosi and Mollica 2004). In particular, we have seen that
a combination of local and non-local stress dependencies can give rise to robustly
reasonable profiles of growth and stress, in qualitative agreementwith observed tumour
dynamics and estimated residual stresses. Hence, our exploration supports the broad
hypothesis that tumour–environment interactions, in the particular form ofmechanical
stress, can be an influential and nuanced determinant of spheroid growth.

Complimentary to the analysis and exploration presented here, there are numerous
directions for future modifications to the modelling framework and for the assess-
ment of the role of the environment in tumour growth dynamics. One such avenue
includes the relaxation of the strict assumption of spherical symmetry, which may be
of pertinence to the stability of model spheroids that are highly stressed, such as those
encountered in Sect. 3.1. Alternatively, there is extensive scope for the refinement
of our treatment of the tumour as a single solid phase, with the potential to broaden
to a poroelastic framework, as in Ambrosi et al. (2017), or to a more general multi-
phase model. In particular, such an extension might include an alternative treatment
of necrotic material and the inclusion of material clearance, with an explicit mecha-
nism absent from our growth-focused exploration. Further, there is also the prospect
of establishing quantitative agreement between the described models and additional
experimental datasets.
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In summary,wehave posed and explored a hierarchy ofmechanical tumour spheroid
models, exploring and iterating upon simple growth laws that draw from classical
study and experimental observations. In doing so, we have seen how even simple
models can give rise to unexpected and unphysical behaviours when cast in the context
of solid spheroids. Seeking to preclude such eventualities, we have explored how
solid stress can be used to regulate growth in phenomenological models, considering
various couplings of growth to stress and evidencing the plausibility of the mechanical
environment as a driver of spheroid development. This sequence of modifications has
culminated in a simple yet robust model of tumour growth that shows favourable
agreement with experimental data, highlighting the potential for simple models to be
more than just toy mathematical examples.
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Appendix A: Numerical Implementation

We numerically solve the governing equations of tumour evolution of Eq. (23) via
the method of lines in MATLAB�, exploiting the quasistatic nature of the tumour
dynamics. At each timestep, the instantaneous configuration, solid stresses, nutri-
ent concentration, and growth rate are computed from the current growth stretches,
which are then advanced in time by a forward Euler scheme. Our implementation
was validated against the analytical conclusions of Sect. 3.1, with numerical con-
vergence established for all results presented in this manuscript. Standard nonlinear
least-squares fitting to tumour growth curves was performed using lsqnonlin in
MATLAB�, which identified local minima of the appropriate residual. We also detail
twonotable aspects of the implementation below,with source code, fitting routines, and
all parameters freely available at https://gitlab.com/bjwalker/morphoelastic-tumour.
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Fig. 11 Nutrient concentration in a model spheroid. Sample quasistatic nutrient profiles c for various
b ∈ {b1, b2, b3} are plotted as solid black curves, which individually show the decrease in nutrient from
r = b to the centre of the tumour. Here, b1 < b̂, so that c = cI, b2 = b̂, where c = cI = cII, and b3 > b̂,
so that c = cII. For b = b3, the threshold radius for zero nutrient concentration r̂ is shown as a black circle
and labelled r̂3

A.1: Adaptive Discretisation

The analysis of Sect. 3.1 and Appendix B predicts that material points will move
towards the centre of nutrient-driven spheroids with a decaying necrotic core, with
the exception of those precisely on the surface of the tumour. In the context of a com-
putational implementation, this entails that any fixed discretisation of the Lagrangian
domain will eventually become unsuited to capturing the entire Eulerian domain with
sufficient resolution. This is illustrated in both Figs. 3a and 12a, with r(R, t) → 0
as t → ∞ for R ∈ [0, B). To overcome this numerical issue, we rediscretise the
Lagrangian domain at each timestep so that it corresponds to a uniform discretisation
of the Eulerian domain, noting that r(R, t) is a bijective mapping between the two
domains at any time t .

However, this remeshing procedure results in the discrete points of the Lagrangian
domain being clustered close to R = B, to the point that these quantities rapidly
become indistinguishable when using double precision arithmetic. We mitigate this
numerical limitation by casting the governing equations of Eq. (23) in terms of a shifted
Lagrangian variable, R̃ := R− B, with values close to zero being better distinguished
in fixed-precision arithmetic than those near B > 0.

A.2: Computing Radial Stress

Equation (23b), which gives the Lagrangian derivative of σr , has a removable singu-
larity at r = R = 0 that presents a significant numerical challenge. To circumvent
this when integrating Eq. (23b) numerically via the trapezium rule, we replace this
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expression with its two-term Taylor expansion about R = 0 when R/B < 1/20.
This expansion is calculated by first computing higher-order expansions of r(R, t)
and γ (R, t), noting once more that

r(R, t)3 = 3

R∫

0

γ 3 R̃2 d R̃ (A1)

from Eq. (23a). Writing the expansion of γ with respect to R-derivatives of γ , after
significant calculation this leads to

2μγ
r6 − γ 6R6

r7
∼ −3μ

γ ′

γ
+ μ

[
3

40

(
γ ′

γ

)2

− 12

5

γ ′′

γ

]
R (A2)

as R → 0. Here, a prime denotes a derivative with respect to R, with γ and its
derivatives being evaluated at R = 0. Derivatives of γ are estimated numerically
with a second-order finite-difference scheme. The validity of this expansion and the
resulting numerical scheme is confirmed by comparison with numerical solutions
computed with high-resolution discretisations.

Appendix B: Partially Perfused Nutrient-Limited Dynamics

As noted in Sect. 2.4, larger spheroids can give rise to a solution for the nutrient
concentration that differs from the expression used in the main text (see Eq. (22)),
with the concentration becoming zero near the tumour centre. In such a partially
perfused case, which occurs whenever b(t) > b̂ = √

6Dc∞/λ = √
6L , the solution

for the nutrient concentration is instead given by

c(r , t) = cII(r , t) :=
{
0 , r ∈ [0, r̂) ,
λ
6Dr

2 + λr̂3
3D

1
r + λ(2r̂3+b3)

6Db + c∞ , r ∈ [r̂ , b(t)] ,
(B3)

where r̂(t) is the smallest positive root of the time-dependent polynomial

λ[2r̂3 − 3r̂2b(t) + b(t)3] − 6b(t)Dc∞ (B4)

and we often omit its explicit dependence on time for notational convenience. This
expression for the nutrient concentration satisfies both ∂c/∂r(r̂ , t) = 0 and c(r̂ , t) =
0, along with the outer boundary condition c(b(t), t) = c∞. The overall solution for
c can now be succinctly written as

c(r , t) =
{
cI(r , t) , b(t) ≤ b̂ ,

cII(r , t) , b(t) > b̂ ,
(B5)
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Fig. 12 Partially perfused nutrient-driven growth of a spheroid. a The evolution of the tumour radius b(t)
to steady state is shown as a solid black curve, alongside the paths of material points, which are shown as
solid grey curves and correspond to R ∈ [0, (1 − 10−5)B]. As in Sect. 3.1, after initial growth, material
points move away from the steady outer edge of the spheroid and towards the necrotic core. The analytically
predicted steady state, which here is only a leading-order approximation, is shown as a dashed black line,
from which we note remarkable agreement between the numerical and asymptotic solutions even when
b(t) is not large. The radius at which c(r , t) = ĉ is shown as a thin dotted curve. b A slice through the
centre of the spheroid at steady state, shaded according to the nutrient concentration c, which highlights
a key difference between these partially perfused dynamics and the nutrient-rich evolution of Fig. 3. The
threshold for necrosis, ĉ, is shown as a dashed white curve, inside which the tissue shrinks in response to
lack of nutrient. Here, we have taken parameters such that ĉ/c∞ = 2/5 and B = L . For these parameter
choices, the leading-order approximation to the steady state is b∗

N ∼ 5L/
√
2

where cI denotes the solution of Eq. (22) in the main text. This elementary but
notationally cumbersome solution is illustrated in Fig. 11.

B.1: Steady States of Growth

In the partially perfused regime, adopting the minimal nutrient-driven growth law of
Sect. 3.1, Eq. (27) is modified to

r2
∂r

∂t
= 3k

r∫

0

(cII − ĉ)r̃2 dr̃ . (B6)

For r < r̂(t), recalling the expression for cII of Eq. (B3), it is clear that this spatial ODE
results in movement towards the centre of the spheroid, whilst, for r > r̂(t), there is
the possibility of a nonzero steady state, with growth balancing out necrotic decay. For
given system parameters, this steady state is straightforward to compute numerically,
though presents a challenge for analytical solution due to the presence of the threshold
radius r̂(t), which depends on b(t). However, we can make simple progress towards a
steady-state solution for b(t) under the assumption that the tumour is large, by which
we mean that b(t) is larger than the other lengthscales in the problem.

To see this, we first note that b − r̂ represents the distance beyond which the
nutrient at the boundary can no longer penetrate the tissue, a quantity that should
be approximately independent of the size of the tumour when the spheroid is large.
Hence, posing the asymptotic ansatz r̂(t) ∼ b(t) − r̂0 + o(1) as b(t) → ∞ for some
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as-yet-undetermined constant r̂0, solving for the roots of Eq. (B4) gives

(3λr̂20 − 6Dc∞)b(t) = 0 (B7)

to leading order, which simply gives r̂0 = √
2Dc∞/λ = √

2L . Hence, for large
spheroids, we have that r̂(t) ∼ b(t) − √

2L . Inserting this approximate expression
into Eq. (B3), setting r = B(t), and evaluating the integral of Eq. (B6) yield

b2
db

dt
= −15kĉb3

[
ĉb − √

2Lc∞ + o(1)
]

, (B8)

which has leading-order steady states b = 0 and

b = b∗
N :=

√
2Lc∞
ĉ

, (B9)

redefining the nutrient-limited steady state in this context for notational convenience.
It is clear that only the nonzero steady state can be consistent with the asymptotic
analysis, so that the only admissible steady state scales with c∞/ĉ, which may readily
become large for sufficiently low thresholds for tissue necrosis. Further, inspecting
the form of the approximate dynamics highlights that this steady state is linearly
stable, consistent with the negative feedback present between tumour size and nutrient
availability within the spheroid, the balance of which gives rise to this nutrient-limited
steady state.

This steady-state solution also gives the approximate steady-state value of r̂(t),
which we see is related to the system parameters simply as r̂ ∼ √

2L(c∞/ĉ − 1).
Approximating the radius of the necrotic core by r̂ , valid in the large-b∗

N limit, the
fraction of the tumour volume occupied by the necrotic core is approximately

(
r̂

b∗
N

)3

∼
(
1 − ĉ

c∞

)3

. (B10)

Perhaps counter-intuitively, a decrease in the necrosis threshold results in an increase
in the proportion of necrotic tissue at steady state. However, this is easily reconciled
upon noting that the tumour radius at steady state is greatly increased by the change
in this parameter, whilst the perfused rim of the spheroid remains at an approximately
constant thickness.

In order to illustrate the validity of our approximate solution for the steady dynam-
ics, particularly the tumour radius at steady state, we numerically solve the exact ODEs
governing the evolution of material points in this partially perfused tumour, showcas-
ing a sample exploration in Fig. 12. Remarkably, even for the b(t) < 4L attained
in this example, we see very good agreement between the asymptotically predicted
steady state b∗

N and the numerically computed evolution, with agreement naturally
improving in parameter regimes with larger steady states (i.e. those with reduced
ĉ/c∞). From Fig. 12b, we note the distinct composition of the spheroid at steady state
when compared to the nutrient-rich tumour of Fig. 3, with a large region devoid of
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Fig. 13 Nonzero steady states of nutrient-driven spheroid growth. Normalised by the diffusive lengthscale
L , the numerically computed steady state b∗

N of spheroid growth in the absence of mechanical effects is
shown as a dashed black curve as a function of ĉ/c∞. The analytically predicted steady states are shown as
solid grey curves, with the exact result of the analysis of Sect. 3.1 shown for ĉ/c∞ ≥ 3/5 and the asymptotic
result of Appendix B shown for ĉ/c∞ < 3/5. Though derived for large steady states, the asymptotic result
displays a remarkable accuracy even for states of moderate magnitude. Spheroid dynamics were simulated
until a time t/T = 100 with B = L , at which point the dynamics had converged to the steady state at the
resolution of this Figure

nutrient present in this case and the necrotic region occupying a larger proportion of
the spheroid.

Additionally, with the identified steady states having been functions of only the ratio
ĉ/c∞ and the diffusive lengthscale L ,we illustrate the normalised nonzero steady states
across the admissible range of ĉ/c∞ in Fig. 13, including the asymptotic results of this
section, the exact results of Sect. 3.1, and numerically computed steady states. From
this, we observe precise agreement between the numerical results and the expression
of Sect. 3.1, valid for b ≤ b̂, whilst the asymptotic results of this section are seen to
retain substantial accuracy even for moderately sized steady states, which lie outside
the regime of asymptotic validity.

B.2: Material Turnover

Figure12a also highlights the motion of material points within the spheroid, which
approach the centre of the necrotic core of the tumour as the spheroid approaches steady
state, as in the case of Sect. 3.1. Here, we can make simple progress in determining
the evolution of much of the material in the tumour at steady state, noting that the
majority of the tissue lies in the central region where c = 0, with r(R, t) ≤ r̂(t). In
this region, the evolution of material points is governed by the simple spatial ordinary
differential equation

r2
∂r

∂t
= −kĉr3 , (B11)

whose solution is exponential decay towards r = 0 at a rate kĉ. For material points
lying above the threshold r̂ , the analysis is once again complicated by the presence of
the r̂ term implicitly defined by Eq. (B6). However, for large r , one can once again
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make asymptotic progress, leading to the conclusion that r(R, t) also has a steady
solution r = b∗

N , though this state is linearly unstable for R ∈ [0, B), which mirrors
the analysis of the simpler, nutrient-rich case of Sect. 3.1.

Appendix C: Recovering a Steady StateWithout External Compression

Consider the model of Sect. 3.4 when κ = 0, so that no external compression is
applied. Suppose that no steady state is reached and that n of Eq. (42) attains a strictly
positive minimum during the dynamics, so that n ≥ nm > 0 for some fixed nm and σr
and σθ are bounded below. Then, bounding and integrating the growth law of Eq. (42)
evaluated at R = B gives the inequality

γ |R=B ≥ ekn
2
m (c∞−ĉ)t , (C12)

so that

α|R=B ≤ b(t)

B
e−kn2m (c∞−ĉ)t , (C13)

where we are mirroring the analysis of Sect. 3.1.3. Equation (14) then allows us to
bound the derivative of radial stress as

∂σr

∂r

∣∣∣∣
R=B

≤ D1b(t)e
−2kn2m (c∞−ĉ)t − D2b(t)

−5e4kn
2
m(c∞−ĉ)t , (C14)

where D1 and D2 are positive constants. Substituting this inequality into Eq. (18) and
noting that σr |R=B = 0 when κ = 0, we have

∂σθ

∂r

∣∣∣∣
R=B

≤ D1b(t)2

2
e−2kn2m (c∞−ĉ)t − D2b(t)−4

2
e4kn

2
m(c∞−ĉ)t . (C15)

As the growth of large spheroids is limited by the diffusive lengthscale L , it is clear
that b(t) grows sub-exponentially in time for large spheroids. Hence, recalling that we
are assuming that growth is unbounded, the hoop stress at the boundary is dominated
by the growing exponential in the second term of Eq. (C15), so that σθ |R=B → −∞
and, consequently, n becomes zero at finite time. This contradicts our supposition, so
that the tumour must evolve to a steady state, subject to the caveat that our argument
does not apply to dynamics where n → 0 but n �= 0. This argument can be trivially
modified to apply to any compact interval of time, which guarantees the existence of
nm > 0 if n is assumed to be continuous. By evaluating the bound of Eq. (C15) for
given parameters, noting that the stressmust lie above σ̂ in order to avoid a steady state,
this exponentially restricts the values of nm needed to generate perpetually unsteady
dynamics. Whilst it may be possible to construct a functional form for σ̂ so as to
satisfy these bounds and generate dynamics without a steady state, we do not expect
this to occur regularly in practice due to the exponential time dependence of Eq. (C15).
Indeed, we invariably obtain steady states as the numerical solutions to the model of
Sect. 3.4 when κ = 0 across a wide range of parameter values, in support of this claim.
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