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1. Experimental details27

A. Measurement of internal pressure. To estimate the internal pressurization of the fruit in the build-up to28

launch, we used indentation of the fruit at its side. Here we first describe how this indentation experiment29

was performed to determine the linear indentation stiffness,30

k = lim
δ→0

F

δ
. [S1]31

We then discuss the mathematical models of the indentation of pressurized ellipsoids that were used to32

infer the internal pressure.33

A.1. Measurement of the force–indentation law. The fruit’s surface is approximately that of a prolate spheroid;34

in Cartesian coordinates centered on the center of the fruit we may then write35

(x/a)2 + (y/b)2 + (z/c)2 = 1,36

where the semi-axes are of length b = c ≈ a/2. Indentation tests were performed at z = c (= b).37

We performed indentation experiments over the course of days prior to seed ejection, using a flat-38

punch indenter of diameter 1.64 mm) connected to an Instron 3345 structural testing system to acquire39

measurements of the applied force as a function of indentation depth. The gradient of force-displacement40

curves k = F/d was determined from linear fits to the post-contact data for indentation depths < 1 mm;41

reported values represent the mean of at least three measurements.42

A.2. Models of pressurized fruit. To infer the internal pressure from the measured value of k, we model the43

fruit as an ellipsoidal shell with internal pressure p, shell thickness h and shell modulus Ef . The problem of44

the point indentation of such a shell has been considered previously (1, 2).45

We use the results of Sun & Paulose (2), who related the small indentation stiffness k, defined in Eq. (S1),46

to the mechanical properties of the shell (its bending stiffness B and stretching stiffness Y ), its geometry47
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(the radii of curvature Rx = a2/b and Ry = b local to the indenter) and the internal pressure p. In particular,48

they showed that49

k(p) = 8π2 Bτ

ℓ2
b

[∫ 2π

0
(1 + β sin2 θ)−1 tanh−1(1 − Υ2)1/2

(1 − Υ2)1/2 dθ

]−1

, [S2]50

where51

Υ = τ−1 1 − β sin2 θ

1 + β sin2 θ
, [S3]52

53

β = 1 − Ry/Rx = 1 − b2/a2, [S4]54

is a geometrical parameter,55

ℓb =
(

BR2
y

Y

)1/4

[S5]56

is the characteristic horizontal length scale of shell deformations in the absence of pressure, and57

τ =
pR2

y

4(BY )1/2 [S6]58

is a dimensionless measure of the pressure within the shell.59

While the integral in Eq. (S2) is not amenable to analytical evaluation, it may readily be computed60

numerically for given values of the parameters β and τ . More difficult is the fact that k depends on the61

(unknown) bending and stretching moduli, B and Y . However, it is readily shown that the unpressurized62

stiffness, k0 = k(p = 0) is given by63

k0 = 8
√

1 − β(BY )1/2/Ry. [S7]64

The ratio k(p)/k0 can therefore be written as65

k(p)
k0

= π2
√

1 − β
τ

[∫ 2π

0
(1 + β sin2 θ)−1 tanh−1(1 − Υ2)1/2

(1 − Υ2)1/2 dθ

]−1

, [S8]66

which is therefore a function of β, Ry, and τ .67

Equation Eq. (S8) shows that the ratio k(p)/k0 is a function of τ (which is unknown) and β (which is68

readily estimated). (In our experiments 0.65 ≤ β ≤ 0.78, with mean 0.73.) Fig. S1 shows that with this69

range of β, the dependence of τ on k(p)/k0 is only slightly sensitive to the value of β.70

The numerical results presented in Fig. S1 can be used to estimate the value of τ immediately before71

seed launch in each of the experiments presented in Fig. 2B of the main text. The experimentally measured72

ratio 3.1 ≲ k(p)/k0 ≲ 4.2, which corresponds to 1.4 ≲ τ ≲ 2.4. Since τ can itself be rewritten73

τ = 2
√

1 − β
pRy

k0
, [S9]74

we readily calculate the corresponding internal pressure, which we find to be p ≈ 1.70 ± 0.15 bar.75

The pressure p ≈ 1.70 bar estimated using indentation is significantly larger than the reported value of76

0.72 bar (3) that was inferred from analogue experimentation with eviscerated fruits. However, we note77

that, in combination with the model based on Bernoulli’s principle presented in §2D, this corresponds to an78

initial jet speed U = (2p/ρfl)1/2 ≈ 18.4 m/s, which is in reasonable agreement with our own experiments.79

It will also be useful later to have estimates for the typical stretching modulus of the shell, Y = Ef h. We80

note here that, under the assumption that B = Eh3/[12(1 − ν2)], this can be inferred from the measured81

value of k(p = 0) as82

Y = 4√
3(1 − ν2)

(RxRy)1/2

h
k0 = 4√

3(1 − ν2)
a

h
k0. [S10]83

With the measured value h = 3.2 mm, we find that Y ≈ 2 ± 0.6 kN m−1, which corresponds to a Young’s84

modulus Ef ≈ 640 ± 200 kPa, which is in good agreement with the measured value of 0.50 ± 0.09 M Pa85

acquired from indentation tests on fruits shells.86
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Fig. S1. Evaluation of the dimensionless pressure from the experimentally measured values of k(p)/k0. Here, the numerically determined behavior of Eq. (S8) is used to
plot the effective τ from the measured k(p)/k0; results are shown for β = 0.646 (dashed grey curve) and β = 0.783 (solid black curve).

B. Visualizing the cucumber seeds. A ripe specimen was scanned at the University of Manchester using87

the Henry Moseley X-ray Imaging Facility’s custom Nikon 225 kV X-ray tomography system. The system is88

equipped with a static tungsten reflection target source, a PerkinElmer 4096 x 4096 pixels 16-bit amorphous89

silicon flat-panel detector, and has a max power of 450 W. The specimen was wrapped in bubble wrap90

and held in place during the scan. X-rays were generated using a voltage of 120 kV and a current of91

183 µA. The screen to detector distance was 1138.60 mm and the screen to object distance 136.56 mm; each92

radiograph (projection) was acquired using binning of two, giving an effective detector size of 2024 × 202493

pixels, with an effective pixel pitch of 100 µm. The image resolution was 1458 × 1388 × 2024 voxels of size94

23.99 microns. The total number of projections was 2001. The 3-D volumes were reconstructed from the95

projection data using Nikon’s CT Pro 3-D software (Nikon X-Tek Systems Ltd, UK). Image segmentation96

was performed using machine-learning (ML) assisted smart segmentation techniques in IPSDK Explorer97

(Reactiv’IP, France), see Fig. S2. This involved (i) cropping the projections, (ii) using ML to segment98

seed outlines, (iii) dilating and eroding seed boundaries, removing image noise (small objects) from seed99

boundaries and filling holes within seed boundaries, (iv) masking seeds and using ML to segment the air gap100

that surrounds the seeds, (v) masking the seed + air gap regions and using ML to segment the cucumber101

shell and vasculature network, and (vi) masking the shell to determine the combined volume of the soft102

interior (mucilaginous fluid matrix + seeds + vasculature network). Segmented projections were rendered103

into visualizations using Dragonfly (Comet Technologies Canada Inc, Canada), see Fig. 1B.104

From the processed CT scan we could identify 54 seeds of volume 7.23 ± 0.32 mm3, with a ratio of105

max-to-min Feret diameter of 2.42 ± 0.07, that are each surrounded by a small air gap, and one empty air106

sack. The volume of the shell interior could be estimated by counting voxels, as could the total volume of107

seeds, which enabled estimation of the volume occupied by seeds within the fluid matrix inside the shell,108

found to be 5.8%.109

2. Mathematical models110

A. Stem model. We model the stem as a planar, inextensible, unshearable, elastic rod, with initial length L.111

The appropriateness of an elastic rod treatment is given by the significant aspect ratio between stem length112

(on the order of 5 cm) and stem radius (on the order of 0.2 cm), while the assumption of inextensibility and113

unshearability are standard for biological filaments. The centerline is described by the curve114

r(S) = x(S)ex + z(S)ez, [S11]115
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Fig. S2. Imaging inside the shell. A. A reconstructed CT scan of the cucumber interior shows that the seeds (coloured)
are suspended inside a fluid matrix (gray). The relative volume of seeds to fluid was measured by counting the number
of voxels of the segmented regions. B. The number of seeds inside the scanned cucumber, along with measurements
of their volume and maximum and minimum Feret diameter, were extracted from calibrated images using IPSDK. These
measurements of seed size and shape complemented data from other fruits that was manually acquired post-ejection
using calipers.

where S is the arc length parameter prior to any elongation. Here, the stem is in the (x, z) plane, such that116

gravity points in the negative z-direction. During development prior to seed ejection, the stem undergoes117

very slow changes (on the order of hours to days) in length and cross-sectional thickness. Let γ denote118

the factor by which the length increases∗; in particular, if the stem extends to length l, then γ = l/L, and119

the arc length s in the grown configuration relates to the arc length in the initial configuration by s = γS120

(4, 5). Defining θ(S) as the angle between the tangent vector r′(S) and the vector ex, we may write121

x′(S) = γ cos θ, z′(S) = γ sin θ. [S12]122

Due to the slow changes in material dimensions with respect to the elastic timescale, the rod may be taken
to be in quasi-static mechanical equilibrium (up to the time of separation from the fruit). The shape is
thus governed by the static balances of linear and angular momentum, which read (5)

n′(S) + f = 0, [S13]
m′(S) + r′(S) × n(S) = 0. [S14]

Here n(S) and m(S) respectively denote the resultant force and moment in the rod, while f is the total123

body force. Assuming that the only body force is due to self-weight, we have f = −ρsgez, where ρ is124

the linear density of the stem, and g is the gravitational acceleration. Since the rod remains in the (x, z)125

plane, the moment only has a component in the ey direction, which is related to the curvature u(S) by the126

constitutive relation127

m = EsIs(u(S) − û(S))ey. [S15]128

Here Es is the Young’s modulus for the stem, Is is the 2nd moment of area, and û is the intrinsic curvature,
describing the shape of the stem in its unloaded configuration. The curvature u is equal to the (negative
of the) derivative with respect to arc length of the angle θ, i.e. u = −γ−1θ′(S), where the factor of γ−1

converts to an arc length derivative†. Images of the stem with the fruit detached suggest that the stem
∗

In principle we could have γ = γ(S), but lacking a means of quantifying any non-uniformity in the extension, for simplicity we take γ to be a constant.
†

The negative appears due to placing the rod in the (x, z) plane, and may be derived from the relation d′
3(s) = u × d3 , where d3 = cos θex + sin θez is the tangent vector and u = u2ey is the

curvature vector (4)
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tends to be naturally straight in its reference configuration, except for a small region near the tip that
shows significant curvature and acts as an hinge. In that region bending is localized under the weight of
the fruit. We account for this profile with the following form:

û(S) = −C exp
(

−γ(S − (L − dS))2

σ2

)
, [S16]

where dS is the distance from the tip to the localized bending region, C characterizes the degree of
bending, and σ characterizes the width of the hinge region.‡ The stem is a thick-walled hollow tube with
approximately circular cross-section, for which the moment of area Is is given by

Is = π

4
(
r4

2 − r4
1
)

, [S17]

where r1 and r2 are the inner and outer radii. These values change during development, as fluid redistribution
causes the stem radius to expand. However, we do not have access to measure the inner radius prior to
launch. For stems with fruit detached, we find that r1 ≈ 0.5r2. We thus set r1 ≡ r2/2, which gives

Is = 15π

64 r4
2. [S18]

The radius r2 is also a function of S due to tapering of the stem from base to tip, which is well-approximated
by a linearly decreasing function of S:

r2 = r0 − mtaperS. [S19]

The values r0 and mtaper can be measured from lab images, with typical values values r0 ≈ 0.2cm,129

mtaper ≈ 0.01. Since the stem is only slightly tapered, for simplicity we approximate the density ρs as being130

constant, equal to the total mass of the stem divided by the current length γL.131

While the fruit is still attached to the stem, the weight of the fruit deforms the stem, by applying both a
force and moment to the tip of the stem. The fruit may be modeled as a point mass, with mass Mf located
at its center of mass, which leads to the boundary conditions:

n(L) = −Mf gez, [S20]
m(L) = a(cos θ(L)ex + sin θ(L)ez) × (−Mf gez) = aMf g cos θ(L)ey. [S21]

The first equation describes the load applied by the fruit at the boundary of the stem. Since the center of132

mass of the fruit is not at the tip of the stem, the fruit also applies a torque to the stem, described by the133

second equation, noting that a(cos θ(L)ex + sin θ(L)ez) is a vector pointing from the tip of the stem to the134

center of mass of the fruit (a is the major semi-axis of the ellipsoidal fruit). At the base of the stem, we135

apply clamped boundary conditions at a point that is taken without loss of generality to be the origin:136

x(0) = z(0) = 0, θ(0) = θ0, [S22]137

which completes the system. The resultant force n only has a component in the z direction, which may be
determined explicitly:

n = (ρsg(S − L) − Mg)ez. [S23]

Inserting this into the moment balance (S14), and using the constitutive relation (S15), we obtain a single138

second order equation for the angle θ(S):139

d

dS

[
EsIs(s)

(
γ−1θ′(S) − C exp

(
−γ(S − (L − dS))2

σ2

))]
= −γ cos θ (ρsg(S − L) − Mf g) , [S24]140

‡
The factor of γ appears so that the hinge region stays at the same proportional location under extension of the stem.
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along with boundary conditions141

θ(0) = θ0, EsIs(L)
(

γ−1θ′(L) − C exp
(

−γdS2

σ2

))
= −aMf g cos θ(L). [S25]142

For given parameters – stem parameters {Es, r0, mtaper, L, γ, C, dS, σ}; fruit parameters {Mf , a}; and base143

angle θ0 – the shape of the stem is determined as the solution of the boundary value problem outlined above.144

Once θ(S) is known, the center line of the stem follows by integrating Eq. (S12) subject to x(0) = z(0) = 0.145

We have solved the system numerically by implementing a shooting method in Mathematica.146

B. Approximating bending stiffness. To quantify the effect of fluid redistribution from fruit to stem, and
the corresponding change in orientation of the fruit, we fit the stem shape to lab images from the first time
lapse image (taken approximately four days prior to launch), and the final time lapse image prior to launch
(taken within 30 minutes of launch). For each image, we first fit an ellipsoid to the fruit, extracting the
major and minor semi-axes, h1 and h2. The combined mass M of the fruit and the stem relates to the
individual masses via

Mtot = Mf + Ms = ρf
4π

3 h1h2
2 + ρsγL. [S26]

The combined mass Mtot ranges from 6 to 12 g (see main text Fig. 2F). The linear density ρs of the147

stem relates to the volumetric density ρ̂s via ρs = ρ̂sAs, where As is the cross-sectional area of the stem.148

Approximating As by its value at the base, As ≈ πr2
0 and inputting a value of r0 and the volumetric149

density (ρ̂s ≈ 1 gcm−3), we obtain a value for ρs. The parameters for the intrinsic curvature of the stem150

are assumed to stay constant through development, and come from fitting the stem model to the image of151

the stem post-ejection, i.e. with the fruit detached so that the stem is in its reference state§. The other152

stem parameters, {r0, mtaper}, and the base angle θ0, are also easily extracted from the image. The only153

remaining unknown therefore is the Young’s modulus Es. To obtain Es, we solve the boundary value154

problem and overlay the solution on the image, while varying Es (within the Manipulate framework in155

Mathematica) until a best visual fit is obtained. The result is given in the main text, Fig. 2A, with156

parameter values for each image given in Table S1.157

As noted in the main text, the redistribution of fluid causes the stem to elongate and expand, with an158

increase in the base radius r0 of about 25%, and an increase in length of about 45%. The increase in radius159

has a strong impact on the bending stiffness, since Is scales as the fourth power of radius. However, the160

increase in r0 is not sufficient to account for the significant decrease in bending of the stem. Indeed, as161

reflected in the best-fit values appearing in Table S1, we found that it was necessary to increase the Young’s162

modulus Es by a considerable amount, a factor of almost 8.163

To corroborate our approach, we also conducted experiments on a stem with the fruit detached. A
cantilevered horizontal fruit-less stem was deflected by attaching fixed weights to the tip. Since the internal
pressure was unchanged throughout, we anticipate being able to fit the shape under different weights for a
single effective Young’s modulus Es. The result appears in Fig. S3, with parameter values given in Table
S2. Note that the stem shows non-trivial deflection even in Fig. S3A, with no weight attached. This is due
in part to self-weight, which is more significant in a horizontally cantilevered stem, but also due to intrinsic
curvature separate from the bending at the tip. This is a feature we observed in some, but not all stems,
and can be accounted for by changing Equation S16 to

û(S) = u0 − duS − C exp
(

−γ(S − (L − dS))2

σ2

)
, [S27]

where the first two terms enable for a linearly varying intrinsic curvature, and form two additional parameters164

that are fit from the image with no weight attached (after inputting a stem mass of 2 g and taking for165

§
Technically the stem is under the force of its own weight, but this has negligible effect on the tip curvature.
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Parameter Units Initial Inflated
r0 cm 0.17 0.21

mtaper - 0.01 .01
C cm−1 4 4
dS cm 0.2 0.2
σ cm 0.3 0.3
L cm 3.2 3.2
γ - 1 1.45
θ0 radians 1.67 1.7
a cm 1.75 1.65
b cm 1 0.97

Es MPa 6 50

Table S1. Extracted parameter values for the stem model in the initial (first image of timelapse) and inflated (last
image from timelapse before seed ejection) states.

simplicity uniform density due to only slight tapering). Fig. S3A-D show the best fit stems for masses of 0,166

4.0 g, 4.7 g, and 21.8 g attached to the ends, respectively. The different cases were all fit with the single167

value Es = 40 MPa, a value that is consistent with those extracted from the timelapse images.168

Parameter Value
r0 0.4 cm

mtaper 0.007
C -4 cm−1

dS 0.3 cm
σ 0.3 cm
u0 0 cm−1

du 0.002 cm−2

Es 40 MPa

Table S2. Parameter values corresponding to the model fits of Fig. S3.

C. Fruit rotation. During the first tenth of a millisecond or so of ejection, while the stem and fruit are169

separating, the stem begins to rotate away from the fruit, while the fruit begins to rotate in the opposite170

direction at a slower rate. The rotation of the stem may be understood as a mechanical response to the171

combination of the impinging jet pushing against the stem and having the force and moment induced by172

the fruit removed. Without the fruit deforming the stem, the stem recoils away, eventually settling to a173

nearly straight configuration (the stem is still loaded by self-weight, though this has a much smaller effect174

than the load of the fruit).175

As a consequence of the balance of angular momentum between the fruit and the stem, it follows that176

the fruit must rotate in the opposite direction. To model the rotation imparted during these first moments177

of ejection, we return to the balance of angular momentum of the stem, but with an added inertial term;178

namely, Eq. (S14) is replaced by179

m′(S, t) + r′(S, t) × n(S, t) = ρId1 × d̈1, [S28]180

where overdots denote time derivatives and

d1 = − sin θex + cos θez [S29]

is the normal vector to the center line of the stem, following the notation in (4). The key to making progress181

is to localize the analysis to the first few hundred microseconds of ejection and to the tip of the stem. To this182

end, we define tsep as the time scale associated with the separation of fruit and stem – examination of the183

high speed videos suggests that tsep ≈ 0.3ms. We thus restrict our analysis to the time range 0 < t < tsep,184

such that at t = 0, the system begins in the configuration corresponding to static equilibrium, and for185

t > tsep, the fruit is no longer attached to the stem. During this time range, the boundary condition applied186
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A B

C D

Fig. S3. The deformation of a cantilevered stem, with fruit detached, and masses of 0 (A), 4.0 g (B), 4.7 g (C), and 21.8 g (D) applied to the end. The solutions of the stem
model with corresponding force and moment applied to the tip are overlaid, using parameter values shown in Table S2

by the fruit to the stem thus vanishes. Concurrently, the emerging jet pushes against the stem. We model187

these effects by replacing Eq. (S20) with188

n(L, t) = −Mf gf(t)ez − Fj(t)ef . [S30]189

The first term is the same as in the static case, describing the load applied by the fruit, but with an added
time dependent factor f(t), a dimensionless function that has the property f(0) = 1, f(tsep) = 0. We
implement the form f(t) = 1 − (t/tsep)αsep , where the constant αsep characterises the separation (we use a
large exponent, αsep = 5, to capture the fact that the force remains nearly constant until very close to tsep).
The second term describes the force of the jet on the stem. The magnitude Fj(t) can be deduced from
Bernoulli’s relation ∆p = 1

2ρflU2, which relates the pressure difference across the fruit to the fluid density
and velocity. We obtain a force by multiplying by the cross-sectional area, and take U over this short time
scale to be equal to the initial velocity U0, that is we fix

Fj ≡ 1
2ρflU2

0 π(r0 − mtaperL)2. [S31]

The unit vector ef points along the axis of the fruit, from the center of the fruit towards the stem. At t = 0,190

we have ef = −d3(L), i.e. the jet force is in the negative of the tangent direction at the tip of the stem.191

Considering the moment balance localized to the tip of the stem, we insert the constitutive law Eq. (S15),192

the geometric relation Eq. (S12), and Eq. (S30) into the moment balance Eq. (S28), giving193

d

dS

[
EsIs(s)(γ−1θ′(S) + û(S))

] ∣∣∣∣
S=L

− γ cos θMf gf(t) + γ
1
2ρflU2

0 π(r0 − mtaperL)2 sin φ(t) = ρ̂sIsθ̈, [S32]194

where φ(t) is the angle between d3 and −ef (see Fig. S4). Our approach is to integrate this equation from195

t = 0 to t = tsep in order to estimate θ̇(L, tsep). Since the fruit and stem are still in contact up until tsep, the196
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Fig. S4. Schematic of the initial stage of ejection, while the fruit and stem are separating.

fruit will counter rotate. Defining ϕ(t) as the angle between the fruit axis ef and the horizontal direction197

(so , we may approximate the angular velocity of the fruit at the point of separation as198

ϕ̇(tsep) = −ϵθ̇(L, tsep), [S33]199

where ϵ = r0−mtaperL
a is the aspect ratio of the radius of the tip to the major axis of the fruit. This factor200

accounts for the different radii of rotation for stem and fruit.¶ The fact that ϵ < 1 implies that the fruit201

will have a smaller (in magnitude) angular velocity, as can be observed in high-speed videos.202

In order to estimate θ̇(L, tsep), we consider the size of the different terms in Eq. (S32). Scaling time by203

tsep and lengths by γL, we may write Eq. (S32) in non-dimensional form as204

θ̈(L, t) = λ1
(
γ−1θ′(L, t) + û(L)

)
+ λ2

(
γ−1θ′′(L, t) + û′(L)

)
− λ3γ cos θ(L, t)f(t) + λ4γ sin ϕ(t), [S34]205

where time and space derivatives are dimensionless, and we define the dimensionless parameters206

λ1 =
EsI ′

s(L)t2
sep

ρ̂sIs(L)γ2L2 , λ2 =
Est2

sep
ρ̂sγ2L2 , λ3 =

Mf gt2
sep

ρ̂sIs(L) , λ4 =
ρflU2

0 π(r0 − mtaperL)2t2
sep

ρ̂sIs(L) . [S35]207

Typical values for the inflated stem are Es ∼ 50MPa, Is(L) ∼ 10−3cm4, I ′
S(L) ∼ 10−4cm3, L ∼ 5cm,

γ ∼ 1.5, ρ̂s ∼ 1g/cm3, and r0 − mtaperL ∼ 0.2cm. For the fruit, Mf ∼ 5g, and the fluid has initial fluid
velocity U0 ∼ 2cm/ms and density ρfl ∼ 1g/cm3. Inserting these values, along with tsep ∼ 0.1ms, we
estimate

λ1 ∼ 0.01, λ2 ∼ 0.1, λ3 ∼ 0.05, λ4 ∼ 5. [S36]

This analysis suggests that the first three terms can be taken to be approximately constant during the208

separation phase. Despite λ4 being order 1, the fourth term is also small, because the fruit and stem remain209

connected during 0 < t < tsep, and thus the axis of the fruit and the tangent to the tip of the stem are210

very nearly aligned. Since φ(0) = 0, we may approximate φ(t) ≈ tβsep (φ is exaggerated in the schematic211

Fig. S4) for some βsep ≥ 1‖. Defining θ1(t) := θ(L, t), we may thus approximate212

θ̈1(t) = λ1
(
γ−1θ′(L, 0) + û(L)

)
+ λ2

(
γ−1θ′′(L, 0) + û′(L)

)
− λ3γ cos θ(L, 0)f(t) + λ4γtβsep , [S37]213

¶
The situation is comparable to two balls of different radii that are in contact: if the smaller ball rotates and ‘drags’ the other ball to counter-rotate, the angular velocities will be of opposite sign and with
constant of proportionality equal to the ratio of the radii, with the smaller ball having a higher angular velocity.

‖
The best choice for βsep will depend on the nature of the dehiscence process and any torque-inducing asymmetry of the emerging jet. Such details are beyond the scope of this work, so we take βsep = 3
as a parameter obtained from matching qualitatively with experimental observations; we then keep the same value of βsep in the subsequent comparative analysis when changing other parameters.
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where the values of θ and its derivatives evaluated at S = L and t = 0 come from the equilibrium solution.
We may now integrate this equation explicitly from t = 0 to t = tsep, giving

θ̇1(tsep) =tsep
[
λ1
(
γ−1θ′(L, 0) + û(L)

)
+ λ2

(
γ−1θ′′(L, 0) + û′(L)

)]
− [S38]

λ3γ cos θ(L, 0)
∫ tsep

0
f(t) dt + λ4γ

t
βsep+1
sep

βsep + 1 [S39]

where we have used θ̇1(0) = 0.214

Once the fruit is detached from the stem, it falls under gravity and rotates due to the initial angular215

velocity provided by the stem during detachment, but with no further applied torque (due to the approximate216

symmetry of the jet, the reaction force does not generate a torque about the center of mass). Thus, for217

t > tsep, the balance of angular momentum for the fruit reads218

d

dt

(
If (t)ϕ̇(t)

)
= 0, ϕ(tsep) = θ(L, 0) − π, ϕ̇(tsep) = −ϵθ̇1(tsep). [S40]219

Since the fruit is losing mass during ejection, the moment of inertia If is a function of time. Recalling that220

we model the fruit as an ellipsoid with major semi-axis a and both minor semi-axes b, and that If is the221

moment of inertia for rotation about one of the minor axes, If can be computed to be222

If = Mf

5
(
a2 + b2

)
. [S41]223

To see how If varies in time, and to formulate the components needed for computation of seed trajectories,224

we now turn to a model of the ejection of the fluid/seeds.225

D. Fluid/seed ejection. As stated above, the jet velocity U(t) (taken to be spatially homogeneous) relates226

to the pressure difference ∆p via Bernoulli’s relation:227

∆p = 1
2ρflU2. [S42]228

(Note that we assume that the seeds move with the instantaneous speed of the liquid jet here; however, a229

balance between the work done by the pressure and the kinetic energy of the seed gives the same result for230

the launch speed, as shown for fungal spores (6).) The pressure difference is also related to the typical231

tension, σ̄, in the wall of the fruit via the Young–Laplace law232

∆p = 2σ̄K1/2, [S43]233

where K = (RxRy)−1 is the Gaussian curvature of the surface, and Rx = a2/b, Ry = b are the radii of234

curvature of the shell. The typical tension σ̄ is equal to the product of the stretching modulus, Y , and the235

typical strain ε̄. The modulus Y is the product of the Young’s modulus Ef and the fruit wall thickness,236

which we denote h, while the strain can be expressed in terms of the change in volume ∆V = V (t) − Vnat237

between the current volume and the volume of the shell in its natural state. Specifically,238

ε̄ = 1
3

∆V

Vnat
. [S44]239

By combining Eq. (S42)–Eq. (S44), we therefore have that the instantaneous velocity of ejected fluid is a240

function of the volume of the shell via241

U = (2∆p/ρfl)1/2 = 2UEI√
3

(
V (t) − Vnat

Vnat

)1/2
, [S45]242
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where243

UEI =
(

Y

ρfla(0)

)1/2
244

is an ‘elasto-inertial speed’. Using the value Y ≈ 2 kN/m (see discussion after Eq. (S10)), ρfl ≈ 1000 kg m−3
245

and a(0) ≈ 2 cm we have that UEI ≈ 10 m s−1.246

To determine the evolution of the volume V (t), we then use conservation of mass, which may be written

dV

dt
= −AjetU, [S46]

with Ajet the cross-sectional area of the jet. For our simulations, we take Ajet to be equal to 90% of the area247

of the tip of the stem, Ef = 0.64 MPa, and h = 0.32 cm, in accordance with the measurements outlined in248

the main text. Combining the above equations, we obtain a differential equation for V (t),249

dV

dt
= −2AjetUEI√

3

√
V (t) − Vnat

Vnat
, [S47]250

which can be solved exactly subject to the initial condition∗∗ V (0) = V0 to give251

V (t) = Vnat +
(√

V0 − Vnat − 2√
3

UEIA√
Vnat

t

)2
, [S48]252

and253

U(t) = 2UEI√
3

√
V0 − Vnat

Vnat
− 4

3U2
EI

A

Vnat
t. [S49]254

Note that the initial (and maximum) velocity, depends on the volume difference between the pressurized255

and natural states; we take V0 := 4π
3 a(0)b(0)2, with the values of a(0) and b(0) extracted from the final256

experimental image before ejection. Based on our measurements of mass loss before and after ejection, we257

estimate that the volume in the natural state is 20 to 50% less than the volume at the point of dehiscence. In258

our simulations, we have used the value Vnat = 0.45V0. This means that the initial mean strain, ϵ̄(0) ≈ 1/3,259

which is not strictly small. Nevertheless, the model agrees remarkably well with experimental observations.260

Returning to the balance of angular momentum of the fruit, Eq. (S40), we incorporate the loss of mass
during ejection by substituting the expression for V (t) in the relation Mf = ρflV (t). The major and minor
axes a(t) and b(t) will also decrease during ejection. Recalling the relation V = 4π

3 ab2, we can account for
this by making the assumption that the ratio between a and b remains roughly constant while the fruit
deflates. Defining ξ = b(0)/a(0) as this ratio leads to the equation

4πξ2a(t)2 db

dt
= dV

dt
, [S50]

which can be solved for a, thereby giving an explicit expression for the moment of inertia If (t) defined in261

Eq. (S41).262

E. Ballistic trajectories. The ballistic trajectories r(t) of individual seeds of mass m are computed by
integrating forward the kinematic relation

mr̈(t) = −mgez − Fd(|ṙ(t)|) ṙ(t)
|ṙ(t)| , [S51]

where g is the gravitational acceleration, acting in the vertical direction ez. These calculations account263

for air resistance by considering the drag force acting on individual seeds to be given by Fd(U) =264

∗∗
Note that we have shifted the ejection time to start at t = 0 as opposed to t = tsep , which can be done without issue as this modeling component is decoupled from the balance of angular momentum
during 0 < t < tsep outlined above.
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(1/2)ρairCdU2Ase where Ase = πwsetse/4 ≈ 5 mm2 is the cross-sectional area of the seed normal to the265

flow direction, wse and tse are the widths and thicknesses of seeds, respectively, and the coefficient of266

drag, Cd = (24/Reair) + 6/(1 + Re
1/2
air ) + 0.4 = 0.4, is related to the Reynolds number of seeds in air,267

Reair = ρairwseU/µair ∼ 5 × 106 ≫ 1 where the width of a seed wse ≈ 3 mm, and the density and dynamic268

viscosity of air are ρair ≈ 1.3 kg m−3 and µair ∼ 10−5 Pa s, respectively.269

E.1. Optimal launch angle. One question that immediately arises from the Eq. (S51) is how the drag force Fd270

changes the ballistic trajectory of the seed, and whether the furthest reach is still attained with an initial271

launch angle ϕ = 45◦? Non-dimensionalization of Eq. (S51) reveals a dimensionless parameter272

G = mseg
1
2ρairCdU2

0 Ase
[S52]273

that compares the weight of the seed, mseg, to the drag force Fd(U0) on the seed at its initial speed, U0.274

For a given value of G, we compute the trajectories of projectiles with a range of launch angles and275

compute the horizontal range, xrange(ϕ) = x(z = 0; ϕ). As expected, we see that as the angle of launch, ϕ,276

varies xrange(ϕ) is maximized at a particular value of ϕ, ϕopt; in this way, it is possible to determine the277

optimal launch angle, ϕopt(G), numerically. A plot of this function is given in Fig. S5, and shows that the278

optimal angle lies a few degrees below the classic value of 45◦ unless G ≳ 10. Using estimates of the seed279

parameters mse ≈ 25 mg, Cd = 0.4 and 5 ms−1 ≤ U0 ≤ 25 ms−1 together with Ase ≈ 5 mm2, we find that280

0.4 ≲ G ≲ 10, which is shown as the blue square in Fig. S5. For this range of G, 36.9◦ ≲ ϕopt ≲ 44.4◦, which281

is consistent with the observed launch angles ϕ ≈ 42.7 ± 8.9◦ being close to optimal (main text).282
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Fig. S5. The optimal launch angle, ϕopt, as a function of the projectile weight to maximum drag, G, defined in Eq. (S52). Numerically determined value of ϕopt (solid
curve) tends to the drag-free result ϕopt = 45◦ (dashed line) only in the limit G → ∞. The experimentally observed range of G is indicated by the blue rectangle; the
experimentally-observed values of ϕ are indicated by the red rectangle; the overlap between the two (purple rectangle) lies close to the curve of optimal angles.

E.2. Trajectories of multiple seeds. Evaluating U given by Eq. (S49) at discrete time points during ejection283

gives the magnitude of the initial velocity vector of individual seeds. The direction of the initial velocity284

vector comes from integrating the system Eq. (S40) and evaluating the angle of the fruit axis ϕ(t) at the285

same discrete time points. Rather than divide the ejection time in equally spaced units, it is more accurate286

to suppose that equal volumes of ejecting fluid will contain approximately equal numbers of seeds. Thus,287

the discrete time points are obtained by dividing the excess volume ∆V = V − Vnat into N equal increments,288

∆Vi = i
N (V0 − Vnat) where N is the total number of seeds in the fruit. Note that not all seeds will be289

ejected; since the ejection speed decreases with time, the fluid velocity may not be high enough to eject290

seeds located away from the fruit aperture (indeed, inspection of an exploded fruit shows that some seeds291

remain). The ejection time ti then comes from solving Eq. (S48) for t with V = Vnat + ∆Vi. We account for292
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later seeds not leaving the fruit by only integrating the trajectories of the N − k seeds; i.e. the last k seeds293

(corresponding to small ∆V and thus a smaller velocity) are assumed to remain in the fruit.294

F. Plant generations. To simulate seed dispersal and reproduction over several generations, we perform the295

following steps:296

1. Compute the deformation of the stem in the pressurised state, following Section A.297

2. Compute the rotation of the fruit during detachment following Section C.298

3. Compute initial velocities for ejected seeds following Section D.299

4. Compute the ballistic trajectories and landing location of expelled seeds by integrating forward300

Eq. (S51) until z(t) = r · ez = 0. This is repeated for each fruit on the plant. The result is a301

distribution of seeds surrounding the mother plant.302

5. Determine which seeds will germinate and produce a next generation plant, by applying a probabilistic303

rule and minimum distance from successful offspring.304

6. For each successful plant, return to Step 4 and repeat the procedure for each successful plant to305

simulate the next generation.306

More on Step 3 To simulate dispersal from all fruits of a given plant, we first assign a number M of fruits307

per plant. In our simulations, we have used M = 30 fruits per plant, and N = 30 seeds ejected per fruit, so308

that each plant ejects N ∗ M = 900 seeds. We position each of the fruits for a given plant at the same309

location, the location of the plant; e.g. the first plant is located at the origin of our coordinate system,310

r = 0, and all fruits of the first plant are positioned at the same location. This assumption simplifies311

calculations, and may be justified by the separation in length scale between the width of an individual312

plant, on the order of centimeters, and the typical dispersal distance of a seed, 3 m.313

The initial velocity for each individual fruit is obtained by rotating the initial velocity vector described314

in Section E about the vertical, i.e. the z axis, by an angle that is drawn from a uniform [0, 2π] radians315

distribution. This introduces a non-deterministic component to the simulations, and reflects the observation316

that the fruit locations do not show a clear pattern or bias in orientation around the center of the plant.317

We also add a second stochastic component to the initial velocity of individual seeds. By construction,318

the model is two-dimensional, and thus the deterministic flight path of the seeds lies in a plane. Simulating319

seed dispersal in this way produces an unrealistic distribution in which seeds land in radial lines emanating320

from each fruit. In reality, the interaction between the seeds and the fluid jet as well as other inherent321

symmetry-breaking noise in the system creates a slight angular dispersal in the flight paths. To incorporate322

this in our simulation, we apply a slight additional rotation about the vertical axis to each individual seed,323

with rotation angle for each seed drawn from a uniform [−0.2, 0.2] radians distribution.324

More on Step 5 The germination of any given seed will depend on numerous factors, including soil quality,325

water availability, and environmental conditions. If a seed germinates to a seedling, the survival of a seedling326

is also dependent on many of the same factors, but also involves a competition for space: a seedling that is327

too close in proximity to another plant or another successful seedling is unlikely to survive. Our objective328

here is not to describe or model this complex process, but rather to investigate qualitatively how the input329

at the level of the stem and fruit may contribute to the success over several generations. Thus, we take a330

black box approach in which each seed is chosen to produce a successful plant at the next generation based331

on assigning a fixed probability of success, but conditioned on a proximity requirement. In the simulations332

shown in Figure 4 of the main text, we have implemented a probability of survival of p = 1.5%, as well as333

a requirement for success that a seed is greater than or equal to δmin = 2.5 m from any other successful334

seedling and/or existing plant. These particular values were not chosen based on quantitative data, for such335
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data does not, to our knowledge, exist for Ecballium. Naturally, different choices will have a quantitative336

effect on reproductive success, e.g. how many new plants appear in the third generation. To demonstrate337

that the same qualitative features appear for different input parameters, we show in Fig. S6 the results of338

simulations with increased and decreased germination probabilities and minimum distance threshold. The339

top row, p = .015, δmin = 2.5 m, corresponds to the values used in Fig. 4 of the main text. The second row340

shows results with a decreased probability and increased minimum distance, which causes the number of341

successful plants at the third generation to be diminished. The third row represents an unrealistic regime in342

which the probability is increased and the minimum distance decreased, leading to a significant increase in343

third generation plants. The fourth row shows results for an increased probability and increased threshold344

distance. For each set of p and δmin, the qualitative features across the different fruit/stem types are similar,345

and the plant with the baseline parameters determined from laboratory measurements of real specimens346

generates in each case the most plants at third generation.347

G. Comparative analysis parameter changes. In simulating the three hypothesized mutant plants, we have348

made the following parameter changes from the base case:349

1. Under-pressurised stem Inflated stem radius at base reduced from r0 = 0.21 cm to r0 = 0.19 cm;350

inflated effective Young’s modulus of stem reduced from Es = 50 MPa to Es = 10 MPa. In inflated351

state, fruit major axis increased from a = 1.65 cm to a = 1.7 cm; minor axis increased from b = 0.97352

cm to b = 0.99 cm.353

2. Stiffer stem Stem radius at base initial state increased from r0 = 0.17 cm to r0 = 0.3 cm; the same354

degree of inflation was applied as the base case, so that the stem radius in the inflated state was355

r0 = 0.37. The stem intrinsic curvature for this was also decreased in magnitude, with the parameter356

C changed from C = −4 cm−1 to C = −3.5 cm−1. This change was made so that a stiff stem would357

result in a nearly horizontal fruit.358

3. Over-pressurised stem In the initial state, the fruit major axis was increased from a = 1.75 cm to359

a = 2.0 cm; and the minor axis was increased from b = 0.97 cm to b = 1.1 cm. The same decrease360

during stem pressurisation was applied as in the base case, so that in the pressurised (stem) state, the361

major axis was a = 1.88 cm (compared to a = 1.65 cm in base case), and the minor axis was b = 1.07362

cm (b = 0.97 cm in base case).363

H. Fluid redistribution. Our comparative analysis demonstrates that successful dispersal requires a launch364

angle close to 45 degrees, sufficient fruit pressure to generate high seed velocities, and sufficient but not365

excessive fruit rotation to create a good distribution of landing locations. Each of these components depends366

on numerous geometric and mechanical parameters, as described through each level of our mathematical367

model. The full parameter space is high dimensional – e.g. there are 11 parameters in the properties of the368

stem and fruit (as given in Table S1), plus additional parameters characterizing the pressurization of the369

fruit, properties of the seeds, density of the mucilaginous fluid, etc. It is impractical to independently explore370

the sensitivity of the dispersal mechanism to all model parameters. Moreover, several key parameters are371

linked, e.g. the stiffness of the stem depends on the geometric dimensions as well as the degree of stem372

inflation. Still, the question remains to what degree Ecballium has been bio-engineered by evolution to373

achieve successful dispersal. To provide a partial answer and in a self-consistent manner, in Fig. 5 of the374

main text, we have presented the sensitivity of the mean dispersal distance and number of 3rd generation375

plants to a critical component: fluid redistribution from fruit to stem in the days prior to launch. Here we376

provide the details on this calculation and further analysis.377

We first recall Table S1, which lists parameter values for stem and fruit extracted before and after the
redistribution of fluid. In particular, this Table shows the degree to which the fruit contracts (decrease in
major axis a and minor axis b), the stem inflates (increase in base radius r0) and elongates (increase in γ),
and the stem increases in effective stiffness Es. To explore the impact of a greater or lesser degree of fluid
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redistribution, we assume that each of these parameters varies in a continuous manner based on the degree
of redistribution. In particular, we define the dimensionless parameter β such that each of the parameters
{a, b, r0, γ, Es} vary linearly from the extracted initial value when β = 0 to the extracted final value when
β = 1. That is, we define

r0(β) = r0init(1 − β) + r0finalβ [S53]
a(β) = ainit(1 − β) + afinalβ [S54]
b(β) = binit(1 − β) + bfinalβ [S55]
γ(β) = γinit(1 − β) + γfinalβ [S56]

Es(β) = Esinit(1 − β) + Esfinalβ [S57]

where the initial and final values correspond to those in the third and fourth columns of Table S1. Note that378

in this modeling framework, the pressure within the fruit will be a decreasing function of β. This is because379

the pressure is related to the fruit dimensions a and b via Equations S43 and S44, which combine to give380

∆p = 2Ef h

3(ab)1/2

( 4
3πab2 − Vnat

Vnat

)
. [S58]381

Since a and b both decrease with β, ∆p does as well. A decreasing pressure would imply a decreasing382

fruit stiffness, according to the analysis in Sec A.2. On the other hand, our indentation data on fruits,383

main text Fig. 2B, shows a nearly constant stiffness under decreasing fruit volume in the days building up384

to launch. This could be accounted for by a corresponding increase in the Young’s modulus of the fruit385

wall during fluid redistribution, though ascertaining such a change would require a cellular-level analysis386

that goes beyond the scope of this work. Therefore, lacking a detailed cellular-level understanding of the387

redistribution process and any potential remodeling in the fruit wall, in the analysis presented below and388

in Fig. 5 of the main text, we have taken the simplest assumption of a constant fruit Young’s modulus.389

Since the pressure dictates the maximum seed velocity, an alternative modeling assumption could be to390

keep the maximum velocity fixed for varying β. However, since the impact of β on stem stiffness and thus391

launch angle and fruit rotation remains the same, we find that for such an assumption, the qualitative392

characteristics of the analysis presented below and in main text Fig. 5 do not change significantly (results393

not shown).394

For a given value of β, we simulate the seed ballistics for seeds from a single fruit, from which we extract395

the following metrics: mean seed distance, maximum seed velocity, maximum seed distance, minimum seed396

distance, fruit angle at launch, maximum fruit rotation, and the standard deviation of the distribution of397

seeds. Note that in this formulation, β = 1 is the degree of fluid redistribution we have observed in the398

laboratory, β < 1 corresponds to seed launch occurring after less fluid redistribution (β = 0 corresponds399

to no fluid redistribution), and β > 1 implies a greater degree of fluid redistribution. Treating β as a400

continuous variable thus enables to examine the dispersal characteristics in a manner consistent with the401

physics underlying our model.402

The metrics listed above are plotted as a function of β, with β ranging from 0 to 2, in Fig. S7A-G. As403

well as extracting metrics from the trajectories of seeds from a single fruit, we also simulated on a coarser404

grid seed dispersal over two generations, following the probabilistic model outlined above with minimum405

distance required 2.5 m and probability of germination p = 0.005. Fig. S7H plots the mean of the number406

of plants predicted at the 3rd generation from 50 simulations for each value of β, with error bars showing407

the standard deviation.408

Fig. S7A plots the mean seed distance; this plot is combined with H in main text Fig. 5. Fig. S7B plots409

the maximum seed velocity, which is the exit velocity of the first seed. This value decreases monotonically410

with β, because an increase in fluid redistribution corresponds to a decrease in pressure within the fruit.411

This does not, however, necessarily generate better dispersal. For very small values of β, the launch angle412

is close to vertical (Fig. S7E), and the fruit rotation during launch is very low (Fig. S7F) – this is because413
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the tangent to the stem at the tip is closely aligned with gravity, therefore the moment applied by the fruit414

is relatively small. In this case, seeds fire mostly vertically, reaching a low maximum distance (Fig. S7C),415

and low standard variation (Fig. S7G). The result is that the seeds are largely clustered close together at416

an intermediate distance, which does not translate to generational success.417

For β around 0.5, the situation is qualitatively different. The relative fluid redistribution is only half418

of what we observed, but is still sufficient to create a good launch angle. However, the change in angle419

combined with the weak stem and relatively more massive fruit means that the torque on the stem is420

high, creating a very large fruit rotation upon dehiscence. The result is that though some seeds reach high421

distances (Fig. S7C shows a max around β = 0.4), excessive fruit rotation causes other seeds to land very422

close to the original plant, so that the minimum seed distance is close to zero (Fig. S7D). Overall, though a423

good spread of seeds is attained, seeds landing too close to the mother plant have no chance to succeed,424

and the number of predicted plants at 3rd generation is a bit below the maximum simulated.425

On the other end, these metrics also demonstrate clearly why a degree of fluid redistribution greater426

than we have observed, i.e. values of β greater than one, may also be detrimental to dispersal. For large427

β, the fruit has depressurized to a greater extent, leading to a lower maximum velocity. The stem is also428

stiffer, and the fruit is less massive, thus there is less torque creating less fruit rotation. The stiffness also429

impacts the launch angle, though as the stem has a natural curvature, the launch angle is close to constant430

for β ⪆ 1. Overall, the metrics for β > 1 are similar to those at β ≈ 1, just with a decreased distance due431

to the decreased pressure, and thus there is no benefit to the additional redistribution, which is reflected by432

a decreasing number of plants at 3rd generation with increasing β > 1.433

3. SI video legends434

1. Video S1: CT Scan of fruit, providing detailed view of internal structure, including seed placement,435

size, and shell thickness.436

2. Video S2: Timelapse of the final days of development of a ripe fruit. Near ripe fruits were extracted437

from the Oxford Botanic Garden, stem intact, and placed in a supporting tube with water. Images438

were acquired every 30 minutes, continuing until the fruit ejected its seeds.439

3. Video S3: seed ejection filmed at 8600 frames per second. A nearly ripe fruit was extracted from440

the Oxford Botanic Garden, stem intact, and placed in a supporting tube with water. A high-speed441

camera remained aimed at the fruit for several days, with an image-based auto-trigger set up, so that442

seed ejection could be captured when it occurred naturally.443
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Baseline Under-pressurised stem Stiffer stem Over-pressurised fruit
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Fig. S6. Simulations of plant reproductive success over three generations, varying both input model parameters as outlined in the Comparative analysis in Fig. 4 of the main
text, and also varying the probability p that a given seed successfully produces a new plant, as well as the minimum distance δmin that a seed must be from all other successful
seeds and/or plants in order to survive; units in m.

18 of 19 F. Box, D.E. Moulton, D. Vella, Y. Bhagotra, T. Lowe, A. Goriely, & C. Thorogood



Relative fluid redistribution,  Relative fluid redistribution,  

Relative fluid redistribution,  Relative fluid redistribution,  

Relative fluid redistribution,  Relative fluid redistribution,  

M
ea

n 
se

ed
 d

is
ta

nc
e

M
ax

 s
ee

d 
ve

lo
ci

ty

M
ax

 s
ee

d 
di

st
an

ce

M
in

 s
ee

d 
di

st
an

ce
M

ax
 fr

ui
t r

ot
at

io
n

St
an

da
rd

 d
ev

ia
tio

n 
of

 s
ee

d 
di

st
rib

ut
io

n 
A B

C D

E F

G H

Relative fluid redistribution,  

La
un

ch
 a

ng
le

Relative fluid redistribution,  

Th
ird

 g
en

er
at

io
n 

pl
an

ts

0.5 1.0 1.5 2.0

0.005

0.010

0.015

0.020

0.5 1.0 1.5 2.0

6.0

6.5

7.0

7.5

8.0

8.5

0.5 1.0 1.5 2.0

13.5

14.0

14.5

15.0

15.5

16.0

0.5 1.0 1.5 2.0

10

11

12

13

0.5 1.0 1.5 2.0

1

2

3

4

0.5 1.0 1.5 2.0

10

20

30

40

50

60

70

0.5 1.0 1.5 2.0

1

2

3

4

5

6

0.0 0.5 1.0 1.5 2.0
20

30

40

50

60

Fig. S7. Results of our analysis of fluid redistribution. In A-G, we plot the mean seed distance (A), maximum seed velocity (B), maximum seed distance (C), minimum seed
distance (D), initial launch angle (E), maximum fruit rotation (in radians per ms)(F), and standard deviation of seed distribution (G), each as functions of β, computed from seed
dispersal of a single fruit. We also performed 50 simulations of the probabilistic generational model for each value of β, and plot in H the mean number of 3rd generation plants,
with error bars displaying the standard deviation.
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