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Abstract
In this paper, we propose a mechanical model for a game of tug of war (rope pulling). We focus on a game opposing
two players, modelling each player’s body as a structure composed of straight rods that can be actuated in three

different ways to generate a pulling force. We first examine the static problem of two opponents being in a deadlock
configuration of mechanical equilibrium; here we show that this situation is essentially governed by the ratio of masses
of the players, with the heavier player having a strong advantage. We then turn to the dynamic problem and model
the response of the system to an abrupt change in activation by one of the players. In this case, the system exhibits a
nontrivial response, in particular, we compare a sudden pulling and a sudden ‘letting up’, and demonstrate the existence
of regimes in which the lighter player can momentarily take the advantage.
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“The final lines are not mine: they come from
an experiment on soft matter, after Boudin
[. . . ]. An English translation might run like this:

Have fun on sea and land
Unhappy it is to become famous
Riches, honors, false glitters of this world
All is but soap bubbles”

Pierre-Gilles de Gennes, Nobel lecture, 1991.

(a)

(b)

Figure 1. (a) A group of children playing tug of war. Prior to the
20th century, the game was commonly known in the anglophone
world as the game of French and English (Williams 1854;
Routledge 1869), likely owing to the tense historical ties
between France and Britain. Drawing reproduced from Williams
(1854) (public domain). (b) Four little mice in a fierce tug of war.
Image adapted from McMillen and Goriely (2002) with
presumed courtesy from Alain Goriely.

Introduction
Tug of war (also known as tug o’ war, tug war, rope
war, rope pulling, or tugging war) refers to “an athletic
contest between two teams who haul at the opposite ends
of a rope, each trying to drag the other over a line marked
between them” (Oxford English Dictionary). Tug of war has

a rich history and unclear origins and is arguably one of the
oldest known games in humanity, played for ritual, political,
military, commemorative, sportive or recreational (Fig. 1)
purposes in various cultures (Park 2019; Cayero et al. 2021;
Li 2015). Its most ancient representations can be traced
back to as early as the Bronze Age∗ (Houdin and Houdin
2002), and historical and mythological variants can be found
galore, e.g., in ancient Greece (Andreu-Cabrera et al. 2010),
Cambodia†, China (Li 2015), India‡, Afghanistan, Japan,
Korea, South America, Europe, and Togo; as well as in Inuit
traditions (Eichberg et al. 2003), or Scandinavian legends
(Perkins 2001). Rope pulling is now a codified sport (TWIF
2023), played in all countries in the world, by amateur and
professional athletes.

The game’s iconic power has been exemplified in popular
culture, with reference in shows such as Squid Game, a
Korean dramatic series from 2021. In a graphic metaphor
for social Darwinism (Tutar 2022; Campillo et al. 2021),
hundreds of financially-cornered players compete for money
in various mortal games, including a tug of war in which
the weakest team is liquidated by being dragged towards
a precipice. Luckily, in reality, tug of war is generally
played in more companionable conditions; nonetheless, it
is a physically intense and technically challenging sport
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∗A ropeless version of tug of war is depicted in the tomb of Mereruka
(Saqqara, Egypt, ca. 2000 BC). Here two players hold hands and are pulled
by their respective teams from behind.
†A tug of war between asuras and devas, as part of the Hindu myth of
Samudra Manthana, is shown on a stone relief in Angkor Wat (12th century).
‡The Sun Temple of Konark (13th century) has a stone relief showing a game
of tug of war.
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that may involve huge mechanical forces. It is thus not
entirely surprising that several more or less serious tug-of-
war accidents have been reported (Chotai and Abdelgawad
2014; Smith and Krabak 2002; Pawlowski et al. 1970), such
as the dramatic Taipei incident of 1997. In a mammoth
rope-pulling contest commemorating Retrocession Day, and
featuring a staggering 1,600 participants, the inadequate, 2-
inch thick nylon cord snapped under overwhelming tension,
unleashing a devastating amount of kinetic energy. The
incident resulted in injuries to 42 individuals, with two
having an arm torn off§, and plunged the municipality into
serious political-mediatic turmoil. Two years earlier, one
of the worst disasters in tug-of-war history occurred in
Germany, when 650 Boy Scouts attempted to win a place
in the Guinness Book of Records. The unsuited, thumb-
thick rope chosen for the event inevitably snapped, killing
two young boys, and causing injuries to 102 participants.¶

Several other cases have been reported where rope snapping
and/or unsafe gripping resulted in various injuries such as
limb severing.‖ Notwithstanding these rare but shocking
incidents, mostly caused by amateurish negligence and
irresponsible underestimation of the forces at play, tug of war
is overall safe, as long as the players use the right equipment
and follow the rules and safety guidelines (TWIF 2023).

From a mechanical perspective, tug of war presents
an intriguing system, seemingly simple in its complexion
– forces are applied to opposing ends of a rope –
but with significant complexity in its execution: the
configuration of each player, many different muscle groups
potentially generating forces in different ways, timing,
footing, stabilisation after slipping, etc., all play a role in
the outcome of a game. In practice, teams use strategies
such as the drop-step, heel-toe, sitting, bracing, quick
pull, and counterbalance techniques to establish a robust
foundation, emphasise footwork, maximise strength, create
sudden bursts of power, and strategically position team
members. These techniques contribute to the dynamic nature
of tug-of-war, enabling teams to employ diverse tactics
based on their strengths and objectives. In this paper, we
mathematically address a simple question: How to win a
game of tug of war?

Biomechanical (Yamamoto et al. 1988; Liou et al. 2005;
Tanaka et al. 2006; Lin et al. 2016; Godfrey et al. 2007)
and mathematical (Li 2015; Kawahara et al. 2001; Zhang
et al. 2021; Zhang 2012) analyses of tug of war have
been proposed, often focusing on the biomechanics of one
player pulling on a fixed rope. Here the focus is rather
on the mechanics and dynamics of the game itself, that is,
the competition between several opponents. In particular,
we attempt to determine the mechanical determinants of
a victory (e.g. posture, body characteristics, strength).
Therefore we propose a mathematical model for a tug
of war between two players, simple enough to enable
mathematical analysis, but with enough complexity and
degrees of activation freedom to mimic potential strategies
within a real game. We first study the static case, namely
a deadlocked situation of mechanical equilibrium, and we
compare each player’s propensity to slip as a function of
three distinct modes of pulling activation. In that case,
we show that the outcome of the game is almost fully
dictated by player weight, more than any other physical

characteristic. We then turn to the dynamic case, in which
inertial effects induced by a sudden change in activation
create a rich dynamic structure, and where a lighter player
may be momentarily able to make the heavier one slip or
stumble.

Model
The setup for our model is shown schematically in Fig. 2.
We consider a two-player game, with the players situated
in the x-y plane. We concentrate the mass of Player 1 at
the point (x1, y1), and define their body orientation by two
angles: θ1 defines the angle of the lower body with respect
to the horizontal x-axis, while φ1 is the angle between the
lower and upper body, due to bending at the hips. That
is, a line passing through the torso and the point (x1, y1),
which we term the ‘torso axis’, makes angle φ1 with a line
passing through the lower body, which we term the ‘leg
axis’. The torso has fixed length `T1 , while the legs have
length `L1 , which will vary due to the bending of the knees.
The player holds the rope at a distance `A1 from the point
(x1, y1). Similar quantities are defined for Player 2, noted
with subscript 2 [Fig. 2(a)]. Henceforth we denote with a
superscript A, L, and T , quantities related to the arms, legs
and torso, respectively.

In order to incorporate independent activation of the leg
and arm muscles, we idealise each player’s lower body as
an actuatable rod situated along the leg axis, and with the
arms described as a separate rod connecting the concentrated
mass to the holding point of the rope via a line that is aligned
with the rope. We employ the theory of morphoelastic
rods (Moulton et al. 2013; Goriely 2017), which gives a
mathematical framework for growing elastic rods, in order to
describe the independent active pulling mechanisms shown
in Fig. 2(c)(i) and (ii): arm pulling is described by a
contraction of the reference length (‘negative growth’) of
the arms, while pushing off the ground is described by an
increase in reference length (‘growth’) of the legs. Note that,
while morphoelasticity is a theory of growth and remodelling
(Goriely 2017), extensions of the theory have also been
used to model muscle activation (Kaczmarski et al. 2022) or
liquid crystal elastomer actuation (Goriely et al. 2022). In our
case, the rods are taken to be rigid in flexion (no bending),
but extensible. The lower body has reference length LL

i

and stiffness KL
i (in unit force), and ‘growth’ parameter

γLi , such that the reference length of the lower body under
active body extension γLi ≥ 1 is γLi L

L
i . Similarly, the arms

have reference length∗∗ LA
i , stiffness KA

i , and activation
parameter γAi , such that the reference length of the arms
under active arm pulling γAi ≤ 1 is γAi L

A
i . The torso does

not undergo any activation (γTi = 1), and is moreover treated
as an inextensible rod, i.e. the lengths `Ti = LT

i do not vary.
The third pulling mechanism we consider is a change in

the stance of the players. To characterise this mechanism,

§The Nation (October 27, 1997), Two lose arms in Taiwan tug-of-war.
¶AP News (June 6, 1995), Two Boy Scouts Killed In Tug-of-War Accident.
‖Priceconomics (March 8, 2017), A History of Tug-of-War Fatalities.
∗∗The reference length here is not the length of the arms, but the distance
between the holding point with the rope and the torso when the arm muscles
are not contracted.
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we first need to outline a description of the external forces
on each player, as depicted in Fig. 2(b). Player 2 applies to
Player 1 a force −T êr, where T is the tension in the rope
times its cross-sectional area, and

êr :=
(x1 − x2)êx + (y1 − y2)êy√

(x1 − x2)2 + (y1 − y2)2

is the unit vector pointing from (x2, y2) to (x1, y1). By
Newton’s third law, the same force is applied in the opposite
direction by Player 1 to Player 2. We suppose the rope is
extensible with resting lengthR (distance measured between
the hands of the two players) and spring constant k. For
computational ease, we take each player’s mass mi to be
concentrated at the centre of mass (only a small quantitative
change would occur under a distributed mass description),
thus giving a force −migêy due to self-weight. The forces
from the rope and gravity are balanced in equilibrium by a
friction force Fi in the x-direction, and a vertical reaction
forceRi in the y-direction, both acting at the point of contact
between the body axis and the ground. We allow a rotation
of the lower body about this point, and a separate rotation at
the hips, both determined by balances of angular momentum.
To model the stance of the body as an active process, we
define a reference angle θ̂i, such that if the current angle of
the body axis, θi, differs from the reference angle, a restoring
torque κLi (θi − θ̂i) is produced. A change in stance can then
be accounted for by decreasing the reference angle, as in
Fig. 2(c)(iii). A similar restoring torque κTi φi is produced
by bending at the hips.

In this mechanical description, the objective of each player
is to make the other player either slip or stumble. Under
dry friction, slipping will occur if Fi/Ri > µi, where µi

is the friction coefficient (Johnson 1987). In general, µi

will depend strongly on the surface on which the game is
being played, as well as the footwear of each player. For
a fair comparison, we suppose µ1 = µ2, and therefore our
approach will be to analyse the relative values of Fi/Ri as
we vary the other parameters in the system. Stumbling is
a dynamic action, and so we defer its description to a later
section.

Static analysis
We begin by considering a completely static game, in which
both players are in mechanical equilibrium, and activation
parameters {γLi , γAi , θ̂i} are varied slowly enough so that
quasistatic equilibrium is maintained.

A force balance on Player 1 reads

− T êr −m1gêy +R1êy + F1êx = 0. (1)

Balance of angular momentum for the lower body, about the
point (X1, 0), takes the form

`L1 (cos θ1êx + sin θ1êy)× (T êr +m1gêy)

= −κL1 (θ1 − θ̂1)êz (2)

Here we have used the fact that forces applied to the upper
body are directly transmitted through the torso to the lower
body. For the upper body, the balance of angular momentum

Arm pulling

Forces

Pushing off 
ground

Stance 

(a)

(c)

(b)

(i)

(ii)

(iii)

Figure 2. Schematic of our modelling framework. In (a), the
variables defining the current configuration of each player are
shown. The forces acting on each player (b) consist of a
gravitational force due to self-weight, a force acting along the
direction of the rope and equal in magnitude to the tension in
the rope, and friction and reaction forces. In reality, there would
be a set of friction and reaction forces at each foot, but we
idealise these to a single set. In (c), the three mechanisms of
activation for each player are shown: (i) arm pulling, in which the
player shortens the arms, (ii) pushing off the ground, in which
the lower body is extended, and (iii) a change in stance, defined
by body orientation with respect to the horizontal.

about the hips reads

LT
1 [cos(θ1 + φ1)êx + sin(θ1 + φ1)êy]× (T êr +m1gêy)

= −κT1 φ1êz. (3)

Similar equations hold for Player 2, though noting sign
changes due to the directionality of the rope, orientation
angles being defined from the negative x-axis, and friction
force pointing to the left:

T êr −m2gêy +R2êy − F2êx = 0, (4)

`L2 (cos θ2êx − sin θ2êy)× (T êr −m2gêy)

= κL2 (θ2 − θ̂2)êz, (5)

LT
2 [cos(θ2 + φ2)êx − sin(θ2 + φ2)êy]× (T êr −m2gêy)

= κT2 φ2êz. (6)

Since the ‘arms’ and lower body are not a fixed length, we
also require a force balance plus constitutive description to
determine the values of `Ai and `Li . Following the notation in
Moulton et al. (2013), we define ni = nx,iêx + ny,iêy to be
the resultant force in the lower body. As we neglect bending
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of the body in this description, and all external forces are
applied at the ends, we have

n1 = −T êr −m1gêy, (7)
n2 = T êr −m2gêy. (8)

The axial component of ni is related to the elastic
axial compression ratio αL

i := `Li /γ
L
i L

L
i via a constitutive

relation. Here, it is reasonable to assume small deformation,
described by Hooke’s law:

n1 · (cos θ1êx + sin θ1êy) = KL
1 (α

L
1 − 1), (9)

n2 · (− cos θ2êx + sin θ2êy) = KL
2 (α

L
2 − 1). (10)

Since the axis of the arms is assumed to lie along the line of
the rope, the resultant force nAi in the arms is equal to the
tension in the rope, that is

nA1 = nA2 = T, (11)

and we assume again a linear constitutive relation between
force and extension,

nA1 = KA
1

(
`A1

γA1 L
A
1

− 1

)
, (12)

nA2 = KA
2

(
`A2

γA2 L
A
2

− 1

)
. (13)

The rope also satisfies Hooke’s law:

T = k(r −R), (14)

where r =
[
(x1 − x2)2 + (y1 − y2)2

]1/2 − (`A1 + `A2 ) is
the current rope length between the two grip points. The
spring constant k = EA/R, whereE is the Young’s modulus
for the rope, A is the cross-sectional area, and as noted R
is the rest length. Here, we use a value k = 5× 104 N/m,
corresponding to a material withE ∼ 10 GPa,A ∼ 10 mm2,
and R ∼ 2 m.

Note also the geometric relations

x1 = X1 + `L1 cos θ1 + LT
1 cos(θ1 + φ1), (15)

y1 = `L1 sin θ1 + LT
1 sin(θ1 + φ1), (16)

x2 = −X2 − `L2 cos θ2 − LT
2 cos(θ2 + φ2), (17)

y2 = `L2 sin θ2 + LT
2 sin(θ2 + φ2). (18)

From the above, we obtain a closed system as follows.
Considering Player 1, we insert the force balance (7) into
the body constitutive law (9), and the arms force balance
(11) into the constitutive law (12). These two equations
are combined with the moment balances (2, 3) for the
lower and upper body, respectively. Doing the same for
Player 2 leads to a set of 8 equations. Noting that the
rope tension T is a function of the body lengths {`L1 , `L2 },
arm lengths {`A1 , `A2 }, and body angles {θ1, θ2, φ1, φ2} via
the constitutive relation (14) and geometric relations (15–
18), the system is fully determined by the 8 variables S :=
{`L1 , `L2 , `A1 , `A2 , θ1, θ2, φ1, φ2}. Therefore, given material
and geometric parameters

M := {KL
1 ,K

L
2 ,K

A
1 ,K

A
2 ,m1,m2, κ

L
1 , κ

L
2 ,

k, R, LL
1 , L

L
2 , L

T
1 , L

T
2 , L

A
1 , L

A
2 , X1, X2} (19)

and activation parameters A := {γL1 , γL2 , γA1 , γA2 , θ̂1, θ̂2} we
have 8 equations to solve for the 8 variables S. Then, given a
solution, we can check for slipping by computing the friction
Fi and reaction Ri components from (1, 4), asking whether
the slipping criterion Fi/Ri > µi is met for either player.

Mass is (almost) everything
Before considering specific solutions to the static system, we
demonstrate the challenge of beating a heavier opponent in a
static game. This comes as a simple consequence of the form
of the friction and reaction components. Namely, (1) gives

F1

R1
=

T êr · êx
m1g + T êr · êy

, (20)

while (4) gives

F2

R2
=

T êr · êx
m2g − T êr · êy

. (21)

Since the rope pulls equally on both players, and the friction
forces point in opposite directions, the friction components
are the same. Naturally, the reaction components each
include a component balancing the weight, so that if the
rope is horizontal, i.e. êr · êy = 0, the reaction force will be
higher for the player with more mass, and they will have the
advantage. In a typical game, the rope tends to be sufficiently
long so that êr · êy is negligible. Under the approximation
r · êy � 1, and supposing thatm1 > m2, victory is hopeless
for the lighter Player 2: No matter what activation they
apply, we will have F1 ≈ F2 and R1 > R2, so that they will
always slip before their opponent. Nevertheless, for êr · êy
sufficiently large, it is not entirely hopeless, and comparing
the slipping criteria above suggests the only possible strategy
for the lighter player, which consists of getting higher than
their opponent (Zhang et al. 2021). With m1 > m2, if Player
2 can get higher than Player 1, i.e. y2 > y1, then êr · êy < 0,
so that the rope pulls Player 2 down, increasing their reaction
force, while pulling Player 1 up and decreasing their reaction
force. However, this strategy is possible only if the rope is
sufficiently short, which does not correspond to a realistic
scenario (typically R ≈ 10 m, see TWIF 2023).

Parameters
To analyse in detail the effect of the different types of
activation, we first fix baseline material and geometric
parameters, listed in Table 1. A discussion of these parameter
choices is provided in the Appendix.

Static Activation
Fig. 3 shows the results of a simulated ‘static’ game in which
Player 1 (blue) has a slight advantage in mass, withm1 = 41
kg and m2 = 40 kg, and all other parameters taken to be
equal. We then simulate independently each of the 3 pulling
mechanisms for Player 2 and plot the resulting slipping
components Fi/Ri and rope tension T . The configurations of
the players at the indicated positions are shown in the insets,
where the dashed lines denote the reference states.

In Fig. 3(a) we consider arm activation for Player 2,
γA2 < 1. As arm activation increases (γA2 decreases), the
tension in the rope increases, and Fi/Ri increases for both
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Table 1. Material and geometric parameters

Parameter Description Value
KL

i Lower body stiffness 3000 N
KA

i Arm stiffness 500 N
κLi Stance rotational stiffness 1000 N
mi (concentrated) body mass 40 kg
Xi Players’ distance from origin 2 m
LL
i Lower body length (to hips) 0.8 m

`Ti = LT
i Upper body length (to concentrated mass) 0.5 m

LA
i Rest arm length (torso to hold point) 0.5 m
k Rope spring constant 5× 104 N/m
R Rope resting length 3.4 m
ILi lower body moment of inertia 5 kg m2

ζLi lower body rotational drag coefficient 150 N m s
ITi upper body moment of inertia 5 kg m2

ζTi upper body rotational drag coefficient 150 N m s
mA

i arms mass 4 kg
ζAi arms drag coefficient 50 kg/s
ζTi body drag coefficient 100 kg/s

players. However, Player 2 begins at a disadvantage, i.e.
F2/R2 > F1/R1 before the activation, and the increasing
tension means that the difference F2/R2 − F1/R1 actually
increases slightly with increasing arm activation; that is,
Player 2 has only made their situation worse.

Fig. 3(b) shows the result of leg activation for Player 2, i.e.
γL2 > 1. Again, the tension increases, though by a smaller
amount. In this case, leg activation increases the height of
Player 2, which as noted above is advantageous (albeit not
dramatically). We see that F2/R2 − F1/R1 decreases with
increasing γL2 , and Player 2 even gets the advantage for
γL2 & 1.8 (though this corresponds to a 180% extensional
increase, which is only possible if the player begins in a
significantly crouched state, which in practice constitutes a
foul, see TWIF 2023).

Fig. 3(c) considers a change in the stance of Player 2,
in particular a decrease in θ̂2 from the original base value
of 1.2, meaning that Player 2 is trying to lean further
backwards as θ̂2 decreases. The situation is similar to arm
activation: leaning back increases the tension, but because
Player 2 begins at a disadvantage, this only serves to
increase their disadvantage, F2/R2 − F1/R1 increases with
decreasing θ̂2. Observe that the tension reaches the highest
value in this simulation, and therefore so also do the Fi/Ri,
demonstrating that a change in stance was the worst choice
for Player 2 of these activation strategies. If µ = 0.8, for
instance, then Player 2 will have caused themselves to slip.

Dynamics
Having established the severe disadvantage of a lighter
player in a quasistatic equilibrium, in this section, we turn
to dynamics. In particular, we focus on two types of dynamic
motion: a sudden pulling of the rope, and a sudden change in
stance. Mathematically, these correspond to taking γAi and θ̂i
to be functions of time t, with a fast enough rate of change
that inertial effects are not negligible.

From these dynamic activations, we consider slipping in
a dynamic sense, defined in the same way as the static
case, as the ratio Fi/Ri exceeding the friction coefficient µ.

Along with slipping, in a dynamic setting we also consider
stumbling, which corresponds to a rapid acceleration forward
of the torso, sufficient to cause the player to momentarily
lose balance and have to take a step forward. This will be
defined mathematically below, but note that, intuitively, these
are distinct, and getting the opponent to slip and/or stumble
is the key to winning a game of tug of war.

For computational simplicity, in this section, we fix the
lower body length,and include inertial terms in the balances
of linear and angular momentum. The momentum balance
for the lower body of Player 1 is

IL1 θ̈1 + ζL1 θ̇1 = −κL1 (θ1 − θ̂1)êz
+ `L1 (cos θ1êx + sin θ1êy)× (−T êr −m1gêy) . (22)

Here, the right-hand side contains the same torque terms as
the static moment balance (2). The left-hand side includes the
rate of change of angular momentum about the pivot point
(X1, 0), with moment of inertia IL1 , and overdots denoting
time derivatives; we also include a damping term ζL1 to
suppress oscillations. The moment balance for the upper
body of Player 1 reads

IT1 φ̈1 + ζT1 φ̇1 = −κT1 φ1êz
− LT

1 [cos(θ1 + φ1)êx + sin(θ1 + φ1)êy]× (T êr +m1gêy) .
(23)

Similarly, the moment balances for Player 2 are

IL2 θ̈2 + ζL2 θ̇2 = −κL2 (θ2 − θ̂2)êz
+ `L2 (cos θ2êx − sin θ2êy)× (T êr −m2gêy) , (24)

and

IT2 φ̈2 + ζT2 φ̇2 = −κT2 φ2êz
+ LT

2 [cos(θ2 + φ2)êx − sin(θ2 + φ2)êy]× (T êr −m2gêy) .
(25)

Along with these, we require an inertial force balance for the
arms. This takes the same form for both players:

mA
i
῭A
i + ζAi

˙̀A
i = T −KA

i

(
`Ai

γAi L
A
i

− 1

)
. (26)
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Figure 3. Simulation of a quasistatic game. Player 2 employs arm activation (a), leg activation (b), and a change in stance (c). The
friction ratios Fi/Ri are plotted at left in each case for both Player 1 (blue) and Player 1 (red). The configuration of the system is
shown as insets at the indicated points, with solid lines showing the position of the lower body, upper body, and arms, while dashed
lines show the respective reference states. At right, the tension in the rope is plotted against the activation parameter.

Again the right-hand side includes the static force balance,
while the left-hand side includes an acceleration term,
with mA

i the mass of the arms, and a damping term with
coefficient ζAi .

Taking the torso and leg lengths `Ti and `Li to be fixed
in a dynamic setting, and noting again that the tension is
given by the geometric relations (15–18) and the constitutive
relation (14), for given material and activation parameters,
the dynamic system is fully defined by the variables Sdyn =
{θ1(t), θ2(t), φ1(t), φ2(t), `A1 (t), `A2 (t)},which are found by
integrating the 6 differential equations above. Having solved
for Sdyn, we can then evaluate whether slipping would have
occurred during the dynamic motion by considering the

dynamic force balance equations. For Player 1,

m1(ẍ1êx + ÿ1êy) + ζ1(ẋ1êx + ẏ1êy)

= −T êr −m1gêy +R1êy + F1êx, (27)

while for Player 2 this reads

m2(ẍ2êx + ÿ2êy) + ζ2(ẋ2êx + ẏ2êy)

= T êr −m2gêy +R2êy − F2êx. (28)

Since the terms (x1(t), y1(t)), (x2(t), y2(t)), and T (t) are all
given in terms of Sdyn, equations (27, 28) can be solved for
(F1(t), R1(t)) and (F2(t), R2(t)), and the slipping criterion
Fi/Ri > µ may thus be evaluated dynamically (noting that
for given µ, if at any time either of Fi/Ri > µ, the motion
ceases to be valid beyond that point, as that player will
have slipped). Stumbling is a bit harder to quantify, as it is
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strongly dependent on catching the opponent off guard. We
will equate a player losing balance and stumbling with the
rotational acceleration of the torso exceeding a threshold, i.e.
φ̈i > s∗, where the threshold s∗ could be determined either
experimentally or through more detailed biomechanical
modelling; but for our purposes we will just explore the idea
of stumbling qualitatively. In the analysis below, we again
suppose that Player 1 has a slight mass advantage, m1 =
41 kg > m2 = 40 kg. We then analyse various strategies of
Player 2, asking under what conditions Player 2 can make
Player 1 slip or stumble, without Player 2 first slipping or
stumbling.

Letting up
We first consider a strategy for causing Player 1 to slip. It is
instructive to note from (27) that the dynamic friction force
satisfies

F1 = T êr · êx +m1ẍ1 + ζL1 ẋ1. (29)

If Player 2 were to cause Player 1 to rapidly accelerate to
the left, e.g. by a sudden pulling of the rope, the immediate
reaction would be a negative acceleration, i.e. ẍ1 < 0.
however, this would only serve to decrease the friction force
of Player 1. At the same time, since

F2 = T êr · êx −m2ẍ2 − ζL2 ẋ2, (30)

the corresponding motion of both players to the left would
also imply ẍ2 < 0, thereby increasing the friction force of
Player 2. Therefore, by a sudden pulling, Player 2 cannot
cause Player 1 to slip, but can only cause themselves to slip.
By the same logic, though, if Player 2 can cause the system to
suddenly shift to the right, then ẍi > 0, then the friction force
of Player 1 (2) will go up (down), and Player 1 may slip.
Player 2 could accomplish this strategy by suddenly ‘letting
up’ in a controlled way.

Fig. 4 shows a simulation of Player 2 ‘letting up’ in two
different ways. In Fig. 4(a) Player 2 shifts their stance to
be more vertical, by increasing θ̂2. Fig. 4(a)(i) plots θ̂2 as
a function of time, where the simulation runs for t = 5 s.
We consider two different rates of change, a slow change of
stance (dashed curve), and a rapid change of stance (solid
curve). Fig. 4(a)(ii) plots the resulting slip ratios Fi/Ri as
functions of time for Player 1 (blue) and Player 2 (red).
Considering the flat portions of the curve, we see that in
a static sense, Player 2’s change of stance has served to
decrease the slip ratio for both players, as their more vertical
orientation decreases the rope tension, but that Player 2 has
a higher slip ratio both before and after the change of stance.
With the slow change of stance, the slight acceleration to
the right causes the curves to cross over during the dynamic
transition: for 1.5 . t . 3.5, F1/R1 > F2/R2; however,
this will not do Player 2 any good, as Player 1 never has a slip
ratio higher than that with which Player started the motion.

On the other hand, in the case of the rapid change in
stance, not only do the curves cross over, but the rapid
acceleration to the left causes Player 1 to experience a
momentary spike in slip ratio, reaching a peak of F1/R1 ≈
0.9 that exceeds the value Player 2 started with. If µ = 0.9,
this will have been a successful strategy in causing Player 1
to slip. However, this is a potentially dangerous strategy. The
dotted curve shows the slip ratios for the same simulation

but with a lower drag coefficient. While Player 1 again
experiences a spike in slip ratio, the deceleration at the end
of the motion causes Player 2 to experience an even higher
spike. Thus, if Player 2 does not cause Player 1 to slip with
the initial acceleration, they may cause themselves to slip
with the subsequent deceleration.

In Fig. 4(b), we simulate the same strategy of Player 2
letting up, but in this case with their arms through an increase
in γA2 . The time profile of γA2 is plotted on the left, and
the corresponding slip ratios are plotted on the right. Again,
we simulate both a slow release of the arms (dashed curve)
and a rapid release (solid curves). Though the conceptual
idea is the same, and the change in position has a similar
static effect of decreasing the tension and slip ratio for both
players, dynamically we observe a much different picture.
With a slow change of stance, both players simply see a
smooth decrease in slip ratio, and F2/R2 is always higher
than F1/R1. In the case of a more rapid release, Player 1
and Player 2 experience simultaneous spikes and then dips in
slip ratio, and again with F2/R2 always slightly higher than
F1/R1. The reason for this simultaneity can be understood
by considering the static change in stance: both players end
up with a less bent torso, i.e. the motion is outward for both
players, and the simultaneous acceleration away from each
other causes an increase in friction force for each player.
This is ultimately a bad strategy for Player 2: if the spike in
Fi/Ri is enough to cause slipping, they will slip a moment
before. Interestingly, the proximity of the curves could result
in both players slipping simultaneously, though it is beyond
the scope of this work to examine post-slipping dynamics.

Quick pull
In Fig. 5, we analyse an alternative dynamic strategy of a
rapid pulling of the rope in an attempt to make the opponent
stumble. As in Fig. 4(b), a quick pull with the arms has
a symmetric effect, i.e. both players move towards each
other, and Player 2 cannot gain an advantage over Player 1.
Therefore, with all other parameters equal, we restrict our
analysis to rapid pulling via a change in stance by decreasing
θ̂2. Fig. 5(a)(i) plots θ̂2 as a function of time, where again
we simulate both a slow change in stance (dashed curve)
and a rapid change in stance (solid curve). In Fig. 5(a)(ii)
we plot the rotational acceleration of the torso, φ̈i during
the motion, for both Player 1 (blue) and Player 2 (red). For
both the slow and rapid change, the shift of the system to
the left causes an acceleration and subsequent deceleration
of Player 1’s torso, as they are pulled forward. In the case
of the rapid change in stance, since Player 2 has changed
the stance of their lower body, their upper body actually
experiences an initial forward acceleration as well, though
significantly smaller than Player 1’s. The large spike in φ̈1
may be sufficient to cause Player 1 to stumble. However, this
is again a potentially dangerous strategy. Fig. 5(a)(iii) plots
the slip ratios through the dynamic motion, showing that the
rapid movement to the left creates a large spike in F2/R2.
Whether Player 2 can cause Player 1 to stumble without first
causing themselves to slip will be strongly dependent on the
specifics of the surface and preparedness of Player 1.

Thus far, we have simulated players with identical
properties aside from the slight mass advantage of Player
1. Of course, in reality, players will likely differ across a
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Figure 4. Dynamic simulations with Player 2 employing the ‘Letting up’ strategy. In (a), Player 2 makes their stance more vertical,
by increasing θ̂2; in (b) they lengthen their arms by increasing γA

2 . The activation parameters are plotted against time in (i), in which
we have simulated both a rapid (solid curves) and slower (dashed curves) change. In (ii), the corresponding friction ratios Fi/Ri

are plotted, plus the configuration of the system before and after the change, with solid lines showing the position of the lower body,
upper body, and arms, while dashed lines show the respective reference states. Parameter values are given in Table 1, but with
m1 = 41 kg; also the dotted curve in (a)(ii) is generated with ζ1 = ζ2 decreased to 10.

spectrum of characteristics, both in strength and size. As a
final example, we simulate in Fig. 5(b) a rapid arm pull by
Player 2, still with the same mass disadvantage, but with
a significantly stronger upper body, by taking KA

2 = 5KA
1

(arm stiffness), and κT2 = 2κT1 (rotational stiffness of the
torso, modelling increased core and abdominal strength).
Fig. 5(b)(i) plots the arm activation γA2 (t), while Fig. 5(b)(ii)
and (iii) plot the rotational acceleration and slip ratios during
the motion. For comparison, in the insets of Fig. 5(b)(ii) and
(iii), we plot the results under equal upper body strength.
Perhaps surprisingly, even with the significant advantage in
upper body strength, the arm pull does not give Player 2
much, if any, advantage. The shortening of Player 2’s arms
causes both players’ torsos to accelerate and then decelerate
forward; simultaneously they each experience a dip and then
spike in frictional force. With equal upper body strength, the
rotational accelerations are nearly identical while Player 2
has a slightly higher slip ratio. In the case of Player 2 having
increased upper body strength, Player 1 experiences a higher
rotational acceleration, though only slightly, but still the less

massive Player 2 has a higher slip ratio. It seems, for these
parameters, that the rapid arm pull is not a good strategy for
Player 2.

As mentioned in the introduction, one predominant cause
of injuries/casualties is the extremely fast release of energy
that occurs in the event of rope failure. This will happen if
the tension in the rope exceeds a critical threshold. Here,
it is important to note that the tension is also a dynamic
variable and a static analysis of the potential forces applied
by players is insufficient. To demonstrate, in Fig. 5(c) we
plot the tension in the rope corresponding to the rapid pulls
from Fig. 5(a) and (b). In the case of the change in stance,
Fig. 5(c)(i), even with a rapid change in stance the tension
transitions between the static values smoothly and nearly
monotonically. However, with the arm pull, and with the
significant upper body strength of Player 2, Fig. 5(c)(ii),
there is a large spike in the tension during the dynamic
motion, reaching a maximum value that is 25% higher than
the final static value.
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Figure 5. Dynamic simulations with Player 2 employing the ‘Quick pull’ strategy. In (a), Player 2 makes their stance less vertical, in
(b) they shorten the arms. Profiles of θ̂2 and γA

2 plotted against time in (a)(i) and (b)(i), each simulated both with rapid change (solid
curve) and less rapid change (dashed curve). In (a)(ii) and (b)(ii), the potential for stumbling is shown by plotting the rotational
acceleration of the upper body, φ̈i. In (a)(iii) and (b)(iii), the slip ratio Fi/Ri is shown dynamically, and the configuration of the
system is shown before and after the dynamic motion, with solid lines showing the position of the lower body, upper body, and arms,
while dashed lines show the respective reference states. In (c), the tension in the rope is plotted dynamically for the simulations of
(a) and (b) (the unequal body strength case). Parameter values are given in Table 1, but with m1 = 41 kg, and with KA

2 increased
to 2500 and κT

2 increased to 800 in (b)(ii) and (b)(iii) main plots.

Discussion

Mathematical modelling of sport is inherently challenging.
Biomechanical and/or physiological descriptions of a
specific motion of the body during sport are already complex
and high-dimensional, potentially involving the activation
of numerous muscle groups, tendon mechanics, joint
reaction forces, heart rate, oxygen uptake, neuromechanical
effects, energy expenditure, stamina, among other processes
(McGinnis 2013; Bartlett 2014; Blazevich 2017; Baca 2017).
Naturally, the complexity only increases when including
variable motion, multiple people physically interacting,
detailed tactics and intangible factors such as psychological

momentum (Gernigon et al. 2010). Of course, these
complexities are part of what makes the outcome of a
sporting event unpredictable and perhaps ultimately what
makes sport entertaining. In terms of modelling, though, it
is clear that a detailed mathematical description of any sport
would likely be completely intractable. Sports predictions,
e.g. for betting purposes, are usually based on play-by-
play simulation, e.g. with Markov Chain decisions, or direct
simulation (Song et al. 2020; Vračar et al. 2016), both of
which are data-driven approaches that rely on statistics from
previous results and do not explicitly include any mechanics.
Nevertheless, most sports are intrinsically mechanical, and
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training largely involves preparing the body to complete a
mechanical task in a near-optimal way.

In this paper, we have developed and analysed a
mathematical model of the mechanics of a game of tug
of war between two players. In light of the complexities
outlined above, tug of war provides perhaps an ideal case
study for investigating mechanics in sport. At a glance,
the game appears simple: two teams pull on opposite
ends of a rope, and whichever team pulls harder will
win. However, a closer look quickly reveals a number of
complexities in the game, characterised by multiple degrees
of freedom, non-trivial mechanics, and various strategic
choices open to the players. Still, the game is largely
played in approximate mechanical equilibrium, and physical
motions are relatively simple; this combination means that
an idealised mathematical description is possible in which
governing equations remain solvable while still containing
sufficient detail and degrees of freedom to explore the
intricacies of the game. While previous papers have exploited
this relative simplicity to derive mechanical descriptions
of rope pulling, our analysis provides the first mechanical
description capable of simulating an actual game, in which
player strategy may be explicitly investigated.

Beginning with an analysis of a static game, we first
showed that a lighter player is at a significant disadvantage.
While this observation is not new (Zhang 2012), our analysis
provides in simple equation form the challenge faced by
the lighter player, and our quantitative analysis illustrated
the possibility of gaining the advantage by becoming taller
through leg activation as well as how some forms of pulling
activation, in fact, make the situation worse. We then turned
to a dynamic description of the game, and focused on the
simple questions: Can the lighter player win?, and if so,
what is their best strategy? In our modelling framework, a
strategy consists of a time-dependent change in one or more
of the reference properties of the player which would, in
a more detailed biomechanical description, be mapped to
contraction of the relevant muscle groups. It is important to
highlight here the distinction between the reference lengths
and the actual lengths. For instance, in an ‘arm pull’ strategy,
the player activates their arm muscles in an attempt to bring
their hands closer to their torso. But this doesn’t mean that
they will necessarily shorten the arm length; it is only in
solving the force and moment balances, i.e. considering all
the variables, that one can determine how much they actually
change the state of the system.

In quantifying the success of a strategy, we have made
the important distinction between stumbling, in which the
player’s upper body is suddenly pulled forward causing a loss
of balance, and slipping, in which the ratio of friction force
to reaction force at the feet exceeds the slipping threshold.
The former is induced by an acceleration of the upper
body towards the other player, while the latter is, somewhat
counterintuitively, induced by the opposite, an acceleration
away from the other player. By simulating sudden changes in
activation by the lighter player, we demonstrated that inertial
activations do exist for which the lighter player can cause
the heavier player to slip or stumble, but that the success is
highly dependent on the activation rate. This analysis also
highlighted the dual nature of any activation: in each case,

the execution by the lighter player must be just right in order
to avoid causing themselves to first slip or stumble.

While our analysis has focused on the possibility of a
lighter player beating a heavier player, there are many more
directions of analysis within our modelling framework that
could be interesting, for instance, if the players have equal
mass but differing strength characteristics (modelled e.g. by
unequal stiffness parameters), how does such asymmetry
impact the dynamics of the game? The strategies that can be
investigated with our model are in principle straightforward
to implement in a real game. Whether these would result
in outcomes in line with model predictions depends on a
number of factors, and suggests some useful directions for
future research. Qualitative features are likely to hold, as
these are consequences of the basic physics underlying the
game. A strong quantitative agreement is unlikely given
the idealisations built into the model, though this may be
possible if the mechanical stiffness parameters were tuned.
We have made efforts to determine realistic parameters,
which in the case of mechanical stiffness values has
required its own separate modelling, with assumptions and
idealisations therein. More realistic values may be attainable
with more detailed modelling, and/or the values could be
calibrated to a player and/or game. A particularly useful
direction for future research would be to link biomechanical
descriptions of muscle contractions with the idealised
activation parameters A := {γL1 , γL2 , γA1 , γA2 , θ̂1, θ̂2} in our
model. This would provide a means of constraining the
range of input values for A in terms of specific muscle
capabilities and thus would enable to more explicitly assess
the feasibility of implementing a given strategy.

To the best of our knowledge, this paper provides the
first attempt to analyse tug of war mechanically, from
the angle of the competition between several players,
in contrast to biomechanical approaches that focus on
the pulling performances of one player. For the sake of
simplicity, we restricted our attention to the case of two
opponents, while evidently, actual tugging war contests
involve more players; from eight players per team as per
the Tug of War International Federation standards (TWIF
2023), up to several hundred on much rarer occasions. The
team strategy and collective dynamics that emerge from a
large number of players may be nonintuitive and include
potentially interesting aspects of nonlinear complex systems
and collective behaviours, such as synchronisation, waves,
spontaneous oscillations, or resonance-like effects.

Overall, our relatively simple modelling strategy has
captured essential features of the game and illustrated
somewhat nonintuitive strategic consequences, emerging
from basic Newtonian mechanics. To make progress, our
approach should be combined with recent advances in
computational human biomechanics to improve our analysis
of the complex winning ways of the oldest game in humanity.

“The only thing that truly matters in what we do
is having fun.”

Alain Goriely
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Data
Mathematica notebooks with implementation of the model
and output of model results are available upon request.
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A On material parameters
In this appendix, we outline the rationale for the material
parameters used in the model.

On stiffness parameters
Both the arms and the legs satisfy a constitutive law of the
form

n = K (α − 1), (31)

where n is the resultant force, α is the ‘elastic’
stretch/compression, and K is the longitudinal stiffness. It
is important to note that in our modelling framework, K
does not correspond to the actual material stiffness of an
arm or leg, which in principle could be measured in terms
of the material stiffnesses of the constitutive parts (muscle,
bone, tissue, ...). Rather, K characterises the strength of
the arms/legs taken as a pair. To obtain a reasonable value
for this parameter, we consider the force-generating abilities
of the player. For the legs, this will be connected to how
much weight the player can lift, e.g. in a squat lift. Suppose
the player is in a squat position holding a mass M above
their shoulders, where M is the maximum weight the player
is able to hold and return to an upright position. In the
morphoelastic framework, we idealise this lift by saying that
when the player is in the squat position, they have αL

i < 1,
and they return to the standing position by activating the
leg muscles, γLi > 1, such that the position ends with γLi =
1/αL

i . The world record for squat lift is just under 500 kg,
though the average person can squat only around 120 kg.
Supposing that the addition of the mass M , without any
leg activation, causes the player to bend to a squat position,
αL ≈ 2/3, we would have KL ≈ −Mg/(αL − 1) = 3Mg.
Taking M = 100 kg gives a value of KL = 3000 N.

A similar thought experiment could be used to estimate the
stiffness for the arms, though as leg muscles will generally
be much stronger than arm muscles, we have used a baseline
value KA

i = 500 N.
We also require rotational stiffness values for the upper

and lower body. For the lower body, the terms κLi in the

torque components κLi (θi − θ̂i) of (2, 5) characterise the
ability of the legs to resist a rotation of the lower body, i.e.
a change in stance. This stiffness constant again depends on
the strength in the legs, though only one leg: the front leg
alone can resist a rotation forward, while only the back leg
can resist a rotation backwards. We may thus estimate this
value as close to half of the stiffness KL, multiplied by the
length of the lower body. This gives a value in the range
of 500 Nm to 1500 Nm; in our simulations, we have used
κL = 1000 Nm. For the upper body, the parameter κT in the
torque component κLφ of (3) describes the strength of the
upper body to resist rotation at the hips. This will depend on
abdominal muscles and core strength. We have used a value
κTφ = 800 Nm, similar to κL but a bit smaller.

On concentrated mass
For computational simplicity, we have concentrated the mass
of each player in the upper torso. A simple calculation
suggests how much of a decreased mass one should consider
when compared to a distributed mass. Suppose that an elastic
rod has length L and total mass M . The resultant force n in
the body will satisfy n′(S) = ρg, where S is the reference
arc length and ρ is the linear density, satisfying ρ =M/L in
the case of uniformly distributed mass (Moulton et al. 2013).
If S = 0 corresponds to the base of the body, and S = L
is the top, then n(L) = 0 (the top is stress-free), and thus
n = ρg(S − L). Letting α denote the elastic compression
due to self-weight, and suppose α satisfies a linear law
n = K (α − 1), where as before K is the stiffness. If s
is the arc length of the body deformed under self-weight,
then α = ds/dS, and thus the height of the deformed body
satisfies

` =

∫ L

0

α(S) dS = L +

∫ L

0

n(S)

E
dS. (32)

Inserting the form for n and integrating, we obtain

` = L

(
1− Mg

2K

)
. (33)

Suppose instead that a mass M̂ is concentrated at the top
of the body, S = L. What value should M̂ take in order to
best mimic the more realistic distributed mass? In the case of
concentrated mass, the resultant force n is constant and equal
to −M̂g. Taking the same constitutive law, n = k(α − 1),
and performing the same calculation for ` as above, we
obtain

` = L

(
1− M̂g

K

)
. (34)

Therefore, the deformed lengths are equivalent if M̂ =M/2.
Note that this choice also produces equivalent torques. That
is, consider the torque about the contact point with the
ground of a rigid body of length L with constant density
(mass per length) ρ, and total mass M making an angle θ
with the horizontal. The torque about the contact point with
the ground, due to self-weight, is

T =

∫ L

0

ρg(s cos θ, s sin θ, 0)T × (−ey) ds (35)
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which simplifies to −Mg cos θL/2 using the connection
M = ρL. A concentrated mass M̂ located at s = L, on
the other hand, produces a torque T̂ = −M̂g cos θL, and
thus T̂ = T if M̂ =M/2. In our simulations, we have thus
used mi = 40 kg as baseline values, corresponding to 80 kg
players.

On dynamic coefficients
The dynamic equations require moments of inertia for
balance of angular momentum and drag coefficients. To
obtain an estimate for the moment of inertia, we suppose
that the mass M = 40 kg is distributed through a rectangular
cylinder of dimensions (w = 0.18 m) × (d = 0.1 m) × (h =
0.8 m) (a very rough approximation of the lower body of a
human). Aligning the x-axis with the width and the z-axis
with the depth, the relevant moment of inertia corresponds to
rotation about the z-axis and is given by

IL =

∫ h

0

∫ w

0

∫ d

0

ρ(x2 + y2) dxdydz, (36)

where ρ =M/V , V = dwh being the total volume. This
calculation gives IL ≈ 4.8 kg m2; we have used ILi = ITi =
5 kg m2 in our simulations.

The drag coefficients are more difficult to estimate
accurately. However, it seems clear that in a game of tug of
war, oscillations will be over-damped or very nearly over-
damped. The values we have used came from numerical
experimentation.
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