CATENOID IN AN ELECTRIC FIELD
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Abstract. Mathematical models of electrostatic actuation have been developed since the 1960’s,
beginning with the work of G.I. Taylor, and are of great utility in a number of engineering systems.
They are of particular use in the field of micro- and nanoelectromechanical systems, where models
have typically dealt with planar geometries. Here, we extend the theory of electrostatic actuation
to a non-planar geometry by studying a catenoid soap-film bridge placed in an axially symmetric
electric field. A model is formulated and analyzed, with emphasis on stability and the effect of
dimensionless parameters. In the absence of external forces, the catenoid assumes its shape driven
by surface tension. The utility of adding electrostatic forces and the interaction with surface tension
is examined. Specifically, we uncover and quantify a stabilizing effect of the electric field and explore
the limit of the stabilization.
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1. Introduction. In the late 1960’s, G.I. Taylor launched the field of electro-
hydrodynamics through a series of pioneering studies [12]. Of special note is [12],
where Taylor studied the electrostatic deflection of planar soap films. While Tay-
lor’s intent was to shed light on the coalescence of raindrops in electrified clouds, the
last fifty years have shown that Taylor’s simple system is in fact of great technologi-
cal importance. Today, researchers studying engineering technologies such as micro-
and nanoelectromechanical systems (MEMS and NEMS) [9], self-assembly [5], and
electrospinning [8] all point to Taylor’s work as a seminal contribution to their fields.

Perhaps the most direct application of Taylor’s soap film study has been in the
field of MEMS and NEMS. Here, researchers have developed a variety of devices such
as grating light valves, micromirrors, comb drives, and micropumps, that operate
based on the principle of electrostatic actuation explored by Taylor. All of these
systems operate in essentially the same way; a voltage difference is applied between
mechanical components of the system, this voltage difference induces a Coulomb force
between the components, and, in turn, these components deform in the presence of
this force. In the Taylor system, the mechanical components were a pair of planar
soap films and Taylor studied their deflection under the influence of the Coulomb
force.

Driven by typical features of MEMS devices, models of electrostatic actuation
have generally dealt with planar components [9, 3]. Recent developments, especially
in the field of self-assembly, indicate that it is time to push beyond the planar level
to more complex geometries. Perhaps the clearest example of this need lies in the
experimental work of Whitesides, [5]. In attempting to develop new fabrication tech-
nologies for MEMS and NEMS, Whitesides explored a form of self-assembly based on
the tendency of systems to minimize surface energy. In particular, Whitesides placed
drops of polydimethylsiloxane (PDMS) between two rigid plates. These droplets nat-
urally form a “liquid bridge.” By adjusting the gap between the plates and the relative
orientation of the plates, a variety of structures can be formed. In the PDMS system,
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the polymer can be cross-linked, solidifying the liquid bridge and hence leading to the
production of small components with a variety of shapes. In [5], Whitesides notes
that a much greater range of shapes could be formed if the bridges were manipulated
with an electric field.

In this paper, we take a first step in this direction through the study of a catenoid
shaped membrane, i.e., a simple minimal surface, placed in an electric field. It is useful
to contrast the model developed here with typical models of electrostatic actuation.
The governing equation that we will derive has the general form

Hu = f(u), (1.1)

where the function u gives the radial coordinate of a deflected surface of revolution.
Here, H is the mean curvature operator, and the function f(u) captures the Coulomb
force due to the presence of the electric field. Typical models of electrostatic actuation
have the general form

Au=g(u), (1.2)

where again, u measures the deflection of some surface, and g(u) captures the Coulomb
force. Note that moving to a more general geometry implies that the mean curvature
operator, H, cannot be linearized and replaced by the Laplacian as in Equation (1.2).
Also note that g(u) typically contains a simple inverse square non-linearity, while here
we are forced to deal with a more intractable logarithmic non-linearity in f(u).

It is also worthwhile to note that our basic model, Equation (1.1), connects the
theory of electrostatic actuation to the theory of minimal surfaces, [10], and the theory
of constant mean curvature surfaces, [1]. In Equation (1.1), if f(u) is set to zero, we
are studying a minimal surface. In this study, the “base case,” occurring when the
electric field is turned off, is the well-known catenoid minimal surface. On the other
hand, when f(u) is constant, Equation (1.1), becomes the basic equation studied in
the field of constant mean curvature or capillary surfaces. The dependence here of
f(w) on the shape of the surface studied and the fact that it arises due to the presence
of an electric field, leads us to suggest the designation “Field Driven Mean Curvature
Surface” (FDMC) for surfaces satisfying Equation (1.1).

In this paper we begin in Section 2 by deriving the governing equations for a
catenoid shaped elastic membrane, i.e., a soap film, placed in the presence of an
electric field. We take a variational approach to deriving the governing equations
and simplify the model through the use of asymptotic analysis. Next, in Section 3,
we analyze Equation (1.1) for our geometry using dynamical systems techniques. In
Section 4, we turn to perturbation methods and perform an analysis of the special
cases of small voltage and a nearly cylindrical surface. In Section 5, we address
stability and connect the analyses of Sections 3 and 4 while exploring a peculiar
instability relationship.

2. Formulation of the Model. In this section we present the governing equa-
tions for our electrostatically actuated membrane. The system we study consists of
two parallel rings of radius a with a thin elastic conducting membrane forming a
bridge between the rings. We take the distance between the rings to be L. Sur-
rounding the rings is a uniform perfectly conducting cylinder of radius b with b > a.
The top and bottom of the apparatus are left open, and there is no direct connection
between the rings and the outer cylinder. A potential difference is applied between
the membrane and the outer cylinder. We take the outer cylinder to have potential
V and the membrane to have zero potential. The geometry is sketched in Figure 2.1.
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FiG. 2.1. The basic setup for the problem.

We begin by formulating the equations governing the electric field. Denoting the
electrostatic potential by ¢ and working in cylindrical coordinates, (7,0, Z) satisfies

AY =0, (b,0,2) =V, P(a(z),0,2) =0, (2.1)

where 7 = 4(Z) defines the membrane surface. Note that we are assuming axial
symmetry so that @ depends only on Z; the membrane is a surface of revolution.
Next, we introduce the non-dimensional variables

3 F " @
— — — = — = — . 2.2
T T v v T4 (22)
Making these substitutions in Equations (2.1), we obtain
o? 10 2
P 10w L0
or?2  ror 022 (2.3)
b a '

=0 at r=u(z .
v ()
Here, € = (b — a)/L is a dimensionless aspect ratio comparing the gap size between
the rings and the outer cylinder to the length of the device. We assume € << 1. The
electrostatic field energy is given in dimensional form by

€0 ~
-2 [1vie. (2.4

where the integral is taken over the region between the outer cylinder and the mem-
brane, and €y is the permittivity of free space. The elastic energy is the product of
surface tension 7" and the surface area of the membrane; the total energy is the sum of
the elastic and electrostatic energies. Upon solving Equations (2.3) after dropping the
€2 term, and after using the divergence theorem, we obtain the dimensionless energy
functional



1/2
Elu] = / uyV' 1+ o2u/? — lnﬂﬁ\/u) dz (2.5)
~1/2

where § = b/a is the ratio of the radii of the inner and outer cylinders, ¢ = a/L is
the ratio of the inner radius to the length, and A = ¢;V?/(27Ta) is a dimensionless
variable characterizing the relative strengths of electrostatic and mechanical forces
in the problem. We may think of A as a control parameter related to the voltage.
Note that although we have introduced four dimensionless parameters, there are in
fact only three independent parameters. The parameters €, o, and § are all related by
e = o(d—1). We use these four parameters for convenience of notation, while keeping
in mind that the range of ¢ and ¢ is limited by our assumption that €2 << 1. Note
also that primes denote differentiation with respect to z. We minimize the energy &
by taking a first variational derivative and obtain the following ODE for the shape of
the membrane u(z)

1+ o?u? — o2un” B A (2.6)
(1 —|—02u’2)3/2 ~ uln? (0/u) . '

To complete the system, we impose the boundary condition that requires that the
membrane be connected to the rings, expressed in dimensionless form as

u(1/2) = u(-1/2) =1. (2.7)

Equations (2.6) - (2.7) govern the equilibrium shape of the deflected membrane. Note
that the left hand side of Equation (2.6) is the mean curvature, while the right hand
side contains the effect of the electric field. Our goal is to determine the solution set
to this boundary value problem, to explore stability and multiplicity of solutions, and
to understand the solution set in terms of the parameters A\, o, and J.

3. Phase plane analysis. We begin our analysis of the BVP (2.6) - (2.7) by
considering the nature of trajectories in the phase plane. Rewriting the ODE (2.6) as
a first order system, we have

u=v
;14022 A1+ 0%0?)%/2 (3.1)

v o2u o2u?In®(6/u)

The critical points for this system are located at v = 0, and solutions of

uln? (6/u) = X. For a given A, there are 2 solutions, meaning that there are 2 critical
points, which we denote (uz‘l), 0) and (uE‘Q), 0), with ua) < u’&). These points coalesce
as \ tends to 46/e. If X > 46/e?, there are no critical points for the system.

For A\ < 44/e?, linear stability analysis shows that (“?1)’ 0) is a saddle node, while
(u?z), 0) is a center. See Figure 3.1 for a sample phase portrait. Note that the system
(3.1) is unaltered by the change of variables v — —v, z+ —z. This symmetry means
that the trajectories in the lower half plane are the same as in the upper half but with
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Fia. 3.1. Phase plane plot in the uw — v plane, for A\ = 15,0 = 1,6 = 1.2. There are 2
critical points: a saddle point located approz. at (.004,0), and a center at approz (.77,0). A sample
trajectory is included

the direction reversed, which is evident in Figure 3.1. This symmetry allows us to
conclude that the right critical point is indeed a center [11].

Note that v’ blows up at v = 0 and v = §. However, solutions to Equations
(2.6) — (2.7) are entirely contained within 0 < u < 4. The case u = 0 corresponds
to self-intersection of the membrane. The case u = § corresponds to the membrane
touching the outer cylinder. These are the physical bounds for the problem, so we
restrict our attention to u € (0,9).

As is proved in [7], the phase plane contains a homoclinic orbit. The orbit de-
parts from the left critical point (“?1)7 0), circles the right critical point (uE‘Q), 0), and
returns to (u(;),0) as z — oo. This divides the phase plane into two regions. Inside
the homoclinic orbit, all trajectories are periodic, circling the critical point (uZ‘Q), 0).
Outside the orbit trajectories are non-periodic and approach v = Foc.

To be a solution to the boundary value problem, a trajectory in the phase plane
must start on the vertical line v = 1, and return to this line after a time of flight
of 1. The trajectory may wrap around any number of times, which will dictate the
shape of the solution. Figure 3.2 depicts some potential solution trajectories and the
resultant membrane surfaces they define.

As is evident in Figure 3.2, there is a potential for a high number of solutions to
the BVP. Most of the these solutions are highly oscillatory and physically unstable [7].
On the other hand, from a mathematical point of view, there is value in characterizing
the overall structure of the full solution set. Our analysis in this section is directed
towards this aim. To this end, we approach the problem by defining time of flight
integrals for trajectories. In this paper, we will only consider solutions which are
symmetric about the midplane z = 0. An analysis of non-symmetric solutions is
found in [7]. Under this symmetry assumption, we classify a solution as a trajectory
that begins on the axis v = 0 and ends on the line u = 1 after a time of flight of 1/2.
Applying the Beltrami identity [13] to the energy functional Equation (2.5) enables
us to obtain the following first integral of Equation (2.6)

U A
VIitouz In(6/u)
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Fic. 3.2. Depiction of solution trajectories in the phase plane and the resulting solution curves
and membrane surfaces.

Here the constant E represents a conserved quantity in the system. Setting z = 0
and using «/(0) = 0, we find

A
EZUO—M, (33)

where ug = u(0). Solving Equation (3.2) for «/, we have

1/2

2
1
W= = (%) 1y . (3.4)
g B+ In(6/u)

Note that in solving for u’, symmetry allows us to take the positive square root
without loss of generality. Denote the right hand side of Equation (3.4) by f(u;uo).
Separating variables, we obtain

u(z)
du

f(u;uo) )

Uo

A solution must satisfy u(1/2) = 1, which would lead us to require

1

du
/ Pl ~ 1% .

Uo
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u=1

Fi1G. 3.3. The values t1 and ta for trajectories inside the homoclinic orbit.

However, this is not sufficient, as we will not catch trajectories that “wrap around”
in time of flight 1/2 before ending on the line u = 1, for in these cases the domain
of the integrand is not well defined in the integral. See, for instance, Example III in
Figure 3.2. Such a trajectory can only occur inside the homoclinic orbit, so for the
time being we restrict our attention to this region.

We begin with trajectories for which wg = u(0) < 1. Consider Figure 3.3. In
order to verify whether a trajectory inside the homoclinic orbit is a solution or not,
all we need to know are the values ¢t; and ¢, which represent the time it takes the
trajectory to travel from the wu-axis to the line w = 1 and the time it takes to go from
this line back to the axis, respectively. In particular, if ¢; = 1/2, we have a simple
monotonic solution (on the interval [0,1/2]), as depicted in Example I of Figure 3.2.
In general, a solution will satisfy

(2k + 1)ty + (2k)ty = 1/2
or (3.7)
(2k + 1)ty + (2k +2)ty = 1/2, ke Ny .

These combinations account for every possible way that a trajectory may begin on
the line v = 0 with v < 1 and end on the line u = 1 after a time of flight of 1/2.
The value of the non-negative integer k signifies the number of times the trajectory
will circle around in the phase plane in time of flight 1/2, and thus the number of
oscillations in the solution curve. The larger k is, the more oscillatory the solution.
Hence, we refer to k as describing the mode of the solution.

To find the values t; and to, we need the corresponding u value where the trajec-
tory intersects the u-axis (see Figure 3.3). Denoting this by u1, we see that u; must
satisfy f(ui;ug) =0, since u’ = f(u;ug). This implies

A
=B G/

where F is defined by ug. Referring to Equation (3.5), we have

Uy

1

t1(uo) :/J‘quia())’ ta(uo) :/f(jzo)' (3-8)

Uuo
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Fic. 3.4. Cartoon depiction of the spiral meander inside the homoclinic orbit, with the scaling
toward the edge of the homoclinic orbit blown up for clarity. Each intersection with the line u(1/2) =
1 represents a solution. The type of solution is indicated. The arrows indicate the direction of
decreasing ug.

For trajectories that satisfy ug = u(0) > 1, we need merely interchange the roles
of t1 and to in the above analysis. In principle, if we find the values ¢; and ¢ for all
values of ug, we may use the criteria of Equations (3.7) to determine the location and
mode of all solutions as well as determine the total number of solutions for a given
parameter set.

Casting the problem in terms of the ¢; enables us to determine the structure of
the solution set. To visualize this, in Figure 3.4 we plot a meander for the BVP [2].
In this approach, we choose a starting point u(0) with v(0) = 0, integrate from z =0
to z = 1/2, and plot the resulting point (u(1/2), v(1/2)). In this manner, ranging
through all starting points «(0) inside the homoclinic orbit, we may plot a curve in
the (u(1/2), v(1/2)) plane parameterized by u(0). Every intersection with the line
u(1/2) = 1 represents a solution to the BVP.

Due to difficulties with numerical integration, Figure 3.4 is a cartoon depiction
of the spiral meander inside the homoclinic orbit, produced by studying the nature
of the integrals ¢;. A detailed analysis of this spiral structure is provided in [7]. We
present it here to demonstrate the rich solution structure present for the BVP.

4. Special solutions - asymptotic analysis. In this section, we investigate
two special solutions, the catenoid that appears when there is zero voltage, and the
cylindrical solution. We develop asymptotic schemes to explore perturbations from
these solutions and to understand their dependence on the parameters.

4.1. Small voltage case. First, we examine the case of small voltage. Suppose
there is zero voltage. Eliminating the electric field reduces the problem to that of
a thin membrane bridging two parallel rings. Setting A = 0 in Equation (2.6), u(z)
must have zero mean curvature; that is, the membrane should be a minimal surface.
This problem has the well-known catenoid solution defined by

cosh(ca2)

u(z) = ————= | (4.1)

CoO0

where ¢o is a constant satisfying



> cosh(ca/2) . (4.2)
C2
For certain values of o, there are two values of ¢y that satisfy Equation (4.2), and so
two catenoid solutions. The smaller value of ¢y corresponds to a stable catenoid, while
the other value corresponds to an unstable solution. The range for which a solution
exists is given approximately by ¢ > 0.7545. Denote this critical value by o... The
fact that the catenoid ceases to exist beyond this is tantamount to the observation
that if you pull the two rings too far apart (i.e. increase the L in 0 = a/L), you reach
a point where the membrane pinches off and separates.
With the solutions of zero voltage in mind, we consider the case of small voltage,
and look for perturbations from the catenoid solutions. To do this, we assume that
A << 1, and that u(z) can be expanded as

w o~ ug + Aug + Nug + - (4.3)

Before we proceed, recall that in deriving the energy functional, we used the small
aspect ratio assumption €2 << 1 in order to solve for the electric potential to leading
order. In order for the current asymptotic analyis to be compatible with this, we must
assume that €2 = o(\). In other words, in implicitly deriving the energy functional
from a first order expansion in €2, we must clarify that the other parameters in the
problem are bigger than €2.

Under this assumption, we insert the expansion (4.3) into Equation (2.6) and
collect like powers of A. We obtain as a leading order solution the catenoid given by
Equation (4.1). At O()), we have

—(1+ J2u%)3/2

wy” — 2¢q tanh(co2)uy’ + Auy =
! ? (ca2)us 2 o2u In* (8 /ug)

(4.4)

along with boundary conditions u1(1/2) = u1(—1/2) = 0. Setting the right hand side
of Equation (4.4) to zero, the homogeneous solution is found to be

ul'(2) = Asinh(cy2) + B(cazsinh(cyz) — cosh(cpz)) (4.5)

where A and B are constants. The boundary conditions can only be met for the co, o
pair at the critical value o... Therefore, if o > 0., the non-homogeneous problem
Equation (4.4) will have a solution. Actually, for such a o, we have two solutions, as
there are two valid ¢y values. We have a perturbation from the stable catenoid as well
as a perturbation from the unstable catenoid. These solutions may by found using
variation of parameters. For the stable catenoid perturbation, increasing A causes the
membrane to deflect out toward the outer cylinder as the voltage is increased. With
the unstable catenoid perturbation, the opposite occurs. In problems of electrostatic
deflection, it is typical that a stable solution deflects toward the source of the applied
voltage while an unstable solution deflects in the opposite direction. See, for instance,
[9].

If 0 = 0., the homogeneous problem will have a solution, u}f, and the criteria
for there to be a solution to Equation (4.4) is that

9



1/2

14 02/2)3/2
e (4.6)
ug In(8/uo)
—-1/2
It is easily shown that u? carries only one sign in the interval [—1/2,1/2], and so
the integral cannot vanish. Thus, our asymptotic expansion fails when ¢ = o... To
fix this, we need to modify our assumption on the ordering of the expansion. If we
instead take

u~u0+)\1/2u1+)\uz+...

we arrive at the same leading order solution ug given by Equation (4.1), but here
there is only one value of ¢ and thus one ug solution since ¢ = o.,.. In this case,
the O()\l/ 2) problem is the same as before, but now with zero right hand side. We
express this problem by defining a new operator L as follows:

L[u] := u” — 2tanh(cp2)u’ + cu . (4.7

In terms of this operator, u; satisfies L[u;] = 0 with zero boundary data. Since we
are at the critical o value, this problem has a solution, given by

u; = B - (eazsinh(eaz) — cosh(caz)) .

The constant B is undetermined, as one boundary condition is automatically satisfied.
To determine B, we go to the O(\) problem, which may be written

(1 —|—O’2u62)3/2 u/12 ulu/{

Llug) = — S W0 )7 U
[u2] o2uIn(6/ug)?  wo ug

(4.8)

Everything on the right hand side of Equation (4.8) is fixed except for the unknown
constant B in u;. Denote the right hand side as G(B). The solvability condition for
Ug i

1/2

/ G(B)uh dz=0, (4.9)
~1/2

where u% is the homogeneous solution to Equation (4.8). However, u% will only differ
by a constant from w;. Thus, Equation (4.9) gives us a condition for finding B. We
may find this explicitly if we introduce the function 4 = coz sinh(cez) — cosh(caz) so
that u; = Ba. From Equation (4.9), we may solve to find

1/2
/ a(l+ogug)*?

d
o2 udn(é/up)? :

—1/2
1/2
,&a/Q _a2ﬁ//
— dz

Uo

B? = (4.10)

—1/2
10



The right hand side of Equation (4.10) is completely determined for fixed d, and is
found to be positive. Accordingly, there are two possible values for B, and so two
solutions at ¢ = o.,. This is not surprising. Recall that o, defines the bifurcation
length for the stable and unstable catenoids with zero voltage. By applying the
electric field, we have added a force counter to the surface tension which is pulling
the membrane in. We should expect that the membrane is able to be stabilized at
lengths greater than occur without any applied voltage. In other words, with small
voltage, we see that the bifurcation point will occur for a smaller value of o, i.e., a
greater length, than with no voltage.

When will the bifurcation occur? To answer this, we return to the expansion and
again assume small voltage, but take o < o.., so that the length is greater than the
critical zero voltage length. More precisely, we assume

0?2 =02 —\,  u~ug+ N u + Aug + - (4.11)
where v > 0 is to be determined. We find again that ug = cosh(cez)/(0¢rc2) is the

zero voltage bifurcation catenoid. In this case, we have L[u;] = 0, implying as before
that uy = B where B is yet to be determined. At O(X), we find that

1+ o2 u/2 3/2 U1’LLN u/2 u/2 _ uOu//
L[UQ] — ( ) 1 + et v 0 - 0 i
Ocrtho

(4.12)
agrug In?(8 /ug) Ug Uo

Denote the right hand side of Equation (4.12) by G(B,+). In this case, the orthogo-
nality condition gives us a relationship between B and . After some simplification,
this relationship may be expressed as

B’I — I, = I3, (4.13)

where the values I, k = 1,2, 3 are explicitly defined by

1/2 1/

512 200 1213/2
I - / i’ — a2’ iz, / (1 + o2 u; a(l +ogug)>* iz,
uo o2 ug1n® (8 /ug)
—1/2
1//2 (4.14)
~ (12 "
Iy = / fug” — uoug) 2_”0“0) dz
PRGN

Note that I; ~ —10.248, I3 ~ 3.459 are fixed values, while Iy depends on § but will
always be negative.

Suppose that We have fixed o < 0. and have fixed A << 1. Then, recalling the
relationship 02 = 02, — y\?, we have also fixed 7 (noting that 3 = 1). We may solve
Equation (4.13) for B7 finding two possible solutions representing the perturbations
from the stable and unstable catenoids. This will only work if the term within the
square root is positive when solving for B. Thus, Equation (4.13) enables us to
approximate the critical length at which the bifurcation between the two perturbed
catenoids occurs. In view of the signs of the integrals Ij in Equation (4.14), the
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bifurcation between the two solutions occurs when v = %b, and so the critical value

. 3
of ois

o\ 1/2
ot — (afr + Z) . (4.15)

For clarity, note that we use ¢* here to denote the critical length ratio when the
voltage is on, whereas o, is the critical length ratio of zero voltage.

4.2. Cylinder solution. In this section, we consider the constant solution u =
1. Observe from Equation (2.6) that this solution occurs for A = In? §. Physically, this
represents the membrane forming a cylindrical bridge. To investigate perturbations
from the cylinder, let

A=I?6+v, u~l+vu +1%us+..., v<<l1 (4.16)

As before, we need to compare the size of v with e. Here, the requirement is that
v << In*(1 + €/0), which relates the fact that the perturbation should be smaller
than the voltage we are perturbing from.

Inserting the expansion (4.16) into the ODE (2.6), we obtain the O(v) problem

ul// +M2U1 — —A

4.17
w(=1/2) =0, u(1/2) =0, (4.17)
where
2—1nd 1
2 = —-— = —-——
ue= g’ A > ln2(5 . (4.18)

Note that u? > 0 if § < €. In this case, the solution is found to be

uy = ué (CC;)SS((:/ZQ)) - 1) . (4.19)

If § = e?, we get parabolic solutions, and § > e? leads to hyperbolic solutions.
However, based on our previous ordering arguments, § < e? is the physically relevant
parameter range, and so we restrict our analysis to this set. Note that the solution
does not exist when pu = (2n + 1)7 for integers n. This is fixed by altering our
expansion and using solvability arguments similar to those used in the case of the
catenoid perturbation. Details are found in [7]. The conclusion of this analysis is that
when p is equal to an odd multiple of 7:
e There are two solutions symmetric about the line u = 1 when the voltage is
less than the cylinder voltage, i.e. for A < In?4.
e As ) is increased to In? 8, these two solutions coalesce into the cylinder solu-
tion, and so taking any A > In?§ yields no solution.

12



5. Stability. When A =0, 0% = o, = 0.7544 is the critical length for a catenoid
in the absence of a field. In Section 4.1, we obtained an asymptotic approximation
for o* when A << 1, given by Equation (4.15). Physically, this can be interpreted to
mean that the electric field is serving to stabilize the bridge at greater lengths than
with zero voltage. A natural question to ask is, “What is the limit of this stabilization
effect?” In other words, how far can we increase the critical length by increasing A?
Our goal in this section is to answer this question. To do so, we need to connect the
phase plane analysis of Section 3 with the asymptotic results of Section 4.

We begin by examining the stability of the cylinder solution v = 1. In general,
the requirement for stability is that the second variation of the functional &[u] be
greater than zero. Physically, the surface will meet this criteria if it is stable subject
to axially symmetric mechanical perturbations. As outlined in [4], the requirement
that the second variation be greater than zero may be expressed in terms of conjugate
points for a second order differential equation. In particular, we look at the solution
h(z) of the initial value problem

— L pwy+Qn=0

dz (5.1)
h(=1/2) =0, h'(-1/2) =1
where
. o2u B 1 )\(111((5/11,) _ 2) B a2u'
N W’ Q= 2 < U21n3(5/u) (1+02u,2)3/2) . (5.2)

If there are no points ¢ € (—1/2,1/2] such that h(c) = 0, then the functional £[u)
given by Equation (2.5) has a weak minimum at the function u(z). If such a ¢ does
exist, it is referred to as a conjugate point. This approach is only valid if P > 0;
however, this will be true for any solution since all solutions satisfy u > 0.

In general, the functions P and @ given in Equation (5.2) are too complicated to
allow for an analytic solution of the IVP of Equations (5.1), and alternate approaches
to stability may be desirable. See [7] for a discussion on stability and the alternative
“preferred coordinate” bifurcation diagram approach presented in [6]. For the cylinder
solution u = 1, however, Equations (5.1) are greatly simplified. In this case, they
become

" 2
' +pu*h =0 (5.3)
h(-1/2) =0, h'(-1/2)=1
where p is given by Equation (4.18) is the same parameter as in Section 4.2. Solving
the system (5.3), it is easily seen that there are no conjugate points only if u < 7.
This means that the cylinder solution is stable only in the range p < 7.

To further explore the cylinder solution and the importance of the parameter p,
we place the cylinder solution and its perturbation in the phase plane. The cylinder
solution occurs when A = Ay = In? 5. When ) is close to but less than this value,
there are two solutions that are “close” to being cylindrical. These solutions are found
on opposite sides of the critical point (u?2)70), which satisfies uz}) > 1. Hence one
solution satisfies u(0) < 1, and one satisfies u(0) > 1. In terms of the phase plane,
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Fic. 5.1. Stability of cylinder solution and dependence on the parameter p.

the former sits to the left of the line v = 1 and the latter sits to the right of u = 1.
We refer to the former as u” and the latter as uf*. When A = \.,;, the critical point
is on the line © = 1, and so the critical point itself represents a solution; namely, the
cylindrical solution. One of the solutions u” or uf* has become this solution. As we
continue to increase A, the critical point continues to move left, and the two solutions
bifurcate at a critical value \*.

The details of this bifurcation and where the perturbation from the cylinder fits
in depends entirely on the value of u. We find [7] that when u < 7, the bifurcation
occurs on the right side of uw = 1. Hence, a stable “bulge” of the cylinder is achievable.
On the other hand, when p > 7, the bifurcation occurs on the left side of u = 1, and
so in this case a stable “bulge” of the cylinder is not achievable. In other words, the
membrane becomes unstable before deflecting out to a cylindrical state.

If 4 = 7, there are two symmetric solutions for A < Ay, but no solution when
A > Ay In this case, u” and u’ each represent perturbations from the cylinder.
Thus, at the stability boundary p = 7, the bifurcation occurs right at ., and so
there is no solution for A > A.y;. These three cases and the solution profiles for ul
and u’ are depicted in Figure 5.1.

In Figure 5.2, we return to the full spiral meander described earlier, and mark
the special solutions of the perturbations from the catenoid and the cylinder. For the
cylinder perturbations, we indicate the solutions u” and uf described above. With
regard to the catenoid perturbations, it is easily verified by a numerical solution of
the ODE (5.1) that the perturbation of the stable catenoid is a stable solution, while
the perturbation of the unstable catenoid is unstable.

As was just discussed, either u”, u’®, or both can represent the perturbation from
the cylinder, but u” is always the stable solution. This same solution also represents
the perturbation from the stable catenoid. There is a transition as the parameter \
is increased. For small enough A, this solution will be given by the perturbation of
the stable catenoid. As A gets close to the cylinder voltage, though, the small voltage
asymptotic analysis loses validity, and this solution transitions to the u” cylinder
solution.
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Fi1G. 5.3. (a) - The effect of decreasing o in the meander plot. (b) - The effect of increasing A
in the meander plot.

In terms of this spiral meander, decreasing o causes the center part of the meander
between the two catenoid perturbations to move to the right, until a bifurcation occurs
at o*, corresponding to a critical length. In Figure 5.3(a), the evolution of this part
of the meander curve is displayed. Likewise, when increasing A, the curve moves
left, causing the bifurcation between u” and uf* at A*. This corresponds to a critical
voltage. This evolution is displayed in Figure 5.3(b).

5.1. Critical length vs. critical voltage. For fixed A and ¢ there is a critical
value, 0*, at which instability sets in, while for fixed ¢ and § instability sets in at a
critical value A*. In each case, the same stable solution, which we have denoted u”,
disappears, but the method of instability is quite different. Physically, c* represents
reaching a critical length. When this length is reached, the membrane “pinches off”
in the middle and forms two separated surfaces. On the other hand, A* denotes the
well-known “pull-in” voltage of MEMS/NEMS [9]. When this critical value is reached,
the electrostatic force dominates the elastic force in the system and the membrane
collides with the electrode. For this geometry, we expect the instability that occurs
at \* to be such that the membrane deflects outward until it hits the outer cylinder.
Hence, the dynamics that occur at the onset of instability are very different in the
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case of o* versus \*.

To determine the relationship between these two instabilities and to answer the
question of the limit of the stabilization effect posed at the start of this section, we
consider \* in greater detail. We have already seen that in the case of the cylindrical
solution, the bifurcation between the two solutions denoted w’ and u® occurs at
A= )\cg”l = In?§ when u = mw. Hence in the special case u = m, we have that

A* =In“ 4. Recall that pu? = (2 —1nd)/(0?Ind). If we define 6 by
2—Iné
~2
~ 7m2Iné (5-4)

then in the o — A plane, we know that A\* will cross the point o = &, A = In?§. This
point is the minimum value of \*, for as we have seen, in either case p < 7 or u > 7,
the bifurcation between u” and u’ occurs for A > Acyt- To determine the behavior
of \*, we consider separately the cases ¢ > ¢ and ¢ < &, or, equivalently, the cases
pw <7 and p > m respectively.

For ¢ > &, u < =, and the bifurcation between u” and u® occurs to the right of
the line w = 1. In other words, a stable bulge of the cylinder is seen. To understand
the details of the bifurcation, we return to the phase plane and consider the time of
flight from the w-axis to the line w = 1. Following the notation of Figure 3.3, we
denote this by t3(ug), ug = u(0) where u(0) > 1. Note that trajectories outside the
homoclinic orbit approach vertical asymptotes and that solutions will only be found
in the region uy < uf, where uf is the trajectory bounded by u =1 [7].

A sample curve for ¢5 is given in Figure 5.4(a), where we observe the two solutions
ul and uf* as the points where t5 = 1/2. The corresponding solutions are then plotted
in Figure 5.4(b). We may write

du 1 1
ta(ug) = o ——, I':= — . (5.5)
u In(§/u In(§/u
N e— 674) "~ o/uo)
Clearly, % > 0. Also, it is shown in [7] that % < 0 in the relevant region 1 <

ug < ugy. This implies that an increase in A causes the two solutions to bifurcate as
16



expected, while increasing o causes the opposite to occur: ¢y increases, so that the
curve moves upward. Hence, the shorter the bridge, the more voltage may be applied
while keeping a stable solution. Increasing o will not cause a critical value to be
reached, and so there is no limit to the effect. For any value of A\, we may find a value
of o for which the peak of t5 is above the line t; = 1/2. Hence, as 0 — 0o, \* — 0.
This result is interesting in the context of the phase plane. As A is increased, a value
is reached independently of ¢ at which the homoclinic orbit is entirely to the left of
the line w = 1 [7], at which point no solutions can be found inside the homoclinic
orbit. However, the stable solution u” simply crosses over the homoclinic orbit and
remains. Further, as was noted in Section 3, for A > 44 /e?, there are no critical points
in the system, the spiral structure of the meander is completely lost, and yet still a
stable solution to the problem persists. One way to think of this physically is that
as 0 — oo, the surface area of the membrane becomes infinitesimally small, and so
there is nothing for the electric field to “pull” on, and thus infinite voltage is required
to bring about instability. Keep in mind, however, that in taking o to infinity, we
quickly violate the asymptotic assumption €2 << 1. Thus, our analysis is not suited
to make concrete physical conclusions for large o.

Next, we consider the case p > 7. Suppose that A € (ln2 0,A*) and 0 < 6. Then
1 >, which implies that the bifurcation at A* will occur to the left of the line u = 1.
Before the bifurcation, the three monotonic solutions u”, u’, and the perturbation
from the unstable catenoid (see Figure 5.2) are all located to the left of the critical
point uZ‘z), which satisfies uz‘2) < 1 because A > In?48. For convenience, we refer to

the perturbed unstable catenoid solution as u®. We have then one stable solution,

u”, flanked by two unstable solutions, u’ to the right and u© to the left. Since they
are all monotonic, the curve #;(ug) will intersect the line ¢; = 1/2 three times. From
Equation (3.8), we may write

du 1 1

t1(ug) =0 —— r:.= — . (5.6)
u In(§/u In(/u
[y —— (370~ Ino/u)
Taking a derivative with respect to A, we have
ot / u? T8 2r
1

— = ——1 ——du. 5.7
oA U/ ((U() + )\F)Q > (U() + )\F)?’ b ( )

uo

Since ug < u < 1 in the region of integration, I' > 0, and so % > 0. Hence,

by increasing A, the curve moves in the positive ¢; direction, causing a bifurcation
between u” and u* once \* is reached. Also, it is clear that % > 0, so decreasing o
will cause the curve to move downward and bring a bifurcation between u” and u®
at o*. If, however, an increase in A is countered by a decrease in o, the two effects
can be balanced so that the stable solution u” remains. Physically, the situation is as
follows. Increasing the voltage eventually pulls the membrane to the outer cylinder.
Increasing the length causes surface tension to become too great for the bridge to
sustain itself, and the membrane eventually collapses in on itself and pinches off. By
increasing the voltage and the length together in the right proportions, the “pulling
out” and the “pinching in” may be balanced so that the membrane remains stable.
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F1G. 5.5. Progression of the curve u(1/2) versus w(0) as X is increased and o is decreased (and
6 = 1.2). The parameters are altered so that the stable solution ul remains, but at each step, the
middle portion of the curve flattens out. As is seen in (d), the three solutions coalesce and the stable
solution is lost at a critical -0 pair.

We now ask whether there is a bound to this balancing effect. To answer this,
we consider the plot of u(1/2) versus u(0), produced by iterating through different
values of u(0), integrating the ODE forward for 1/2, and plotting u(1/2) as a function
of u(0). Any intersection with the line u(1/2) = 1 gives a solution to the problem.
Qualitatively, this will produce a curve equivalent to considering ¢;(ug), but is easier
to produce numerically and so is used here. Note that by construction, the meander
plot will behave in the exact opposite way as t1(ug) as A and o are altered, so that
the curve will move up as o is decreased and down as A is increased. In any case,
the qualitative characteristics of the bifurcation are just as evident, and we are in a
position to determine the limit of the balancing effect of A and o.

In Figure 5.5, the meander curve u(1/2) is plotted as a function of w(0) for
varying values of o and A for § = 1.2 fixed. As we follow the sequence of pictures,
o is decreased while A is increased. This balancing of the two parameters enables
the stable solution u” to remain. However, the curve flattens out as we do this,
so that in Figure 5.5(d) the three solutions have collided into one. At this critical
(o, M) pair, o* has intersected A*. This is really quite remarkable. Physically, it
appears that if the length and the voltage are balanced in such a way that the bridge
remains stable, a point is reached at which the pull-in voltage and the critical length
occur simultaneously! This raises interesting dynamics questions of what in fact the
membrane will do and in which direction the instability will cause the membrane to
move. We leave the answers to these questions for future work, and for the moment
merely mention the end result that there is indeed a limit to the balancing of voltage
and length, and it occurs at the intersection of the stability boundaries o* and \*.

The general shape of 0*(\) and A\*(0) is now complete. A numerically produced
example is provided in Figures 5.6 and 5.7 for the value § = 1.2. Figure 5.6 shows a
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larger region to see more generally the structure of these two curves. As mentioned
earlier, keep in mind that larger values of o violate the asymptotic assumption €2 <<
1, and so the right side of the curve in Figure 5.6 may not be physically relevant.
The more interesting aspect of these curves occurs for values of ¢ that do fall in the
relevant range, though. Figure 5.7 shows this region more closely, zoomed in on the
intersection of \* and o*.

6. Conclusion. In this paper, we have explored the equilibrium solutions of a
catenoid bridge under the influence of an axially symmetric applied electric field. We
began by formulating the mathematical model, arriving at the governing differential
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equation through minimization of an energy functional. From there, our objective
was to analyze the resulting boundary value problem. We began by using standard
techniques from the theory of dynamical systems. We uncovered a rich structure to
the solution set, illustrated by Figure 3.4. Our second approach to understanding the
boundary value problem was to use perturbation methods to study various limiting
situations. This allowed us to find approximate solutions and also to determine the
relationship between key parameters in the problem.

One important technological question addressed in this work is whether or not
the electric field allows for significant manipulation of the surface. One clear result
attained here is that the field may be used to stabilize structures that would otherwise
be unstable. We first saw this in the case of the perturbed catenoids, where the bifur-
cation between the stable and unstable catenoids occurred at a greater length than in
the case of zero voltage. We further explored this by considering the relationship be-
tween critical length and critical voltage. Physically, the stabilization occurs because
the electric field is applied to counteract the surface tension force in the system. We
have shown that these forces can be balanced in interesting ways, leading to structured
surfaces unobtainable without an electric field. We also found the intersection of the
two different instabilities corresponding to critical length and critical voltage. This
intersection poses an interesting dynamical dilemma which warrants further analysis.

More generally, we have begun an exploration of Field Driven Mean Curvature
(FDMC) surfaces; that is, membranes whose shape in the absence of external forces
minimizes surface area, that are placed in an applied field. In a sense, this brings
together two areas — electrostatic actuation and mean curvature surfaces. The study
of such surfaces is potentially applicable in a host of fields, from MEMS and NEMS
devices to liquid control in low gravity environments to the emerging field of self-
assembly.
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