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1 Shell secretion in molluscs

The external shell of molluscs is composed of an outer organic layer, the periostracum, and underly-
ing calcified layers. During growth, the mantle moves forward slightly beyond the calcified shell edge
while secreting the periostracum, which isolates the supersaturated extrapallial fluid from which the
calcified shell is precipitated [49]. The periostracum is secreted in the periostracal groove, between
the outer and inner lobe when the mantle edge is bi-lobed as in gastropods (e.g. [21]), or between
the outer and middle lobes when the mantle edge is three-lobed (i.e., outer, middle and inner lobes)
as in bivalves (e.g. [5]). During its secretion, the periostracum closely adheres to the secreting
epithelium of a mantle lobe [8, 11]. The growing sheet of periostracum is extruded between the
mantle lobes, while thickening and stiffening through sclerotization. It subsequently reaches its
external position where it serves as template for carbonate crystal nucleation and shell formation
and becomes fixed on the outer shell surface [19, 38].

Mismatch in length. The structure of the generative zone basically corresponds to a configuration
in which a thin and stiff layer (the periostracum), bound to a thicker and softer foundation (the lobe
of the mantle edge), is continuously secreted during the accretionary growth. In physical systems,
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this configuration is well-known to generate wavy patterns when a mismatch in lenght/surface
between both layers generates compressive stresses, triggering a wrinkling instability minimizing
the energy of the system [31, 27]. Wrinkling instabilities are ubiquitous in nature, and generate
multiscale wavy patterns not only in a wide range of physical systems, but are also involved in
the development of traits as diverse as fingerprints, pathological mucosal folding in airways, or
lung, brain and gastro-intestinal morphogenesis [23, 33, 40, 6, 44, 2, 17]. In most of the bilayered
physical systems studied so far, wrinkling instabilities emerge either when the upper layer swells
(when immersed in a solvent) and expands relative to the substrate, or when the upper layer is
bound to a pre-stretched substrate so that compressive stresses are generated on relaxation of the
system. In both cases, the upper layer displays an excess of surface relative to the substrate,
which mimics differential growth of the two tissues in biological systems. Both situations have
been used as a physical simulacrum for studying biological pattern formation, for example, brain
morphogenesis in which higher growth rate of the cortical layer relative to sublayers generates
compressive stress and folding of the cortex [10, 20]. In the case of the folding of the generative
zone of molluscs, an analogous situation is unlikely as it would imply that the periostracum would
grow at a higher rate than the mantle that secretes it. In physical systems, the mismatch in
surface length between layers triggering a mechanical instability may be also generated by the
generic behaviour of shrinkage triggered by polymerization and cross-linking (chemical bonds linking
polymers to each other). In inducing different polymerization rates and cross-linking between the
surface and the bulk of a film, a mismatch of shrinkage generates compressive stresses triggering a
wrinkling instability [37]. As seen above, the periostracum starts to be secreted in the periostracal
groove, and then it moves forward attached to the mantle lobe, while thickening and stiffening
through sclerotization [19, 38]. Sclerotization is a complex biochemical process of cross-linking
fibrous proteins, causing close packing of the polymers, dehydration and stiffening. Lateral shrinkage
of the stiffening and thickening periostracum during the cross-linking process of sclerotization can
clearly induce continuous compressive stresses on the underlying softer growing mantle epithelium,
and trigger a mechanical instability folding the generative zone.

Memory. In molluscs, a part of the shell edge may be broken as a result of trauma. In that case,
the mantle retracts behind the broken edge and secrets new shell material replacing the missing
part. Yet, the spiral ridges pattern reappears totally unchanged after shell trauma, which shows
that the setting up of this pattern involves a memory/irreversibility condition, i.e. that once a ridge
secreting zone is formed in the mantle epithelium, it does not disappear during development. The
fact that the mantle epithelium is irreversibility patterned explains why in Muricidae, the spiral
ridges pattern remains unaffected by the repeated extension and retraction of the mantle edge that
characterizes the episodic shell growth of this family. The spiral ridges are secreted by zones of
the mantle edge that remain folded once the body of the animal is extracted from its shell [21, 47].
Also, they are secreted by thickened zones of the secreting epithelium, with columnar cells taller
and more tightly packed than in the adjacent inter-ridges spaces, increasing the amount of shell
material secreted locally and the thickness of outer prismatic layer [47]. In summary, the mantle
epithelium is compressed and irreversibly remodelled at the level of the folded zones of the mantle
edge secreting the ridges, which provides a memory to the system.

1.1 A note on the mechanical hypothesis

The above descriptions comprise known facts about mollusc shell growth and the potential for
mechanical interactions. The model developed in this paper is based on an idealisation of these
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physical interactions, following the hypothesis that forces induced by a length mismatch between
different components of the shell secreting system can account for the morphogenesis of spiral ridges
and spines. In this way, the present work conceptually follows similar ideas as [13], which specifically
studied the formation of a single spine. That model was based on the well-known fact that spines
emerge episodically during phases of excess in marginal growth rate, that is when the marginal
growth of the shell increases relative to the spiral growth. In [13], the mechanical outcome of this
excess of marginal length of the mantle was investigated, by imposing a length mismatch with
the shell secreted in the previous increment. By varying growth and stiffness parameters in the
morphomechanical model, a wide variety of realistic spine forms were generated.

The model for spines presented in the current paper follows a similar conceptual approach as that
developed in [13], though extended from analysis of a single spine to the more complex hierarchical
ridges and multi-spine forms to which the ridges amplify upon a burst of growth. While both the
model we develop here and the work [13] are based on known biological and physical processes, we
note than an important step remains missing: an experimental validation. Unfortunately, though
mollusc shells constitute a model system in theoretical biology, experimental approaches on these
organisms remains a huge challenge for three main reasons: the slowness of the shell secretion
process (with growth rates of only a few tenths of a mm per day), the micrometer dimensions of
the generative zone, and especially the fact that when a mollusc is disturbed by an observer, it
retracts into its shell and stops secreting. Added to this is the fact that most species with spines
are marine molluscs that are difficult to maintain in aquariums under optimal growth conditions,
the challenges posed to any experimental approach are vast. Still, despite the difficulties in a full
experimental validation, a theoretical approach based on mechanics nevertheless has a predictive
power, through comparison of model output with observed shell patterns, and strong potential to
elucidate key interactions and mechanisms.

2 Modelling approach

2.1 Conceptual idea

We consider a planar system consisting of two elastic layers, termed Layer 1 and Layer 2, each
growing, i.e. increasing in length, such that Layer 1 grows at a faster rate. Attachment of the
layers means that Layer 1 is constricted to the same domain is Layer 2. For inextensible material,
an initial length difference will thus immediately create a wrinkling instability in Layer 1 in order
to accommodate the excess length. Our objective is to first classify the instability and then to
continue growing both layers well beyond the initial buckling. With continued growth of the layers,
expansion of the domain will create space between existing wrinkles; our aim is to characterize the
occurrence of secondary, tertiary, etc. buckling events that form a hierarchical pattern. In order to
isolate the key minimal ingredients for the generation of such an evolving pattern, we make several
simplifying assumptions, that will be justified a posteriori:

A1 We seek a buckled shape within the class of Gaussian functions.

A2 We assume small deformations, enabling for a valid linearization of energy terms.

Assumption A1 is motivated by the prevalence of examples in nature with patterns consisting
of shapes with a simple ‘bump-like’ geometry, all oriented in the same direction (see examples
described in main text). To approximate such patterns, the key first step to our approach is to
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characterize the pattern as a series of ‘Gaussian bumps’. That is, we suppose that the shape of the
beam is described by the curve (S, y(S)), where y consists of a sum of terms of the form

ai(t) exp

(
(S − Si)

2

σ2
i

)
.

As we show below, the advantage of this approach is that by constricting the shape, and in conjunc-
tion with assumption A2, we obtain a simple analytical expression for the mechanical energy, which
enables to easily and explicitly determine both the amplitudes ai as functions of time as well as
bifurcation points, i.e. time points at which a new set of Gaussian bumps appears, for the evolving
pattern. While the framework we develop provides a novel approach to hierarchical patterns in
a growing two-layer system, the basic idea of constricting the class of deformation within energy
methods dates back to the classic work of Timoshenko [41].

2.2 Growth

We model the two layer system as a growing planar elastic beam, Layer 1, elastically attached to a
foundation, Layer 2. Let the centerline of Layer 1 be given by

r(S) = Sex + y(S, t)ey, −L(t) < S < L(t). (1)

The correspondence between S and the horizontal coordinate follows A2 and reflects the notion
that our primary interest is in patterns for which the deformation from the flat state is not very
large, i.e. for which the patterned state may be well-approximated by a graph y(x); though we note
that when considering fractal patterns (Sec 5) we must revisit this and take a more complex form.
The domain [−L(t), L(t)] defines the length of Layer 2, 2L(t), which is related to the initial length
L(0) = L0 by the growth factor γ̂, i.e. L(t) = γ̂L0 and such that γ̂ satisfies a given growth law. To
make this system dimensionless, we scale time on the growth time scale of Layer 2, and we scale the
domain lengths by the initial length L0 so that in dimensionless form ∂tγ̂ = 1. Therefore, γ̂ = 1+ t
and thus

L(t) = 1 + t. (2)

Layer 1 is also growing, such that its dimensionless length is 2l(t) which relates to the initial length
l0 via l(t) = γl0. The growth stretch γ is also assumed to be spatially uniform and increasing at a
constant rate g > 1, i.e.

∂tγ = g,

which gives
l(t) = (1 + gt)l0. (3)

The condition g > 1 means that Layer 1 is growing at a faster rate than Layer 2, which is a key
ingredient for the evolving pattern that we study. We denote 2δ as the evolving length differential
between the layers:

δ(t) = l(t)− L(t) = δ0(1 + (g − 1)t), (4)

where δ0 = l0 − 1 is the length differential, if any, at t = 0. We primarily consider in this work an
inextensible rod, for which the arc length of the curve r must equal the length 2l(t), that is at all
times we have the condition ∫ L(t)

−L(t)

√
1 + ϵ (∂Sy(S, t))

2 dS = 2l(t). (5)
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Here ϵ := A2/L2
0 relates a characteristic length A of the pattern height, i.e. a length scale for

dimensional y, and the domain length scale L0. For the patterns we consider, Assumption A2
implies that ϵ ≪ 1, which enables to approximate the length constraint as∫ L(t)

−L(t)
1 +

1

2
ϵ (∂Sy(S, t))

2 dS = 2l(t). (6)

2.3 Energy

For given mechanical parameters, initial lengths L0, l0, and growth parameter g, the curve y is
determined by minimizing the mechanical energy, which we assume consists of bending energy and
a foundation energy that characterizes the resistance of Layer 2 to deformation of Layer 1. Note
that implicit in this approach is the assumption that growth is occurring on a much longer time
scale than the elastic time scale, so that at all times the system is assumed to be in quasi-static
mechanical equilibrium.

The bending energy is one half the product of the bending stiffness Eb and the square of the
curvature of the centerline r(S); under assumption A2 the linearized bending energy is proportional
to the second spatial derivative of y, ∂SSy(S, t). We define K

2 f(y) as a potential energy for the
foundation, i.e. for the interaction of the layers, where K has units of energy per length, f is a
dimensionless function satisfying f(0) = 0, and f(y) > 0 for y > 0, i.e. the interaction energy is
minimized in the flat state1. Specific functional forms of f are considered below. Combining these
components, we define the energy

E [y(S, t)] :=
∫ L(t)

−L(t)

ϵEb

2L0

(
∂2y(S, t)

∂S2

)2

+
KL0

2
f(y(S, t)) dS, (7)

which should be minimized subject to the length requirement (6).

2.4 Gaussian reduction

Following assumption A1, we seek y(S, t) as a series of Gaussian bumps:

y(S, t) =

N∑
i=1

ai exp

(
−(S − Si)

2

σ2
i

)
. (8)

Here ai defines the amplitude, Si the location, and σi the width of the ith Gaussian bump. Each
of these may in principle vary with time, though as we show below the variation of amplitude is
the most relevant component for energy minimization and pattern evolution. Despite an assumed
functional form, for any more than a single Gaussian, the energy (7) remains very cumbersome to
compute analytically (and energy minimization may not be feasible analytically at all depending
on the form of f(y)). Therefore, we make two additional assumptions to enable progress:

A3 The Gaussian bumps do not significantly overlap.

A4 Each Gaussian bump “fits” inside the domain.

1The potential energy f should also satisfy f > 0 for y < 0, though our analysis explicitly restricts to unidirectional
patterns y > 0.
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These assumptions will be defined more explicitly below. Conceptually, the benefit of A3 is that
each energy component may be integrated separately for each individual Gaussian, i.e. we remove
the coupling in the integration as well as any dependence in the energy on the specific locations of
the Gaussians encoded in the Si. Assumption A4 further implies that we may approximate each
Gaussian integral by an integral from −∞ to ∞, since the ‘tails’ will have negligible contribution.
Following these simplifying assumptions, for the bending energy we may write∫ L(t)

−L(t)

(
∂2y(S, t)

∂S2

)2

dS ≈
N∑
i=1

a2i

∫ ∞

−∞

[
∂2

∂S2

(
exp

(
−S2

σ2
i

))]2
dS. (9)

Expanding the derivative, the integrals on the right may be computed explicitly, giving

N∑
i=1

3
√
πa2i√
2σ3

i

. (10)

Turning to the length constraint (6), the combination of assumptions A1, A3, and A4 enables
the simplification ∫ L(t)

L(t)
(∂Sy(S, t))

2 dS ≈
N∑
i=1

a2i

∫ ∞

−∞

[
∂

∂S

(
exp

(
−S2

σ2
i

))]2
dS. (11)

Again the right hand side may be evaluated explicitly, and recalling the definition (4), the length
constraint reduces to the algebraic condition

N∑
i=1

√
πϵa2i

2
√
2σi

= 2δ(t). (12)

If the interaction (foundation) energy is described by a polynomial form for f , then a similar
reduction can be made. For instance, a linear foundation has quadratic energy f(y) = K

2 y
2, where

the constant K describes the foundation stiffness, while a nonlinear foundation may be described by
f(y) = K

2 y
m for integer m > 2 (In dimensional form, we could write f(y) = (y/A)m, so that K has

units of energy for all values of m. Here, we have assumed that y has already been scaled by A.) A
generic f could be represented by a polynomial spline with multiple terms, though we restrict our
analysis to single term polynomials. For this, an explicit form can be obtained for arbitrary integer
m ≥ 2 as follows:∫ L(t)

−L(t)
ym dS ≈

N∑
i=1

ami

∫ ∞

−∞

(
exp

(
−S2

σ2
i

))m

dS =
N∑
i=1

√
πami σi√
m

. (13)

2.5 Hierarchical construction

A hierarchical pattern is defined by a sequence of bifurcations each leading to increasing complexity
in the pattern. Here we suppose that each bifurcation event is characterized by the appearance
of a new level of Gaussian bumps all with the same characteristics. We define Level 1, the initial
bifurcation, by the form

y(S, t) =

N1∑
i=1

a1 exp

(
−(S − Si)

2

σ2
1

)
. (14)
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Notice that each of the N1 bumps in Level 1 all have the same amplitude a1 and width σ1, varying
only in their location, which is defined by the Si. For a Level 2 pattern, we add to the form above
a second family of Gaussians:

y(S, t) =

N1∑
i=1

a1 exp

(
−(S − Si1)

2

σ2
1

)
+

N2∑
i=1

a2 exp

(
−(S − Si2)

2

σ2
2

)
. (15)

All N2 of the Gaussians in the second family have amplitude a2 and width σ2, and with more than
one family we distinguish the locations with subscripts Si1 and Si2 . Bifurcations to higher levels
follow the same pattern.

As outlined in the main text, the numbers of Gaussians in each family follows a simple rule:
each new level appears in between each bump of the already present pattern. Thus, if the initial
pattern has N1 = 2, which we numerate as a 1.1 pattern, then at Level 2 the pattern reads 1.2.1,
and at Level 3 we have 1.3.2.3.1. According to this structure, N2 = N1−1, N3 = 2(N1−1), and we
may extrapolate to Nk = 2k−2(N1 − 1). Alternatively, depending on how the edges are treated, the
Level 2 pattern could read 2.1.2.1.2, with Level 3 having the form 3.2.3.1.3.2.3.1.3.2, which yields
the general rule Nk = 2k−2(N1 + 1). We restrict our analysis to these two formulations in this
paper, though we note that the framework is easily extended to more generic scenarios, e.g. if the
domain is expanding non-uniformly so that higher level patterns are not uniformly spread between
lower levels.

2.6 Energy minimization

Following the Gaussian reduction and hierarchical construction, the energy at Level k is expressed
as an algebraic function of k amplitudes {a1, a2, . . . , ak}, and k widths {σ1, σ2, . . . , σk}. Despite
the reduction from a function space to a finite algebraic space, minimizing the energy and locating
the bifurcation points at which the system transitions to higher levels remains quite complex. To
simplify further, and to more precisely define the assumptions of the Gaussians fitting in the domain
without significant overlap, A3 and A4, we consider more explicitly the Level 1 pattern.

2.7 Level 1

The energy at Level 1, for a foundation potential f(y) = K
2 y

m, is given by

E1(a1, σ1) = N1

(
3
√
πϵEb

2
√
2L0

a21
σ3
1

+
KL0

√
π

2
√
m

am1 σ1

)
. (16)

To simplify the notation, we divide the energy by the coefficient of the first term, giving the
dimensionless form

E1(a1, σ1) = N1

(
a21
σ3
1

+ µam1 σ1

)
, (17)

where

µ :=
KL2

0

√
2

3Ebϵ
√
m

is a dimensionless parameter characterizing the ratio of foundation to bending stiffness. This should
be minimised subject to the length constraint

N1

√
πϵ

2
√
2

a21
σ1

= 2δ(t). (18)
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Again, for notational simplicity, we may absorb the coefficient
√
πϵ/(2

√
2) into the definition of δ(t)

by appropriately redefining δ0 and g. Thus, in what follows we represent the length constraint as

N1
a21
σ1

= 2δ(t) = 2(δ0 + gt). (19)

Solving (19) for a1 and inserting into (17) gives an equation for σ1, which has a single minimum
located at

σ1 = 16
1

m+6

(
µ(m+ 2)δ

m
2
−1N

1−m
2

1

)
− 2

m+6 . (20)

In the case m = 2, this reads σ1 = µ−1/4. For m = 4, a case we analyze extensively, the formula
reads

σ1 =

(
2N1

3δµ

)1/5

.

Note that time only enters in δ = δ(t). Thus, in the case m = 2, the energy minimizing value of
σ1 is fixed for all time. In the case m = 3, σ1 ∼ δ−1/9, while for m = 4, σ1 ∼ δ−1/5. Since δ
is a linear function of t, for moderate values of m, σ is a strongly sublinear function of t. That
is, there is a slow decrease in σ1 with time, implying a slight decrease in Gaussian width as the
pattern evolves, though the width remains close to constant. This apparent near constancy of
width of each bump is also exhibited in many biological hierarchical patterns, though note in all.
Indeed, spiral ridges in mollusc shells increase both in amplitude and width during development.
The increase in width is likely a consequence of the expanding domain. These ridges correspond to
irreversibly remodeled and thickened zones of the secreting epithelium; these thickened zones likely
grow along with the rest of the mantle epithelium, so it’s not surprising that they increase in width.
In principle, an alternative formulation of our model could involve setting a rule for the increase in
the width of each bump based on domain growth, though clearly extra space between bumps must
still be created, i.e. it is not the case that the initial wrinkling pattern simply expands outward
with domain growth, or else bifurcation to higher levels could not occur. We anticipate that under
such a rule, the qualitative features of the model would not change, only the quantitative features,
such as bifurcation points. Lacking a clear logic for a rule for growth-induced width expansion, here
we stick with the simplest formulation of constant width. Thus, in order to aid further analytical
progress, we add an additional assumption:

A5 The width of the Gaussian bumps at each level do not change in time.

That is, once we have determined the value of σi for a given level, it is kept constant, and thus the
energy is only a function of the amplitude ai.

2.7.1 Mode selection

It remains to determine the number of Gaussians, N1, which we may term the mode of the pattern.
To do this, we first characterize the width of a single Gaussian bump. Consider a Gaussian centered
at the origin,

y(S) = a exp

(
−S2

σ2

)
.

For small parameter 0 < ε ≪ 1, y(S) = ε may be solved for S, yielding

Sε = σ

√
ln
(a
ε

)
.

9



Since
√
ln a is a slowly increasing function of a, and a is assumed to not grow too large, and σ is

effectively constant, the distance from the Gaussian center to the point at which the height is Sϵ is
close to constant. From this, we thus define the half-width of a Gaussian bump h = h(σ) as

h(σ) = ασ,

where α ≈ 2 is taken as a fixed parameter that comes from a choice of a/ε; e.g. a = 1, ε = 0.1 gives
α = 1.517, while a = 1, ε = 0.01 gives α = 2.146.

Having defined a width of each Gaussian, the number of Gaussians in Level 1 may now be
determined from the requirement that the pattern fits within the domain. At t = 0, there is an
excess of length 2δ0 between the layers. Since the beam is inextensible, an initial length differential
implies that the pattern must appear immediately, at t = 0, when the domain length is 2L(0) = 2.
At this point, N1 Gaussian bumps of width ασ1 fit within the domain if

2N1ασ1 ≤ 2. (21)

Inserting the energy minimizing value of σ1 back into the energy, and also replacing a1 by the
length constraint, we may express the energy at t = 0 in terms of N1 (and the parameters δ0 and
µ). We find for m > 2 that the energy is a monotonically decreasing function of N1, e.g. in the
case m = 4 we have

E1 = 5

(
δ70µ

2

18N2
1

)1/5

(22)

The observed mode is the one with the smallest energy that still satisfies the constraint of fitting
in the domain. That is, the mode N1 is determined as the largest value that satisfies the condition

N1σ1(N1) ≤ 1 (23)

where σ1(N1) comes from (20) with δ = δ(0) = δ0.
The argument above holds for m > 2. In the case m = 2, the energy minimizing value of σ1,

σ1 = µ−1/4, is independent of N1, as is the energy at t = 0. This is because for m = 2, both
terms in the energy are proportional to N1a

2
1, and the length constraint fixes N1a

2
1 in terms of δ.

To be consistent, in this case we still fix the mode as the largest value that satisfies the constraint
αN1σ1 ≤ 1. While taking a smaller value of N1 would technically have the same energy, it would
leave more of the domain flat and would require a larger initial amplitude a1(0) at the locations of
the Gaussians, which is unrealistic in terms of physical patterns. In any case, as we show below,
the case m = 2 is irrelevant for hierarchical pattern formation.

2.8 Level 1 amplitude

To summarise the above subsections, the pattern at Level 1 is specified by the following steps:

1. The mode, or number of Gaussians N1, is given by the smallest integer N1 satisfying (23).

2. The width σ is given by (20), with δ = δ0.

3. The amplitude a1 = a1(t) is determined from (19).

Note that since δ = δ0 + gt and σ1 and N1 are constant, the amplitude curve has parabolic form.

10



2.9 Level 2 energy and bifurcation

To determine if and when the pattern will bifurcate to Level 2, we first define the Level 2 energy.
In dimensionless form, this reads

E2(a1, a2;σ1, σ2) =
N1a

2
1

σ3
1

+
N2a

2
2

σ3
2

+ µ (N1a
m
1 σ1 +N2a

m
2 σ2) , (24)

Here the Level 2 pattern includes the same Gaussian terms as in Level 1, plus an additional N2

Gaussians of amplitude a2 and width σ2. The first two terms account for the bending energy,
while the latter two account for the foundation energy. As noted earlier, for a uniformly expanding
domain, N2 is determined by N1, either satisfying N2 = N1 + 1 or N2 = N2 − 1. The energy (24)
is to be minimized subject to the length constraint

N1
a21
σ1

+N2
a22
σ2

= 2δ(t). (25)

Following the analysis at Level 1, we express the energy E2 as a function only of the amplitudes
a1 and a2, and depending parametrically on the widths σ1 and σ2. By assumption A5, the widths
are taken to be constant. Thus, σ1 is already determined at Level 1. To determine σ2, we utilize
assumptions A3 and A4. For N1 Gaussians of width 2ασ1 and N2 Gaussians of width 2ασ2 to fit
within the domain, it must hold that

2N1ασ1 + 2N2ασ2 ≤ 2L(t) = 2(1 + t). (26)

Defining t2 as the bifurcation time at which the Level 2 pattern appears (t2 to be determined), we
can replace the inequality in (26) with equality and thus define σ2 via

σ2 :=
1 + t2 −N1ασ1

N2α
. (27)

To determine t2 and the energy minimizing amplitudes a1, a2, in principle one can solve the length
constraint (25) for a1, insert into (24) and then minimize E2. For general m this cannot be done
analytically. Thus, to proceed we consider the specific cases m = 2 and m = 4.

2.9.1 m=2

In the case m = 2, upon solving the length constraint for a1 and inserting in the energy, E2 has the
form

E2 =
δσ3

1

(
µσ4

1 + 1
)
+ a22N2

(
σ2
1 − σ2

2

) (
1− µσ2

1σ
2
2

)
σ2
1σ

3
2

, (28)

which is minimized at a2 = 0. We are led to conclude that within this framework, a bifurcation to
Level 2 does not occur for m = 2. That is:

A linear foundation does not generate a hierarchical pattern.

2.9.2 m=4

In the case m = 4, the same steps lead to an energy

E2 =
µσ3

1

(
a22N2 − δσ2

)
2

N1σ2
2

+
δ − a22N2

σ2

σ2
1

+
a22N2

(
a22µσ

4
2 + 1

)
σ3
2

. (29)
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This form yields an explicit and non-trivial minimum, given by

a2 =

√
2δµσ2

2σ
5
1 −N1σ2

1 +N1σ2
2√

2
√
µN2σ2σ5

1 + µN1σ4
2σ

2
1

. (30)

(Similarly, an explicit and non-trivial solution may be found in the case m = 3.)

Given a2, we also have an explicit expression for a1:

a1 =

√
σ1
N1

(
2δ(t)− N2a22

σ2

)
. (31)

It remains to determine t2, the bifurcation time, which lives implicitly in the formulas above via
the form for σ2 given in (27). The width σ2 is also to be determined, but this is defined in terms of
t2 via (27). At t = t2, a2 = 0 by definition, therefore we may find t2 by setting a2 = 0 in (30), with
σ2 replaced by (27), and with δ = δ0 + gt2. The resulting equation may be solved explicitly for t2,
though with a formula that is too cumbersome to reproduce here.

By construction, the energy E1(a1) matches exactly E2(a1, a2) at the bifurcation point t = t2,
since a2 = 0 at that point. It is readily verified, for instance by direct plotting of both E1 and
E2 against time past the bifurcation point, or by the shape of E2 as a function of a2 in (30), that
E2 < E1 for t > t2; in other words, the appearance of the Level 2 curve a2 does indeed represent a
physical bifurcation to a lower energy state.

2.10 Level 3 and beyond

The procedure described above is naturally extended to Level 3 and beyond. Indeed, in the case
m = 4, an explicit analytical expression may be obtained for the amplitudes, widths, and bifurcation
points.

At Level k, the requirement for the pattern to fit is given by

k∑
i=1

2Niασi ≤ 2L(t) = 2(1 + t), (32)

where we recall that for a uniformly expanding domain, Nk = 2k−2(N1 + 1) or Nk = 2k−2(N1 − 1).
Since {σ1, σ2, . . . σk−1} are assumed fixed from the previous levels, this gives a formula for σk in
terms of the bifurcation time tk:

σk :=
1 + tk −

∑k−1
i=1 Niασi

Nkα
. (33)

The length constraint at Level k is
k∑

i=1

Nk
a2k
σk

= 2δ(t), (34)

which may be solved for a1 and then inserted in the energy

Ek(a1, a2, . . . , ak;σ1, σ2, . . . , σk) =

k∑
i=1

(
Nia

2
i

σ3
i

+ µNia
m
i σi

)
. (35)
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Figure 1: Left: amplitude curves including bifurcations up to Level 3. Right: corresponding energies,
showing that bifurcation to higher levels represents a path with lower energy.

The amplitudes {a2, a3, . . . , ak} come from solving simultaneously the equations

∂Ek

∂ai
= 0, i = 2, 3, . . . , k

and the bifurcation time tk is determined by taking the explicit expression for ak, setting ak = 0,
setting δ = δ0 + gtk, replacing σk by (33), and solving the resulting expression for tk.

Using a computer algebra software, explicit expressions are easily produced, at least in the
cases m = 3 and m = 4. Using Mathematica, we have produced explicit expressions up to Level
5; in principle the algebra enables to continue to higher levels, though predictably the algebraic
expressions become increasingly complex.

2.11 Energy comparison

To demonstrate that the bifurcation to higher hierarchical levels does indeed represent a physical
bifurcation, i.e. a transition to a path with lower energy, we compare in Fig 1 the total energy
for the first three levels. At left we plot the amplitude curves, a1(t) (blue), a2(t) (red), and a3(t)
(green), where the dashed blue curve shows the amplitude a1 following the Level 1 path, i.e. ignoring
the bifurcation to Level 2, and similarly the dotted red and blue curves show the amplitudes a1
and a2 following Level 2 past the Level 3 bifurcation. At right are the corresponding energies
Ei(t), i = 1, 2, 3. The Level 2 energy only appears past the bifurcation time t2, at which point it is
clearly lower than the Level 1 energy. Similarly, the Level 3 energy is lower than the Level 2 energy
once it appears at bifurcation time t3. The difference between E2 and E3 is smaller, but it is clear
from the inset that E3 is indeed lower.

While this demonstrative example of course does not constitute formal proof, we note that the
energy ordering Ei+1 < Ei for t > ti+1 has held in all cases that we have examined.

2.12 The physical pattern

At a given level k, the energy minimizing approach above specifies the amplitudes {a1(t), a2(t), . . . , ak(t)}
as functions of time and the widths {σ1, σ2, . . . , σk}. In order to display the pattern, it remains to
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specify the physical locations of the Gaussian bumps. That is, at Level k the pattern is described
by (x, y) = (S, y(S, t)) for S ∈ [−L(t), L(t)] where

y(S, t) =

k∑
i=1

Ni∑
j=1

ai(t) exp

(
−(S − Sij )

2

σ2
i

)
. (36)

Here the outer sum is over each of the levels 1 to k, while the inner sum is over the Gaussians
within a level. The value Sij describes the location of the jth bump of the ith level. For a uniformly
expanding domain, as noted, the next level appears in between each bump of the previous level.
Consider first the case where new bumps appear also on the outside edges. That is, if the initial
pattern is 1.1, this is continued until bifurcation point t2, at which point the pattern is 2.1.2.1.2. This
holds until the next bifurcation point t3, at which time the pattern transitions to 3.2.3.1.3.2.3.1.3.2.3.
Subsequently, at t = t4, we have 4.3.4.2.4.3.4.1.4.3.4.2.4.3.4.1.4.3.4.2.4.3.4, and so on.

At the bifurcation points tk, the next level pattern exactly fits within the domain by construction.
But in between bifurcation points, for tk < t < tk+1, the pattern remains at Level k, but the domain
has expanded, meaning that there is extra space in the domain, but not yet enough for the next
bifurcation. In line with a uniformly expanding domain, to place the centers of the Gaussians,
we use the principle that the extra space is evenly distributed between each Gaussian bump. For
tk < t < tk+1, there are

Gk :=

k∑
i=1

Ni = N1 +

k∑
i=2

2i−2(N1 + 1) = 2k−1(N1 + 1)

Gaussians, which have a total width of

2Wk :=
k∑

i=1

2Niασi = 2α

(
N1σi +

k∑
i=2

2i−2(N1 + 1)σi

)
,

recalling that ασi is the half-width of a Gaussian. We define δ̂ as the half-width of extra space be-
tween two bumps. For instance, at Level 2, the pattern would be situated as δ̂.2.(2δ̂).1.(2δ̂).2.(2δ̂).1.(2δ̂).2.δ̂.
In this construction, it follows that

2δ̂Gk = 2L(t)− 2Wk,

which explicitly defines δ̂ via the formulas for Gk and Wk above. The Gaussian centers can then be
defined by starting at the left end, S = −L(t), and translating by the appropriate number of widths
and half-widths for each level. To this end, it is useful to first define the width of the repeating
unit for each level. The repeating unit is the sub-pattern that repeats N1 times. For instance,
in the case k = 4, the repeating unit is the pattern 4.3.4.2.4.3.4.1, or including the half-widths,
δ̂.4.(2δ̂).3.(2δ̂).4.(2δ̂).2.(2δ̂).4.(2δ̂).3.(2δ̂).4.(2δ̂).1.δ̂. This repeating unit has total width

R4 := 16δ̂ + 2α(σ1 + σ2 + 2σ3 + 4σ4).

Within this structure, the centers can be defined by moving some number of repeating units plus
the appropriate distance within the repeating unit. Continuing with the case k = 4, the centers of
the 1’s are located at

S1j = −L(t) + (j − 1)R4 + 15δ̂ + 2α(σ2 + 2σ3 + 4σ4) + ασ1, j = 1, . . . N1,
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while the centers of the 2’s are located at

S2j = −L(t) + (j − 1)R4 + 7δ̂ + 2α(σ3 + 2σ4) + ασ2, j = 1, . . . N1 + 1.

We must distinguish between the first and second appearing 3’s, which we denote with subscripts
a and b, and between the first, second, third and fourth 4’s, for which we use subscripts a through
d. For the 3’s, the centers are at

S3aj
= −L(t) + (j − 1)R4 + 3δ̂ + 2α(σ4) + ασ3, j = 1, . . . N1 + 1,

S3bj
= −L(t) + (j − 1)R4 + 11δ̂ + 2α(3σ4 + σ3 + σ2) + ασ3, j = 1, . . . N1 + 1

while the centers of the 4’s are located at

S4aj
= −L(t) + (j − 1)R4 + δ̂ + ασ4, j = 1, . . . N1 + 1,

S4bj
= −L(t) + (j − 1)R4 + 5δ̂ + 2α(σ4 + σ3) + ασ4, j = 1, . . . N1 + 1

S4cj
= −L(t) + (j − 1)R4 + 9δ̂ + 2α(2σ4 + σ3 + σ2) + ασ4, j = 1, . . . N1 + 1,

S4dj
= −L(t) + (j − 1)R4 + 13δ̂ + 2α(2σ4 + 2σ3 + σ2) + ασ4, j = 1, . . . N1 + 1

The above construction may be extended indefinitely as needed, and is also readily adapted to
expression of a pattern in which new bumps do not appear on the edges, e.g. 1.1 to 1.2.1 to
1.3.2.3.2.1.

3 Validating approach

To validate our Gaussian bumps framework, we conduct two separate analyses of comparison to a
more complex formulation.

Validation 1 We first compare amplitude curves for the initial buckling against the weakly non-
linear analysis of a growing elastic rod on a foundation provided in reference [1]. To do so, we must
adapt the model slightly: in [1], the rod is extensible, thus some length differential can be accom-
modated by a compression of the longer layer, and buckling does not occur until this compression
reaches a critical value. To extend our framework to an extensible regime for comparison to this
work, we replace the length constraint by a stretching/compression energy. In the continuous rods
approach, one defines the stretch

α :=
∂s

∂S
, (37)

where S is the arc length parameter of the rod in the grown (stress-free) state, and s is the arc
length parameter in the current state [32]. The stretching energy is then given by

Es

2

∫ L

−L
(α− 1)2 dS (38)

where Es is the stretching stiffness. In the above, the stretch α is a local property. Such a quantity
is not well-defined in our Gaussian approach; however we can still define an analogous stretching
energy as a global property. To do this, we return to the length constraint, (6)∫ L(t)

−L(t)
1 +

1

2
ϵ (∂Sy(S, t))

2 dS = 2l(t).
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The left hand side is the linearization of the arc length of Layer 1, the right hand side is the imposed
length of Layer 1, and the equality reflects the length constraint. To replace the constraint by an
energy, we define the stretching energy

Es

2

(∫ L(t)

−L(t)
1 +

1

2
ϵ (∂Sy(S, t))

2 dS − 2l(t)

)2

.

In the limit Es → ∞, clearly the extensible rod limits to the inextensible case we have thus far
considered.

In the framework of [1], time is not an explicit variable; rather the pattern evolves due to increase
in the growth parameter γ, which is defined as

γ :=
∂S

∂S0
.

Here S0 is the arc length parameter of the growing rod in its initial state, and S is the arc length
parameter in the grown (unstressed) state. Since γ is constant in the calculation we consider, and
the domain length is fixed, γ is equivalent to l/L in our notation.

In Fig 2A, we display the amplitude curves for a Level 1 pattern with N1 = 1 (left) and N1 = 3
(right), as a function of γ. The inset plots show the buckled shape at the indicated points. The solid
curves are computed from the weakly-nonlinear analysis (WNA) approach, and the dashed curves
are computed from our Gaussian approach. In this context, γ = 1 represents no growth, so that
the rod (Layer 1) length exactly matches the foundation (Layer 2) length, and the rod is stress-free
in the trivial flat state. As γ increases, the rod remains flat, but with compression energy building,
until bifurcation occurs at a critical value γ∗, indicated by the point where the amplitude curve
meets the axis. The WNA curve is computed from the full system of differential equations for a
growing elastic rod, including geometric non-linearity. To summarize the calculation: first a linear
stability analysis is conducted with eigenvalue γ to determine γ∗, then the unknown amplitude is
computed in the neighbourhood of γ∗ by perturbing as γ = γ∗ + ϵγ1 for 0 < ϵ ≪ 1 and solving the
full system up to O(ϵ3) to obtain a solvability condition on the amplitude. It is worth stressing that
the calculations in the WNA approach, outlined in full detail in [1], are very involved and lengthy,
while calculation of the amplitude curve from the Gaussian approach involves a couple of lines of
basic algebra.

Despite the conceptual difference between a local and global stretching energy, and a huge
difference between the two approaches in the form and difficulty of the calculations, the Gaussian
approach agrees with the full non-linear model remarkably well. Note that there are no fitting
parameters in this comparison – all parameters in the WNA approach have an exact analogue that
was passed to the Gaussian approach (full calculations available in the accompanying Mathematica
notebook ComparisonWithWNA.nb; see data sharing description in main text for link). Though
the complexity of the WNA approach does not include domain growth and thus does not include
calculation of the bifurcation to Level 2, this comparison lends strong validity to the Gaussian
reduction.

Validation 2 As a second form of validation, we relax Assumption A3 that each Gaussian is
separated from the others and consider whether the amplitude curves and bifurcation to the next
level are changed. That is, we maintain the assumption that the shape consists of a sum of Gaussians
(as justified above), but removing the assumption that the Gaussians do not significantly overlap.
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Figure 2: Validation of the Gaussian bumps approach. A. Comparison of initial amplitude curves
for Gaussian model and weakly nonlinear analysis of growing elastic rod [1], both for N1 = 1 (left)
and N1 = 3 (right). Inset plots show the buckled shape at the indicated points. B. Amplitude
curves for Levels 1 and 2 as computed via separated Gaussians and Assumption A3 (solid curves)
and numerically computed energy minimum without assuming separated Gaussians (dots). The
Level 1 curve has amplitude a1 in blue, and Level 2 has amplitude a2 in red. Parameter values
provided in Sec 9.
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Recall that this assumption was used to replace integrals of sums of Gaussians in the energy by a
sum of separated integrals with limits extended to −∞ to ∞. In relaxing this assumption, we must
integrate the length constraint and energy components numerically. Specifically, we consider the
bifurcation from Level 1 to Level 2 such that N1 = 2, N2 = 1. Here, the pattern at Level 2 has the
form

y2(S) = a1

(
exp

(
−(S − S1)

2

σ2
1

)
+ exp

(
−(S + S1)

2

σ2
1

))
+ a2 exp

(
−S2

σ2
2

)
. (39)

(This same form applies at Level 1, if a2 = 0.) The length constraint reads∫ L

−L
y′2(S)

2 dS = δ(t). (40)

Note that since the Gaussians are coupled in the integrals, the locations of the Gaussians cannot
be ignored. We suppose here that the Gaussians are centered according to the rules outlined in Sec
2K, through which we define S1(t) = L(t) − ασ, and by symmetry the Level 2 Gaussian remains
centered at S = 0. Our approach is as follows:

1. We fix the Gaussian widths σ1 and σ2 equal to the values obtained in the ‘separated Gaussians’
approach.

2. We solve the length constraint (40) at Level 2 for a1, giving an explicit solution in terms of
δ(t), σ1 and σ2, and the unknown a2(t).

3. We thus express the energy as an integral involving the unknown a2 and otherwise known
quantities.

4. We integrate the energy numerically over a range of a2 values, and determine the value of a2
for which the energy is minimized.

Within this framework, we expect that if we are far enough past the bifurcation time t2 as
predicted by the separated Gaussians, the two approaches should give the same energy minimizing
values of a1 and a2, as there will be sufficient extra space in the domain such that the energy and
length computed from both approaches will be nearly identical. The question then is whether the
amplitudes agree for t close to t2 and whether the predicted bifurcation point also agrees. For
instance, if the unseparated Gaussians model predicts a bifurcation to Level 2 at an time that is
appreciably earlier (t < t2), when there is not yet sufficient space for a separated new Gaussian to
appear, then Assumption A3 may be considered to be invalidated.

An investigation of this question in full detail or generality is beyond the scope of this work.
Indeed, in some instances, such as the analysis of period doubling presented in [9], or hierarchical
wrinkling analysed in [51], a bifurcation to a higher level of complexity does involve an overlapping
of new modes with previous modes. However, in each of the examples appearing in main text Fig
1, a clear separation of new levels is observed. To demonstrate that this is mechanically consistent,
we present an example in Fig 2B. Here we plot the amplitude curves a1 and a2 as computed for the
separated and unseparated Gaussian models. The curves are in near perfect agreement, and the
bifurcation point for the unseparated Gaussians is very close to t2 (in fact, slightly later, though
this will depend on the specific value of α that is used in determining the width of each Gaussian
and thus the bifurcation condition). We leave it as a question for future work to determine exactly
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which conditions lead a mechanical system to bifurcate in an overlapping versus non-overlapping
manner.

4 Evolving foundation

In the framework outlined so far, the foundation/substrate energy at each Gaussian is proportional
to ami , which derives from the dimensional energy potential K

2

( y
A

)m
. This represents a static

resistance to deformation of the growing beam, that is the energy is always at a minimum state
when y = 0. A more realistic approach in many systems is to include a local remodeling of Layer 2
in response to deformation of Layer 1. To include such a remodelling in the model, we may replace
the interaction potential energy (in dimensional form) with

K

2

(
y(S, t)− ŷ(S, t)

A

)m

.

Here ŷ(S, t) describes locally the substrate shape, and gives the shape at which the foundation
energy is minimized. A natural choice is to evolve the substrate shape towards the shape of the
growing beam, which in the simplest linear setting is described by the evolution law

∂ŷ(S, t)

∂t
= η (y(S, t)− ŷ(S, t)) (41)

where η characterizes the substrate relaxation or remodeling rate.

Within the Gaussian bumps framework, the function ŷ will have the same shape as y, as ex-
pressed in (36). That is, ŷ is a sum of separated Gaussians, and with the same widths σi as y,
differing only in the amplitudes. Denoting the amplitudes of the substrate by âi, the substrate at
Level k will have the form

ŷ(S, t) =

k∑
i=1

Ni∑
j=1

âi(t) exp

(
−(S − Sij )

2

σ2
i

)
. (42)

Then, the dimensionless foundation energy terms µami σi are replaced by µ(ai− âi)
mσi, and the âi(t)

evolve according to

â′i(t) = η (ai(t)− âi(t)) . (43)

This evolution equation is combined with an ‘initial’ condition that the substrate begins flat. Here
we must be careful that the amplitudes ai only appear at bifurcation time ti, thus the correct
condition is

âi(ti) = 0, (44)

which includes the implicit statement that âi(t) ≡ 0 for t < ti.

The addition of the âi to the energy unfortunately disrupts the analytical solvability of the
system: even though each âi is a fixed constant at each time step, we find that Mathematica is
unable to solve analytically for the energy minimizing values {ai}. Thus, when including an evolving
foundation, we resort to a semi-analytical, semi-numerical approach, which we outline below.
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4.1 Simulating energy minimization with evolving foundation

Since the foundation is assumed to begin in a flat state, the initial bifurcation condition and mode
selection remain as before, solved with â1 = 0. Once the mode N1 and width σ1 have been selected,
the amplitude curve a1(t) at Level 1 is determined explicitly by the length constraint, and is given
by

a1 =

√
δ(t)σ1
N1

. (45)

We may insert this form directly into the evolution equation â′1(t) = η (a1(t)− â1(t)), which may
be solved exactly, though with a cumbersome formula.

At Level 2, the energy has the form

E2(a1, a2; â1, â2, σ1, σ2) =
N1a

2
1

σ3
1

+
N2a

2
2

σ3
2

+ µ (N1(a1 − â1)
mσ1 +N2(a2 − â2)

mσ2) , (46)

while the length constraint reads

N1
a21
σ1

+N2
a22
σ2

= 2δ(t). (47)

To obtain the bifurcation time t2 at which the system transitions to Level 2, we solve (47)
for a1, and insert into (46). We also insert the form for â1(t), and set t = t2 and â2 = 0. The
resulting energy E2 is a function only of a2, but involving the unknown t2. The bifurcation time t2
corresponds to the point where the energy minimizing branch of E2 has a2 = 0. That is, we seek t2
such that

lim
a2→0

(
1

a2

∂E2

∂a2

)
:= g(t2) = 0.

Here, the division by a2 eliminates the trivial solution branch.
Once t2 is determined, we compute the amplitude curves incrementally via the following steps:

1. Increment time by ∆t, so that t = t2 + i∆t and numerically find the value of a2i by solving

∂E2

∂a2
= 0,

where a1 is eliminated from E2 via the length constraint and with â1 = â1i−1 , â2 = â2i−1 .

2. Compute a1i via the length constraint and with a2 = a2i as determined from Step 1.

3. Increment â1 and â2 by a forward Euler step:

â1i = â1i−1 + η∆t(a1i − â1i), â2i = â2i−1 + η∆t(a2i − â2i)

4. Repeat.

The above procedure defines discrete values for each of a1, a2, â1, and â2, from which we generate
interpolating functions defined for t2 < t < tend, where tend is the end point of the simulation time.

At Level 3, we follow a similar procedure. First, to find the bifurcation time t3, the length
constraint is solved for a1, which is inserted into the energy E3. We also insert â3 = 0, t = t3, and
the interpolating functions for a2, â1, and â2 computed above. We seek the time t3 at which

lim
a3→0

1

a3

∂E3

∂a3
:= g(t3) = 0,
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where the division by a3 eliminates the trivial solution branch and the root is found numerically.
Having determined t3, we compute the amplitude curves as follows

1. Increment time by ∆t, so that t = t3 + i∆t and numerically find the values of a2i , a3i by
numerically minimizing

E3(a2, a3)

where a1 is eliminated from E3 via the length constraint and with â1 = â1i−1 , â2 = â2i−1 ,
â3 = â3i−1 .

2. Compute a1i via the length constraint and with a2 = a2i , a3 = a3i as determined from Step
1.

3. Increment â1, â2, â3 by the same forward Euler step defined above.

4. Repeat.

As before, from the discrete points we generate interpolating functions, now defined on t3 < t < tend.
This basic procedure is naturally extended to higher levels.

5 Fractal pattern

In adapting our framework to the generation of a fractal structure2, the starting point, based on
our aim of describing fractal-like spines in molluscs, is to suppose that the domain length remains
fixed, i.e. the length of Layer 2, 2L, does not increase with time, while Layer 1 continues to increase
in length, i.e. l = l(t)3. Thus, whereas in the linear pattern considered up to now the appearance
of new levels occurs in the free space created by the expanding domain, for a fractal pattern new
levels can only appear emerging from the sides of the pattern that is already present. The two
scenarios we will consider are: (i) the domain length L = L(0) = 1 at all times, or (ii) a pre-pattern
first forms following the framework outlined above for t < tend, at which point the domain stops
expanding, i.e. L = L(tend) for all t > tend while Layer 1 continues to increase in length, that is
l(t) is still monotonically increasing for all t. Scenario (i) is simpler, as the initial buckling can only
produce a Level 1 pattern, after which continued growth can only generate increasing complexity
in a fractal structure. In scenario (ii), a wider variety of patterns may emerge, as the pattern at
tend may already have a hierarchical structure with multiple levels, any of which may support the
addition of fractal levels.

As we will show below, the energy minimizing framework we have outlined above works in the
same basic way for a fractal pattern, only needing changes in how the widths σi are defined and in
the bifurcation condition defining when the next level of pattern ‘fits’.

5.1 Basic structure and length constraint

Consider the schematic shown in Fig 3A, which shows the emergence of a Level 2 fractal, with
amplitude b1 and width ξ1, appearing on top of a Gaussian with amplitude a1 and width σ1.

2We use the word fractal loosely here to describe a hierarchical structure that has a fractal-like structure, though
this will not strictly speaking create a fractal in the usual mathematical sense.

3This assumption is not strictly necessary for the development that follows, but is evidently valid in mollusc spines,
and is useful in simplifying the calculations since it restricts how space for new levels can appear.
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Figure 3: Fractal formation within Gaussian approach. In A, Level 2 spines with amplitude b1 and
width ξ1 emerge from the side of a Level 1 spine with amplitude a1 and width σ1. In B, Level
3 spines with amplitude c1 and width λ1 emerge from the sides of the Level 2 spines. In C, an
alternative bifurcation to higher level is shown, in which additional Level 2 spines, with amplitude
b2 and width ξ2, emerge from the side of the Level 1 spine.

Clearly, the geometry is no longer described by

r(S, t) = Sex + y(S, t)ey,

as in the linear pattern with separated Gaussians. Rather, the fractal shape has the more generic
form

r(S, t) = x(S, t)ex + y(S, t)ey,

where the exact form of x and y describe the geometry of the fractal shape and shall be derived
explicitly below; however, at present we shall demonstrate that the Gaussian approach still en-
ables the fractal shape to be computed via separated Gaussians. To this end, consider the length
constraint for this schematic, which formally reads∫ L

−L
ϵ

√
(∂Sx(S, t)))

2 + (∂Sy(S, t))
2 dS = 2l(t). (48)

This integral is intractable to compute exactly analytically, due to the complex form that x and y
will have (to be elucidated in Section 7). To make progress, we revisit and adapt assumptions A3
and A4 for fractal patterns:

FA3 Gaussian bumps for fractal levels can only appear on the edge of a present Gaussian.

FA4 Each fractal Gaussian bumps “fits” on the edge of a present Gaussian.

Under these assumptions, we may approximate the length of the fractal curve shown in Fig 3 by
integrating the Gaussians separately, and accounting for the length that is lost from the flat edge
of the a1 Gaussian by the presence of the b1 Gaussian. Defining

y1 = a1(t) exp

(
−S2

σ2
1

)
, y2 = b1(t) exp

(
−S2

ξ21

)
,
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we may approximate the fractal length as∫ ασ1

−ασ1

1 + ϵ
1

2
(∂Sy1(S, t))

2 dS︸ ︷︷ ︸
length of a1 Gaussian

− 2(2αξ1)︸ ︷︷ ︸
extra length

+2

∫ αξ

−αξ1

1 + ϵ
1

2
(∂Sy2(S, t))

2 dS︸ ︷︷ ︸
length of b1 Gaussian

. (49)

Here we have subtracted 2 times 2αξ1 from the a1 length, which is approximately the width of the
b1 Gaussian that is removed. Assumption FA4 implies that the b1 Gaussian entirely fits within the
edge of the a1 Gaussian. Similarly, by the original A4 assumption, the a1 Gaussian fully fits within
the domain. Therefore, we may replace the limits of the integrals of ∂Syi(S, t)

2 with −∞ to ∞ and
apply the integral formula presented in (12). The length thus reduces to

2ασ1 +
3
√
πϵa21

2
√
2σ1

+ 2

(
3
√
πϵb21

2
√
2ξ1

)
. (50)

For this simple mode 1 pattern, the domain length 2L = 2ασ1 by construction. Therefore, setting

the length equal to 2l(t), and scaling out the factor of 3
√
πϵ

2
√
2

as before, the length constraint is

reduced to
a21
σ1

+ 2
b21
ξ1

= 2δ(t), (51)

which has the same structure as in the linear pattern. Indeed, the argument above easily generalizes,
as the number of Gaussians in a fractal level is 2 times the number of Gaussians on which they
appear. Suppose for instance that the original linear pattern consists of N1 Gaussians of amplitude
a1 and width σ1 and N2 Gaussians of amplitude a2 and width σ2, and that a fractal pattern
appears with Gaussians of amplitude b1 and width ξ1 appearing on the edges of the a1 Gaussians,
and Gaussians of amplitude b2 and width ξ2 appearing on the edges of the a2 Gaussians. The length
constraint for this pattern would have the form

N1a
2
1

σ1
+

2N1b
2
1

ξ1
+

N2a
2
2

σ2
+

2N2b
2
2

ξ2
= 2δ(t). (52)

5.2 Fractal energy

In terms of the energy, we maintain that under assumptions FA3 and FA4, the mechanical energy
of a fractal pattern may be well-approximated by the exact same form as we have used in the linear
pattern. Considering first the bending energy, and returning to the schematic Fig 3A, the integral
of the square of the curvature may be approximated as∫ ∞

−∞

(
∂2y1
∂S2

)2

dS + 2

∫ ∞

−∞

(
∂2y2
∂S2

)2

dS (53)

The second term accounts for the curvature of the b1 Gaussian, and the integration limits follow
from FA4. The first term similarly accounts for the curvature of the a1 Gaussian, but also uses
assumption FA3 in order to neglect the “missing portion” of the a1 Gaussian, since the b1 Gaussian
appears on the flat edge of the a1 Gaussian where the curvature is very minimal. Note that in
defining the shape fully, the functions y1 and y2 do not share the same coordinate system; rather
y2 represents the distance from the edge of the first Gaussian in the normal direction. In terms
of energy minimization, this distinction is irrelevant due to the modular nature of our approach.
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However, it is of key importance in constructing the energy minimizing shape (details in Sec 77.4
below).

We may treat the interaction energy in a similar way. In particular, the interaction energy
for the original a1 Gaussian is the same as the linear case treated before, and we suppose that
deformation of the b1 Gaussian from the a1 edge is resisted. Here, it may be natural to include a
different foundation constant for the fractal edge and the original linear pattern. Defining K̂ for
the latter, the foundation energy in this schematic would take the form∫ ∞

−∞

K

2
ym1 dS + 2

∫ ∞

−∞

K̂

2
ym2 dS (54)

Applying the same integral formulas as in Sec 22.4, we obtain an energy with the same structure
as in the linear case. For instance, returning to the case of N1 Gaussians of parameters (a1, σ1),
on top of which a fractal Gaussian of parameters (b1, ξ1) appears, and N2 Gaussians of parameters
(a2, σ2), on top of which a fractal Gaussian of parameters (b2, ξ2) appears, the dimensionless energy
would take the form

E2(a1, a2, b1, b2;σ1, σ2, ξ1, ξ2) =
N1a

2
1

σ3
1

+
N2a

2
2

σ3
2

+
2N1b

2
1

ξ31
+

2N2b
2
2

ξ32
(55)

+ µ (N1a
m
1 σ1 +N2a

m
2 σ2) + µ̂ (2N1b1ξ1 + 2N2b

m
2 ξ2) , (56)

Extension to an evolving foundation may be accommodated by defining âi and b̂i in the same way
as outlined in Sec 4.

5.3 Bifurcation condition

It remains only to define the bifurcation condition for a new level of fractal Gaussians to appear.
Bifurcation occurs only when sufficient space appears on the edge of the already present pattern.
Considering again the schematic in Fig 3, the a1 Gaussian must have sufficient amplitude for the
new level to appear on its edge. This may be modeled by the condition

2αξ1 ≤ βa1(t) (57)

where β < 1 is a constant that fixes how much height the Gaussian must attain before there is space
for the fractal pattern to appear. Defining t2 as the bifurcation time for the b1 Gaussian, we thus
define ξ1 via

ξ1 =
βa1(t2)

2α
, (58)

where a1(t2) is defined by the amplitude curve prior to the appearance of the b1 fractal. To determine
t2, we solve the length constraint (51) for a1, and insert into the energy

E2 =
N1a

2
1

σ3
1

+
2N1b

2
1

ξ31
+ µN1a

m
1 σ1 + µ̂2N1b1ξ1, (59)

while also replacing ξ1 by (58). The bifurcation time t2 corresponds to the point where the energy
minimizing branch of E2 has b1 = 0. Thus, we seek t2 such that

lim
b1→0

(
1

b2

∂E2

∂b1

)
:= g(t2) = 0,
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where the division by b2 eliminates the trivial solution branch. In some cases, the solution may
be found analytically, but if the linear pattern is more complex, or in the presence of an evolving
foundation, the root of g(t2) = 0 must be performed numerically.

5.4 Higher level fractal pattern

The ideas outlined above may naturally be extended to higher level fractal patterns. For instance,
if a Gaussian with amplitude c1 and width λ1 appears on the edges of the b1 Gaussian, this would
constitute a Level 3 Gaussian, with energy

E3 =
N1a

2
1

σ3
1

+
2N1b

2
1

ξ31
+

4N1c
2
1

λ3
1

+ µN1a
m
1 σ1 + µ̂2N1b1ξ1 + ˆ̂µ4N1c1λ1, (60)

Note that when extending from a linear pattern with separated Gaussians to a fractal regime,
the number of potential forms increases, such that even classifying the level of the pattern requires
care. For instance, return to the case of the a1 and a2 initial Gaussians with b1 and b2 fractal
Gaussians. Here, the initial pattern represents a Level 2 Linear pattern, on top of which the b1 and
b2 Gaussians appear, also Level 2. It is most natural to classify this as a Level 2 fractal, in that
the additional Gaussians only appear on the edges of initial Gaussians, and consisting of Level 2
patterns at each Gaussian level. Note that the ordering b1, b2 implies that the bifurcation to the
b1 Gaussian occurred prior to the b2 Gaussian. But note also that in principle the b2 Gaussian
could appear in three different places: (i) on the edge of the a2 Gaussian, (ii) on the edge of the
a1 Gaussian, or (iii) on the edge of the b1 Gaussian4. Case (iii) corresponds to a Level 3 Fractal,
for which notationally it is more consistent to use c1 and λ1 than b2 and ξ2. In any case, this
leaves the question: what sets the location of the next bifurcation? The short answer, following our
framework, is that the next level will appear wherever sufficient space first exists. In case (i), for
the b2 Gaussian, with width 2αξ2, to appear on the edge of the a2 Gaussian, would require sufficient
amplitude in a2, which can be approximated by the requirement:

2αξ2 ≤ βa2(t). (61)

In case (ii), for the b2 Gaussian to appear on the edge of the a1 Gaussian, which already has the b1
Gaussian present would require sufficient amplitude in a1, expressed as

2αξ2 ≤ β(a1(t)− 2αξ1). (62)

And in case (iii), for the b2 Gaussian (called in this case c1 with width λ1) to appear on the edge
of the b1 Gaussian would require

2αλ1 ≤ βb1(t). (63)

For each of these requirements, setting t equal to the bifurcation time t4 and replacing inequality
by equality and finding the energy minimizer leads to a calculation for t4. The actual location will
correspond to that which gives the least value of t4; thus in practice t4 would need to be computed
and compared for each possibility. While these calculations are straightforward, extending a fractal
pattern beyond the initial levels quickly gets very involved.

4If the domain L is allowed to expand, an additional option exists in which the next level appears in the linear
space created by domain expansion.
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6 Pattern amplification

In this section we provide further details on main text Fig 5A, in which a pre-pattern of ridges is
dilated in both a linear and fractal-like manner. In this analysis, we consider both a low and high
density ridges pattern, by creating a Level 3 pattern with the form 3.2.3.1.3.2.3 on a domain of
width 2L, where L = 3 for the low density and L = 1 for high density ridges. The domain width
2L is held fixed, while the Layer 1 length l(t) increases. The linear spines have Gaussian width
equal to the width of the ridges in the pre-pattern; the spine amplitude is then computed as the
energy minimizers, with evolving foundation, following the approach of Section 4. For the fractal-
like spines, we suppose that the ridges pattern is dilated to a Level 3 fractal, taking the form shown
in Fig 3B, i.e. with the Level 2 spine bifurcating from the edge of the Level 1 spine, and the Level
3 spine bifurcating from the edge of Level 2. For this construction, the width of the Level 1 spine is
not the width of the Level 1 ridge, but rather defined by the domain width, that is ασ1 = L. From
there, σ2 and σ3 are defined by the requirement of fitting on the side of the lower level spine, and
the amplitude curves are found by minimizing the energy as described above. Details on plotting
the resulting shapes follow the same procedure as described in Sec 7D below.

7 Shell simulations

In this section we outline the procedure for constructing 3D shell simulations appearing in main
text Fig 5B and C (while also providing the procedure for constructing a solution profile in the
fractal-like case). These simulations consist of four steps: (i) construction of the geometry of the
shell as a smooth surface, (ii) construction of the ridges pattern, (iii) amplification of the ridges
pattern to either linear or fractal-like manner, (iv) creating a continuous surface with ridges dilated
to spines, and (v) wrapping the ridges and spine surface onto the geometry of the shell. We discuss
each aspect in turn below.

7.1 Base geometry

The base geometry of the shell is constructed following an extrinsic approach, in which an aperture
shape is wrapped around a central helicospiral curve. We begin with the following parameterization
for a helicospiral

x(τ) :=

 x1(τ)
x2(τ)
x3(τ)

 =

 r0 exp (gwτ) cos τ
r0 exp (gwτ) sin τ
h0 exp (gwτ)

 . (64)

From this, the tangent-normal-binormal frame, denoted {T,N,B} may be computed following
standard formulas.

We next define a planar curve with parameterization (ρ1(s), ρ2(s)), which defines the shape of
the aperture. To construct the smooth shell surface, in the simplest form, at each point along the
central curve, i.e. for each value of τ , the planar curve is dilated by factor Λ(τ) = exp (cτ) and
wrapped around the central curve in the N-B plane. Here, we incorporate extra degrees of freedom
by allowing for rotations about the {T,N,B} axes. In particular, we define the rotated frame
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{β,Γ,Θ}:

β = cos θ1B+ sin θ1T, (65)

Γ = cos θ2N+ sin θ2(cos θ1T− sin θ1B, (66)

Θ = cos θ2 cos θ1T− cos θ2 sin θ1B− sin θ2N. (67)

The smooth shell surface is then parameterized as

R(s, τ) = x(τ) + Λ(τ) (ρ1(s)(cos θ3Γ(τ) + sin θ3β(τ)) + ρ2(s)(cos θ3β(τ)− sin θ3Γ(τ))) (68)

Specific functions and parameter choices may be found in the Mathematica notebook ShellSim.nb
accompanying these simulations (see data sharing description in main text for link).

7.2 Ridges pattern

The ridges pattern follows the model formulation outlined in Sec 2. For the shell with linear spines,
the parameters used (see Sec 9) generate a pattern with N1 = 9 ridges of Level 1, and the ridges
attain Level 3. For the fractal-like shell, to generate a denser ridges pattern, we use a smaller initial
domain length, and an increased value of µ; this generates a pattern with N1 = 5, and attains Level
5 hierarchy. Here, for ease of calculation, we do not incorporate an evolving foundation, as this
enables to reach Level 5 hierarchy analytically without requiring numerical energy minimization.
However, the parameters used are such that the hierarchical structure is maintained even without
the memory component of the model.

7.3 Amplification of the ridges pattern

The amplification of the ridges pattern to linear or fractal-like spines follows the approach outlined
in Section 6, with the domain length fixed and equal to the length L(t) at the end of the ridges
stage, and with a significant increase in the rate of increase of l(t) (specific parameters given in Sec
9). For the linear spines, the Gaussian widths are given by those determined at the ridges stage,
and the amplitudes are determined as energy minimizers following Section 4. For the fractal-like
spines, we implement a pattern similar to that shown in Fig 3C. The Chicoreus ramosus shell shown
in main text Fig 1 displays a spine pattern in which the Level 1 and Level 2 ridges each form the
center of spines, with the Level 3 ridges dilating on the side of the Level 1 spine, with the Level 4
ridges dilating only slightly on the side of both Level 1 and Level 2 spines, and with Level 5 ridges
appearing intercalated throughout but with almost no dilation. We simulate the emergence of this
pattern in the following simplified way:

1. Since both the Level 1 and Level 2 ridges dilate to Level 1 spines, here for simplicity we
combine Level 1 and Level 2 within the same initial energy and length constraint, such that
the amplitude and width of the Level 2 spines are smaller but with fixed proportion to Level
1 5. Letting a1 and σ1 be the amplitude and width of the Level 1 spine, respectively, the

5This simplification is made for two reasons. One is so that the energy minimization can be taken up to Level 4
with memory included but without numerical issue. The second reason is that since we are fixing the domain length,
and both Level 1 and Level 2 spines occupy the same fixed domain in this idealization, we do not have a clear means
of signaling when the bifurcation to Level 2 should occur in the fractal pattern. As our objective is to demonstrate
consistency in principle, a full resolution of these complex morphologies is left for a future study.
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Level 2 spine is assigned amplitude κa1 and width ξσ1, where we have used κ = ξ = 0.5 in
our simulation. Thus, the length constraint is given by

N1
a21
µ1

+ (N1 − 1)
(κa1)

2

ξσ1
= 2δ(t),

while the energy is given by

E1 = N1
a21
σ3
1

+ (N1 − 1)
(κa1)

2

(ξσ1)3
+ µ̂

(
N1(a1 − â1)

4σ1 + (N1 − 1)κ(a1 − â1)
4ξσ1

)
To determine the amplitude and width, we solve the length constraint for a1, in terms of σ1,
insert the solution for a1 into the energy E1 while also setting â1 = 0, and then compute
analytically the value of σ1 for which ∂E1/∂σ1 = 0. Remodeling is then included by updating
â1 via

â′1(t) = η̂(a1 − â1).

2. The widths and amplitudes for Levels 3 and 4 are computed following the procedure outlined
in Sec 5. In particular, since the Level 3 pattern dilates on the edge of the Level 1 spine, the
width σ3 is defined by the amplitude a1 via

2ασ3 = βa1,

where we have used β = 0.5 in our simulation. The Level 4 ridge dilates on the edge of both
the Level 1 and Level 2 spines. For simplicity, we define the bifurcation to Level 4 spine by a
single condition

2ασ4 = β(a1 − 2ασ3),

which is the requirement to fit on the edge of the Level 1 spine, where the Level 3 spine
already appears. With these definitions for width in place, the computation of amplitudes as
energy minimizers proceeds as we have outlined, with memory included via updating b̂3 and
b̂4. Bifurcation to Level 5 spines is not included, reflecting the very small degree of dilation of
Level 5 ridges on real shell specimens, though in principle such bifurcation could be included
in the framework.

7.4 Creating ridges and spines surface

Once the amplitudes and widths of both ridges and spines have been determined, it remains to
connect the patterns into a single continuous surface. In the case of the linear spines, this is
straightforward. The ridges surface is generated by defining the locations of the Gaussian centers
following the procedure outlined in Section 2.12. The spines then simply require an increase in
amplitude of the ridges, with both the domain length and the location of the centers remaining
constant.

In the fractal-like case, however, it is far more complicated to generate a surface. In particular,
we require a consistent means of defining the locations of Gaussians that emerge from the side of
existing Gaussians, which requires careful consideration of arc lengths as the fractal-like structure
develops. Our general approach consists in the following steps:

1. Create the Level 1 spines pattern.
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2. Determine the total arc length and arc length parameter of the Level 1 spines pattern, denoted
l̂(t) and Ŝ(t), respectively, and determine the normal vector for the Level 1 spines pattern,
denoted ν̂.

3. Superimpose the Level 2 spines on the side of the Level 1 spines, with Gaussians appearing
in the direction ν̂, and with locations defined in terms of Ŝ.

4. Determine the total arc length and arc length parameter of the combined Level 1 and Level 2

spines, denoted
ˆ̂
l(t) and

ˆ̂
S(t), respectively, and determine the normal vector for the combined

Level 1 and Level 2 pattern, denoted ˆ̂ν.

5. Superimpose the ridges pattern on the combined Level 1 and Level 2 spines pattern, with

Gaussians appearing in the direction ˆ̂ν, and with locations defined by
ˆ̂
S.

More info on Step 2 The pattern at Step 1 has the form of separated Gaussians appearing in
the y-direction and spaced along the x-axis, i.e. with parameterization r(S, t) = (S, y(S, t)) where
y(S, t) has the general form

y(S, t) =
∑
i,j

ai(t) exp

(
−(S − Sij)

2

σ2
i

)
:=
∑
i,j

yij . (69)

Suppose that the domain of S is [−L,L], with L defined by the domain length at the end of the
ridges formation. The arc length Ŝ is related to S via the stretch

λ̂ :=
∂Ŝ

∂S
=

√
1 +

(
∂y

∂S

)2

.

We may use the separation of the Gaussians to approximate

λ̂ ≈

√√√√1 +
∑
i,j

(
∂yi,j
∂S

)2

.

Thus, to determine Ŝ, we integrate numerically the system

∂Ŝ

∂S
= λ̂(S, t), Ŝ(−L, t) = 0.

From this, the total arc length is given by l̂(t) = Ŝ(L, t).

The unit normal vector to the curve (S, y(S, t)) is straightforwardly defined as

ν̂ =

(
−
∑

i,j
∂yi,j
∂S , 1

)
√
1 +

∑
i,j

(
∂yi,j
∂S

)2 .
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More info on Step 4 The pattern at Step 3 has the form

r̂(S, t) = Sex +
∑
i,j

yijey + ν̂(S, t)
∑
k,l

ŷk,l(Ŝ(S, t)). (70)

Here the first two terms express the Level 1 pattern in terms of Cartesian unit vectors ex and ey.
The Level 2 spines are defined in the third term by the functions ŷk,l, which form a set of separated

Gaussians defined on the Ŝ domain, mapped onto the S domain via the arc length conversion and
extending in the normal direction ν̂. To impose the ridges pattern (or equivalently to impose a
Level 3 spine) on top, we require the normal vector to the curve r̂. To avoid the exceedingly tedious

direct calculation, we first note that the arc length
ˆ̂
S relates to S via

ˆ̂
λ :=

∂
ˆ̂
S

∂S
,

where the stretch
ˆ̂
λ satisfies

∂r̂

∂S
=

ˆ̂
λˆ̂τ . (71)

Here ˆ̂τ is the unit tangent to r̂. To compute ˆ̂τ and subsequently ˆ̂ν, we first note that the tangent
τ̂ and normal ν̂ to the curve at Level 1 satisfy the Frenet equations

∂τ̂

∂S
= λ̂κ̂ν̂ (72)

∂ν̂

∂S
= −λ̂κ̂τ̂ (73)

where λ̂ is the geometric stretch as defined above and κ̂ is the curvature of the Level 1 pattern,
which is given by

κ̂ =
1

λ̂3

∑
i,j

∂2yi,j
∂S2

.

Therefore, we may write
∂r̂

∂S
= λ̂τ̂ +

∑
k,l

∂ŷk,l
∂S

ν̂ − λ̂κ̂
∑
k,l

ŷk,lτ̂ . (74)

Combining (71) and (74), we may express the tangent at Level 2 in terms of the tangent and normal
at Level 1:

ˆ̂τ =
aτ̂ + bν̂

ˆ̂
λ

(75)

where the stretch
ˆ̂
λ =

√
a2 + b2 is given in terms of the easily computed quantities

a := λ̂

1− κ̂
∑
k,l

ŷk,l

 , b :=
∑
k,l

∂ŷk,l
∂S

.

From here, the normal vector ˆ̂ν is given by

ˆ̂ν =
−bτ̂ + aν̂

ˆ̂
λ

(76)
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where the choice of sign corresponds to an outward pointing normal.
The arc length parameter at Level 2 can be determined by integrating (numerically) the system

∂
ˆ̂
S

∂S
=

ˆ̂
λ(S, t),

ˆ̂
S(−L, t) = 0.

More info on Step 5 The full pattern, including Level 3 fractal, can now be expressed in the
form

ˆ̂r(S, t) = Sex +
∑
i,j

yijey + ν̂(S, t)
∑
k,l

ŷk,l(Ŝ(S, t)) + ˆ̂ν(S, t)
∑
m,n

ˆ̂yk,l(
ˆ̂
S(S, t)). (77)

Here, the Level 3 pattern, appearing in the final term, is in principle expressed as a sum of separated

Gaussians ˆ̂yk,l defined in terms of the Level 2 arc length parameter
ˆ̂
S, with spacing determined by

the total arc length
ˆ̂
l(t) =

ˆ̂
S(L, t). However, we found that the complexity of the structure at

Level 2 led to numerical inaccuracies in integrating for
ˆ̂
S, which generated a surface that was very

computationally expensive to render and also often with an unsmooth appearance. Therefore, in
the shell simulation presented in the main text, we instead expressed the locations of the Level 3
Gaussians in terms of the Level 1 arc length Ŝ, which led to a significantly faster computation,
conceptually changes very little, and visually produced a better surface. For specific details, the
reader is referred to the Mathematica notebook accompanying these simulations (see data sharing
description in main text for link).

7.5 Wrapping pattern onto shell

The construction above defines the ridges/spines as an evolving curve in the x-y plane; equating
the time variable t with the z-axis thus defines a surface. It remains to wrap this surface onto the
coordinates of the shell.

To this end, we first construct an orthonormal frame {d1,d2,d3} attached to the smooth shell
surface and oriented such that d3 is tangent to the shell aperture, d1 is normal to the shell aperture,
and d2 points in the direction of shell growth. Considering the parameterization R(s, τ) in (68), the
aperture lives in the β-Γ plane, and thus d2 = Θ. Then, d3 is computed by normalizing ∂R/∂s,
and d1 completes the orthonormal frame. This gives

d1 =
ρ′2(s)(cos θ3Γ+ sin θ3β)− ρ′1(s)(cos θ3β − sin θ3Γ)√

ρ′1(s)
2 + ρ′2(s)

2
(78)

d2 = Θ (79)

d3 =
ρ′1(s)(cos θ3Γ+ sin θ3β) + ρ′2(s)(cos θ3β − sin θ3Γ)√

ρ′1(s)
2 + ρ′2(s)

2
. (80)

The parameter s increases moving along the shell aperture. This parameter should form a one-to-
one map with the parameter S in the ridges/spine construction. To do this, we define ŝ as the arc
length parameter moving along the aperture in the smooth shell. This parameter satisfies

ŝ′(s) =
√
ρ′1(s)

2 + ρ′2(s)
2, ŝ(s0) = 0, (81)

where s0 is the lower bound for the range of s. If s1 is the upper bound for the range of s, then the
total arc length of the aperture is ŝ1 = ŝ(s1). The domain of the ridges/spine pattern is S ∈ [−L,L],
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from which we suppose that the ŝ domain is linearly mapped to the S domain via

S(ŝ) = −L+
2L

ŝ1
ŝ.

We also require a one-to-one map between the ‘time’ variable τ in the smooth shell parameter-
ization and the ‘time’ variable t in the ridges/spine construction. This is complicated by the fact
that a shell will generate spines at discrete and usually periodic points during development. Aiming
for simplicity, here we consider the formation of a single row of spines, which then may be recre-
ated at different periodic points in the shell parameterization. Supposing that the ridges/spines are
generated as t varies from t0 to t1, and that the pattern occurs over a range of ∆τ in the τ variable,
starting from τ = τ0, we define the linear map

t(τ) = t0 +
t1 − t0
∆τ

(τ − τ0).

We may now construct a single row of spines by mapping the parametric curve ˆ̂r(S, t) into the
variables (s, τ) of the smooth shell by equating the d3 direction with ex and the d1 direction with
ey. Specifically, the surface ˆ̂r(S, t), describing a row of spines dilated from a ridges pattern, may be
imposed onto the shell surface R(s, τ) given by Equation (68) as follows:

Rfull(s, τ) = R(s, τ)+Λ(τ)

[(
ˆ̂r · ex − S(ŝ(s))

)
d3(s, τ)−ˆ̂r·eyd1(s, τ)

]
, s0 ≤ s ≤ s1, τ0 ≤ τ ≤ τ0+∆τ.

(82)
In this expression, note that ˆ̂r means ˆ̂r(S(ŝ(s), t(τ)). The term

ˆ̂r · ex − S

is needed in the tangent d3 direction to wrap the fractal shape with non-monotonic change in the
x-coordinate x(S, t) := ˆ̂r · ex onto the aperture; effectively, the component Sd3 is already included
in R(s, τ), so it is only deviations of x from S that need to be mapped into the tangential direction.
For the linear spines pattern, on the other hand, x ≡ S and thus the ridges/spines can be added to
the smooth shell by moving only in the d1 direction by y(S, t) := ˆ̂r · ey (in fact, it is the minus d1

direction, since d1 points into the shell).

7.5.1 Extra details

Two other small details were included in the shell simulations in the main text, in order to achieve
a closer comparison with real shells. Namely, in the fractal-like shell simulation, (i) the amplitude
of the Level 1 spines was artificially made to decrease with increasing aperture arc length (i.e. as a
function of s), and (ii) the fractal-like spines were artificially made to curl back in the direction of
shell growth (the d2 direction in the description above). The change in amplitude likely reflects a
non-uniform shell secretion along the arc length, while the curling back has never been previously
quantified or explained, but may also be a consequence of secretion rate: since points at the tip of
the fractal have a larger radius from the shell aperture, maintaining a planar profile would require
an increased secretion at the tip; thus a constant secretion rate would imply a curling back. These
features do not impact the shell in a significant way, but do improve the visual comparison. While
they could in principle be modeled explicitly, we have opted to add them artificially in this work.

32



8 Different geometries

In this section we outline model adaptations for simulating the other geometries appearing in main
text Fig 6.

8.1 Circular geometry

Main text Fig 6A and D simulate the formation of a hierarchical pattern on a circular geometry.
This requires only a modification in the presentation of the pattern. That is, energy minimization
proceeds in the same way as in the linear case of Sec 2, where we identify the domain length L(t)
with the radius of the expanding circle. Denoting the latter by r(t), we have

r(t) = ∆θL(t), (83)

where ∆θ is the angular sector of the circular geometry (e.g. ∆θ = 2π for the full circle modeled
in simulating the lamellae under the mushroom cap in main text Fig 6A). Similarly, the transverse
parameter S in the original linear formulation is translated to angle θ in the circular formulation
via S = r(t)(θ − θ0), where θ0 is the angle corresponding to the edge of the domain.

Under these simple translations, the full pattern is then created as a surface in cylindrical polar
coordinates. For instance, a linear pattern of Gaussians

y(S, t) =

N1∑
i=1

a1(t) exp

(
−(S − Si(t))

2

σ2
1

)
(84)

would be expressed in circular geometry as the surface

R(S, t) = (r(t) cos θ(S, t), r(t) sin θ(S, t), y(S, t)) (85)

where θ(S, t) = θ0 +
S

r(t) .

8.2 Cylindrical geometry

In simulating the columnals of the stalk of a fossil crinoid in main text Fig 6C, we take a simplified
approach, applying the same energy minimization as in Sec 2, where the length L(t) is identified
with the length of the stalk, or more generally the axial domain in cylindrical geometry. This
amounts to treating the pattern as an evolving 1D pattern that is then wrapped onto a cylinder as
a surface of revolution.

A more detailed calculation could in principle be undertaken in which it is not an excess of
length between two layers (idealized as lines), but as an area excess between two surfaces: Layer 2
would be a cylindrical core with radius R and length L = L(t), surrounded by Layer 1, treated as a
surface of revolution made by rotating the curve R+ y(S, t), where y is a sum of Gaussians, around
the central axis. In this view the bending energy would need to be replaced by an integral over the
surface of revolution of the square of the mean curvature, though with suitable simplifications based
on assumption of small amplitude. While the main structure would work similarly, e.g. bending
energy of a given Gaussian would be proportional to a2, the σ dependence would be impacted by
the change in geometry. Such an analysis is beyond the scope of this work, and we thus leave such
calculations for future investigations focused on this or other similar geometries.
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9 Parameters

In this section, we provide all parameters used in constructing all output appearing in this paper.
We note that while mathematically it is natural to scale the initial domain length to L0 = 1, in
practice we found that in exploring the parameter space, it was preferable to leave the initial length
as a free variable. For instance, increasing the buckling mode requires a significant increase in µ,
but can be accomplished with a more moderate value of µ if L0 is increased (noting from Sec 2 that
µ scales as L2

0). With L0 different from 1, L = L0(1 + t) and the model works in the exact same
way otherwise. The values reported below and in the accompanying Mathematica notebooks have
L0 different from 1.

9.1 Main text Fig 3

Main text Fig 3 A shows amplitude curves for interaction energy with both m = 2 and m = 4. For
both cases, we have used parameter values µ = 100, δ0 = 0.3, g = 5, L0 = 4.5, and α = 2.5, solving
the system up to t = 0.75. It is also worth noting that since the point of the figure is to compare
the different values of m, under otherwise equivalent parameters, we have had to change the energy
form slightly: namely, recall from (17) that we absorbed a coefficient coming from the integral of
the interaction energy into the constant µ. However, a different coefficient is absorbed in the cases
of m = 2 and m = 4, which would effectively change the value of µ in moving between the two
cases. To keep a consistent comparison, we have thus kept an additional constant in front of the
interaction energy that is different for m = 2 than m = 4. In particular, noting that∫ ∞

−∞

(
a exp

(
−S2

σ2

))2

dS = a2σ

√
π

2
, (86)

while ∫ ∞

−∞

(
a exp

(
−S2

σ2

))4

dS = a2σ

√
π

2
, (87)

for m = 2 the interaction energy had the form

µa2σ

√
π

2

, while for m = 4 we used

µa2σ

√
π

2
.

Main text Fig 3B showed amplitude curves for an evolving foundation with different values of
η, as displayed on the fig. Other parameter values for this figure were: µ = 100, δ0 = 0.108, g = 5,
L0 = 4.5, and α = 2.5, with amplitudes solved up to t = 0.8.

9.2 Main text Fig 4

Main text Fig 4A shows 4 different patterns, produced with different values of µ and g, as indicated
on the figure. Other parameter values for these plots were δ0 = 0.07, L0 = 4.5, α = 2.5, and
foundation relaxation parameter η = 0.1, Amplitudes were computed up to t = 2.5 in each case.
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9.3 Main text Fig 5

Main text Fig 5A shows both a linear and fractal-like energy minimizing amplification in both a lower
density (i) and higher density (ii) case. we have used parameter values µ = 80, δ0 = 0.01, g = 5,
L0 = 1, η = 0.1, and α = 3, solving the system up to t = 2 in (i) and t = 8 in (ii). The pre-pattern
has form 3.2.3.1.3.2.3, with (σ1, σ2, σ3) = (0.28, 0.2, 0.075) in (i) and (σ1, σ2, σ3) = (0.09, 0.6, 0.021)
in (ii).

The shell simulations in main text Fig 5B require parameters for (i) the formation of the initial
ridges pattern, (ii) the amplification to spines, (iii) parameterization of the shell, and (iv) wrapping
the ridges/spines pattern onto the shell.

(i) Ridges pattern For the linear shell, we have used parameter values µ = 4 × 104, δ0 = 0.1,
g = 5, L0 = 7, η = 0.1, and α = 2.9, solving the system up to t = 1.2.

For the fractal-like shell, we have used parameter values µ = 1× 106, δ0 = 0.4, g = .7, L0 = 1,
and α = 2, solving the system up to t = 8 (this simulation did not include foundation relaxation,
as noted in Sec 7C, which is equivalent to η = 0).

(ii) Amplification to spines As noted in the main text, amplification of the pattern to spines
conceptually changes the interpretation of the two layers: the mantle and periostracum are taken
together to comprise Layer 1, while the evolving shell edge plays the role of Layer 2. Consistent
with this, Layer 1 should have an increased width and thus increased bending stiffness. Since µ
is a dimensionless parameter with bending stiffness in the denominator, it follows that µ should
take a smaller, and potentially significantly smaller, value, compared to the ridges formation. Also,
as spines form under a burst of growth, the excess rate g should be significantly increased. As
foundation relaxation models a completely different process in spine formation (calcification of shell
material), η was also allowed to change. However, the domain length in spine formation was set by
the end of the ridges computation, as was the excess length (δ0) and Gaussian widths (in the linear
case, as discussed in Sec 7 above). Accordingly, we modified the parameter values as follows.

For the linear shell, we used µ = 400, g = 1000, η = 0.5. The pattern was computed up to
t = 2.5 (where we reset time to t = 0 at the start of spine formation.

For the fractal-like shell, we used µ = 10, α = 2, g = 500, η = 2. The pattern was computed up
to t = 0.26.

(iii) Smooth shell parameterization For the shell with linear spines, the parameters described
in Sec 7A were taken to be: r0 = 0.65, gw = 0.093, h0 = 1.84, c = 0.10 θ1 = 0.26, θ2 = −0.11,
θ3 = 1.61. The functions ρ1 and ρ2 had form

ρ1(s) =
1

2

(
tanh

(
s− a

b

)
+ 1

)
(dx0s− a0 cos(a))−

1

2
a0 cos(s)

(
1− tanh

(
s− a

b

))
+ x0,

ρ2(s) =
1

2

(
tanh

(
s− a

b

)
+ 1

)
(a0 sin(a) + dy0s) +

1

2
a0 sin(s)

(
1− tanh

(
s− a

b

))
+ y0,

with a = 3.27, a0 = 0.32, b = 0.1, x0 = −4.94, dx0 = 0.34, y0 = −0.36, dy0 = −0.03, plotted over the
range s ∈ (0.25, 4.41).

The fractal-like shell had the same parameterization and the same functional form for ρ1 and
ρ2, varying only in parameter choices, which were: r0 = 0.70, gw = 0.096, h0 = 1.95, c = 0.11
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θ1 = 0.26, θ2 = −0.11, θ3 = 1.49, a = 3.2, a0 = 0.6, b = 0.45, x0 = −0.39, dx0 = .34, y0 = −0.30,
dy0 = −0.03, and range s ∈ (0, 3.32).

(iv) Ridges/spines on shell The only parametric choices needed in connecting the ridges/spines
pattern and the smooth shell were in the map between t (ridges/spines time) and τ (the shell
parameter that increases with development), as well as a scale parameter. Following the notation
in Sec 7E above, we need to set t0, t1, and δt.

For the linear shell, we set t0 = −30, t1 = 3.7, and δt = 2π/3. The ridges/spines were also
scaled by a factor of 0.075.

For the fractal-like shell, we set t0 = 5, t1 = 8.26, and δt = 1.88. The ridges/spines were scaled
by a factor of 0.1.

9.4 Main text Fig 6

In the simulations appearing in main text Fig 6, we have used the following parameters:

A. µ = 1.546× 107, δ0 = 0.07, g = 0.72, L0 = 2.76, α = 2.5, η = 0.01, solved up to t = 4.

B. µ = 2.7× 104, δ0 = 0.28, g = 0.20, L0 = π, α = 2.5, η = 0.75, solved up to t = 1.

C. µ = 1.94× 103, δ0 = 0.75, g = 3.12, L0 = 2.67, α = 2.5, η = 0.05, solved up to t = 1.

D. µ = 1.5× 106, δ0 = 0.07, g = 1.56, L0 = π, α = 2.5, η = 0.01, solved up to t = 1.3.

9.5 Fig S2

SM Fig S2A computed amplitude curves compared against the weakly non-linear (WNL) analysis
described in [1]. For these plots, we do not scale out integration constants, as doing so would
complicate comparison of variables with the WNL calculation. The bending and stretching stiffness
are both set to 1, and the interaction energy (which has m = 2 in correspondence with the linear
foundation in [1]) has stiffness coefficient 2.39 × 10−3 for the plot on the left (producing mode
N1 = 1), and 3.98 × 10−2 for the plot on the right (N1 = 3). In both cases, the domain length is
fixed at L = 20.

SM Fig S2B consists of computing amplitudes up to Level 2, with no foundation relaxation.
Parameter values are µ = 5× 104, δ0 = 0.4, g = 0.7, L0 = 1, and α = 2.3.

10 On the possibility of mechanical patterning in other organisms

Here we outline the process by which hierarchical patterns may be understood to form in the
organisms appearing in main text Fig 1.

10.1 Agaricomycetes

In the fungal kingdom, Agaricomycetes is a highly diversified class of mushroom-forming fungi (the
term ”mushroom” classically refers to the spore-bearing fruiting body of fungi). Many species have
lamellae under the cap that display a hierarchy of size reflecting their sequential development (main
text Fig 1F). Primary lamellae form first, radiating all over the inner surface of the cap, while
intercalary lamellae (with at least 6 levels) emerge sequentially in the widening spaces between
preceding lamellae as the cap grows [26]. Patterns generated with the formalism of local-activation
with long-range inhibition have been considered reminiscent of the fertile part of fruiting bodies
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such as lamellae, but the lack of true tissues in fungi suggest that a Turing-like process based on
diffusible molecules in an isotropic domain is unlikely, contrarily to a mechanical hypothesis [24].
Moreover, lamellae are not a 2D molecular pattern, but 3D structures that emerge sequentially
as folds in the expanding concave annular zone under the cap, and display an outer layer made
of inflated cells [14], two characteristic suggesting that a mismatch induced by growth differential
could induce compressive stresses involved in their development.

10.2 Micrasterias

in the unicellular green alga Micrasterias, asexual reproduction occurs via mitosis, a process during
which two symmetric flat semi-cells give rise to two daughter cells. As a semi-cell grows and ex-
pands, its margin becomes notched by a series of folds pointing inward and displaying a hierarchy
of size (5 levels) recording their sequential development (main text Fig 1C). Although the devel-
opment of Micrasterias has been investigated for decades, the formation of the complex patterned
cell wall and the precise localization of fold indentations remain unexplained [29]. Interestingly, the
cell wall is thicker and shows a denser network of cellulose microfibrils at the high curvature points
of the indentations which increases its stiffness and so decrease its extensibility locally [16]. Also,
overexpression of a gene closely related to the expansin genes that modulates the mechanical prop-
erties of the cell walls in plants, results in cell shape malformations [43]. A mechanical instability
of the expanding cell margin, coupled with an irreversibility condition resulting from the thickening
and stiffening of the wall at the level on the high curvature indentations, is a plausible working
hypothesis for future research on Micrasterias morphogenesis.

10.3 Fungiidae

Among Cnidaria, Fungiidae is a family of solitary corals whose name refers to the fungus–like
appearance of these animals also known as ”mushroom corals” (main text Fig 1G). The coral
skeleton (corallum) grows through accretion, with concentric growth lines from the center to the
outside. Vertical calcareous septa radiate from the mouth area on the center of the upper surface
and show the hierarchical pattern (at least up to 5 levels), their size reflecting their sequential
development during growth and expansion of the corallum. The same hierarchical pattern of septa
may be seen in other Scleractinia (reef-building corals), including colonial species. These septa are
secreted at the level of folds in an outer epithelium. They alternate with mesenteries, that are radial
inward-growing folds of tissue increasing the surface area of the gastrovascular cavity (coelenteron)
[50]. It is well-known that calcareous septa develop following the pattern of the radial mesenteric
folds, but to our knowledge, their morphogenesis remains unexplained. In vertebrates, a wide
variety of folding patterns of the gastrointestinal tract emerge as a result of mechanical instabilities
of spatially constrained, growing inner tissue [6]. Interestingly, the pharynx and gastrodermis
(the tissue forming the mesenteric folds) are the area of highest cell proliferation in the developing
scleractinian polyp [25]. Whether a constrained growth generates mechanical stresses involved in the
development of the folding pattern of both mesenteries and septa could be an interesting possibility
to explore.

10.4 Portuguese man of war

Still among Cnidaria, the “Portuguese man of war” Physalia physalis (main text Fig 1H) is a
siphonophore, a group of colonial hydrozoans formed by genetically identical, but morphologically
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different and functionally specialized zooids (predation, nutrition, reproduction). Zooids are at-
tached below a gas-filled float called pneumatophore, also used as a sail by the colony sometimes
found stranded on beaches. The pneumatophore is a multi-layered structure, consisting of an outer
codon, an inner gas-sac called pneumatosaccus, and a gas gland that produces carbon monoxide
filling the float. Muscle contractions of the outer codon increases pressure within the pneumatosac-
cus that expands into, and erects the sail-like crest of the pneumatophore [34]. The crest of the
pneumatophore displays a series of folds connected by inner septa showing a hierarchy (up to 4
levels) [42]. A comparison of individuals at different stages of development shows that this hier-
archy reflects the sequential development of the septa in the growing pneumatophore, though the
mechanisms involved remain unknown. In physical systems, a hierarchy of compressive folds may
develop perpendicular to stretch at the edge of inflated air bag [12], and it suggests that the inflation
of the growing pneumatophore during its development could generate sufficient mechanical stresses
involved in the setting up of the hierarchical pattern of folds and septa.

10.5 Lobster claw denticles

Hierarchical patterns are also seen in the row of denticles of one of the claws of the lobster Homarus
(main text Fig 1I). Initially, lobster claws are identical, but during the juvenile stages, differential
reflex and greater activity causes the development of powerful muscle fibers and a stouter crusher
claw (equiprobably on the left or right), while the remaining cutter claw keep a slender shape [18].
In older lobsters, only the cutter claw displays the size hierarchy of denticles (at least up to 4 levels),
while there is no detectable pattern in the greater and more bulbous denticles of the crusher claw.
A similar hierarchical pattern of denticles may be seen in the cutter claw of langoustines Nephrops
norvegicus. In crabs, successive developmental stages show that these denticles emerge sequentially
over the growing claws [30] and correspond to folds separated by localized furrows in the cuticle
[45], a morphology of gyri and sulci reminiscent of those generated by mechanical instabilities in
physical and biological systems, such as the brain (see [20]). Like other arthropods, Crustacea grow
by episodic molting (ecdysis). The new uncalcified cuticle is secreted underneath the old hardened
one, so that it grows constrained in a volume less than that of the old and too tight cuticle it is to
replace and outpace. This explains why the secreting epithelium and the newly secreted cuticle at
the pre-molt stage are highly folded [4]. When the older hardened cuticle is shed, the new soft and
flexible cuticle is inflated by increased hydrostatic pressure created by rapid water uptake, and is
subsequently calcified. Whether these repeated folding episodes of the epithelium-cuticle complex
at the pre-molt stage are associated with an irreversible tissue remodeling and the formation of the
denticular folds of the claws is an interesting possibility for further studies to explore.

10.6 Crinoidea

Crinoidea belong to the echinoderm phylum, like starfish or sea urchins. Most crinoids have a stalk
fixed to the substrate, and supporting the crown, consisting of the cup-shaped theca (with the
mains body parts, viscera, mouth. . . ) from which arms radiate. The mesodermal endoskeleton is
composed of articulated series of calcareous pieces. The stalk is composed of sometimes hundreds
of pieces called columnals differentiated into nodals and internodals. New nodals develop in the
proximal region, just beneath the crown. They are thin initially, and increase in height as they
grow and migrate in a more distal position along the stalk. At the same time, secondary, tertiary,
quaternary ... internodals are successively intercalated [46]. Thus, columnals display a hierarchy
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of size (at least up to 5 levels) reflecting their sequential development and intercalation dynamics
over an expanding, growing region of the stalk (main text Fig 1J). Crinoids are recognized for their
striking regenerative capability, and stalk regeneration occurs also by proximal nodals development
and subsequent intercalation of internodals [35]. But current stalked crinoids live in the relatively
deep sea, their development remains rarely studied [3] and to our knowledge, the mechanisms
underlying this ordered spatial pattern of columnals are unknown.

10.7 Sawsharks

A distinctive feature of sawsharks is their elongate cartilaginous saw-like rostrum, an extension
of the skull that carries on each side, a row of tooth-like spikes that are actually modified skin
denticles (main text Fig 1K). The largest denticles grow first, followed by the medium-sized ones
as the rostrum grows and space becomes available, and finally the smaller ones [48] generating a
hierarchy of size (up to 3 levels) reflecting their sequential development. How this hierarchical pat-
tern is generated remains unexplained. As oral teeth, and other dermal appendages such as scales,
spines, hair or feathers, dermal denticles emerge from placodes, folds formed by the thickening of
the epithelium and condensation of the underlying mesenchymal cells. Reaction-diffusion processes
have been supposed to control the spatial distribution of placodes of both sharks dermal denticles
and chick feathers [15]. Under this hypothesis, molecular dynamics first sets up a pattern that
serves as a blueprint governing the local behavior of cells, triggering in turn morphological changes.
However, the morphogenetic processes that actually shape three-dimensional forms are overlooked
in most studies based on the chemical pre-pattern hypothesis. A recent study shows instead that,
at least in the case of the developing chick feather buds, mechanical forces do not “read out” a
prefiguring molecular pattern, but actively set up and modulate patterning. Indeed, the sponta-
neous formation of aggregates of mesenchymal cells (the dermis), focally compresses and bends the
overlying epithelial layer (the epidermis), activating in turn a mechanotransductive pathway that
induces the gene expression initiating formation of feather primordium [39]. An ex vivo tissue re-
constitution shows that mesenchymal cells spontaneously self-organize into a periodic multicellular
aggregates, providing evidence that contractility-dependent mechanical interplay between cells and
the extracellular matrix is sufficient to spontaneously generate long-range morphological pattern
[36]. Whether similar mechanisms underlie patterning of shark dermal denticles remains unknown,
but it is worth noting that our theoretical framework is consistent with this mechanical patterning
process in the case of rostral denticles in sawsharks.

10.8 Cynodontidae

A similar mechanochemical process could also explain the dentition patterning in the “vampire
fishes” Cynodontidae, a family of freshwater species from South America. Representatives of these
family (main text Fig 1L) display a hierarchy of teeth size (up to 4 levels). Although the process of
tooth replacement in these fishes has been partly described [7], the dentition has not been studied
and whether the self-similar pattern reflects the sequential development of dental placodes over the
expanding, growing jaw remains to be verified.

10.9 Pelagornis teeth

Lastly, the hierarchy of size (up to 5 different levels) may be seen in the “teeth” of the fossil genus
Pelagornis (main text Fig 1M), the largest known flying bird (up to 6,4 m wingspan) [22]. These
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conic spikes are actually not true teeth, but bony excrescences from the beak itself. It has been
assumed that the development of these pseudoteeth involved epithelial/mesenchymal molecular in-
teractions delayed to the late stage of development, once the beak was fully grown. Assuming
therefore that they emerge on a domain of fixed size, the sequential development of these pseu-
doteeth and their size hierarchy have been interpreted as resulting from a dynamic in which the
radius of inhibition of a diffusing molecule gradually decreases around primary, secondary, tertiary
and quaternary pseudoteeth [28]. This hypothesis however, lacks both a theoretical support and
experimental clues showing that a similar molecular dynamic is involved in other living species. Our
theoretical framework and comparison with other organisms lead us to privilege a mechanochemical
hypothesis and the sequential development of these pseudoteeth over the expanding, growing beak,
a hypothesis that could be partly tested by discovery of very young specimens of this fossil bird.
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