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Plant tropism refers to the directed movement of an organ or or-
ganism in response to external stimuli. Typically, these stimuli in-
duce hormone transport that triggers cell growth or deformation. In
turn, these local cellular changes create mechanical forces on the
plant tissue that are balanced by an overall deformation of the organ,
hence changing its orientation with respect to the stimuli. This com-
plex feedback mechanism takes place in a three-dimensional grow-
ing plant with varying stimuli depending on the environment. We
model this multiscale process in filamentary organs for an arbitrary
stimulus by linking explicitly hormone transport to local tissue de-
formation leading to the generation of mechanical forces and the
deformation of the organ in three dimensions. We show, as exam-
ples, that the gravitropic, phototropic, nutational, and thigmotropic
dynamic responses can be easily captured by this framework. Fur-
ther, the integration of evolving stimuli and/or multiple contradictory
stimuli can lead to complex behavior such as sun following, canopy
escape, and plant twining.
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P lant tropism is the general phenomenon of directed growth1

and deformation in response to stimuli. It includes pho-2

totropism, a reaction to light (1); gravitropism, the reaction3

to gravity (2, 3); and thigmotropism, a response to contact4

(4), among many others (see Fig. 1). The study of tropisms5

in plants dates back to the pioneering work of giants such as6

Darwin (5) and Sachs (6), and has been a central topic for7

our understanding of plant physiology ever since. Tropisms8

form a cornerstone subject of modern plant biomechanics (7),9

crop management strategies (8), as well as systems biology10

and plant genomics (9). Being sessile by nature, plants lack11

the option to migrate and must adapt to their ever-changing12

environment. The growth response of individual plants to13

environmental cues will determine the yield of a crop in unusu-14

ally windy conditions, will decide the future of rainforests in a15

world driven by climate change, and may be key for colonizing16

foreign environments such as Mars.17

Mathematical modeling plays an invaluable role in gaining18

a better understanding of tropisms and how plants may re-19

spond to a change in their environment (10). Yet, a general20

mathematical description of tropisms is a grand challenge.21

First, the growth response tends to be dynamically varying:22

a sunflower grows to face the sun, but as it grows the sun23

moves, so the environmental influence – the intensity of light24

impacting on each side of the sunflower – is changing during25

the process. Similarly, a tree branch may align with the ver-26

tical in a gravitropic response; decreasing the likelihood of27

breaking under self-weight; however, the growth response itself28

may increase the branch weight and thus change the stimulus29

(11). Second, while there exist numerous experimental setups30

that enable to carefully isolate a particular stimulus, a plant31

(A)

(C)

(B)

Fig. 1. Classic experiments on tropic responses. (A) Gravitropism: a potted plant
realigns itself with gravity (13). (B) Thigmotropism: a twining vine develops curvature
when in contact with a pole (6). (C) Phototropism: a plant reorients itself towards
the light source (18th Century experiments by Bonnet (14), correctly interpreted by
Duhamel du Monceau (15, 16)).

typically receives multiple stimuli at the same time and in 32

different locations (12). The resulting movement is an integra- 33

tion of multiple signals. Third, any tropism is fundamentally a 34

multiscale phenomenon. Transduction of an environmental cue 35

takes place from the organ to the cell and involves, ultimately, 36

molecular processes. A hormonal response is induced, which 37

leads to different cells expanding at different rates in response 38

to the chemical and molecular signals. However, one cannot 39

understand the change in shape of the plant and its position 40

in relation to the direction of the environmental stimulus at 41

this level. To assess the effectiveness of the growth response, 42

one needs to zoom out. The net effect of a non-uniform cell 43

expansion due to hormone signaling is a tissue-level differential 44

growth (1) as depicted in Fig. 2. At the tissue level, each cross 45

section of the plant can be viewed as a continuum of material 46

that undergoes non-uniform growth and/or remodeling (17). 47

Differential growth locally creates curvature and torsion, but 48

it also generates residual stress (18). As a result, the global 49

shape of the plant and its material properties evolve in time. 50

To characterize this global change, and to update the position 51

of the plant in the external field, a further zooming out to 52

the plant or organ level is appropriate. At the plant level, 53

the global shape, material properties, and positioning in the 54

external stimulus are well described by a physical filament: 55

here, the plant is viewed as a space curve endowed with physi- 56

cal properties dictated by the lower level tissue scale, and its 57

shape and motion can be described by the theory of elastic 58

rods, which has been applied to multiple biological contexts, 59

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX PNAS | November 7, 2020 | vol. XXX | no. XX | 1–12

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


from DNA and proteins, to physiology and morphogenesis60

(19–22).61

The challenge of formulating a mathematical model of62

tropism is further complicated by the remarkable variation63

in plants and the multiple types of tropism. Within a single64

plant, a tropic response may refer to the growth and movement65

of the entire plant, or a subset: a single branch, vine, stem, or66

root. Here, we use the word ‘plant’ to refer to the entire class67

of plant structures that may undergo such growth responses.68

Moreover, even within a single plant, multiple environmental69

cues will combine and overlap in effecting mechanotransductive70

signals, hormonal response, differential growth, and ultimate71

change in shape (23); e.g. a sunflower exhibiting phototropism72

still perceives a gravitational signal.73

At the theoretical level, a variety of approaches have re-74

cently been proposed. Growth kinematics models successfully75

describe the tropic response at the plant level (7, 24, 25), but76

do not include mechanics and cellular activities. A number77

of large-deformation elastic rod descriptions of tropic plant78

growth have also been proposed (26–31); these involve a full79

mechanical description at the plant level, with phenomenolog-80

ical laws for the dynamic updating of intrinsic properties such81

as bending stiffness and curvature, and even branching and82

self-weight (32), but specific cell- and tissue-level mechanisms83

are not included. Multiscale formulations have also appeared,84

including Functional-Structural Plant Models (8, 33, 34) and85

hybrid models with vertex-based cell descriptions (35, 36).86

These computational approaches have the potential to incorpo-87

rate effects across scales but are limited to small deformations88

compared to the ones observed in nature.89

The goal of this paper is to provide a robust mathematical90

theory that links scales and can easily be adapted to simulate91

and analyze a large number of overlapping tropisms for a92

spectrum of plant types. Our mathematical and computational93

framework includes (i) large deformations with changes of94

curvature and torsion in three-dimensional space; (ii) internal95

and external mechanical effects such as internal stresses, self-96

weight, and contact; and (iii) tissue-level transport of growth97

hormone driven by environmental signals. By considering the98
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integration of multiple conflicting signals, we also provide a 99

view of a plant as a problem-solving control system that is 100

actively responding to its environment. 101

Fig. 2. Tropism is a multiscale dynamic process: the stimulus takes place at the plant
or organ level and its information is transduced down to the cellular level creating a
tissue response through shape inducing mechanical forces that change the shape
of the organ. In the process, the plant reorients itself and, accordingly, the stimulus
changes dynamically.

1. Multiscale modeling framework 102

The key to our multiscale approach is to join three different 103

scales: stimulus-driven auxin transport at the cellular level; 104

tissue-level growth mechanics; and organ-level rod mechanics. 105

A. Geometric description of the plant. We start at the organ
scale and model the plant as a growing, inextensible, un-
shearable elastic rod following the formalism of (17, Chap.
5) that extends the classical Cosserat rod theory (37–40) to
growing filaments. A morphoelastic rod is a one-dimensional
filamentary object that can bend and twist with some penalty
energy. The rod cannot be elastically stretched, but it can
increase in length by addition of mass, leading to a growth
stretch. Let r(S, t) ∈ R3 describe its centerline, where S is
the initial arc length measured from the base of the plant to-
wards its tip (see Fig. 3(A)). Together with the fixed Cartesian
basis, {ei; i = 1, 2, 3}, we define, at each point on the curve
r(S, t) a local orthonormal basis {di; i = 1, 2, 3}, oriented
such that d3 aligns with the tangent ∂r/∂S in the direction of
increasing S, and (d1,d2) denote directions in each cross sec-
tion from the centerline to two distinguished material points.
From the director basis, the Darboux vector is defined as
u = u1d1 + u2d2 + u3d3, and encodes the rod’s curvature,
torsion and twist (17). For a given curvature vector, the shape
of the rod, and the evolution of the basis, is determined, for
boundary conditions {r(0),d1(0),d2(0),d3(0)}, by integrating
the system of equations

∂r
∂S

= γd3,
∂di

∂S
= γu× di, i = 1, 2, 3. [1]
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Fig. 3. (A) Each cross section Ωs of the rod is parametrized by its arc length s
(oriented acropetally) and equipped with a local material basis {d1,d2,d3}. (B)
Gravitropism: the gravity vector (1) is sensed in each cross section and causes lateral
auxin flow (2). (C) Phototropism: the light vector is sensed at the plant apex and
results in the establishment of an apical auxin profile (1) that is transported basipetally
with attenuation (2). (D) The circumnutation is generated by an internal oscillator with
pulsation ω associated with rotating auxin profile at the apex (1). The apical profile is
transported basipetally (2), generating curvature and torsion. (E) Thigmotropic pole
wrapping is triggered by a contact (1) eliciting an asymmetrical auxin profile (2), which
is in turn transported helically (3) to the rest of the plant with signal attenuation (4).

Here γ := ∂s/∂S denotes the total axial growth stretch of106

each section mapping the initial arc length S to the current107

arc length s (41). The general basis specializes to the Frenet-108

Serret frame by taking γ = 1 and d1 to be the curve’s normal109

or to the so-called Bishop frame (or parallel transport frame)110

by taking γ = 1 and u3 = 0 (42, 43). At each value of S, the111

cross section is defined by a region (x1, x2) ∈ ΩS ⊂ R2, where112

x1, x2 are local variables describing the location of material113

points in the respective directions d1, d2. In terms of the local114

geometry, any material point X = X1e1 +X2e2 +X3e3 ∈ R3
115

in the plant can be represented by its arc length S and its116

position (x1, x2) on the cross section at S as follows:117

X = r(S, t) +x1d1(S, t) +x2d2(S, t), for (x1, x2) ∈ ΩS . [2]118

We can now use this representation to formulate the stimuli.119

B. The stimuli. Tropic stimuli are characterized by their origin,120

sign, and direction (44). Signal origin includes: chemicals,121

water, humidity, gravity, temperature, magnetic fields, light, 122

touch. Tropisms can have a sign: positive if the plant grows 123

towards or in the direction of the stimulus or negative if it 124

moves away from the stimulus. The direction of tropism 125

describes the orientation of the response with respect to a 126

directed stimuli: exotropism is the continuation of motion in 127

the previously established direction, orthotropism is the motion 128

in the same line of action as the stimulus, and plagiotropism, 129

is the motion at an angle to a line of stimulus. 130

Physically, stimuli are fields acting in space at a point X ∈ 131

R3 and changing over time t. They can be either scalar fields, 132

f = f(X, t), e.g. chemical, temperature, or light intensity; 133

vector fields, F = F(X, t), e.g. geomagnetic field, gravity, or 134

light direction; and, possibly, tensor fields (e.g. mechanical 135

stress–not considered here). These stimuli are in general 136

functions of both space and time which makes plant tropism 137

a physical theory of fields (which is appropriate since plants 138

grow in physical fields). Since a stimulus is defined at points 139

in space, we must also take into account the orientation and 140

the position of the plant in space. For example, the cellular 141

response to light in phototropism is linked to the relative 142

orientation of the plant in relation to the light source. In the 143

case of a vector stimulus F, we must therefore decompose the 144

stimulus in the local basis: 145

F = F1d1 + F2d2 + F3d3, Fi = F · di, i = 1, 2, 3. [3] 146

The quantities (F1, F2, F3) are the components of the stimulus 147

as felt by the plant. Next, we link an external stimulus to the 148

cellular response. 149

C. Cellular response and auxin transport. At the cellular level, 150

deformations take place through anelastic expansions of the cell 151

walls in response to turgor-induced tension (45, 46). We refer 152

to any geometric change of cellular shape as growth. While 153

detailed models of these cellular processes are available (47– 154

49), they do not easily extend to the continuum level; hence, 155

for simplicity we adopt here a coarse-grained view in which the 156

anelastic expansions are connected locally via a single hormone 157

concentration field that plays the role of a morphogen. This is 158

in line with other models of morphogen-mediated growth (e.g. 159

50). Here, we consider the phytohormone auxin which is known 160

to play a central role in plant growth and remodeling. Indeed, 161

laterally asymmetrical auxin redistribution is broadly accepted 162

as a universal mechanism underlying tropisms (51, 52). A 163

lateral gradient is controlled via the relocalization of auxin 164

transporters in response to tropic signals (53). In shoots, 165

higher levels of auxin are generally associated with faster 166

growth. The resulting asymmetrical growth of cells elicits 167

global curvature at the organism level through pathways that 168

are not completely understood (54). Therefore, in our model 169

auxin flux is a function of tropic signal and growth is taken to 170

depend only on auxin concentration. 171

We assume that auxin is transported by diffusion and ad- 172

vection and locally removed by various mechanisms such as 173

conjugation or direct oxidation (55–57). These effects are mod- 174

eled through a standard reaction-advection-diffusion equation 175

(58) for the auxin concentration A(x1, x2, S, t): 176

∂A

∂t
+∇ · J = −QA+ C, J = −κ∇A+ Jstim [4] 177

where J is the auxin flux, Q is a parameter that characterizes 178

the rate of auxin turnover, and C captures any sources or sinks. 179
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The flux is a sum of a diffusive component Jdiff = −κ∇A, and180

a stimulus component Jstim, though a simple scaling analysis181

with estimated auxin diffusion and velocity (see SI Section182

4A) suggests that the process is advection dominated, and183

so we restrict our attention to the zero diffusion limit κ→ 0.184

Depending on the particular tropism, the information about185

the stimuli is contained either in Jstim, or in a boundary or186

source term. The auxin transport equation Eq. (4) is combined187

with a no-flux condition J · n = 0 at the outer boundary of188

each cross section, where n is an outward normal vector to189

the boundary ∂ΩS .190

D. Tissue-level growth and remodeling. Once the auxin dis-191

tribution is known from the solution of Eq. (4), we can relate192

the growth field at the tissue level to the concentration A.193

Here, we use the general theory of morphoelasticity (17) that194

assigns at each point of the plant a growth tensor dictating195

the deformation due to growth. Physically, this tensor field196

integrates the multiple contributions of local pressure, cell197

material properties and tissue geometry, all regulated via the198

cell metabolic and genetic activity into a single object de-199

scribing the local change of shape of an elementary volume200

element (59). This growth tensor may be different in differ-201

ent directions (anisotropic growth) and/or spatially varying202

(heterogeneous growth) (60) to encode both changes in length203

and girth. However, here we will assume that growth only204

takes place, locally, along the axial direction and not in the205

cross-sectional direction. This assumption implies that there206

is no change in thickness, an effect that could be of impor-207

tance in some systems. Then, the only non-trivial component208

of the growth tensor is a single function g(x1, x2, S, t) that209

describes the change of axial length of an infinitesimal volume210

element (see SI Section 2). An initially straight filament of211

length L0 with g constant at all points would grow to a new212

straight filament of length L = L0(1 + g(t)) (18). If, however,213

g = g(x1, x2, S, t) varies from point to point, the same filament214

would tend to bend and twist as shown in Fig. 2.215

Next, we connect the axial growth function g =216

g(x1, x2, S, t) to the concentration of auxin A = A(x1, x2, S, t)217

via a growth law of the form218

∂g

∂t
= β(A−A∗)− ξ(g − g), [5]219

where A∗ is a baseline level of auxin, β characterizes the rate220

at which an increase in auxin generates growth, and221

g = 1
A

∫
ΩS

g dx1dx2222

is the average of the growth field. The term ξ(g − g) pro-223

vides a point-wise measure of the strain induced by differential224

growth and models autotropism, the observed tendency to225

grow straight when subject to other tropisms. The under-226

lying mechanisms of autotropism are poorly understood but227

studies using radiolabeled auxin suggest that this straighten-228

ing response does not depend on auxin but is sensed via an229

actomyosin-dependent mechanism (61, 62).230

E. Change in local shape and properties. The axial growth
function g is defined at the tissue scale and, as such, does not
directly give the change in curvature and torsion of the plant.
Indeed, the change of shape depends not only on g but also

on the internal mechanical balance of the forces generated by
each growing volume element. Following the general theory
given in (18) and its adaptation to the particular case of plants
given by the growth law Eq. (5), we compute the intrinsic
curvatures and elongation of the growing plant (SI Section 3).
In the absence of autotropism (ξ = 0), these curvatures (given
by the vector û) define the shape of the plant in the absence
of body force and external loads:

I ∂û1

∂t
= β

∫
ΩS

x2Adx1dx2, [6]

I ∂û2

∂t
= −β

∫
ΩS

x1Adx1dx2, [7]

∂û3

∂t
= 0, [8]

A∂γ
∂t

= β

∫
ΩS

(A−A∗) dx1dx2. [9]

Here and for the rest of the paper, we have assumed that the 231

cross section is circular with radius R, area A = πR2/2 and 232

second moment of area I = πR4/4. 233

F. Rod mechanics sets the plant position in the stimulus field. 234

Once the intrinsic curvatures and elongation of the plant 235

following growth have been updated, the plant position and 236

orientation are updated by solving the Kirchhoff equations 237

(41, 63) for the balance of linear and angular momentum for 238

given external forces such as self-weight, wind, or contact 239

forces (see SI Section 1 for details on the Kirchhoff equations). 240

Since at this scale the plant is treated as a one-dimensional 241

structure, its equilibrium shape is easily computed even in 242

complex non-planar geometries. Once the deformation is 243

determined, the multiscale cycle is completed by updating 244

the map between external stimulus and cell-scale response 245

with respect to the updated orientation, and the process is 246

repeated. 247

G. Summary. The flow of information between different spatial 248

scales for a given stimulus field proceeds as follows: 249

(I) given an initial plant shape, a stimulus F impacts auxin 250

transport and thus local concentrations of auxin via the 251

transport equation (4); 252

(II) the local auxin concentration A changes the local growth 253

field that impacts the intrinsic curvatures and axial ex- 254

tension of the plant via Eqs. (6)–(9); 255

(III) the new intrinsic curvatures and external conditions de- 256

termine the new mechanical equilibrium of the plant, thus 257

changing the plant position and shape in the stimulus 258

field. 259

The theoretical objective in this work is to bridge the di- 260

vide between cell-based descriptions of auxin transport and 261

plant-level descriptions of tropism kinematics. In the exam- 262

ples below, we demonstrate how the tissue-level transport and 263

growth equations may be mathematically combined to yield ex- 264

plicit evolution rules for the curvature and axial growth at the 265

rod level. In this way, the multiscale flow can be efficiently sim- 266

ulated and analyzed for a variety of tropic responses. Though 267

it is also worth noting that a significant amount of biology 268

exists between the cell-scale and the tissue-level models we 269
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propose, therefore we largely opt for qualitative investigation270

of complex behavior, with further experimental and theoretical271

work needed to refine parameter selection.272

2. Examples273

A. Gravitropism. Gravitropism has been extensively studied274

both experimentally and theoretically. The classic description275

is based on the so-called the ‘sine rule’ in which the change276

in curvature follows the sine of the angle with the direction277

of gravity (64). While it is successful in capturing observed278

behavior in gravitropic experiments, it is mostly phenomeno-279

logical and is only applicable to planar geometry. Here, we280

show that the sine rule emerges naturally from our formulation281

but that it can be generalized to include three-dimensional282

deformations that are generated when the entire plant is forced283

to change its orientation in time.284

The stimulus for gravitropism is the vector field F = −Ge3
which can be written in the plant frame of reference as F =
f + f3d3 where f := f1d1 + f2d2 is the gravity force acting in
the plane of the cross section. Since it is believed that plants
are insensitive to the strength of gravitational field (65), it is
sufficient to use a unit vector representing only the direction
of gravity, i.e. we scale the gravitational acceleration G to 1.
If f ≡ 0, no tropic response will occur. Gravity perception
relies on specific cells called statocytes distributed along the
shoot (66). Statocytes contain dense organelles, statoliths, that
sediment under the effect of gravity. Tilting of the plant causes
statoliths to avalanche and to form a free surface perpendicular
to the gravity vector, providing orientational information to
the cell (67). It has been observed that the gravitropic response
depends upon the angle between the statoliths free surface and
the vertical, but not upon the intensity of the gravitational
field or the pressure of statoliths against the cell membrane
(65). A possible mechanism is that the contact between the
statoliths and the cell membrane may trigger relocalization of
PIN membrane transporters and a redirection of auxin flux
(67). Here, we follow this hypothesis and, accordingly, assume
that gravity drives an advective flow of auxin Jstim = kAf .
If the statocytes are uniformly distributed within the stem
volume then k is constant. We assume also a source and sink
of auxin on each cross section, representing a continual axial
auxin flow, and that auxin transport occurs on timescales
much shorter than the one associated with growth. Combining
the transport equation (Eq. (4)), growth law (Eq. (5)) (in
the absence of autotropism for simplicity), and the evolution
laws given by Eqs. (6)–(9), we obtain (see SI Section 4B) the
gravitropic curvature and axial extension models:

∂û1

∂t
= Cgravf2,

∂û2

∂t
= −Cgravf1, [10]

∂γ

∂t
= β

(
∆C
QA −A

∗
)
. [11]

Here, Cgrav = βk∆C/(IQ2) is a single constant characterizing285

the rate of change of curvature due to gravity and associated286

with a timescale of gravitropic reaction tgrav = 1/ (LCgrav) ,287

where L is a characteristic axial length, say the length of the288

plant, Q characterizes the constant rate of auxin turnover289

(Eq. (4)), and the parameter ∆C is the net auxin available290

in the cross section (see SI Section 4B). Note that the right-291

hand side of Eq. (11) is proportional to the net ‘excess auxin’,292

the integral of (A−A∗) over the section, while the quantity 293

A∗ does not appear in Eq. (10). The existence of such an 294

auxin threshold is observed both in local biosynthesis and 295

developmental processes (68, 69) and adopted in models (e.g. 296

(70)). In our model curvature may develop without axial 297

extension: for axial extension the net auxin must exceed a 298

threshold, while curvature development conceptually derives 299

from a redistribution and thus asymmetry of auxin. 300

In the particular case where the plant can only bend around 301

the single axis d2 and all external forces can be neglected, we 302

have f2 ≡ 0, û1 ≡ 0 and the curvature u = û2. Defining α to 303

be the inclination angle, Eq. (10) reads 304

∂u
∂t

= −Cgrav sinα, [12] 305

which is the classic and widely-used sine law of gravitropism 306

(24). 307

The general evolution equations (Eqs. (10) and (11)) can 308

be used for more complex gravitropic scenarios. Consider, 309

for instance, an experiment in which the base of the plant 310

stem is at a fixed angle θ from the horizontal and the base 311

is rotated, as shown in Fig. 4(A) and used in experiments to 312

study gravitational setpoint angles (71). Then, in the frame 313

of reference of the plant, the direction of gravity is constantly 314

changing. Here, we consider the case of zero-axial growth 315

and neglect self-weight (see Section C for these additional 316

effects). The tropic response will generate curvature and 317

torsion depending on the angle and the rotational velocity of 318

the base as shown in Fig. 4. 319

For visualization purposes, we fix the base rotation rate 320

to one turn per unit time and vary the tropic reaction rate 321

of the plant, which is equivalent to a fixed reaction rate and 322

varying base rotation rate via a rescaling of time. In Fig. 4, we 323

simulate three full rotations of the base with varying reaction 324

rates (see also SI movies 1-4). The evolving morphology is 325

characterized by three metrics: an alignment metric in (B) 326

that measures how closely aligned with the vertical the plant 327

is (a value of one is attained if the entire plant is vertical), and 328

curvature and torsion in (C) that broadly measure deviation 329

from a straight configuration (details in SI Section 5). 330

Consider first the slowest reaction morphology (equivalent 331

to the case of fastest base rotation), given by the black curves 332

in Fig. 4(B)-(C). Since the plant’s response time is much slower 333

than the base rotation, the gravitropic response is averaged out 334

and the plant hardly deviates from the straight configuration, 335

never improving its alignment and generating effectively no 336

curvature or torsion. The plant is almost perfectly straight at 337

all times (snapshots not included). The red curves denote a 338

case with increased but still small reaction (fast base), which 339

generates only small oscillations in alignment and curvature. 340

In this regime, the plant is effectively ‘confused’; the local 341

gravitational field is changing too quickly for the plant to make 342

any progress towards alignment with the gravitational field. 343

As the reaction rate is increased (or the base rotation 344

decreased), interesting morphologies emerge. In the case of 345

the intermediate reaction rate Cgrav = 10 (green curves), the 346

plant begins to curve towards the vertical during the first 347

quarter rotation of the base, bending about the d2 axis and 348

increasing its alignment. However, as the base continues to 349

rotate, the curvature initially developed has the tip pointing 350

away from the vertical, so the alignment decreases, and the 351

plant now must bend about the orthogonal d1 axis. As the 352
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Fig. 4. Gravitropism with a rotating base. (A) A base is tilted with respect to the
vertical and then rotated about the axis with speed so that one revolution is completed
every time unit. Gravitropic response is simulated for varying values of gravitropic
sensitivity Cgrav = 0.1 (black), 1 (red), 10 (green), and 50 (blue). Alignment with
the vertical (B) and curvature and torsion (C) are plotted against time for three base
rotations. Snapshots for cases of (D) slow reaction, Cgrav = 1, (E) intermediate
reaction, Cgrav = 10, and (F) fast reaction, Cgrav = 50. The sequence is read left to
right, top to bottom, and the base rotation is counterclockwise. Further simulation
details and parameters provided in SI Section 8.

base completes its first rotation and the ‘desired’ axis for353

bending returns to the original d2, an inversion occurs (more354

visible in the movies provided in SI), creating a large spike355

in torsion that remains bounded and continuous. This basic356

process repeats with each rotation.357

Finally, increasing the reaction rate (or slowing the base)358

further creates highly complex morphologies as evidenced by359

the blue curves. Here the plant quickly aligns with gravity360

and attains near perfect alignment in the first tenth of the361

first rotation. As the base rotates away from this aligned362

state, we see an interesting phenomenon: the tip of the plant363

is able to react and maintain alignment with the vertical, but364

since the base of the plant is clamped at an ever-changing365

angle, a loop forms starting at the base and working its way366

to the tip. This is accompanied by strong variations in the367

total alignment and increasingly high curvature, with repeated368

spikes in torsion as extra twist is removed. Our simulations369

of this case beyond three rotations suggest that while the370

basic process of loops generated at the base and working to371

the tip continues, the morphology does not settle down into a372

fixed oscillatory pattern, highlighting the potential for complex373

dynamics generated by this highly nonlinear system.374

B. Phototropism. It was Darwin, at the end of the 19th Cen-375

tury, who demonstrated that exposure of the plant apex to376

a light source was necessary to induce tropic bending (5, 72).377

Later on, Boysen-Jensen proposed that bending is induced378

by a diffusive substance, later identified as auxin, that carries379

the tropic information from the apex to the rest of the shoot380

(73, 74). These early observations are the basis of the popular381

Cholodny-Went model (75, 76) stating that phototropism relies382

upon three broad mechanisms: (i) sensing of light direction at383

the tip of the shoot; (ii) establishment of a lateral asymmetry 384

of auxin concentration at the tip; and (iii) basipetal trans- 385

port of this asymmetrical distribution, resulting in differential 386

growth along the shoot (77–79). 387

We model these three steps by considering axial transport 388

of auxin, with an asymmetrical distribution that is established 389

at the shoot apex by the stimulus, treated as a point source of 390

light. We suppose that auxin flows basipetally with advective 391

velocity U and turnover Q, for which the transport equation 392

is 393
∂A

∂t
− ∂

∂s
(UA) = −QA. [13] 394

Here the derivative in space is taken with respect to the 395

current arc length s ∈ [0, `]. Additional source/sink terms 396

can be used to model axial extension without changing the 397

evolution of the curvature but are omitted in the first instance. 398

We account for the amount and distribution of auxin at each 399

section via a boundary condition at the tip (s = `) and define 400

Atip(x1, x2, t) = A(x1, x2, `, t) that depends on the light source 401

located at p(t) in space, and a scalar I(t) representing its 402

intensity. We then define the unit vector e from the plant tip 403

to the light source and write it in the plant reference frame: 404

e(t) = e1d1(`)+e2d2(`)+e3d3(`), as shown in Fig. 3(C). The 405

vector e1d1 + e2d2 in the cross section distinguishes the light 406

side of the tip from the dark side and defines the asymmetrical 407

distribution of auxin: 408

Atip(x1, x2, t) = −κI(t) (e1(t)x1 + e2(t)x2) , [14] 409

where κ characterizes the sensitivity of the phototropic re- 410

sponse. 411

For constant velocity U , and in the absence of autotropic
effects, Eqs. (13) and (14) can be solved exactly (SI Section
4C), which gives the phototropic curvature model:

∂û1

∂t
= −Cphoto exp

(
−Q(`− s)

U

)
e2

(
t− `− s

U

)
[15]

∂û2

∂t
= Cphoto exp

(
−Q(`− s)

U

)
e1

(
t− `− s

U

)
, [16]

where Cphoto := βκI is a single parameter from which the 412

phototropic response time is defined as tphoto := 1/ (LCphoto). 413

The exponential decay in Eq. (15) is due to the turnover of 414

auxin so that less is available at the base, while the time 415

shift ttran := L/U of Atip accounts for the transport time to 416

the section at arc length s, leading to time-delay differential 417

equations. The change of curvature thus depends on three 418

quantities: (i) the orientation of the tip with respect to the 419

light source t = (`− s)/U ago; (ii) the amount of auxin avail- 420

able for the phototropic signal, which depends on the turnover 421

Q; and (iii) the plant’s response sensitivity, characterized by 422

Cphoto. Bending occurs over a characteristic dimensionless 423

bending length `bend := U/(Q`) within the tip of the plant. 424

B.1. Fixed light source–no growth. We consider first a fixed light 425

source and restrict our attention to the case of zero axial growth 426

so that ` = L for all time and the transport equation is solved 427

in the reference variables. For a given transport time ttran, 428

the response of the plant is determined by the characteristic 429

dimensionless bending length `bend and the response time as 430

shown in Fig. 5. With small bending length, the response 431

is localized close to the tip, and the plant is much slower 432

to orient (comparing (A) and (B)). Increasing the response 433
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ttran/tphoto and dimensionless bending length `bend = U/(QL). Inset: alignment is
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this planar case. Further simulation details and parameters provided in SI Section 8.

rate naturally produces a faster orientation and potentially434

an overshoot. If axial auxin transport is much faster than the435

growth response (ttran � tphoto), then the auxin is effectively436

in steady state at each growth step (as we have assumed for437

the cross-sectional transport). This implies that the delay can438

be neglected and the curvature response at each point depends439

on the current orientation of the tip. In this case, since the440

response is characterized entirely by the orientation of a single441

point, the motion is very simple: the plant bends to orient442

with the light, with no oscillations about the state in which443

the tip is perfectly oriented with the light (e2 = 0).444

Contrast this behavior with gravitropism, in which an os-445

cillation about the vertical state is typical unless a strong446

autotropism response is added. The difference between the447

gravitropic model and the phototropic model for fast transport448

is that during gravitropism, each cross section tries to align it-449

self with gravity, thus creating a conflict at the global level that450

results in an oscillatory motion; while during phototropism451

each cross section tries to align the tip with the light, so there452

is no conflict. However, with delay, such a conflict does exist,453

due to the fact that each cross section is accessing a previous454

state of the tip. Thus, in the regime ttran ∼ tphoto, and if the455

bending length is not too short, a damped oscillation about456

the preferred orientation is observed, as shown in Fig. 5(C).457

B.2. Moving light source. Next, we consider a moving source, and
in particular we simulate a day-night cycle of a plant following
a light source (the sun) as shown in Fig. 6(A). The intensity
I(t) is also taken to be sinusoidal, so that the phototropic signal
is strongest at noon and the signal vanishes at sunset. For fast
response and long bending length, the plant bends significantly
and successfully tracks the moving light source (Fig. 6(B)).
However, at night and without a signal, the motion halts (see
also SI movie 5). The plant remains bent towards sunset the
entire night and does not display the nocturnal reorientation
observed in many plants (80, 81). With a non-vanishing
autotropic term ξ in Eq. (5), we obtain an autophototropism
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m
e
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Fig. 6. (A) Geometry of the phototropic response stimulated by a light source that
follows a circular path of radius R, shifted a distance Y in the transverse ‘horizon’.
(B) A full day-night cycle with fast response and long bending length. (C) the addition
of autotropic terms enables the plant to return to the vertical during night, when the
phototropic signal is absent. Further simulation details and parameters provided in SI
Section 8.

curvature model of the form:

∂û1

∂t
= −Cphoto exp

(
−Q(`− s)

U

)
e2

(
t− `− s

U

)
− ξû1,

[17]

∂û2

∂t
= Cphoto exp

(
−Q(`− s)

U

)
e1

(
t− `− s

U

)
− ξû2. [18]

The additional terms serve to straighten the plant in the 458

absence of any other signal. This is evident in Fig. 6(C), in 459

which we see that the motion during the day is very similar, 460
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parameter set, the tropic response is simulated for the same total time and with
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a dashed line. The moment at the base for the 4 cases is plotted against time in (E).
(F) depicts the setup for a plant escaping from the shade under a rigid obstacle. The
phototropic signal either points horizontally, if the tip is under the shade, or vertically,
if the tip is out of the shaded region. (G) a sample simulation showing a successful
escape. Further simulation details and parameters provided in SI Section 8.

while at night the stem straightens back to the vertical (see461

also SI movie 6). We note that in heliotropic plants such as the462

common sunflower, Helianthus annuus, there are additional463

mechanisms, not considered here, based on circadian rhythms464

to reorient the plant at night to face eastward in anticipation465

of the next sunrise (82).466

C. Photogravitropic response. Next, we demonstrate the deli-467

cate balance that must exist in the presence of tropic responses468

to multiple stimuli. We simulate two different scenarios of a469

plant responding to simultaneous but conflicting gravitropic470

and phototropic signals. Following (12), we assume that the471

effects of multiple stimuli are additive (see SI Section 4F).472

This assumption is based on the existence of separate path-473

ways for signal transduction leading to the redistribution of474

auxin. However, it is known that these pathways share com-475

mon molecular processes and there are non-trivial interactions476

between different tropisms (83) that will not be included here.477

C.1. Fixed horizontal light source. We consider a growing plant478

subject to self-weight and initially oriented vertically, but479

with a fixed light source located in the transverse horizontal480

direction. The evolution of the plant can then be characterized481

by the ratio of response rates to gravitropic versus phototropic482

signals, and the ratio of density to bending stiffness, which483

controls the degree of deformation under self-weight.484

In Fig. 7(A)-(D) we show the evolving morphology of the485

plant in this two-dimensional parameter space, plotting both486

the deformed shape (solid lines) and the reference unstressed487

shape (dashed lines). In (A), (B), the effect of self-weight488

is relatively minimal, and the evolution is primarily driven 489

by the conflicting phototropic signal acting horizontally to 490

the right, and the vertical gravitropic signal. With increased 491

mass, there is an increased mechanical deformation due to 492

self-weight, so that significant disparity develops between the 493

deformed and reference shapes. In this regime the balance 494

of signals has greater importance for the fate of the plant. 495

Comparing (B) and (D), the initial phases are similar, but as 496

the plant lengthens and extends to the right in (D), self-weight 497

deforms the plant significantly, with half of the plant below the 498

base level by the end of the simulation. Such a deformation 499

could signal failure by creating large torque at the base. In (E) 500

we plot the moment at the base, where the stress is highest, 501

against time for each case, and as expected the moment is 502

significantly higher for larger mass. 503

Intuitively, we expect that this problem could be alleviated 504

by increasing the gravitropic response rate. Comparing (C) 505

and (D), the evolution with higher gravitropic response in (C) 506

does show decreased sagging. However, the moment at the base 507

is in fact higher in (C). Increasing the gravitropic response rate 508

even further does ultimately alleviate the problem – consider 509

that the plant remains mostly vertical if gravitropism domi- 510

nates phototropism – nevertheless, this example highlights the 511

delicate and potentially counterintuitive nature of this balance. 512

513

C.2. Escaping from the shade. The results above suggest a view 514

of a plant as a problem-solving agent that actively responds 515

to the signals in its environment. A typical problem that 516

many plants have to solve is access to light (84). For instance, 517

consider a plant growing underneath a canopy (85) as shown in 518

Fig. 7(F) and (G). While the tip is in the shaded region, diffuse 519

lighting creates a phototropic stimulus to grow horizontally, 520

orthogonal to the gravitational signal. If the tip emerges from 521

under the shade, phototropism and gravitropism align, and 522

the plant will attempt to grow vertically. In this mixed signal 523

scenario, the success or failure of the plant in emerging from 524

under the canopy is down to how the competing signals are 525

integrated, and the relative importance of self-weight. An 526

example of a successful escape is shown in Fig. 7(G). Note 527

that determining the mechanical forces acting in the plant is 528

crucial in this example: once the tip is outside of the shade, 529

both signals try to align the entire length of the plant with the 530

vertical, and this leads to physical contact between the plant 531

and the corner of the canopy. Determining the morphology 532

beyond this point thus requires determining the mechanical 533

contact force (see SI Section 6) that would not be possible in 534

a purely kinematic description. 535

D. Pole dancing. A fascinating plant motion is the mesmeriz- 536

ing dance that climbing plants, such as twiners, perform to 537

first find a pole and then wrap around it. Like any dance, 538

this event requires a complex integration of stimuli to achieve 539

a well-orchestrated sequence of steps: (i) finding a pole, (ii) 540

contacting the pole, and (iii) proceeding to wrap around the 541

pole. A common mechanism for searching for a climbing frame 542

is circumnutation, a combination of circular movement and 543

axial growth causing the tip to move up in a sweeping spiral 544

path, as first described by Darwin (5, 26, 86). When the 545

plant makes contact with a pole, it must then interpret its 546

orientation with respect to the pole in order to wrap around it. 547

Here the stimulus is mechanical: the physical contact of the 548
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plant with the pole results in a change of curvature, a response549

referred to as thigmotropism. Since initially the plant only550

samples a very small region of the pole, the stimulus field is551

highly localized. As the plant wraps around the pole, new552

contact points are established to propagate the helical shape553

upward.554

D.1. Circumnutation. Experiments suggest that, depending on
the plant, circumnutation is either driven by an internal os-
cillator, a time-delay response to gravity, or a combination of
the two (87, 88). Here, following the hypothesis of an internal
oscillator, we show that the basic nutating motion emerges
naturally from an internal oscillator at a single point com-
bined with axial auxin transport (89). We consider an auxin
source at the point s = sc from which an auxin differential
is transported axially. The auxin transport equation may be
solved in a similar manner as in the phototropism case with
an added rotational component in the local frame of the cross
section due to an internal oscillator (Fig 3(D)). Taking for
simplicity a constant rotation rate ω, we obtain (details in SI
Section 4D) the circumnutation curvature model:

∂û1

∂t
= Ccirc sin

(
ω

(
t− |s− sc|

U

))
e−

Q
U
|s−sc|, [19]

∂û2

∂t
= −Ccirc cos

(
ω

(
t− |s− sc|

U

))
e−

Q
U
|s−sc|. [20]

Since the signal here is internal, there is no feedback from the555

environment and the morphology of the plant is predetermined556

by the turnover Q, the transport velocity U , the response rate557

Ccirc, and the rotation rate ω. In Fig. 8(A) we illustrate558

a sample motion with auxin source at the tip. Fig. 8(B)559

demonstrates the impact of auxin turnover: high turnover560

means the motion is constrained to a region very close to the561

tip and thus the elliptical shape of the tip pattern is small.562

More complex tip patterns may also be generated if there is563

non-uniformity in the internal oscillator (Fig. 8(C)).564

D.2. Thigmotropism. Two interesting observations can be made565

when a twining plant makes first contact with a pole: (i)566

torsion is generated via a localized contact around a single567

point, and (ii) a rotation is induced, i.e. the orientation of the568

tangent of the plant with respect to the axis of the pole changes.569

These observations suggest that this contact is sufficient to570

generate locally a helical shape, and that the pitch of the helix571

is fixed by internal parameters as opposed to the angle at572

which contact is made (90, 91).573

To show how pole wrapping can be obtained within our
framework consistently with these observations, we consider
a plant with a single contact point located at s = 0, and
at position on the boundary Ω0 with angle ψ0 in the plane
d1-d2. The contact induces an auxin gradient at this point,
with maximal auxin on the opposite side of the contact point,
i.e. A(0, x1, x2) = −F (cosψ0 x1 + sinψ0 x2), and the auxin is
transported by an advective flux with both an axial component
U and a constant rotational component with angular velocity
ω (Fig 3(E)). The transport equation can be solved exactly
(SI Section 4E), and we obtain the following thigmotropism

Increasing 

(A) (B) (C)

(D) (E) (F)

Increasing 

Fig. 8. Circumnutation (A)-(C) and thigmotropism (D)-(F). (A) snapshots of a sample
circumnutation motion, with tip pattern projected onto the plane. In (B) and (C), tip
patterns are plotted for varying parameters (the location of the plant base is indicated
by the cross). In (B), an increase in turnoverQ decreases the size of the tip pattern. In
(C), a non-constant angular velocity of the oscillator is given by ω = ω̂ + α cos(5t),
generating a tip pattern with 5-fold symmetry, and increasingly non-circular with
increasing α. In (D)-(F), the wrapping around a pole due to thigmotropism via a single
contact point is simulated for the same total time, for different parameter regimes:
with low rotational component (D), the torsion is low, a high rotational component with
low turnover (E) generates rapid wrapping and high torsion, while wrapping is much
slower with high turnover (F). Further simulation details and parameters provided in
SI Section 8.

curvature model:

∂û1

∂t
= −Cthig exp

(
−Qs
U

)
sin
(
ψ0 + ωs

U

)
, [21]

∂û2

∂t
= Cthig exp

(
−Qs
U

)
cos
(
ψ0 + ωs

U

)
. [22]

Solving these equations leads to exact expressions for the intrin- 574

sic curvatures from which we extract the geometric curvature 575

κ = Cthig exp (−Qs/U) t and torsion τ = ω/U (see SI Section 576

8F). The curvature increases linearly in time until it reaches 577

a maximal value determined by the pole radius (the intrinsic 578

curvature may keep increasing, but the actual curvature may 579

not due to the mechanical contact). For a pole of radius c and 580

plant radius a the helix radius α = c + a is fixed, while the 581

helical angle φ depends on the rotation rate and is found to 582

satisfy sin(2φ) = ωα/U . 583

For given axial velocity U , the resulting helical shape is de- 584

termined solely by the geometry of the pole and the rotational 585

component ω, while the wrapping rate depends on the turnover 586

Q and the response rate Cthig. In Fig. 8(D)-(F) we illustrate 587

three different regimes: low rotational component with low 588

turnover (D), high rotational component with low turnover 589

(E), and high rotational component with high turnover (F) (see 590

also SI movies 7-9). Note that at time κ̂/Cthig where κ̂ is the 591

final curvature, the contact point spreads to a contact region, 592

creating a wave of contact and auxin signal that propagates 593

along the length of the plant. Here, we restrict our attention 594

to the signal from the first contact point. The separate curva- 595

ture models for circumnutation and pole wrapping can now 596

be combined to simulate the process of searching for a pole, 597

making contact, and wrapping (see SI movie 10). 598
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3. Model validation599

The tropic scenarios we have considered thus far were not600

focused on specific plants or experiments, but rather with the601

aim of demonstrating a diverse range of complex behavior.602

To validate the framework as a general construct, in Fig. 9603

we compare model output with data in three distinct experi-604

mental scenarios that together include all of the tropisms we605

have modeled: (A) includes data on thigmotropic curvature606

generation (92) and gravitropic bending, (B) shows a diversity607

of tip patterns measured during circumnutation (93), and (C)608

plots the evolving shape of saplings bending to align with609

gravity and exposed to isotropic (left) or anisotropic (right)610

light (94) (see SI Section 9 for details of these experiments611

and model comparison). In each case, the model is able to612

reproduce, qualitatively and quantitatively, the experimental613

observations, demonstrating a robustness of the framework614

across a range of plant types and combined tropic responses.615

616

A second type of validation is obtained by considering617

the simplification of our models to existing purely kinematic618

models. A number of geometric models exist in the literature,619

positing the evolution of the plant’s curvature as a function of620

time, and have been systematically validated against data and621

observations. The sine law (Eq. (12)) is an example of such a622

kinematic model. Similarly, planar kinematic phototropic (12)623

and circumnutation models (95) have been proposed and we624

show explicitly in SI Section 7 that they can be reproduced625

from the models we have derived under particular geometric626

restrictions and/or parameter limits. Our framework both627

generalizes these descriptions and enables potential insight to628

how changes at the level of auxin transport and tissue growth629

might be seen in organ-level kinematics.630

4. Conclusion631

Plant motion in response to environmental stimuli is a process632

of extreme biological and ecological relevance. While the633

pioneering biologists of the 19th Century investigated the634

global motion of plants via clever experiments devised to create635

conflicting signals and generate complex plant morphologies,636

most of the work of the 20th Century was focused on the637

molecular and cellular processes, seeking signaling pathways638

and relevant proteins involved in tropic response. We have639

combined this accumulated knowledge with recent progress in640

the physical and computational modeling of living structures641

to develop a general framework for tropism that relates stimuli642

to shape. To do so, we modeled auxin transport and the643

mechanisms by which environmental stimuli are integrated into644

cellular activities, tissue-level growth, leading ultimately to a645

change in shape at the plant scale viewed as a morphoelastic646

structure.647

We have demonstrated the power of this framework through648

a series of examples including key effects such as axial growth,649

autotropism, gravitropism, phototropism, thigmotropism,650

self-weight, circumnutation, contact mechanics, and three-651

dimensional deformations. The specific tropic scenarios we652

have considered were chosen to illustrate the range of complex653

behaviors capable of being simulated. The study of individual654

stimuli provided new models for the evolution of curvatures655

for different form of tropisms. These models can be con-656

fronted, and refined, iteratively, against data and experiments657

as needed. Further, we demonstrated the potential for multiple658
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Fig. 9. A comparison of model output with experimental observations for a variety of
tropic responses. (A) Mechanical perturbation is applied to cucumber hypocotyls situ-
ated vertically, causing them to bend (blue data and curves), after which they recover
the vertical; a horizontally-situated plant bends toward the vertical under gravitropism
(red data and curves). (B) Multiple tip patterns are observed in sunflowers; these
circumnutation patterns are reproduced by the model with (solid curves) and without
(dashed curves) gravitropic effects. (C) Tree saplings are inclined at an angle and
subjected to either isotropic (left) or anisotropic (right) light. The shape of the plants
is extracted at 5 times and discretized along the length (symbols). Continuous 2D
shapes (solid curves) obtained by our model combining gravitropic, phototropic, and
autotropic effects are included at the same time points.
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and potentially conflicting stimuli to create problems for the659

plant to solve. The resulting plant behaviors indicate a need660

for a delicate balance between competing tropisms to achieve661

a particular task. In each particular scenario, we have opted662

for parsimony over complexity in terms of modeling choices,663

in order to highlight qualitative features and how auxin-level664

differences may become apparent in plant-level morphology.665

The work presented here integrated information at the tis-666

sue and organ levels. This approach needs to be expanded667

to include cell-based and molecular-level descriptions to fully668

link the scales for tropisms and plant growth. At the cell to669

tissue scale, the link between auxin and growth in Eq. (5) is670

a lumped description of a complex process that involves cell671

wall tension and turgor pressure (96). In principle, additional672

modeling layers could also be added between the stimulus and673

auxin response, including for example transcription factors674

and protein production and interactions. Both of these ex-675

tensions likely require explicit cell-based modeling. However,676

our framework is such that if the output from a cell model is677

the value of the piecewise continuous axial growth function g,678

then the evolution of the curvatures given by Eqs. (6)–(8) still679

applies and can be used to infer the global changes of geometry.680

Another important extension is to include branching processes681

since most of these filamentary structures include multiple682

branches. Branches can easily be included within a rod theory,683

at the additional cost of including extra parameters, such as684

length and orientation of each segments, and new growth laws685

for the placement of each segment (28, 32).686

This work provides a theoretical platform for understand-687

ing plant tropisms and generating complex morphologies. As688

well as linking to cellular and subcellular scales, a key future689

direction is connecting with experiments dedicated to control-690

ling multiple stimuli and generating complex morphologies.691

For instance, we showed that a relatively simple experimental692

set-up like a rotating base under gravity can generate a wide693

range of plant shapes. Such steps espouse an approach that is694

both multiscale and multidisciplinary. Indeed, plants refuse to695

obey by the rules of a single scientific discipline. They are not696

simply genetic or cellular entities, nor are they purely physical697

objects or ecological atoms. They reach for the sun, they698

bend under gravity, they feel their neighbors, they grow, twist,699

curve, and dance in the fresh air and in the dark caves. If we700

have any hope to understand them, we will need to respect701

their plurality, break down our own disciplinary barriers, and702

fully integrate our scientific knowledge from subcellular to703

ecological levels.704
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