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1. From 3D growth field to 1D elasticity1

In obtaining the curvature evolution laws, we follow the framework of (1) to map from a growth tensor on a 3D tubular2

structure to the intrinsic curvature and axial growth of the same object when viewed as a 1D elastic rod. In this framework,3

note that we define the centerline along the centroid of each cross section so that4 ∫
ΩS

x1 dx1dx2 =
∫

ΩS

x2 dx1dx2 =
∫

ΩS

x1x2 dx1dx2 = 0. [1]5

We consider a growth tensor of the form

G = Gijei ⊗ ej , i, j = 1, 2, 3,

where in general each Gij may be functions of position, and (e1, e2, e3) are Cartesian basis vectors that are chosen to coincide6

with the frame (d1,d2,d3) in the initial pre-deformed state of the plant.7

Conceptually, the components of G define the expansion (or contraction) of material both as a local property and as8

directional quantities. For example, if G11 > 1 then cells will expand in the d1 direction. The determinant of G describes the9

net gain or loss of mass at each point; here it is worthwhile to note that growth without a change of mass is possible, and it is10

also possible to have a growth field for which points gain or lose mass while the total mass for a cross section stays fixed.11

The quantity that is of most relevance for capturing a tropic growth response is the term G33; this term describes axial12

elongation; it is heterogeneity of this term across a section that generates curvature in the plant. While other terms may play a13

role, for instance in changing the cross-sectional geometry, we posit that this will typically be a secondary effect, and thus to14

make progress we consider the growth tensor to take the form∗
15

G = diag(1, 1, 1 + g). [2]16

For the growth tensor defined above, the key result of (1) is that the intrinsic curvatures are given explicitly by17

I1û1(S, t) =
∫

ΩS

x2g(x1, x2, S, t) dx1dx2, I2û2(S, t) = −
∫

ΩS

x1g(x1, x2, S, t) dx1dx2, û3 = 0, [3]18

where
I1 :=

∫
ΩS

x2
2 dx1dx2, I2 :=

∫
ΩS

x2
1 dx1dx2

are the second moments of area. A straightforward extension of the derivation given in (1) shows that the axial elongation γ is19

given by20

Aγ =
∫

ΩS

g(x1, x2, S, t) dx1dx2, [4]21

where A is the cross-sectional area. Note in particular that if g is constant, then from Eq. (1) it follows that no curvature is22

generated, and the axial extension is equal to g; this reflects the simple and intuitive notion that uniform axial growth does not23

create bending.24

2. Obtaining curvature and growth evolution laws25

As described in the main text, the axial growth g is connected to auxin concentration A(x1, x2, s, t) by a growth law, assumed26

to have the form27
∂g

∂t
= β(A−A∗). [5]28

∗ In many cases the framework is still compatible with non-zero growth in terms other thanG33 , though the solution method will be greatly complicated if these induce residual stress, see (1).
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Since the shape of the cross sections is assumed to remain constant in time, we can take a time derivative across equations29

Eqs. (3) and (4) and utilize Eq. (5) to obtain evolution laws for the curvatures:30

I1
∂û1

∂t
= β

∫
ΩS

x2Adx1dx2, I2
∂û2

∂t
= −β

∫
ΩS

x1Adx1dx2,
∂û3

∂t
= 0. [6]31

And similarly, the evolution law for the axial extension is32

A∂γ
∂t

= β

∫
ΩS

(A−A∗) dx1dx2. [7]33

The approach outlined in (1) allows for more generic growth tensor G, in which case the bending stiffnesses about the d134

and d2 axes, as well as the torsional stiffness, can also change due to the growth. However, for the growth form Eq. (2), the35

stiffnesses are not impacted by g. Hence, for this modeling choice, when passing from tissue to organ scale, the tropic response36

is entirely encoded by the change in the intrinsic curvature of the plant as well as any axial extension.37

An extension of this model to include autotropism, which consists in adding a decay term38

∂g

∂t
= β(A−A∗)− ξg. [8]39

This extra term −ξg models the tendency to grow straight in the absence of other signals and the total growth stretch is then40

a function of a time-integrated auxin signal41

g(x1, x2, S, t) = β

∫ t

−∞
(A(x1, x2, S, t̃)−A∗)e−ξ(t−t̃) dt̃. [9]42

3. Rod geometry and Kirchhoff equations43

The output of the tissue-level modeling is a set of evolution laws for the intrinsic curvatures ûi and the axial growth stretch γ.44

The actual morphology of the plant is then determined by solving the Kirchhoff equations for an elastic rod with non-zero45

evolving intrinsic curvature and axial growth. Here we briefly recall the basic elements of rod theory. A rod is a space curve46

r(S) ∈ R3, known as the centerline, equipped with two additional unit orthonormal vector fields (d1(S),d2(S)) representing47

the orientation of a cross section at S. The general frame is obtained by defining d3(S) = d1(S)× d2(S) and we note that48

{d1,d2,d3} forms a right-handed orthonormal basis. The components of a vector a = a1d1 + a2d2 + a3d3 in the local basis49

are denoted by a = (a1, a2, a3). We note that |a| = |a|.50

We choose the material parameter s to be the current arc length, i.e. in the grown configuration, and S to be the material51

arc length in an initial pre-grown configuration. These are related by the growth stretch52

γ := ∂s

∂S
. [10]53

For an unshearable rod, we may choose d3 to align with the tangent direction, so that54

∂r
∂s

= d3, [11]55

or equivalently56

∂r
∂S

= γd3. [12]57

A complete kinematic description of the frame is given by:58

∂di
∂s

= u× di, i = 1, 2, 3, [13]59

where u is the Darboux vector. The first two components (u1, u2) of the Darboux vector are associated with the Frenet curvature60

while u3 represents twisting, that is the rotation of the basis (not the curve) around the d3 vector. It contains both information61

on the Frenet torsion τ of the centerline and on the rotation of the cross section for increasing values of s.62

In particular, if the rod is assumed to be inextensible, the Darboux vector is related to the usual notion of Frenet curvature63

and torsion κ and τ by64

cotϕ = u2

u1
, [14]65

κ =
√

u2
1 + u2

2, [15]66

τ = u3 + u′2u1 − u′1u2

u2
1 + u2

2
. [16]67
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where prime denotes differentiation with respect to current arc length s. Also, ϕ is the angle between the normal and the68

vector d1. The quantity ∂ϕ/∂s, the excess twist, represents the rotation of the local basis with respect to the Frenet frame as69

the arc length increases.70

The stress on the cross section at r(s) from adjacent segments with larger material coordinates (s′ > s) gives rise to a71

resultant force n(s) and resultant couple m(s). These satisfy the balance of linear and angular momentum, which in mechanical72

equilibrium read73

∂n
∂s

+ f = 0, [17]74

75
∂m
∂s

+ ∂r
∂s
× n = 0. [18]76

Here f is a linear force density accounting for any external forces acting on the rod.77

The system is closed by boundary conditions and constitutive laws. We restrict to an inextensible rod in this paper, and78

thus only a constitutive equation relating moment m to curvature is needed. For a quadratic elastic energy, this takes the79

general form m = K(u− û), where K is a stiffness matrix. Considering the simplest and most widely used case of a diagonal80

K, we have81

m = K1(u1 − û1)d1 +K2(u2 − û2)d2 +K3(u3 − û3)d3. [19]82

In this case, the Kirchhoff theory tells us that the stiffnesses are83

K1 = EI1, K2 = EI2, K3 = µJ [20]84

where E is the Young’s modulus, µ the second Lamé parameter and J , I1,2 depend on the cross-sectional shape (see main text).85

In terms of boundary conditions, we primarily consider a plant that is held clamped at one end and free at the other.86

Denoting the clamped end s = 0, and the free end s = `, these amount to fixing the position and frame at s = 0:87

r(0, t) = r0, di(0, t) = di,0, i = 1, 2, 3, [21]88

and imposing zero force and moment at s = `:89

m(`, t) = n(`, t) = 0. [22]90

As the elastic timescale is much shorter than the growth timescale, mechanical equilibrium is assumed at all times, and the91

intrinsic curvatures and growth stretch γ are updated in a quasistatic fashion via a simple forward Euler time-stepping of the92

appropriate evolution law.93

4. Specific curvature evolution laws94

In this section we outline the steps to obtain the curvature evolution laws given in the main text from the assumptions on95

auxin transport and via the general evolution equations Eqs. (6) and (7). Each tropism is considered in turn.96

A. Gravitropism. In the case of gravitropism, we consider a gravity driven auxin flux Jstim = kAf , where f := f1d1 + f2d297

describes the cross-sectional component of the direction of gravity expressed in the local frame. The parameter k describes the98

gravitropic auxin flow rate. This is in contrast to the diffusive flux Jdiff = −D∇A, where D is a diffusion coefficient. Due to the99

nature of our tissue-level description of auxin transport, the parameters k and D are difficult to quantify. At the cellular-level,100

models of auxin transport (2) are highly dependent on cell geometry, and auxin flux may differ significantly in the cytoplasm101

compared to the apoplast, due to varying diffusivity. In cell-based models of gravitropism, e.g. (3), gravitational stimulus is102

modeled by modifying PIN efflux carrier locations on particular cells, based on the stem orientation with respect to gravity. In103

this view the flux Jstim serves as a tissue-level proxy for a complex interaction of proteins and auxin transport both through104

and across cells; this view does not lend a natural link to the parameter k. Moreover, this parameter could also be related105

to the timescale of settling of statoliths, e.g. (4). The theoretical challenge is to bridge the vast divide that exists between106

cell-based descriptions of auxin transport and plant-level descriptions of tropism kinematics. The tissue-level model of auxin107

transport and growth mechanics we propose is a step towards bridging this divide, though, to our knowledge, tissue-level auxin108

transport models do not currently exist in the literature. With no available information on tissue-level parameter choices, we109

opt for modeling simplicity and qualitative analysis: to focus on the stimulus impact, we consider advection-dominated flow,110

i.e. the zero diffusion limit D = 0†. Also, as auxin transport timescales are generally shorter than the timescale associated111

with growth (5), and in this case transport is only occurring on the short cross-sectional lengthscale, we also take the auxin112

concentration to be at steady state. Under these assumptions, the auxin concentration satisfies113

∇ · (kAf) = −QA+ Cinδ(r − r0)− Coutδ(x1)δ(x2). [23]114

Here the divergence is only taken in the cross-sectional variables (x1, x2), and Q is the uptake. The second and third terms on115

the right hand side account for a source Cin and sink Cout of auxin in each cross section, providing a simple model of auxin116

transport routes. In particular, we consider here a source at radius r = r0, which may for instance be taken to be near the117

cross-sectional radius in the case of epidermal auxin flow, and a sink at the center. These terms are needed simply to provide118

† In the case ofD 6= 0, the model formulation remains valid, but the techniques applied below to obtain explicit curvature evolution laws would not be. Rather, incorporating diffusion would require solving
for the auxin concentration at each growth time step, which would likely require computational techniques.
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a source of auxin to be transported under gravity and stimulate growth; the specifics of these choices do not impact on the119

resulting equations.120

Combining Eqs. (5), (6) and (23), and using Eq. (1), we obtain the following equation for the intrinsic curvature û1:121

I1
∂û1

∂t
= β

∫
ΩS

x2(A−A∗) dx1dx2 = − β
Q

∫
ΩS

x2(∇ · kAf) dx1dx2. [24]122

Note the source and sink terms both vanish on a circular cross section, as does the A∗ term, assuming A∗ is constant. This123

form for ∂û1/∂t is not very useful, as it would still require solving for the auxin concentration at each time step. However, we124

may determine the evolution laws without explicitly solving for A, by noting the following identity125

x2∇ · (kAf) = ∇ · (x2kAf)−∇x2 · kAf = ∇ · (x2kAf)− kAf2, [25]126

since ∇x2 = d2. Therefore, when integrating over the cross section, we have127 ∫
ΩS

x2(∇ · kAf) dx1dx2 =
∫

ΩS

∇ · (x2kAf) dx1dx2 − kf2

∫
ΩS

Adx1dx2 = −kf2

∫
ΩS

Adx1dx2, [26]128

where we have used the divergence theorem and the no-flux boundary condition J · n = kAf · n = 0 on ∂ΩS to write129 ∫
ΩS

∇ · (x2kAf) dx1dx2 =
∫
∂ΩS

x2kAf · n ds = 0. [27]130

The problem is now reduced to evaluating an integral of only A over the cross section. We may again insert A via Eq. (23);131

the divergence term again vanishes by the no-flux boundary condition, while the delta function terms integrate to a constant132

∆C = Cin − Cout, i.e. the net auxin available in the cross section, so that133 ∫
ΩS

x2(∇ · kAf) dx1dx2 = − k
Q

∆Cf2, [28]134

Combining the above, we obtain the relation provided in the main text:135

∂û1

∂t
= C1f2, [29]136

where C1 = βk∆C/(I1Q
2). Similar steps lead to the evolution equations for û2 and γ as appearing in the main text.137

B. Phototropism. In the case of phototropism, as explained in the main text we consider the following axial auxin transport138

equation139

∂A

∂t
− ∂

∂s
(UA) = −QA, [30]140

and with an auxin source at the tip s = ` given by141

Atip(x1, x2, t) = −κI(t) (e1(t)x1 + e2(t)x2) [31]142

where e is a unit vector pointing from the tip to the light source, I characterizes the intensity of the light, and κ characterizes143

the strength of the response to generate auxin. An exact solution to Eqs. (30) and (31) is given by144

A(x1, x2, s, t) = Atip

(
x1, x2, t−

`− s
U

)
exp
(
−Q(`− s)

U

)
. [32]145

Following Eq. (6), we multiply by x2 and integrate over a cross section. Since Eq. (31) gives A as a linear function of x1, x2,146

then using Eq. (1), we obtain the curvature evolution given in the main text:147

∂û1

∂t
= −Cphoto exp

(
−Q(`− s)

U

)
e2

(
t− `− s

U

)
, [33]148

where Cphoto = βκI/, and similarly for ∂û2/∂t.149

In the case of phototropism with an additional autotropic term, we use the generalized growth law Eq. (9). The steps above150

are nearly identical, and we readily obtain the updated evolution forms151

∂û1

∂t
= −Cphoto exp

(
−Q(`− s)

U

)
e2

(
t− `− s

U

)
− ξû1, [34]152

153

∂û2

∂t
= Cphoto exp

(
−Q(`− s)

U

)
e1

(
t− `− s

U

)
− ξû2. [35]154
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In the formulation outlined above, there is no axial growth component, i.e. ∂γ/∂t = 0, since the integral of A over each155

cross-section is zero due to the form of Atip. We may naturally incorporate axial growth by adding source and sink terms, as156

appeared in the gravitropism case. That is, consider the transport equation157

∂A

∂t
− ∂

∂s
(UA) = −QA+ Cinδ(r − r0)− Coutδ(x1)δ(x2). [36]158

Denoting the combined source and sink terms by ∆C, then if this term is independent of s the solution is159

A(x1, x2, s, t) =
[
Atip

(
x1, x2, t−

`− s
U

)
− ∆C

Q

]
exp
(
−Q(`− s)

U

)
+ ∆C

Q
. [37]160

In this case, the curvature evolution laws are unchanged, while the axial growth satisfies161

∂γ

∂t
= β

[
exp
(
−Q(`− s)

U

)(
∆C
Q
− 1
)
−A∗

]
. [38]162

This formulation naturally produces growth focused at the tip, with growing region depending on the uptake. In cases of high163

uptake, it may be necessary to modify the growth law to avoid ‘negative growth’ (∂γ/∂t < 0).164

C. Circumnutation. In the case of circumnutation, we again assume axial flow of auxin from a source point (which may naturally165

be the tip, but needn’t be). The only difference is that the auxin gradient originating at the source has a rotational component166

in the cross section. In the general case, if the gradient is along the line cos θx1 + sin θx2, then the oscillator is described by the167

function θ = θ(t). The derivation of curvature evolution is the same as in the phototropism case, simply with e1(t) replaced by168

cos(θ(t)) and e2(t) replaced by sin(θ(t)).169

D. Thigmotropism. For thigmotropism, we assume that physical contact occurs at a point sc, and with angle in the local basis
ψc; that is, the point in physical space

r(sc, t) +R(cosψcd1(sc, t) + sinψcd2(sc, t)),

where R is the cross-sectional radius. Geometrically, generating the helical shape of a twining plant requires establishing a170

growth gradient which rotates along the axis of the plant with increasing arc length (6). In terms of auxin transport, it has171

been observed that point contact creates a sharp rise in auxin concentration at the stimulus point that is transported along the172

stem (7). This suggests that we impose as a boundary condition at the contact point an auxin gradient, with minimum auxin173

at the contact point, i.e.174

A(x1, x2, sc, t) = −κ(cosψcx1 + sinψcx2), [39]175

where κ characterizes the strength of the tropic response (which may, for instance, be connected to the magnitude of the176

contact force).177

We then assume that auxin flux consists of a rotational cross-sectional component with angular velocity ω, and an axial178

component with velocity U , thus generating a helical auxin gradient along the stem. The angular component may be seen as a179

proxy for (largely unknown) underlying mechanisms that generate the rotational component of growth gradient needed for180

helical twining. For instance, in nutating roots, a circumferential wave of ion flux is engaged; ion fluxes may interact with181

auxin (8), and also appear sensitive to touch (9), thus providing a possible mechanism.182

Following these assumptions, the auxin transport equation is thus183

∂A

∂t
+ sign(s− sc)

∂

∂s
(UA) +∇ · (Arωeθ) = −QA. [40]184

Here the sign function accounts for the flow away from the contact point in either direction, the divergence ∇ · () is only with185

respect to the cross-sectional variables, r is the radial position vector within a cross section, and eθ is the circumferential unit186

vector in the cross section. Since the curvature response is largely localized to the region near the contact point, we neglect any187

time delay that would occur due to axial transport, and thus consider the steady state auxin concentration. Setting ∂A/∂t = 0,188

the exact solution is given by189

A = −κ exp
(
−Q|s− sc|

U

)(
cos
(
ψc + ω

U
sign(s− sc)

)
x1 + sin

(
ψc + ω

U
sign(s− sc)

)
x2

)
. [41]190

From here, the evolution equations for ûi follow naturally from Eq. (6), by multiplying by xi and integrating over a cross191

section, again with the use of Eq. (1).192
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E. Multiple signals. We model multiple simultaneous signals as an additive effect to the growth response. In particular, consider193

two stimuli A and B. Letting the auxin concentration under stimulus A be denoted AA, and similarly AB for stimulus B, the194

axial growth law is adapted to195

∂g

∂t
= β(AA +AB −A∗). [42]196

An alternative approach would be to formulate a single transport equation with combined flux and/or boundary conditions for197

each stimulus; however, this would generally necessitate fully computational techniques. The assumption of separated auxin198

flows for each stimulus, as utilized here, reflects the differing signal transduction pathways that exist for different stimuli, and199

leads to an additive growth response, as has been observed to hold reasonably well in the case of photogravitropism (10). In200

this way, if tropisms A and B lead to the individual curvature laws201

∂ûi
∂t

= f
(i)
A ,

∂ûi
∂t

= f
(i)
B , i = 1, 2 [43]202

respectively, then the curvature evolution under the combined influence of signals A and B is simply203

∂ûi
∂t

= f
(i)
A + f

(i)
B . [44]204

5. Gravitropism metrics205

The metrics used in quantifying the gravitropic response with a rotating base are defined as follows:206

1. Alignment = 1
L

∫ L
0 (d3(S) · ez)2 dS, with ez = (0, 0, 1)207

2. Curvature = 1
L

∫ L
0

√
u2

1(S) + u2
2(S) dS208

3. Torsion = 1
L

∫ L
0

(
u′

2(S)u1(S)−u′
1(S)u2(S)

u2
1(S)+u2

2(S)

)2
dS209

The formulas for curvature and torsion follow from Section 3.210

6. Escape from the shade - mechanical contact211

In simulating the escape from the shade in photogravitropism (main text Fig. 7), contact with the rigid, shade-creating obstacle212

becomes an issue. Contact at a point s = sc induces a contact force fc that must be accounted for. We assume that the plant213

may slide along the surface without friction, so that the contact force acts only in the normal direction. Working in a planar214

geometry with tangent d3 and transverse direction d1, this may be expressed as fc = fcd1. The balance of linear momentum is215

then216

n′(s) = ρgey + fcd1δ(s− sc). [45]217

Here we have included self-weight with gravity g acting in the negative ey direction and linear density ρ. The delta function218

δ(s− sc) accounts for contact at a single point, and creates a jump in the resultant force n. Both fc and sc are unknown values219

that must be determined at each point in the evolution as part of the solution to the boundary value problem. To determine220

the two additional unknowns, the system requires two additional conditions, which are that the point r(sc(t), t) = p, where221

p is the fixed contact point of the obstacle, and we highlight that the contact location along the rod may change with time.222

(Since the motion is restricted to a plane, this vector equation consists of the required two scalar conditions.)223

In simulating this problem, we first integrate the system without contact, monitoring whether any point is near the obstacle,224

and stopping once a point along the rod first reaches the obstacle, i.e the first time t = t∗ at which there exists an s = s∗225

for which r(s∗, t∗) = p. At this point, Eq. (45) has a solution with fc = 0, sc = s∗. For t > t∗, we then integrate the system226

with force balance (Eq. (45)). As a numerical shooting procedure, we integrate from s = 0 to s = `, in which case the other227

unknowns are the moment m = mez and the force components n = nxex + nyey at s = 0. The 5 conditions to determine the228

shooting variables consist of the contact condition r(sc(t), t) = p, and the three conditions that make up the free end boundary229

condition m = n = 0 at s = `. In this way, we employ standard continuation techniques to increment the system beyond t∗.230

7. Parameters and details of simulations231

A. Gravitropism: rotating base. In simulating the rotating base under gravitropism (Fig. 4 main text), we orient the base
at angle φ0 from the vertical ez direction‡. Expressed in terms of the spherical unit vectors er = (sinφ0, 0, cosφ0), eφ =
(cosφ0, 0,− sinφ0), eθ = (0, 1, 0), the frame at the point S = 0 is then given the form

d3(0, t) = er [46]
d1(0, t) = cos(2πωt)eφ + sin(2πωt)eθ [47]
d2(0, t) = − sin(2πωt)eφ + cos(2πωt)eθ. [48]

‡ In terms of the angle θ appearing schematically in Fig. 3(A) of the main text, we have θ = π/2− φ0 .
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We fix ω = 1, which is equivalent to scaling time based on the rotation rate of the base. We also set φ0 = π/3 and scale the232

total length L = 1. We simulate the gravitropic curvature laws with no axial growth and response rate Cgrav taking values of233

Cgrav = {0.1, 1, 10, 50}. In this simulation we ignore the effect of self-weight, so that mechanical equilibrium is automatically234

satisfied with u = û; we thus integrate Eqs. (12) and (13) to determine the morphology at each time step, and then update the235

curvature. Each parameter set is simulated up to time t = 3, which corresponds to three complete rotations of the base.236

B. Phototropism.237

Fixed light source. In simulating planar phototropism for a fixed light source (Fig. 5 of the main text), a light source is placed238

at the point (1, 1), and the parameters ` = 1, U = 1, and γ ≡ 1 (no axial growth) are fixed. This is equivalent to scaling time239

based on axial transport. The plant is clamped at the origin with tangent d3 = (0, 1) at s = 0. We then simulate up to t = 10240

for each combination of the parameter choices Q = {1, 5}, Cphoto = {0.5, 2.5}, to represent the different regimes of high and low241

uptake and phototropic response, respectively.242

Note also that in simulating the time-delay differential equations, it is necessary to provide the form of the functions ei,243

i = 1, 2 for −`/U ≤ t < 0. These are chosen to be constant and equal to the value at t = 0, determined by the initial orientation.244

Moving light source - day/night cycle. To simulate a day/night cycle (Fig. 6 of main text), we set U = 1, ` = 1, Q = 0.1, γ ≡ 1,245

and Cphoto = 1.5. A light source with intensity I(t) = max{0, sinωt} follows the path p(t) = (R cosωt, Y,R sinωt), where246

ω = 0.2, R = 3, and Y = 2.247

In the case of the additional autotropism terms, we increase Cphoto to 3 and set ξ = 0.3. The increase in Cphoto is chosen so248

that the motion during the day is similar to the non-autotropic case, as the autotropism serves to diminish the phototropic249

response in the presence of a stimulus. In both cases, one complete period is simulated, corresponding to day – when I(t) > 0,250

and night – when I(t) = 0.251

C. Photogravitropism.252

Fixed light source. For the simulations of main text Fig. 7 (A)-(E), we fix the parameters U = 1, Q = 0.1 and Cphoto = 1.253

Growth is uniform and linear: γ = 1 + ct with c = 0.1, and initial length L = 1. A light source is placed at the point p = (4, 1).254

The plant is clamped at the origin with tangent d3 = (0, 1) at s = 0. We then simulate up to t = 10 for each combination of255

the parameter choices G = {0.25, 2.5}, Cgrav = {0.1, 1}, . Here the parameter G characterizes the effective impact of self-weight256

under gravity. In particular, by scaling rod length by L, moment by Eb/L where Eb is the bending stiffness, and noting that the257

gravitational force has magnitude ρg, the non-dimensional moment balance equation, expressed in the reference variable S, is258

m′(S) = −γ2G(S − 1) cos (θ(S)) , G := ρgL3

Eb
[49]259

where θ is the angle between the tangent and the x-axis. In obtaining Eq. (49) we have used the geometric expression260

r′(S, t) = γd3 = γ(cos θex + sin θey), and that the solution to the force balance n′(S) = γρgey subject to n = 0 at S = L is261

n = ρg(S − L)ey.262

Thus, the parameter choices for G and Cgrav represent the different regimes of high and low mass/gravity and gravitropic263

response, respectively.264

Canopy escape. In simulating the escape from shade (Fig. 7 (D)-(E) in main text), we have set U = 1, Q = 0.5, Cphoto = 1,265

Cgrav = 0.1, γ = 1 + 0.25t, G = 0.05 (see parameter description above). The initial length is L = 1, and the plant is clamped at266

the origin with tangent d3 = (0, 1) at s = 0. The shade creating obstacle occupies the region (x, y) with x ≤ 1, y ≥ 1.2, so that267

the corner point and eventual contact point is p = (1, 1.2).268

D. Circumnutation. For the simulations of circumnutation, main text Fig. 8 (A)-(B), the internal oscillator is located at the
tip, with angular velocity ω = 1; thus the period is 2π and we simulate one complete period. Plant length is scaled to L = 1,
and axial growth is turned off (γ ≡ 1). In Fig. 8 (A) other parameters are U = 5, Q = 5, Ccirc = 2; in Fig. 8 (B) we use U = 5,
Ccirc = 1, and we vary the uptake: Q ∈ {1, 2, 3 . . . , 10}. In Fig. 8 (C) the parameters are U = 5, Q = 5, Ccirc = 1, and the
angular velocity is non-uniform; in particular the auxin gradient at the tip follows the line

cos θx1 + sin θx2,

with
θ(t) = ωt+ α sin ω̂t.

The tip profiles in the figure are plotted for ω = 1, ω̂ = 5, and varying α = {0, 0.15, 0.3, . . . , 1.5}.269

In these simulations we have also given the plant an initial curvature, which serves to better center the motion about270

the base of the plant, for visualization purposes (the initial curvature only creates a translation of the tip pattern). The271

initial curvatures used were as follows: u1 = 0 in Fig. 8 (A)-(C), while u2 = 1.25 in Fig. 8 (A), u2 = 0.5 in Fig. 8 (B), and272

u2 = 0.45− 0.07α in Fig. 8 (C) (this choice was made to avoid overlapping of the tip patterns with varying α).273
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E. Thigmotropism. In simulating thigmotropism, main text Fig. 8 (D)-(F), we have set Cthig = 10, and varied the uptake Q and274

angular velocity ω as follows: Q = 3, ω = 2 in Fig. 8 (D), Q = 3, ω = 6 in Fig. 8 (E), and Q = 5, ω = 6 in Fig. 8 (F). Again,275

axial growth is turned off and the plant length is L = 1. In each case total simulation time is t = 10. In the thigmotropism276

formulation, with the signal coming from a single point, the curvatures may be determined exactly, given by277

u1 = −Cthig exp
(
−QS
U

)
sin
(
ψ0 + ωS

U

)
t [50]278

279

u2 = Cthig exp
(
−QS
U

)
cos
(
ψ0 + ωS

U

)
t. [51]280

Here the angle ψ0 indicates the point of contact (which is set at s = 0). In the presented simulations, ψ0 = π/2, so that the281

contact point is at r(0, t) + ad2, where a is the cross-sectional radius, which was fixed at a = 0.02. From the formulas in282

Section 3, we then obtain that the curvature κ and torsion τ will evolve according to283

κ = Cthig exp
(
−QS
U

)
t [52]284

285

τ = ω

U
. [53]286

Note that a helix of radius α and pitch β (i.e. where the angle of the helix φ satisfies tanφ = β/α) has curvature κ̂ = α/
(
α2 + β2)

287

and torsion τ̂ = β/
(
α2 + β2). Since the torsion of the plant is fixed by the ratio of rotational to axial auxin velocity, Eq. (53),288

and the helical radius for a pole of radius c and plant radius a is α = c+ a, we can solve for the pitch, or equivalently the angle289

φ, which satisfies sin(2φ) = ω(a+ c)/U . It follows that the curvature κ̂ = cos2 φ/(a+ c); in our simulations we have fixed the290

pole radius c = 0.05. In this formulation, the curvature increases linearly in time at every point. This unrealistic (in long times)291

aspect could be corrected by having a depleting auxin source at the contact point. However, in any case we must account for292

the fact that the curvature cannot increase beyond κ̂, simply due to the presence of the pole. Thus, in simulating the wrapping293

around a pole, at each spatial point we increase the curvatures according to Eqs. (50) and (51), until the curvature κ = κ̂,294

where κ is given by Eq. (52), at which point we freeze the curvatures in the simulation (in this way, we account for the fact that295

the intrinsic curvature may keep increasing, but the actual curvature may not due to the mechanical contact, while avoiding296

the problem of having to compute the mechanical contact force density).297

F. Pole dance. In SI movies, we include a simulation that consists of a plant that searches for a pole via the circumnutation298

model, while also undergoing axial growth, and then begins to wrap around it following the thigmotropism model once contact299

is made. In this simulation, the parameters used were U = 6, Q = 10, Ccirc = 3, and circumnutation oscillator frequency ω = 5300

originating at the base S = 0. The plant is clamped at the origin, has radius a = 0.025, is initially straight and has initial301

length L = 1 and growth rate ∂γ
∂t

= 0.4. A vertical pole with radius c = 0.05 passes through the point {−0.68,−0.52, 0}. The302

plant first makes contact with the pole at time t = 3, and at contact point defined by reference arc length Sc = 0.8 and angle303

ψc = 2.26§.304

Once contact is made, we turn off the circumnutation signal, and only evolve the portion of the plant, S > Sc, i.e. from pole305

to end. This follows the thigmotropism curvature evolution, with parameters U = 1, Q = 3, Cthig = 9, and ω = 0.77. The306

choice of ω is made for computational convenience, as this particular value means that the pitch of the helix is exactly equal to307

the angle at which contact is made, and no rotation of the tangent about the contact point is needed. The wrapping portion of308

the evolution is simulated from t = 3 up to t = 4.5.309

8. Description of Movies310

SI movie S1: Gravitropism with rotating base, and gravitropic response parameter Cthig = 0.1. Other simulation parameters311

provided in SI Section 7.312

313

SI movie S2: Gravitropism with rotating base, and gravitropic response parameter Cthig = 1. Other simulation parameters314

provided in SI Section 7.315

316

SI movie S3: Gravitropism with rotating base, and gravitropic response parameter Cthig = 10. Other simulation parameters317

provided in SI Section 7.318

319

SI movie S4: Gravitropism with rotating base, and gravitropic response parameter Cthig = 50. Other simulation parameters320

provided in SI Section 7.321

322

SI movie S5: Phototropism, simulation of a day-night cycle, with no autotropism. Simulation parameters provided in SI323

Section 7.324

325

§Rather than define the location of the pole, we have defined the location and time of the contact, and used these to define the pole; we then verify that with the pole defined in this way, no prior contact
was made.
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SI movie S6: Phototropism, simulation of a day-night cycle, with autotropism. Simulation parameters provided in SI Section 7.326

327

SI movie S7: Thigmotropism, pole wrapping, with low uptake (Q = 3) and low angular velocity (ω = 2). Other simulation328

details provided in SI Section 7.329

330

SI movie S8: Thigmotropism, pole wrapping, with low uptake (Q = 3) and high angular velocity (ω = 6). Other simulation331

details provided in SI Section 7.332

333

SI movie S9: Thigmotropism, pole wrapping, with high uptake (Q = 5) and low angular velocity (ω = 6). Other simulation334

details provided in SI Section 7.335

336

SI movie S10: Pole dance. Circumnutation with axial growth, followed by thigmotropic pole wrapping. Simulation parameters337

provided in SI Section 7.338
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