
Growth-induced axial buckling of a slender elastic filament

embedded in an isotropic elastic matrix

Stephen G. O’Keeffe, Derek E. Moulton, Sarah L. Waters and Alain Goriely

Mathematical Institute, University of Oxford

April 21, 2013

Abstract

We investigate the problem of an axially-loaded, isotropic, slender cylinder embedded in a soft,
isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder
and surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial
compression of the cylinder. We use two different modelling approaches to estimate the critical axial
growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling
wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single
3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament
as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these
two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the
strength of the foundation, in terms of the geometric and material properties of the system.

1 Introduction

Cylindrical structures are ubiquitous throughout the biological world. Examples can be found across a
broad range of length scales, from microtubules within the cell to macroscopic plant stems. Every type
of structure fulfils a key role within its relevant environment, such as oxygen and nutrient transport
provided by airways and arteries, or signal transmission carried out by axons. Biological structures
are often subject to differential growth, a process whereby different regions of tissue within the same
body grow at different rates. This gives rise to residual stresses that exist in the absence of any applied
tractions, and have important effects on the overall mechanical behaviour of a material body [7, 8].
Should the stresses within a body become sufficiently large, material failure can occur and this may be
manifested in various ways, including fracture, cracking, plastic yield or buckling.

Rod and beam-like structures are often embedded within another material. Examples include plant
roots growing in soil, microtubules embedded within the cytoplasm, and blood vessels surrounded by
body tissue. A simple modelling approach that can be applied to each of these scenarios is to treat the
surrounding material as an elastic foundation. Many studies of such embedded slender structures make
use of the classical Euler beam theory [4] in order to study the onset of buckling under the action of
a compressive force. Murmu and Pradhan [17] used Timoshenko beam theory (an extension of Euler
beam theory) to investigate the effect of various types of elastic foundation on the critical longitudinal
buckling stress (i.e. the compressive stress at which the tube buckles) of embedded single-walled carbon
nanotubes. Their analysis made use of a foundation modulus parameter, kf , which characterises the
amount of tranverse reinforcement of the foundation acting on the tube [24, 23, 5]. They found that the
critical buckling pressure increases with kf , although no information is given on how the parameter kf can
be measured for a specific material. Brangwynne et al. performed buckling experiments on microtubules.
They applied axial loads to microtubules under two different circumstances. Firstly, when excised from
the cell they observed that under small axial loads, microtubules exhibited Euler-type buckling [3].
However, when embedded within the cytoplasm they were able to withstand a greater compressive force
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(imposed by applying a normal force at the point where the microtubule meets the cell membrane) before
the onset of buckling. Moreover, once buckling did occur, the observed wavelength was shorter than when
isolated microtubules were considered. The authors also carried out a theoretical analysis by treating a
microtubule as a cylindrical, inextensible beam embedded within an elastic foundation. They proposed
that the observed buckling mode is that which minimises the sum of the beam’s bending energy and the
energy required to transversely displace the surrounding cytoplasm. Their analysis uses the parameter α
to characterise the transverse reinforcement of the cytoplasm, and they estimate this parameter in terms
of the radius of the rod, a, the Young’s modulus of the surrounding matrix, G, and the characteristic
buckling length scale of the structure, l as follows:

αe1 =
4πG

log
(
l
a

) . (1)

However, this approach is problematic, since the wavelength l is not known a a priori. Therefore this
estimate cannot be used in any predictive way. Furthermore, its derivation remains mysterious. An
alternative estimate of this parameter where the wavelength is replaced by the length L of the beam was
presented in [20], and given by

αe2 =
4πG

log
(
L
a

) . (2)

As we will see, this estimate cannot be correct either as the buckling properties of a long filament in a
matrix are essentially independent of the length of the beam. By comparing the exact buckling properties
of a cylinder under axial load in an infinite matrix with the properties of a Kirchhoff rod on an elastic
foundation we derive a new estimate for the foundation modulus parameter.

1.1 The Problem

We consider the problem of an isotropic, slender, elastic filament embedded in an isotropic, elastic matrix.
The filament and matrix are constrained in the axial direction by two flat, rigid plates and the filament
undergoes uniform axial growth, so that it becomes axially compressed. At a critical growth, the filament
buckles. We model this problem firstly by considering volumetric growth in a 3-dimensional, non-linear
elastic body. This approach has been used in a number of previous studies of axial and circumferential
buckling of hollow multi-layered cylinders with finite radii [10, 21, 22, 14], and exploits the idea of
multiplicative decomposition of the deformation tensor into two components: stress-free growth and
elastic response. The framework was originally proposed by Rodriguez et al. [19], and has since been
widely incorporated into many models of volumetric growth, e.g. [14]. For the case of a neo-Hookean
filament and neo-Hookean matrix we are able to estimate the critical growth value analytically via the
use of the WKB method. Secondly, we consider a rod-theory formulation that models the system as a
two-dimensional elastic beam embedded in a Winkler foundation. Like previous rod-theory models, this
approach makes use of a foundation modulus parameter. Each approach provides us with an estimate
of the critical axial growth of the filament and the wavelength of the resulting buckled state. The goal
of this paper is to fully describe this buckling instability and obtain an estimate of this parameter by
comparing the results of two approaches. This foundation modulus parameter is directed related to
geometric and material properties of the system. Further, the generalisation to a Mooney-Rivlin matrix
does not alter this estimate.

2 3-D Elasticity Approach

2.1 General Setup

We follow closely the method outlined in [1]. Consider an elastic body occupying a reference (stress-
free) configuration, B0, defined by co-ordinates X. The body is subject to a deformation, χ, so that its
new configuration, Bf (which we shall refer to as the current configuration), is defined by co-ordinates
x = χ(X). Let F = dχ/dX = Grad(χ) be the geometric deformation tensor.

As described in the Introduction, the effects of growth are incorporated into the model via multi-
plicative decomposition of the deformation gradient tensor, so that F = AG, where G represents local
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stress-free growth and A represents the elastic response. Since we will restrict our attention to semi-
inverse problems where cylinders are mapped onto other cylinders, a full description of the kinematics
of growth is not required.

We assume that the body is incompressible, which implies that only isochoric deformatiosn are pos-
sible, that is

det A = 1. (3)

We also assume the body is hyperelastic, that is there exists a strain-energy density, W , such that

T = A
∂W

∂A
− p1, (4)

where T is the Cauchy stress tensor and p is a Lagrange multiplier enforcing the incompressibility
constraint. In the absence of body forces, the equation of static mechanical equilibrium can be written
as

div T = 0. (5)

For our problem, a natural choice for boundary conditions is to prescribe the deformation on some part
of the boundary and impose a pressure, P , acting in the normal direction, n̂, on the rest of the boundary:

T.n̂ = −P n̂. (6)

2.2 Incremental Deformations

We now investigate the stability of solutions of (5). We do so by introducing a small perturbation to
the finite deformation. This perturbation is an incremental deformation, that belongs to a wider class of
deformation with no prescribed symmetry, and is defined by

χ(X) = χ(0)(X) + εχ(1)(X), (7)

where 0 < ε� 1 characterises the size of the perturbation. Accordingly, we define

F = (1+ εF(1))F(0), A = (1+ εA(1))A(0). (8)

The incremental equations and boundary conditions are formulated in terms of the current configuration.
We expand the Cauchy stress tensor as follows

T = T(0) + εT(1) +O(ε2). (9)

Substitution of (9) into (4), gives

T(0) = A(0) ∂W
(0)

∂A(0)
, (10)

T(1) = L : A(1) + A(1)A(0)W
(0)
A − p(1)1, (11)

where p = p(0) + εp(1) and L is the fourth-order tensor given by

L : A(1) = A(0)
(
W

(0)
AA : A(1)

)
A(0). (12)

Here, W
(0)
A and W

(0)
AA are the first and second derivatives of W with respect to A evaluated at A(0).

Explicitly, the non-zero components of L are given by [18]:

Liijj = Ljjii = αiαj
∂2W
∂αi∂αj

,

Lijij = α2
i

αi
∂W
∂αi
−αj ∂W∂αj

α2
i−α

2
j

, i 6= j, αi 6= αj ,

Lijij =
Liiii−Liijj+αi ∂W∂αi

2
, i 6= j, αi = αj ,

Lijij − Lijji = Lijij − Ljiij = αi
∂W
∂αi

, i 6= j,


(13)

where αi are the principal values of A(0). The equilibirum equations are then given by

div(T(0)) = 0, (14)

div(T(1)) = 0. (15)
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Figure 1: Illustration of the axisymmetric deformation of a two-layer cylinder subject to axial differential
growth. Capitals denote quantities defined with the respect to the reference configuration, B0 (left), while
lower case characters denote the same quantities defined in terms of the current configuration, Bf (right).
We are primarily interested in the zero-extension case, therefore we set l = L0.

The boundary conditions are given by fixing χ(0) and χ(1) on some part of the boundary and on the
remainder, substitution into (6) gives

T(0).n̂ = 0, (16)

T(1).n̂ = 0. (17)

The existence of a solution to (15) and prescribed boundary conditions indicates a bifurcation and suggest
that an instability is possible. We shall assume throughout this paper that the existence of such a solution
renders the solution χ(0) unstable.

2.3 The Two-Layer Cylinder

Having set up the general finite and incremental equilibrium equations and boundary conditions, we use
them to solve our specific problem. We consider a two-layer, solid cylinder constrained axially between
two rigid plates. The reference configuration, B0, is defined by co-ordinates X= ReR + ZeZ , with
0 ≤ R ≤ C, 0 ≤ Z ≤ L0 and a material boundary at R = B. Following the deformation, the cylinder
occupies the configuration Bf defined by co-ordinates x= χ(0)(X) = r(R)eR + λzZeZ , with 0 ≤ r ≤ c
and 0 ≤ z ≤ l. The parameter λz = l/L0 is a constant, representing the overall change in length of the
cylinder and we use b and c to denote the material boundaries in the deformed configuration, i.e. b = r(B)
and c = r(C). The presence of the rigid plates requires that l = L0 so that λz = 1. This deformation is
shown schematically in Figure 1. We prescribe constant axial growth in the inner layer, denoted by the
parameter γ and allow no growth or resorption to occur in the other two directions, nor in any direction
in the outer layer.

4



2.3.1 Axisymmetric Deformations

We first consider the mechanics and geometry of the axisymmetric solution prior to bifurcation. The
deformation gradient tensor is then given by

F(0) = diag
(
r′,

r

R
, 1
)
, (18)

where the prime denotes differentiation with respect to R. The growth tensor is given by

G = diag(1, 1, γ3), γ3 =

{
γ, 0 ≤ R ≤ B,
1, B < R ≤ C, (19)

and the elastic response tensor is given by

A(0) = diag(α1, α2, α3). (20)

From (19)-(20) and the relationship F(0) = A(0)G, the variables αj are given by α1 = r′, α2 =
r/R, α3 = 1/γ3. Initially, we shall assume both layers are neo-Hookean, and we define the strain-
energy density in each layer to be

Wi,o (α1, α2, α3) =
µi,o
2

(α2
1 + α2

2 + α2
3 − 3), (21)

where µi,o are the shear moduli of each layer. Utilising the incompressibility condition (3), it follows
that α1α2α3 = 1, thus we may define Ŵi,o such that

Wi,o(
1

α2α3
, α2, α3) = Ŵi,o(α2, α3) =

µi,o
2

(
1

α2
2α

2
3

+ α2
2 + α2

3 − 3

)
. (22)

Since A(0) is diagonal, it follows that T(0) = diag(trr, tθθ, tzz) and substitution into (5) yields only one
non-trivial equation:

dtrr
dr

+
trr − tθθ

r
= 0. (23)

At the boundary between the inner and outer layer (r = b), we require the displacement to be continuous.
Furthermore, the radial stress must be continuous. On the outer radius of the cylinder (r = c), we impose
the condition (16) with P = 0 and n̂ = er, whilst at the centre we require the radial stress to remain
bounded. Therefore, the boundary conditions are as follows

trr(c) = 0, (24)

trr(0) <∞, (25)

[trr]r=b = 0. (26)

Note that it may not be possible to satisfy (25). In such cases the deformed body will contain a cavity
and (25) is replaced by a zero radial stress condition on the inner wall, i.e. trr(a) = 0, where a = r(0),
as detailed in [9]. Here, we do not consider the possibility of cavitation.

Substitution of (22) into (10) and (23) then gives

dtrr
dr

=
α2

r

∂Ŵi,o

∂α2
, (27)

which can be integrated to yield

trr(r) =


trr(b)−

∫ r

b

α2

r

∂Ŵi

∂α2
dr, 0 ≤ r ≤ b,

−
∫ r

c

α2

r

∂Ŵo

∂α2
dr, b ≤ r ≤ c.

(28)

The incompressibility equation (3) can be integrated directly to give

r =

{ √
γR, 0 ≤ R ≤ B,√
b2 + (R2 −B2), B ≤ R ≤ C. (29)
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2.3.2 Incremental Equations

We denote the components of the incremental deformation, χ(1), in polar co-ordinates as
(u(r, θ, z), v(r, θ, z), w(r, θ, z))T . This gives the following expression for A(1):

A(1) = gradχ(1) =



ur
uθ − v
r

uz

vr
u+ vθ
r

vz

wr
wθ
r

wz


, (30)

where subscripts denote differentiation with respect to the relevant variable. The incompressibility
condition leads to the relation

tr A(1) = ur +
u+ vθ
r

+ wz = 0. (31)

We seek solutions of (15) that are Fourier modes in θ and z:

u = f(r) cos(mθ) cos(αz), (32)

v = g(r) sin(mθ) cos(αz), (33)

w = h(r) cos(mθ) sin(αz), (34)

p1 = k(r) cos(mθ) cos(αz), (35)

where α = nπ/L0, n ∈ N and m is the mode number, chosen to be a non-negative integer so that
displacements are single-valued. The values of m and n determine the type of buckling that occurs.
If m = 0 and n ≥ 1, the centreline of the cylinder remains straight and we obtain radially symmetric
solutions, but a ‘barrelling’ effect is observed. If m = 1 and n ≥ 1 then the cross-section of the cylinder
remains circular, however the centreline ceases to be straight. Finally, if m ≥ 2 we observe circumferential
buckling, with m nodes visible in the cross-section. Axial oscillations are possible when n ≥ 1. Each
of these cases has been studied previously. For example, Moulton and Goriely examined the case of
cross-sectional buckling (m ≥ 1, n = 0) as a result of radial growth [15]. MacLaurin et al. studied
combinations of axial and circumferential modes m ≥ 1, n ≥ 1 arising in tumour capillaries due to the
rapid growth of malignant cells [13]. Goriely and Vandiver investigated the axial stability of growing
arteries (m = 1, n ≥ 1) [10]. In 2008, Goriely et al studied the effect of geometry on the type of buckling
observed for a one-layer, neo-Hookean cylinder [11]. They found that in the regime of a slender, solid
cylinder, instability will always develop in the axial direction before the circumferential direction. Using
this information, we make the ansatz that, in the two-layer case, an axial buckling mode will be the
observed buckling mode, therefore we set m = 1.

Substitution into the incremental equilibrium equations then yields

k′ = (r(L′2211 − L′3311)− L2222 + L2233 − L2121 + L1331)g/r2

+ (L2112 + L2211 − L1331 − L3311)g′/r + (L1111 − L3311 − L1331)f ′′

+ (r(L′1111 + p′0 − L′3311) + L1111 − 2L3311 + L2233 − L1331)f ′/r (36)

+ (r(L′2211 − L′3311)− L2222 + L2233 + L1331)f/r2 − L2121f/r
2 − α2L3131f,

rL1212g
′′ = −k + (rL′1212 + L1212 + L2222 − L2233 − L3223)f/r

+ (rL′1212 + L1212)g/r + (L2222 − L2233 − L3223)g/r

+ rα2L3232g + (L2211 − L2233 − L3223 + L1221)f ′ − (rL1212 + L1212)g′, (37)

L1313f
′′′ = (f ′ + (g + f)/r)L2323/r

2 − (rL′1331 + rp′0 + L1331 − L2332)α2f/r

− L1313((f ′′ + g′′)/r − 2(f ′ + g′)/r2 + 2(f + g)/r3)

+ (L3333 − L2332 − L2233)α2(f + g)/r + (L3333 − L3311 − L1331)α2f ′

− (rL′1313 + L1313)(f ′′ + (f ′ + g′)/r − (f + g)/r2)/r − α2k. (38)
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The incremental ambient pressure is zero, so applying (17) we have the following three boundary condi-
tions at r = c

(L1122 − L1133)(f + g) +

(
L1111 − L1133 + α1

∂W

∂α1

)
rf ′ − rk = 0, (39)

rg′ − g − f = 0, (40)

r2f ′′ + rf ′ + α2r2f = 0. (41)

At the interface between the two layers (r = b), we assume a continuous deformation without slippage,
thus we require

fi = fo, (42)

gi = go, (43)

f ′i = f ′o. (44)

Furthermore, we require the radial stress at the interface to be continuous. Therefore

(L1122i − L1133i)(fi + gi) +

(
L1111i − L1133i + α1i

∂Wi

∂α1i

)
rf ′i − rki

= (L1122o − L1133o)(fo + go) +

(
L1111o − L1133o + α1o

∂Wo

∂α1o

)
rf ′o − rko, (45)

L1212i(rg
′
i − gi − fi) = L1212o(rg′o − go − fo), (46)

L1313i(r
2f ′′i + rf ′i + (α2r2 − 1)fi + rg′i − gi)

= L1313o(r2f ′′o + rf ′o + (α2r2 − 1)fo + rg′o − go). (47)

Finally, we demand that all solutions remain bounded as r → 0.

2.4 Numerical Solutions

We simplify equations (36)-(38) by eliminating k. This results in a six-dimensional system of equations
that can be written in the form

y′ = f(y; r), y ∈ R6, (48)

where y= (f, f ′, f ′′, g, g′, g′′). The radial stresses must remain bounded as r → 0. Therefore the functions
f, g and k must be ‘well-behaved’ as r → 0, i.e. we demand bounded approximations of f, g and k close
to zero for which the incremental equilibrium equations are satisfied. We proceed by eliminating k from
(36)-(38) and seek f and g of the form

f = Q1r
ν1 , g = Q2r

ν2 . (49)

We substitue these expressions into (36)-(38) and eliminate the terms that do not decay as r → 0 by
setting the coefficients of such terms to be zero. There are three cases to consider; they are ν1 > ν2,
ν1 = ν2 and ν1 < ν2. Each gives rise to an admissible expression for both f and g. Combining these
expressions then yields

f ∼ a1r2 + b1, g ∼ a2r2 − b1, as r → 0, (50)

where a1, a2 and b1 are constants. The remaining boundary conditions comprise a set of 9 linear functions
c1,...,9(y(r); r):

c1,2,3(yo(c); c) = 0, c4,5,6,7,8,9(yi(b); b) = c4,5,6,7,8,9(yo(b); b). (51)

The determinant method can be used to find values of γ for which non-trivial solutions exist. We make
three copies of the system (48) with linearly independent conditions of the form (50) as r → 0. For our
system, y(i), i = 1, 2, 3,are given by

y(i) ∼ (f (i), f (i)′, f (i)′′, g(i), g(i)′, g(i)′′), r → 0, (52)

7



where

f (1) = r2, g(1) = 0, (53)

f (2) = 1, g(2) = −1, (54)

f (3) = 0, g(3) = r2. (55)

We integrate this system up to r = b and use the boundary conditions at the interface (51(b)), together

with the end values y
(j)
i (b), j = 1, 2, 3, to obtain the initial conditions y(j)

o (b), j = 1, 2, 3. We then
integrate up to r = c and evaluate the 3×3 determinant of boundary conditions at r = c given by

∆(γ) =

∣∣∣∣∣∣
c1(y(1)

o (c); γ) c2(y(1)
o (c); γ) c3(y(1)

o (c); γ)

c1(y(2)
o (c); γ) c2(y(2)

o (c); γ) c3(y(2)
o (c); γ)

c1(y(3)
o (c); γ) c2(y(3)

o (c); γ) c3(y(3)
o (c); γ)

∣∣∣∣∣∣ . (56)

Given an initial length of the cylinder, for each choice of n, there exists a non-trivial solution of the system
(36)-(38) satisfying the prescribed boundary conditions for values of γ at which the determinant vanishes.
To find such values, we use a numerical root-finding scheme, such as the interval bisection method. For
a growing tube, the critical growth value corresponding to the mode n, say γn is the smallest value of γ
in the interval (1,∞) for which ∆(γ) = 0. The critical growth is then given by γc = minn (γn).

3 3-D Elasticity Results

We first examine the effect of the outer layer thickness on the buckling behaviour. The curves in Figure
2(a) show γn as a function of the outer radius, C, for fixed inner radius, B = 1, initial length, L0 = 100,
and shear modulus ratio (which we shall call the stiffness ratio), µi/µo=100. For each mode the corre-
sponding growth curve is monotonic and approaches a constant value as C increases (this is observable
for n > 5 in Figure 2(a), but the limits are not shown for lower modes). This is due to the fact that
increasing the thickness of the outer layer results in a greater degree of transverse reinforcement acting
on the inner layer, and the displacement of the surrounding medium is confined to a small region sur-
rounding the inner layer. Within this region, the magnitude of the displacement decreases as r increases
so that material points far from the buckled filament are less displaced than those close to the material
boundary. Thus, increasing the thickness of the outer layer beyond a certain amount has no effect on
the resulting value of γn.

For each C the critical growth γc is given by γc = minn (γn), as shown in Figure 2(b). Visual
depictions of the critical mode in each region are shown in Figure 2(e). For the given parameter values,
we see that close to C = 15 a mode transition occurs, where the observed buckling mode suddenly
switches from n = 1 to n = 13. A similar jump in buckling mode has been observed previously by
Moulton and Goriely [15] in the case of a single layer tube subject to radial growth. We can consider the
total energy of the system to be a combination of the bending energy of the inner cylinder and the elastic
‘foundation’ energy of the outer layer. For a one-layer tube (C = B), we recover the classical Euler beam
problem, and expect the mode n = 1 to be selected. When C is close to B, the foundation energy is
small compared to the bending energy, therefore longer wavelength modes are selected, when compared
to the case in which C is large. As C increases, the foundation energy of the outer layer plays a more
significant role and the inner layer ‘prefers’ to undergo a higher degree of bending. Therefore, shorter
wavelength modes are selected. Thus, we can interpret the transition point as the maximum thickness
of the outer tube for which larger foundation displacements are preferable to a higher degree of bending.

Next, we consider the case of a fixed geometry with varying stiffness ratio, that is, we set µo = 1
and vary µi. In Figure 2(c) we see that for each buckling mode, the critical growth value decreases
monotonically as the stiffness ratio increases. This reflects the fact that a relatively soft outer layer
is easier to displace than a relatively stiff outer layer. Thus, as µi/µo increases, the amount of lateral
reinforcement decreases so that less axial growth can occur before the onset of instability. We also observe
that each curve approaches a constant value that is greater than or equal to 1 as µi/µo → ∞. We can
consider this limit to be identical to the scenario of the outer layer being absent altogether, which is
precisely the Euler buckling problem [4]. Furthermore, the observed buckling mode is highly sensitive
to variations in the stiffness ratio, particularly when µi/µo < 40. In this region, shorter wavelength
buckling modes are selected as the observed buckling mode because the associated bending energy cost
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(a) µi/µo = 100, B = 1, L0 = 100.

5 10 15 20 25 30
0.8

0.9

1

1.1

1.2

1.3

C/B

γ
c

I

II

(b) µi/µo = 100, B = 1, L0 = 100.

0 50 100 150 200
1

1.2

1.4

1.6

1.8

2

µ
i
/µ

o

γ
n

 

 

n = 2

n = 3

n = 4

n = 6

n = 8

n = 10

n = 16

n = 22

n increasing

(c) B = 1, C = 40, L0 = 100.

0 50 100 150 200
1

1.2

1.4

1.6

1.8

2

µ
i
/µ

o

γ
c

III

IV

V

(d) B = 1, C = 40, L0 = 100.

(e)

Figure 2: (a) Critical growth vs. relative thickness of layers for a range of modes between n = 1 and n = 14
and fixed stiffness ratio. (b) Overall critical growth vs. relative thickness of each layer. Around k = 15 a
mode transition occurs, where the observed buckled mode swtiches from one with a long wavelength to one
with a short wavelength. (c) Critical growth vs. stiffness ratio µi/µo for a range of modes between n = 1 and
n = 22. (d) Overall critical growth vs. stiffness ratio. Crosses indicate transition points. We note the curve
appears much smoother than that shown in (b) and there exist many more transition points. (e) Depictions
of the buckled inner filament corresponding to each of the points marked in (b) and (d). The amplitude of
the oscillations is determined by ε and has no physical significance. It has been chosen to illustrate the form
of the structure.
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Figure 3: Observed buckling wavelength vs. stiffness ratio µi/µo for B = 1, C = 40 and a range of initial
lengths.

is low, whilst longer wavelength modes are selected as the relative stiffness and thus foundation energy
of the outer layer decreases. The critical growth γc as a function of µi/µo is given in Figure 2(d). We
observe much ‘smoother’ transitions between the observed modes as µi/µo varies, when compared to the
case of varying C. Depictions of the inner cylinder are shown in Figure 2(e) for the indicated points in
Figure 2(d).

Repeating our numerical procedure for different values of L0 while maintaining B and C at fixed
values, we find that the graphs of γc against µi/µo (not shown), are identical. This indicates that in the
case of a filament embedded in a sufficiently thick outer layer, the critical growth value is independent
of the initial length of the filament. Figure 3 shows the corresponding observed dimensionless buckling
wavelength, λ, against the stiffness ratio for each value of L0. We observe that the initial length does have
some influence on the buckling wavelength, particularly when B/L0 = O(1). However, this dependence
arises due to our demand that n is an integer, so that the wavelength must belong to a discrete set
of values. As L0 increases we observe smaller differences between the curves, so for large L0 we may
estimate the wavelength by fitting a smooth curve to the discretized results.

In Figure 4, the log-log plot of the dimensionless wavelength of the observed buckling mode against
the stiffness ratio µi/µo is shown for the case L0 = 100. We observe that the slope is close to 1/4,
which indicates that the observed buckling wavelength and stiffness ratio are related by a power law,
i.e. λ ∝ (µi/µo)

1/4. This is consistent with a basic dimensional analysis an can already be found in the
original work of Winkler [23, 5]. We also consider the case m = 0 (i.e. barrelling modes) for the parameter
values L0 = 10, B = 1, C = 40 and varying µi/µo. In the region of interest (25 < µi/µo < 200), the
critical growth minn(γn) is greater than that corresponding to the critical growth in the case m = 1. This
justifies the assumption that slender filaments will always exhibit axial buckling rather than barrelling
instabilities.

3.1 WKB Approximation

We are particularly interested in the case of a slender filament embedded in an infinite matrix, so that we
can compare the results of the 3-D approach with those obtained using a rod-theory approach. Therefore,
we seek analytical solutions of the equilibrium equations (36)-(38) in the case C →∞ by considering the
problem of a neo-Hookean cylinder embedded in an infinite neo-Hookean matrix.

By substituting the relevant expressions for Lijkl for a neo-Hookean material into (36)-(38) we obtain
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Figure 4: log-log plot of observed buckling wavelength vs. stiffness ratio µi/µo.

the following system of equations in the inner layer:

0 = f ′′ +
1

r
f ′ −

(
n2

γ3
+

2

r2

)
f − 2

r2
g − 1

γµi
k′, (57)

0 = g′′ +
1

r
g′ −

(
n2

γ3
+

2

r2

)
g − 2

r2
f − 1

γµi

k

r
, (58)

0 = −f ′′′ − 2

r
f ′′ +

(
n2

γ3
+

2

r2

)
f ′ +

n2

γ3r
f − 1

r
g′′ +

1

r2
g′ +

n2

γ3r
g +

n2

γµi
k. (59)

In the outer layer, we define κ̂ = 1− (1− γ−1)b2r−2. The resulting system is then given by

0 =

(
1−

(
1− γ−1) b2

r2

)
f ′′ +

(
2− 1

κ̂
+ 2

(
1− γ−1) b2

r2

)
f ′

r
−
(
n2r2 +

2

κ̂

)
f

r2
− 2

r2κ̂
g − 1

µo
k′, (60)

0 = −
(

1 +
1

κ̂
+
(
1− γ−1) b2

r2

)
1

r2
f +

(
1−

(
1− γ−1) b2

r2

)
g′′

+

(
1 +

(
1− γ−1) b2

r2

)
g′

r
−
(
n2r2 + 1 +

1

κ̂
+
(
1− γ−1) b2

r2

)
g

r2
+

1

r µo
k, (61)

0 = −
(

1−
(
1− γ−1) b2

r2

)
f ′′′ − 2

r
f ′′ +

(
n2r2 + 1 +

1

κ̂
− 3

(
1− γ−1) b2

r2

)
f ′

r2

+

(
1

κ̂
− 1 + 3

(
1− γ−1) b2

r2
+
n2r2

κ̂
− b2n2 (1− γ−1)) f

r3
−
(

1−
(
1− γ−1) b2

r2

)
g′′

+

(
1− 3

(
1− γ−1) b2

r2

)
1

r2
g′ +

(
n2r2 − 1 +

1

κ̂
+ 3

(
1− γ−1) b2

r2

)
1

r3
g +

n2

µo
k. (62)
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As in the case of a finite outer radius, we require finite radial stress as r → 0 and

fi = fo, (63)

gi = go, (64)

f ′i = f ′o, (65)

2γµi

(
f ′i −

ki
µi

)
= 2µo

(
κ̂f ′o −

ko
µo

)
, (66)

γµi

(
−fi
r

+ g′i −
gi
r

)
= µoκ̂

(
−fo
r

+ g′o −
go
r

)
, (67)

γµi

(
−f ′′i −

f ′i
r

+
(
1− α2r2

) fi
r2

+
g′i
r

+
gi
r2

)
= µoκ̂

(
−f ′′o −

f ′o
r

+
(
1− α2r2

) fo
r2

+
g′o
r

+
go
r2

)
, (68)

at r = b. We replace the zero-stress condition at r = c with the condition that fo, go, ko → 0 as r →∞.

3.1.1 Inner Layer

Equations (57)-(59) can be solved exactly by using a method described in [2]. We proceed by introducting
the potential functions Ω(r, θ, z) and Ψ(r, θ, z) such that the displacements u, v and w are given by:

u = Ωr,z +
Ψθ

r
, v =

Ωθ,z
r
−Ψr, w = −∇2Ω. (69)

Furthermore, we set

Ω = ω(r) cos θ sinαz, (70)

Ψ = ψ(r) sin θ cosαz, (71)

so that substitution into (69) gives:

fi(r) = αω′ +
ψ

r
, gi(r) = −α

r
ω − ψ′. (72)

Then, eliminating k from (57)-(59) we are able to solve the remaining equations exactly. Imposing the
finite stress condition results in the following expressions for ω and ψ:

ω = a1I1 (αr) + a2I1

((
1

γ

) 3
2

αr

)
, ψ = a3I1

((
1

γ

) 3
2

αr

)
, (73)

where I1(r) is a modified Bessel function of the first kind. Therefore we have the following expressions
for fi, gi and ki:

fi = α2a1I2 (αr) +
I1
r

(
αr

(
1

γ3

) 3
2

)
(a3 + a2α) + a2α

2I2

(
αr

(
1

γ

) 3
2

) (
1

γ3

) 3
2

+
a1α

r
I1 (αr) , (74)

gi = −I1
r

(
αr

(
1

γ

) 3
2

)
(a3 + a2α)− a3αI2

(
αr

(
1

γ

) 3
2

)(
1

γ

) 3
2

− a1α

r
I1 (αr) , (75)

ki = −a1
µi
γ2
α3I1 (αr)

(
γ3 − 1

)
, (76)

where aj , j = 1, 2, 3, are constants.
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3.1.2 Outer Layer

Equations (60)-(62) do not yield an exact analytical solution. We consider the case of a high axial
wavenumber, that is α � 1 so that δ = α−1 � 1 and obtain an approximate solution using the WKB
method. Note that we cannot guarantee a priori that for given L0 the value of α corresponding to the
observed buckling mode will indeed be large and this will be discussed later. Further details can be found
in [6]. In short, we seek solutions of the form

fo
go
ko

 =


F
G
αK

 exp

(
α

∫ r

s(x)dx

)
. (77)

Substituting this expression into the equilibrium system leads to the following forms of fo, go and ko at
leading order:

fo =
a4
√
r e−α r + a5 e−α

√
r2−γ+1

(
r2 − γ + 1

)1/4
√
γ − 1

, (78)

go =
a6 e−α

√
r2−γ+1

(r2 − γ + 1)1/4
, (79)

ko =
a5 α e−α r

√
γ − 1

r3/2
, (80)

where aj , j = 4, 5, 6, are constants.
Substitution of (74)-(76) and (78)-(80) into the matching conditions (63)-(68) results in the matrix

equation
M.a = 0, (81)

where a= (a1, a2, a3, a4, a5, a6)T and Mij is the coefficient of aj in each boundary condition. For a given
aspect ratio B/L0 and stiffness ratio µi/µo we select a buckling mode of interest (i.e. choose values for
m and n) and solve the following to find γn:

det(M)(γn) = 0. (82)

Again, the critical growth is then given by γc = minn (γn).

3.2 Comparison of Numerical and WKB Results

We assess the accuracy of the WKB approximation by comparing the estimated critical growth values
and corresponding wavelengths obtained using this method with the numerical results. As before, we
assume m = 1. In Figure 5 plots of γc as a function of µi/µo are shown for five different values of L0,
together with the corresponding plot obtained numerically. We see that the estimates lie close to the
numerical curves, which indicates that our approximation provides a good estimate of the critical growth.

In Figure 6 the estimated observed buckling wavelength is plotted along with the corresponding
numerical value. We see good agreement with the numerical results, even though the largest value of α is
approximately given by 0.4π. Our approximation was based on the assumption that the wavenumber, α,
is large, but we conclude that the approximation gives good estimates of γc, even when α = O(1). The
WKB method also recovers the power law relationship between wavelength and stiffness ratio obtained
from the numerical results and the work of [3].

4 Elastic Rod Approach

The numerical results in Section 3 indicate that in the buckled configuration, spatial oscillations within
the body are confined to a single plane. Therefore, an alternative approach is to use a rod-theory
formulation, which treats the inner layer as an elastic rod embedded in an infinite medium subject to
axial growth and transverse displacements. We use the general formalism of morphoelastic rods [16] for
this particular problem. The full rod analysis also shows that the first instability is planar. Therefore,
we restrict our attention to planar deformations of a growing rod on an elastic foundation and compare
both approaches.
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4.1 Setup

We consider a stress-free straight unshearable rod of length L0 lying in the (x, y) plane. The rod’s
centreline lies along the x -axis, and it is confined between two rigid plates a fixed distance, L0, apart.
The rod is subjected to axial growth, γ, so that in the absence of the plates, its unstressed (natural)
length is L = γL0. However the axial constriction supplied by the plates results in the rod becoming
compressed, until it buckles. Let S0 and s denote the arc length of the rod in the initial and current
configurations respectively. Additionally, let S denote arc length in the stress-free grown configuration
i.e. the configuration the grown rod would adopt if the plates were removed and define β = ds/dS. We
use κ and θ to denote the curvature of the rod and angle between the rod’s centreline and the x-axis
respectively.

Assuming the system is in static equilibrium and neglecting body couples,the principles of conservation
of linear and angular momentum leads to

∂n

∂S
+ f = 0, (83)

∂m

∂S
+
∂r

∂S
× n = 0, (84)

where m= (0, 0,mz) is the resultant moment, n= (nx, ny, 0) is the resultant force, f are the body forces
per unit unstressed natural length. We assume further that the outer matrix acts as a Winkler foundation,
that is we use a linear relationship between the transverse displacement and transverse body force acting
on the rod due to the surrounding matrix, so that the transverse component of traction acting on the
rod is given by −kfy, where kf is the foundation modulus parameter, which characterises the resistive
force of the surrounding medium. Finally, we close the problem by imposing the standard constitutive
relations for the rod

mz = EIβκ = EIβ
dθ

ds
, (85)

nx cos θ + ny sin θ = EA(β − 1), (86)

where E, I and A are defined in Table 1. Note that since (β − 1) measures the stretch in the rod, the
last equation is simply a form of Hooke’s law when uniaxial deformations are considered. Substitution
into the equilibrium equations then gives

x′ = γβ cos θ,
y′ = γβ sin θ,
n′x = 0,
n′y = γβkfy,
EIθ′′ + γ(x′ny − y′nx) = 0,

(87)

where primes denote differentiation with respect to S0. The boundary conditions are given by:

x(0) = 0, x(L0) = L0, θ(0) = θ(L0) = 0, ny(0) = ny(L0) = 0. (88)

4.2 Buckling

We proceed by considering small perturbations around the straight but compressed straight rod solution.
That is, we introduce perturbations of size 0 < ε� 1 and make the following expansions:

x = x0 + εx1 + . . . ,

y = y0 + εy1 + . . . ,

θ = εθ1 + . . . ,

nx = nx0 + εnx1 + . . . ,

ny = ny0 + εny1 + . . . ,

β = β0 + εβ1 + . . . .
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At leading order, we obtain the system
x′0 = γβ0,
y′0 = 0,
n′y0 = γβ0kfy0,
EIθ′′0 + γ(x′0ny0 − y′0nx) = 0,

(89)

and the constitutive relation yields
nx0 = EA(β0 − 1). (90)

We can see that there exists a non-trivial solution, given by

x0 = S, β0 =
1

γ
, y0 = 0, ny0 = 0. (91)

This solution corresponds with the finite, pre-buckled solution derived in the 3-D elasticity problem in
Section 2.3.1.

To examine the stability of the straight solution we consider the O(ε) system
x′1 = γβ1,
y′1 = γβ0θ1,
n′y1 = γβ0kfy1,
EIθ′′1 + γ(ny1 − y′1nx0) = 0,

(92)

and
β1 = 0, (93)

which follows from the constitutive relation. Substitution leads to the following fourth-order ordinary
differential equation for θ1

EIθ′′′′1 + γ(kfθ1 − nx0θ′′1 ) = 0. (94)

We seek solutions of the form θ1 ∼ enπiS0/L0 (real part assumed), where n is a positive integer. Substi-
tution into (94) results in the following quadratic equation for n2:

EIπ4

L4
0

n4 +
γnx0π

2

L2
0

n2 + γkf = 0. (95)

Note that in the absence of the outer layer kf = 0 and we recover the classic Euler beam theory (see
e.g. Chapter 4.9.3 of [12]). Substitution of (90) into (95) then yields the following expression for γ:

γ(n) =
EIn4π4 + L2

0EAn
2π2

L2
0EAn

2π2 − L4
0kf

=
EIα4 + EAα2

EAα2 − kf
(96)

We wish to find the buckling mode that minimises the critical growth. Therefore we solve dγ/dn = 0 to
find some n∗, which will lie between two consecutive integers, say n1 and n2. The critical growth is then
given by γc = min(γ(n1), γ(n2)) and the corresponding nj , j = 1, 2, is the observed buckling mode.
Note that in the limit L0 → ∞, the difference between successive modes, ((n + 1)π − nπ)/L0 = π/L0

tends to zero. In this case the critical growth value is given precisely by the value of γ for which (95)
has real roots. Therefore we have

E2A2(γ − 1)2 = 4EIγkf , (97)

which yields

γc = 1 +
2Ikf
EA2

(
1 +

√
1 +

EA2

Ikf

)
, λ = 2π

(
EI

γkf

)1/4

. (98)

5 Connecting the approaches

As discussed in the Introduction, there is no rational method to obtain the parameter kf , despite the fact
that it is widely used in many rod-theory problems. We relate this parameter to measurable properties
of the system by comparing the results of the rod-theory approach described in the previous section
with the results of the 3-D formulation. To do so, we first compare the roles of the various parameters
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3-D Model Role of Parameter(s) rod-theory Model Role of Parameter(s)

L0 Initial length of cylinder L0 Initial length of rod

l Deformed length of cylinder (pre-bifurcation) l Compressed length of rod

γ Axial growth γ Axial growth

B Cross-sectional radius of stress-free inner cylinder A = πB2, I = πB4/4 Cross-sectional area and moment of inertia

µi Shear modulus of inner layer E = 3µi Young’s modulus of rod

u, v, w Post-bifurcation displacements x, y, θ Geometry of buckled rod

µo Shear modulus of outer layer kf Foundation modulus

z Axial co-ordinate S0 Arc length of undeformed rod

Table 1: Relationships between the parameters used in each modelling approach.

involved in each modelling approach. A summary of the correspondence between the parameters of the
two models is shown in Table 1. In particular, we note that the parameters µo and kf are related to each
other, though the exact relationship between them is unknown. We investigate whether a simple, linear
relationship provides agreement with the 3-D elasticity approach. That is, we postulate

kf = C1µo, (99)

where C1 is a constant. In the case of a neo-Hookean strain energy density, such an ansatz is a natural
choice for the proposed relationship. For a rod with a circular cross-section we have A = πB2 and
I = πB4/4. For each choice of C1 we solve (95) to find the observed buckling mode of the rod and its
corresponding critical growth value, γc, in terms of µi/µo. We then estimate kf by seeking the value
of C1 that minimises the sum of squares between these data and the corresponding results obtained
numerically in Section 3.

Figures 5 and 6 show the critical growth and wavelength plots obtained using the WKB approximation
and rod-theory approach, together with the corresponding numerical results obtained in Section 3 for
ease of comparison. The fitting of the results from the rod-theory approach with the corresponding
results from the 3-D approach was repeated for different values of L0 to determine whether C1 is, in fact,
dependent upon the geometry of the rod (though only the plots corresponding to the case L0 = 100 are
shown, because other values of L0 give rise to almost identical results). The region of fitting used was
25 < µi/µo < 200. We restrict attention to this region because stiffness ratios lower than µi/µo = 200
are most common throughout nature, and when µi/µo < 25 the axial strain is greater than 20%. In
the case of low L0(≈ 10), there is some variation of C1 with L0. However, this is precisely the regime
in which we expect the rod-theory assumptions to break down, since B/L0 = O(1). As L0 increases,
C1 becomes geometry-independent and is approximately equal to 2.8π. Figure 5 shows good agreement
in the critical growth curves in the region 25 < µi/µo < 200 for this choice of constant, with the
maximum relative difference between the two curves being approximately 0.02, when µi/µo = 25. When
the observed buckling wavelength is considered, as shown in Figure 6, the rod-theory approach tends to
slightly underestimate the observed wavelength, compared to the numerical results.

There are two possibles causes for the the slight difference between the two results. First, we note
that there exists a potentially significant difference between the two modelling approaches. In the 3-D
elasticity formulation, we adopted the assumption of incompressibility. Therefore, as the inner cylinder
grows subject to the axial constraint, its cross-sectional area must increase to preserve the overall volume
of the grown structure. In the elastic rod model, we can account for this cross-sectional change in the
case of bending energy by modifying A and I accordingly. However, a key assumption of our approach is
that the transverse force ny acts on the rod’s centreline. Therefore, as long as the rod remains straight it
experiences the axially compressive force only. This simplification thus affects the energy required by the
rod to displace the surrounding matrix. Second, in Figure 2(c) we note that the critical growth values
for the various axial buckling modes are very close. This suggests that small differences in the critical
growth value could result in significant qualitative differences in the state of the rod post-bifurcation, as
is the case with our two modelling approaches. Nevertheless, the agreement between the two approaches
is generally good, and it is interesting that a single value of C1 is sufficient to characterise the relationship
between the shear modulus of the elastic matrix and the transverse pressure it applies to the growing
filament inside. We also compare our estimate of kf with those given in (1) and (2). The parameter l is
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Figure 5: Comparison of critical growth value vs. stiffness ratio curves in a fixed geometry for the two
modelling approaches. The parameter values used are E = 3µi = 3, L0 = 100, B = 1, and C = 40 (the
latter applies to 3-D elasticity approach only). The value of C1 that minimises the sum of squares between
the rod-theory and numerical results is 2.8π.

taken to be 10 (since Figure 3 shows the observed dimensionless buckling wavelength to be of the order
10). This yields a values αe1 = 5.2π which is about twice too large. If we set C1 = αe1 and substitute
into (96), this leads to significant underestimation of the critical growth value, when compared with the
numerical results of the 3-D approach. The estimate αe2 is also unreliable because it is dependent upon
the length of the filament and as the length of the filament increases, kf → 0 leading to the unphysical
behaviour that an infinite filament in an elastic matrix would be equivalent to a beam without matrix.

So far, our estimates of kf have been obtained by fitting the critical growth curves in a relevant
parameter regime. However by combining the results of the rod-theory approach and asymptotic ap-
proximation obtained in Section 3.1 we are able to derive a relationship between the shear modulus
of the elastic matrix and the resulting transverse force acting on the embedded rod. By equating the
relevant solution of (82) with the right hand side of (98(a)), an estimate of C1 in terms of µi/µo is given
by

C1 = 3π
(1− γc)2

γc
µi
µo
, (100)

where γc satisfies (82). As an example, we consider the case µi = 200. The corresponding critical growth
obtained using the WKB method is given by γc ≈ 1.06 and substitution into (100) yields the estimate
C1 ≈ 2.3π, which is in good agreement with our fitted value of C1.

6 Discussion

Within the framework of 3-D elasticity, we have presented a model to predict the critical axial growth
of a two-layer cylinder constrained between two rigid plates. This has allowed us to study the buckling
of slender filaments embedded in a thick elastic matrix. By taking the limit of an infinitely thick outer
layer we obtained an exact solution to the inner layer equations and an analytic approximation to the
outer layer equations via the WKB method. We have demonstrated that this is comparable with the
finite-thickness case, since for all n, γn approaches a constant value as C → ∞ for fixed B. We have
also compared this model with an approach making use of elastic rod-theory, under the assumptions that
the rod lies within an infinite Winkler foundation and that the shear modulus of the foundation, µo, is
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Figure 6: Comparison of observed buckling wavelength vs. stiffness ratio in a fixed geometry for the two
modelling approaches. The parameter values used are identical to those used in Figure 5 and C1 = 2.8π.

directly proportional to the transverse pressure, kf .
An advantage of using the 3-D elasticity formulation is that it can easily be adapted for a wide range

of strain energy densities. We now briefly consider the case of the outer layer comprising a Mooney-Rivlin
material, to determine whether the value of C1 is affected by a second material parameter. The strain
energy density in the outer layer is now given by:

Wo =
C10

2

(
α2
1 + α2

2 + α2
3

)
+
C01

2

(
α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1

)
. (101)

The shear modulus is then defined to be µo = C10 +C01. In the case C01 = 0 we recover the neo-Hookean
model. To investigate the role of each parameter in this model, the numerical scheme described in Section
3 was repeated for the case B = 1, C = 40, L0 = 100 and various choices of C10 and C01 such that µo = 1.
The resulting critical growth and wavelength curves were almost identical to the curves obtained in the
neo-Hookean case, though they exhibited slight variation for lower values of µi/µo (i.e. µi/µo < 40). We
therefore conclude that for a fixed geometry, the estimate for kf is well captured by the tangent shear
modulus around the unstressed state and that no significant changes are observed in third-order elasticity
(which for an incompressible material is equivalent to Mooney-Rivlin). Therefore, we do not expect the
foundation modulus to depend on the nonlinear properties of the strain-energy density function close to
the bifurcation.

A drawback of the 3-D approach is that it requires numerical methods to solve the resulting equilib-
rium equations, even in the case of a simple strain energy density. Moreover, the method of determinants
can become unreliable for large or small values of γ due to the exponential growth of one or more of
the y(i) in (52). One way of overcoming this limitation is to use an alternative numerical scheme, such
as the compound matrix method [6], though this is still computationally intensive. We are also able to
make use of the WKB-approximation, which allows investigation of a wider range of parameter space.
This is particularly useful should we wish to investigate deformations that give rise to a combination of
axial and circumferential buckling modes, such as those observed in solid tumour capillaries [13].

The elastic rod-theory approach is comparatively quick to implement and is widely used throughout
existing literature. Moreover, this approach allows the deformation of the filament to be tracked for
different loads and beyond the point at which buckling occurs. The main drawback of the rod-theory
approach is that the constant kf is difficult to determine, whilst the 3-D approach only requires knowledge
of the elastic properties of the two layers.

Both modelling approaches recover the power law relationship between the stiffness ratio and buck-
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ling wavelength, first derived by Winkler. They also show that as the relative stiffness of the outer layer
increases, the critical axial growth decreases monotonically and the wavelength of the buckled configu-
ration increases. Moreover, their resulting critical growth values are close to one another in the region
of interest, and the critical growth is independent of the initial length of the filament. We have also
shown that the two approaches can be used to provide an estimate of the foundation modulus parameter,
kf . The WKB method allows us to estimate γc in terms of µi and µo, and Equation (100) can then be
used to provide an estimate of C1 that shows good agreement with the corresponding value obtained by
fitting the results of the two approaches. Therefore we suggest the following estimate for the foundation
modulus parameter of a Winkler elastic foundation of shear modulus µo to be

kf = 2.8πµo, (102)

independent of the length or radius of the filament.
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