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Signatures of slip in dewetting polymer films
Dirk Peschkaa,1, Sabrina Haefnerb, Ludovic Marquantb, Karin Jacobsb, Andreas Münchc, and Barbara Wagnera

aWeierstrass Institute for Applied Analysis and Stochastics, 10117 Berlin, Germany; bExperimental Physics and Center for Biophysics, Saarland University,
66041 Saarbrücken, Germany; and cMathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved March 18, 2019 (received for review December 3, 2018)

Thin polymer films on hydrophobic substrates are susceptible
to rupture and hole formation. This, in turn, initiates a com-
plex dewetting process, which ultimately leads to characteristic
droplet patterns. Experimental and theoretical studies suggest
that the type of droplet pattern depends on the specific interfa-
cial condition between the polymer and the substrate. Predicting
the morphological evolution over long timescales and on the
different length scales involved is a major computational chal-
lenge. In this study, a highly adaptive numerical scheme is pre-
sented, which allows for following the dewetting process deep
into the nonlinear regime of the model equations and captures
the complex dynamics, including the shedding of droplets. In
addition, our numerical results predict the previously unknown
shedding of satellite droplets during the destabilization of liq-
uid ridges that form during the late stages of the dewetting
process. While the formation of satellite droplets is well known
in the context of elongating fluid filaments and jets, we show
here that, for dewetting liquid ridges, this property can be dra-
matically altered by the interfacial condition between polymer
and substrate, namely slip. This work shows how dissipative
processes can be used to systematically tune the formation of
patterns.
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The no-slip condition is widely accepted as an appropriate
boundary condition for flows of Newtonian liquids sheared

along a solid surface. A notable exception arises in the presence
of a moving contact line between a viscous liquid and a rigid
solid substrate, where the use of the no-slip condition leads to
a nonintegrable singularity in the stress field (1, 2). In the past
decades, however, it has been shown that thin films of polymer
melts can exhibit significant slip when sheared along a substrate,
where slip lengths much larger than the film thickness have been
observed (3–9).

For retracting rims as they emerge after a hole or trench has
opened, the magnitude of slip has a direct impact on the dewet-
ting dynamics. When the slip length is very small or zero, the
retraction rate is independent of the size of the growing rim and
hence, approximately constant, except for logarithmic correc-
tions (10). For slip that is large compared with the film thickness,
viscous dissipation increases with the rim size and gives rise to a
t−1/3 power law in time t for the retraction (dewetting) rate (11),
which has been confirmed experimentally (12–15). In both cases,
the moving rim is susceptible to spanwise instabilities (16–18),
but for the case where slip is large compared with the film thick-
ness, the dependence of the retraction velocity on the local rim
size provides a crucial amplifying mechanism for the instability,
which is absent in the no-slip situation (19). As a consequence,
the repeated shedding of droplets leaves a characteristic pattern,
which is not present for systems with no slip. In either case, the
dewetting rims eventually meet to form residual ridges, which in
either case, are susceptible to a Rayleigh–Plateau-type instability
with a similar dominant wavelength (20). Eventually, this leads to
the break up into droplets. As a result of this long-time process,
strikingly different droplet patterns are obtained as shown by the
experiments depicted in Fig. 1.

The evolution of the polymer melts during these dewetting
regimes from early stages after hole formation to the late stages

of rupture of the ridges, where the hole boundaries meet, is
most appropriately modeled by thin-film models. A systematic
asymptotic derivation from full Navier–Stokes equations (22, 23)
exploiting the separation between the lateral and normal length
scales revealed that the resulting dimension-reduced thin-film
model depends on the order of magnitude of slip, leading to
two asymptotic distinguished limits: a weak-slip regime and a
strong-slip regime.

While thin-film models have been shown to be of great advan-
tage for the analysis of free boundary problems, predicting the
evolution over long time and large spatial scales deep into the
nonlinear regimes is still a major computational challenge. The
primary problem is to resolve the length scales associated with
nanoscopic residual layers that remain after the film has dewet-
ted, typically about ∼ 0.1− 1 nm up to thickness of about ∼
10− 1,000 nm of the growing rim, and to account for the slip
length in the range of 1− 1,000 nm and the length scale of the
resulting instability of 103− 104 nm. By far, the greatest chal-
lenge is to make predictions regarding phenomena on the length
scales of the instabilities while using numerical solutions with a
fine spatial resolution on the length scale of the residual layer.

In this article, we present a numerical algorithm that is able
to answer this need featuring a strategy for local adaptivity and
an optimized treatment of the intermolecular potential. We will
show that the difference in slip lengths indeed leads to the
instability patterns seen in experiments. Our numerical solutions
also confirm the Rayleigh–Plateau-type instability of the residual
ridges during the late phases of the dewetting for both cases, the
no-slip and the intermediate-slip cases, with similar wavelengths
at the onset, which had been predicted previously based on a
linear stability analysis (17, 20). Similar studies were concerned
with cases of infinite ridges with (24) and without (25) gravity fol-
lowed by a broad range of investigations in the literature for this
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Fig. 1. Stationary droplet patterns emerging from a uniform PS(10.3k) film of thickness h∞ = 110 nm after dewetting at T = 120◦C from a hydrophobically
coated Si wafer: (Left) AF1600 coating and (Right) DTS coating (21).

situation using different contact line models and approximations.
Numerically, the work by Diez et al. (26) focuses on finite-length
ridges but also, includes a review and elucidating comparison
of results for the infinite case. Here, most unstable modes are
due to varicose perturbations, and the preferred wavelength of
the instability is set by the balance of the destabilizing capillary
forces, contact line conditions, and for sufficiently viscous liquids,
the viscous dissipation. Stability analysis of the effect of slip vs.
no-slip on the instability of a stationary ridge shows that both are
linearly unstable and have similar wavelengths (17, 20).

Our numerical method allows us to follow the evolution until
rupture and predicts significant morphological differences. In
particular, it reveals that, for the no-slip case, the breakup is
accompanied by the formation of a cascade of satellite droplets
that has never been studied before in this context. Moreover,
for the intermediate-slip regime, no satellite droplets appear.
Interestingly, a closer look at experimental results confirms
these predictions. In other contexts, such as liquid jets or
fluid filaments, formation of satellite droplets during rupture
is well known, and their destabilization was observed to have
a rich structure of intermediate asymptotic regimes [e.g., the
works by Tjahjadi et al. (27), Eggers and Villermaux (28), and
Castrejón-Pita et al. (29)].

We start by introducing the dissipative free surface flow and
the relation to pattern formation. Then, we introduce the non-
linear model for dewetting flow and revisit results for dewetting
rates and their impact on instabilities in the early stages of the
process. We introduce a highly adaptive numerical method that
bridges the multiple length scales and timescales and is able to
resolve the dewetting with droplet pinch-off. The solutions are
discussed, and we compare with experiments.

Emergence of Dewetting Patterns
Before going into the details of thin-film dewetting, we make
some general remarks and simple observations. Assume that the
shape of the fluid volume Ω(t)⊂R3 over a substrate at z = 0 and
time t is described by a function h (t , x)such that

Ω(t) = {(x, z )∈R2×R+ : 0< z < h(t , x)}. [1]

The wetted substrate area is ω(t) = {x∈R2 : h(t , x)> 0}. Then,
the surface energy driving the evolution is defined as

E(h) =

∫
ω

(γ`s − γgs) + γ`g
√

1 + |∇h|2 dx,

with γ{`s,gs,`g} being the surface tensions of the liquid–solid, gas–
solid, and liquid–gas interfaces, respectively. For incompressible
fluids, the evolution of the film height conserves the total vol-
ume V(h) =

∫
ω
h dx. For Newtonian fluids with velocity field

u(t) : Ω→R3, this energy decreases along solutions: that is,

d
dt
E =−D=−

∫
Ω

2µ|Du|2 dx dz −
∫
ω

µb−1|u|2z=0 dx≤ 0,

decomposing the dissipation D into a bulk and substrate part
with viscosity µ, Navier slip length b, and symmetric gradi-
ent Du = 1

2
(∇u +∇u>). Thereby, stationary states are energy

minimizers, and a straight-forward minimization of E with
constant V shows that minimizers are droplets (i.e., up to
translational invariance ω is a disc, and h has constant cur-
vature). Apparently, this assumes that contact lines can slide
freely and that no pinning is present (2). However, it is
also clear that arrays of droplets as shown in Fig. 1 are not
global but local minimizers of E and thereby, also represent
viable stationary states. While droplet patterns emerging from
the spinodal dewetting feature seemingly random distributions
of droplets with details depending on intermolecular interac-
tions (30, 31), droplet distributions in other flow scenarios
are reminiscent of the process that leads to their creation
(e.g., heterogeneous nucleation, surface instabilities on pat-
terned substrates, droplet production in confined environments,
or even dynamically for sliding droplets) (32–38). This raises
the natural question: Which mechanism decides what pattern is
generated?

This question is even more justified when realizing that the
surface energies E leading to both patterns in Fig. 1 are qualita-
tively identical. Therefore, in the following, we show that physical
systems with the same wetting energy but different magnitudes
of dissipation (i.e., viscosity and Navier slip) will produce quali-
tatively different droplet patterns. While the exploration of the
nonlinear pattern formation will mainly compare experiments
and simulations, the general mechanism responsible for differ-
ent patterns is the switching of different instabilities due to the
dissipation (Movie S1).

Thin-Film Models and Instability
Problem Formulation. After a film has ruptured by nucleation or
by external forcing, forming a hole or in a planar-symmetric set-
ting, a trench, the viscous fluid retracts to reduce the overall
energy of the liquid–gas, solid–liquid, and solid–gas interfaces.
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The dewetting process is driven by the intermolecular potential
φ between the film and the substrate. In the simplest case, it
consists of a sum of attractive long-range van der Waals forces
and short-range Born repulsion forces, the minimum of which
yields the height h? that remains in the dry region from which
the film of uniform height h∞� h? has dewetted. Motivated
by Lennard–Jones potentials, one often finds intermolecular
potentials (31, 39) of the standard form φ(h) = φ̄ (h/h?), where

φ̄(h) =
S

n −m

(
nh−m −mh−n), [2]

with m = 2,n = 8, φ′(h?) = 0, and φ(h?) =S . For partial wetting,
the spreading coefficient S = γgs− γ`s− γ`g is negative.

Due to the slow dewetting rates of the polymer films with chain
lengths below the entanglement length, the Navier–Stokes equa-
tions serve as the underlying model for the viscous fluid with a
Navier slip boundary condition,

t · (2µDu)n +µb−1t · u = 0, [3]

for tangential velocity implied by the previous energy dissipation
balance. The scale separation of the characteristic height scale
H = [z ] and typical length scales L= [x] allows for a consistent
thin-film approximation using the small parameter

ε=
H

L
, [4]

which leads to the reduction of the Stokes free boundary prob-
lem to a problem for the free boundary h(t , x) in closed form.
In the following, all quantities are nondimensionalized with this
scaling as explained along with details of derivation in ref. 22,
which we here only summarize. In particular, we introduce the
nondimensional slip length B = b/H .

We seek the scalar function h : [0,T ]×R2→ [0,∞) as in Eq.
1, where the film height h(t , x) depends on time t ∈ [0,T ] and
on space x = (x , y)∈R2 with given initial data h0(x) = h(t = 0, x)
(Fig. 2). It has been shown that, depending on the magnitude
of slip length B , there exist two asymptotic distinguished limits
(22) for ε� 1. The first distinguished limit assumes B =O(1)
and leads to the weak-slip thin-film model given by the fourth-
order parabolic partial differential equation (PDE)

∂th −∇ · (m(h)∇π) = 0, [5a]

where the mobility is

m(h) = 1
3
h3 +Bh2, [5b]

and the generalized pressure π is defined as the functional
derivative of the energy functional

E(h) =

∫
R2

1
2
|∇h|2 +φ(h) dx [5c]

with respect to h: that is,

π=
δE

δh
=−∇2h + Π(h), [5d]

and Π(h) = ∂hφ(h) is the derivative of the nondimensional inter-
molecular potential. Effectively, by introducing Π, one enforces
positivity of h : [0,T ]× ω̄→ [0,∞) and replaces the complement
of the set ω(t)⊂ ω̄⊂R2 by the region where h ≈ h? as it is
sketched in Fig. 2.

The second distinguished limit assumes that B = ε−2β and
leads to the strong-slip thin-film model given by the system of

Fig. 2. Sketch of solution h(t, x) in the x−z plane.

PDEs for the film height h : [0,T ]× ω̄→ [0,∞) and the lateral
velocity ū : [0,T ]× ω̄→R2:

∂th +∇· (hū) = 0, [6a]

Re (∂t ū + (ū ·∇)ū) =
1

h
∇·σ−∇π−β−1 ū

h
, [6b]

where Re is the rescaled Reynolds number and the effective
shear stress is

σ= h
[
∇ū + (∇ū)>+ 2(∇· ū)I

]
. [6c]

Two important limiting cases are the no-slip and the
intermediate-slip thin-film models. The no-slip model is obtained
for B→ 0 so that the degenerate mobility becomes m(h) =
1
3
h3. The latter intermediate-slip model is obtained in the limit

B→∞ but ε−2B→ 0, which on rescaling of time, produces the
mobility m(h) = h2. In this sense, no-slip m = 1

3
h3 mobility and

intermediate-slip mobility m = h2 are two extremal limits in the
slip length B .

It has been shown experimentally and near the linear regime it
was also demonstrated theoretically that details of the dynamic
and morphological evolution strongly depend on the magnitude
of slip at the solid–liquid interface (40). For no slip or weak slip,
the liquid accumulates in a growing rim in front of the contact
line and destabilizes. The case of strong slip is characterized by
very asymmetric retracting rims with a monotone spatial decay
toward the unperturbed film for particularly large slip, which
undergoes a transition to oscillatory decay as the slip length
decreases below a critical value (22, 41). In fact, this observation
has been used to identify the strong-slip regime in experiments
and also to determine the slip length quantitatively (42–44). The
molecular origin of slip in polymer melts was investigated in ref.
45. More details about this topic can be found in the work by
Bäumchen and Jacobs (46).

Dewetting Rates. We first discuss the dewetting dynamics of a
straight rim, where we assume translational invariance ∂yh ≡ 0.
In the case of no slip, m(h) = 1

3
h3, the evolution is determined

by the region near the contact line where the rim meets the resid-
ual film of thickness h = h? that remains behind the advancing
dewetting front. A careful asymptotic analysis and comparison
with long-time numerical solutions (22, 47) reveal that the
dewetting rate ṡ(t) is nearly constant. In fact, the position of
the contact line s(t) is to leading order given by the dewetting law

s(t)∼ t tan3(ϑ)

ln (3(h∞/h?)t)
[7]

as t→∞, where h∞= limx→∞ h . Physically, this reflects the fact
that the size of the rim only has a weak effect on the total friction
and hence, in turn, on the dewetting velocity.
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Fig. 3. Comparisons of the dewetting behavior of h∞ = 110-nm-thick PS films for different chain lengths dewetting from AF1600-coated substrate after
the rim traveled the distance given above the images. Films are annealed to different temperatures to speed up dewetting in case of films with larger
viscosities: PS(65k) at T = 140◦C, PS(101k) at T = 140◦C, PS(186k) at T = 150◦C, and PS(390k) at T = 150◦C. In the chosen systems, the slip length increases
with increasing molecular weight, leading to the values indicated next to the corresponding images obtained by fitting the rim profile as reported by
Bäumchen et al. (45) or McGraw et al. (55).

For intermediate slip, where m(h) = h2, the evolution of the
unperturbed rim is different. At any given size, the rim behaves
like a traveling wave but with a wave speed that depends on the
width of the rim, which by mass conservation, is proportional to
the square root of the distance traveled. A detailed asymptotic
analysis (22, 47) that matches the rim to the unperturbed and
residual film gives the leading order result

s(t)∼
(

9Mb tan5 ϑ

4h∞

)1/3

t2/3 [8]

in the limit t→∞ with M ≈ 0.0272. A similar prediction had
been made by Reiter and Khanna (12).

Rims with capillary humps, like the ones that appear here,
are known to be subject to Rayleigh–Plateau-like instabilities
(20, 24, 26), where the higher capillary pressure in thinner parts
squeezes even more liquid into the thicker parts, hence promot-
ing the growth of undulations along the rim. The linear stability
of dewetting rims is complicated by the fact that the base state
itself grows in time, giving rise to a linearized PDE that cannot
be solved exactly using separation of variables. Instead, the lin-
earized PDE can be solved numerically, and the amplification of
an initial perturbation can be tracked over time (48). Interest-
ingly, the perturbation evolves into a universal long-time shape
that is not sensitive to the initial perturbation. Comparing these
shapes reveals an important difference between the no-slip and
intermediate-slip cases. The former is much more symmetric and
closer to the classical varicose mode observed in the Rayleigh–
Plateau instability than the latter (48). Moreover, the maximum
amplification is significantly higher for the intermediate-slip case.

These results were analyzed further using an asymptotic sharp
interface approach for large rims and a Wentzel–Kramers–
Brillouin analysis (also known as WKB analysis, see ref. 49),
which established that the long-time dominant wavenumber is
given by an equal area rule and is shorter than the prediction
by a frozen-mode analysis (50, 51). Furthermore, theory indi-
cates that perturbations of the rim remain small in the no-slip
case and for moderate values of B , while in the intermediate-slip
case 1�B� ε−2 perturbations grow and develop fingers that
eventually pinch off; then, the process repeats itself. The physical
explanation for these different manifestations relates to the size
dependence of the friction. In the intermediate-slip case, thicker
parts of a perturbed rim have a smaller velocity than thinner ones
and tend to lag farther behind. This supplies an additional non-
linear enhancement that reinforces the linear Rayleigh–Plateau
instability but is essentially absent in the no-slip case, where the
dewetting rate is largely independent of the rim size (18, 48, 51).
The size dependence also adds another instability mechanism
by causing thicker parts of the rim to lag behind thinner parts,
thus reinforcing the Rayleigh–Plateau instability and making it
more asymmetric (18). A linear stability analysis of the thin-film
model predicts the instability to be much more pronounced in
the intermediate-slip case than in the no-slip case (48–51).

For slip lengths that are much larger than the film height,
the dynamics of the evolution change yet again. In the strong-
slip regime, the fluid flow is a plug flow, and the evolution is
described by a system of PDEs for the film height and the lateral
velocity (6), where the contribution from elongational stresses
enters to the same order as the effects from the friction due
to slip. Dewetting rim solutions of this model were explored
numerically and asymptotically (22, 41). In this regime, the shape

Fig. 4. Simulated pattern formation with intermediate-slip m = h2: 3D view with light areas showing dry regions, whereas elevated dark areas show the
liquid–air interface.
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Fig. 5. (Left) Dewetting rim during pinch-off of a single droplet highlighted with dashed lines and (Right) magnification of this droplet and corresponding
locally refined triangulation. The mesh consists of 92, 272 vertices, which require us to solve for 2× 368, 423 = 736, 846 unknowns (hn,π) for the P2 FEM
discretization at each time step.

of the profile becomes highly asymmetric, with a steep side facing
the dewetted area and a much flatter decay to the unperturbed
film h∞. This is well reflected in the experimental data for melts
with larger polymer chains, where slip is expected to be larger.
Interestingly, the change in the balance of stresses leads to an
approximately linear dewetting law

s(t)∼ b1/2 tan2(ϑ)t

4
√

2 h
1/2
∞ ln1/2 t

, [9]

which is another case with an approximately constant velocity of
the retracting rim just as in the no-slip case. This suggests that,
for very large slip lengths, the rim should become stable again.

Experimental Setup and Methods
For the experiments, atactic polystyrene (PS; purchased from
PSS; molecular weights are as listed in the experiments) is used
as a model viscous liquid. The films were produced by spin cast-
ing a toluene solution (Selectipur or LiChrosolv; Merck) of PS
on freshly cleaved mica sheets. The glassy thin films were then
floated onto an ultrapure water (organic impurities of <6 ppb,
resistance at 25◦C:< 18.2 M Ω cm) surface and were then picked
up with hydrophobic Si wafers.

Hydrophobic Si wafers were achieved by two different prepa-
ration methods: (i) on the cleaned Si surface, a self-assembled
monolayer of silane molecules [dodecyltrichlorosilane (DTS);
Sigma Aldrich/Merck] was prepared (52), or (ii) the cleaned
Si wafer was dipped into a solution of a fluoropolymer layer
(AF1600; Sigma Aldrich/Merck).

Dewetting is initiated by heating the glassy polymer film above
its glass transition temperature. The dewetting of the retracting
straight fronts was monitored in situ by optical microscopy on
a heating plate (Linkam) or by atomic force microscopy (AFM;
Dimension ICON; Bruker).

The dewetted distance was typically obtained from optical
micrographs. In AFM experiments, the dewetted distance can
also be calculated from 3D scans of the rim on the basis of vol-
ume preservation. The values resulting from both approaches
were checked for consistency.

Slip lengths have been calculated using the rim profile analysis
method (53, 54); structural details, surface roughness values, and
wetting properties of the coatings are given in the supplementary
material of ref. 40. Polymer film thicknesses have been deter-
mined by ellipsometry on the glassy film or by AFM on the edge
of a film. The equilibrium contact angles are ϑ= (88± 2)◦ and
ϑ= (66± 2)◦ for AF1600- and DTS-coated substrates, respec-
tively. Comparing typical values for rim height and width, we
find typical values in the range ε= 0.15− 0.3 for the dewetting
systems.

In Fig. 3, we show retracting rims with four different chain
lengths of the PS film, each thereby corresponding to drastically
different slip length b. For the smallest chain length PS(65k), the

0 0.5 1 1.5 2
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-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 6. Lennard–Jones potential Eq. 2 compared with the much shorter-
ranged exponential potential Eq. 12, both with h? = 1/20 and ε? = 1/16.
Note that, in the numerics we rescaled so that at the contact line the slope
is |∇h|= 1, leading to a nondimensional potential with φ(h?) =−1/2.
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Fig. 7. Numerical solutions on ω̄= [0, 500]× [0, 600] (h? = 1/20, γ= 1/10) for (Upper) m = h2 (intermediate-slip B→∞) and (Lower) m = 1
3 h3 (no-slip

B = 0) for initially slightly perturbed straight front and time progressing from left to right shown for similar rim progression (Movie S1).

slip length b is smaller than the rim height H and hence, should
correspond to a no-slip situation. As chain length and corre-
spondingly, slip length b increase, we observe a more pronounced
instability, as we would expect for a transition from a no-slip sce-
nario to an intermediate-slip scenario. However, if b is increased
even further by two orders of magnitudes for PS(390k), the insta-
bility is suppressed again. Interestingly, this was predicted for the
transition to a strong-slip regime.

For the remaining part of the paper, we will only consider
experiments that can be captured with a no-slip (AF1600 coat-
ing) or intermediate-slip (DTS coating) regime with PS(13.7k) or

PS(10.3k) and use corresponding theoretical models with cubic
m = 1

3
h3 or quadratic m = h2 mobility.

Numerical Methods
We now explain the intricacies of numerically resolving the mul-
tiple length scales of the problem. We focus on the two cases of
no slip and intermediate slip, as most of the experimental results
regarding the various instabilities fall into either of these two
regimes.

Our solution of the thin-film model in Eq. 5 is based on
a P2 finite element method (FEM), where the fourth-order

Fig. 8. Series of micrographs from experiments with thin films (Upper) dewetting from a hydrophobized Si wafer covered with a silane monolayer DTS with
b = 1 µm (intermediate slip) and (Lower) dewetting from an AF1600-covered Si wafer with b = 40 nm (no slip). In both series, a h∞ = 100 nm thin PS(13.7k)
film dewets at T = 120◦C. In both series, undulations are formed along the rim; however, only in the intermediate-slip case above, budding is observed
that later leads to fingers and a pinch-off of droplets. Comparing rims that have traveled a similar distance ensures that only rims of similar volumes are
evaluated. Reprinted with permission from ref. 19. Copyright 2015 by the American Physical Society.
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equation is split into a system of two second-order equations. The
FEM uses piecewise quadratic elements and local mesh refine-
ment. We use a semiimplicit time discretization, where only
the highest-order derivative is treated implicitly. Therefore, the
thin-film equation (Eq. 5) is multiplied with a test function v and
integrated by parts to obtain∫

ω̄

∂thv +m(h)∇π ·∇v dx = 0, [10a]

where boundary terms vanish due to the no-flux boundary con-
dition n ·∇π= 0 imposed on ∂ω̄. We also rewrite the pressure π
in the weak form as∫

ω̄

πv dx =

∫
ω̄

∇h ·∇v + Π(h)v dx, [10b]

where again, we used integration by parts and n ·∇h = 0 on the
boundary ∂ω̄. In particular, this statement of the PDE implies
conservation of volume

d

dt

∫
ω̄

h(t , x) dx = 0,

which can be seen when selecting v = 1 in the continuous or
discrete weak formulation (Eq. 10a). Evaluating the solution at
discrete times hn(x) = h(nτ , x), we use the time discretization
∂th = τ−1(hn − hn−1). This allows us to rewrite the weak form
of the thin-film model in Eq. 10 so that we seek (hn ,π)∈W
such that∫

ω̄

hnv + τ m∗∇π ·∇v dx =

∫
ω̄

hn−1v dx, [11a]

∫
ω̄

πw −∇hn ·∇w dx =

∫
ω̄

Π∗w dx, [11b]

which needs to hold for all (v ,w) from a suitable function space
W and with initial data h0. When we define the mobility m∗=
m(hn−1) and Π∗= Π(hn−1), this becomes a semiimplicit time
discretization.

The FEM constitutes a method for the construction of a finite-
dimensional subspace Wh ⊂W , where we have an admissible
decomposition ω̄=

⋃N
k=1 Tk of the domain into triangles Tk ,

on which we define Wh as the space of continuous functions
that are piecewise quadratic on each triangle (i.e., P2 finite ele-
ments). Then, we seek a discrete solution (hn ,π)∈Wh of Eq. 11
valid for all (v ,w)∈Wh . The integrals appearing in Eq. 11 are
solved exactly or using a seven-point Gauss quadrature. A typi-
cal droplet pattern emerging from the simulation with m = h2 is
shown in Figs. 4 and 5.

The precursor thickness h? in the potential of Eq. 2 needs to be
chosen much smaller than any droplet size we intend to resolve.
Then, the solution h will feature large regions, where the solu-
tion is either almost constant h ≈ h? or the solution is smooth
and h� h? as shown in Fig. 2. However, where those regions
meet, the solution features a kink, which should be resolved in
the triangulation (compare with Fig. 5). We perform a heuris-
tic local mesh refinement in these connecting regions where the
contact line is situated. When constructing a new mesh, we start
from a coarse base mesh and determine which of its elements
are crossed by the contact line of the previous solution. Those
elements are refined by inserting additional vertices to an extent
that the kink is resolved again. Furthermore, we make sure that
neighboring elements are also refined, so that the contact line
remains in the refined region of the mesh for a number of time
steps. Based on the set of newly created vertices, we perform a
new triangulation and interpolate the old solution onto the new
triangulation.

To allow the control of the minimum and the derivatives
of φ separately via h? and ε?, it is advantageous to work
with an alternative potential representation of the form φ(h) =

φ̂ ((h − h?)/ε?)with

φ̂(s) = 1
2

(
γ

1+s
− (1 + γ) exp(−s2)

)
, [12]

which has similar properties as the rescaled version of Eq. 2.
In particular, with this potential, we still have the same Γ con-
vergence property as h?, ε?→ 0. This abstract statement ensures
that equilibrium contact angles are maintained and that the ener-
getic contributions of φ from Eq. 12 and Eq. 2 coincide in this
limit. We note that, for 0<γ� 1, the minimum slightly shifts
away from h?; however, one gains a slightly stabilizing potential
with φ

′′
> 0 for h� h?. In addition, we point out that we moni-

tor that the minimum of the solution minx h(t , x) never violates
the nonnegativity requirement for the given choice of φ(h) and
parameters h?, ε? (Fig. 6), in particular, by keeping the time step
size τ sufficiently small. We also refer to previous mathematical
studies (56, 57) that incorporate the nonnegativity property into
their numerical scheme.

Initial Data for Rims
We still need to specify the initial data h0(x) for the numerical
simulation to describe the various stages of the dewetting pro-
cess. In experiments, the dewetting is initiated from a uniform
flat layer bounded by a nearly straight edge. When the sample
is heated, the layer liquefies, and the edge becomes a moving
contact line of the dewetting process. In simulations, we choose
the supporting domain sufficiently large ω̄= [0, 500]× [0, 600];
using h? = 1/20, we represent the uniform layer with the nearly
straight contact line at x0 with initial height

h0(x) = h? + 1
2
(h∞− h?)

(
1 + tanh

[
x−x0(y)

∆

])
, [13]

and the smooth initial contact line position is represented by
x0(y) = 20 +

∑50
n=1 an cos(nπy/600). With ∆ = 1/2, one can

interpret h0 to be an approximation of a step-like profile, where
slight corrugations of x0 along the y direction are introduced
using the normally distributed coefficients an with zero mean
and SD 1/10. This choice is then maintained throughout all
dewetting simulations for both mobilities. Due to the introduced
scaling, we have h∞= 1.

To study the systematic effect of the slip boundary condi-
tion on dewetting patterns, we study the contact line instability
of moving rims and stationary ridges for the mobility func-
tions m(h) = 1

3
h3 (no slip) and m(h) = h2 (intermediate slip).

Fig. 9. The 1D steady-state hstat with ε? = 1/20 and h? = 1/80.
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Fig. 10. Numerical solutions showing ridges with (Upper) no slip m(h) = 1
3 h3 and (Lower) intermediate slip m(h) = h2. The initial data are h0(x) = hstat(x) +

δh1(kmax; x) cos(ky), with time increasing from left to right. The wavenumber kmax is the one with the largest amplification from Eq. 14, and the domain
ω̄= [−12, 0]× [0,π/kmax] is then extended to [−12, 12]× [−π/kmax, 3π/kmax] using the implied symmetry of the solution (Movie S1).

In Fig. 7, the evolution of the rims for no slip and intermediate
slip is shown at times where they have accumulated a simi-
lar volume, starting with the same initial film thickness h∞ as
given by the experiments. This corresponds to the experimen-
tal results in Fig. 8, where the evolution of the rims is shown
at the same distance measured from the initial coordinates. The
distinctive dewetting patterns for the intermediate-slip case are
observed, while for the no-slip case, only shallow oscillations
will occur in excellent comparison with the experimental results
in Fig. 8.

Breakup of Liquid Ridges
Toward the final stages of dewetting process, for long times
and domain size far beyond ω̄, the rims approach each other
and merge, yielding a polygonal network of ridges. As is known
from previous studies, stationary ridges are susceptible to a
Rayleigh–Plateau instability for both no-slip and intermediate-

slip boundary conditions at the substrate. Both the no-slip case
and the intermediate-slip case have been extensively investigated
in the literature (20, 24, 26).

To study the instability of a capillary ridge, we first com-
pute a 1D stationary solution hstat(x ) (i.e., a time-independent
2D solution of Eq. 5 with ∂th ≡ 0, ∂yh ≡ 0, and constant
thickness h→ h? as x→±∞ as shown in Fig. 9, with a sym-
metric and approximately parabolic shape around the max-
imum). Then, we study the linear stability with respect to
perturbations

h(t , x) = hstat(x ) + δh1(x ; k) exp(iky +σt) [14]

with fixed wavenumber k , which returns an eigenproblem for the
perturbation h1 of the base state (20, 51). We select the most
unstable mode kmax and define as initial data

Fig. 11. Experimental results. Close-up view of the late-stage ridge of PS(10.3k) on AF1600 with time progressing from left to right showing decay into
satellite and subsatellite droplets. The initial film height is h∞ = 115 nm, and b = 40 nm. With B = b/H and H corresponding to rim height, this gives rise to
the no-slip regime (21).
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h0(x) = hstat(x ) + δh1(x ; k) cos(ky) [15]

with a sufficiently small δ so that the nonnegativity of h0 is also
not violated. In SI Appendix , SI Text and Figs. S1–S3, we present
the details of the linear stability analysis and show that solu-
tions of the nonlinear problem follow the predicted exponential
amplification while the linear regime is valid. Furthermore, we
checked that the alternative choice of potential Eq. 12 compared
with the standard choice Eq. 2 has no visible impact on the lin-
ear stability as long as the minimal value φ(h?) and the minimal
height h? are the same.

However, we are interested in using the numerical simulation
as a tool to observe features in the nonlinear regime that are dis-
tinctive features of the mobility law. Therefore, to resolve finer
features of the ridge shape (e.g., secondary or tertiary droplets),
the general form of the intermolecular potential is the same, but
we use a smaller h? = 1/80.

We now consider nonlinear simulations using the stationary
ridge with very small monochromatic perturbations as initial
data. Specifically, we consider an unstable perturbation with kmax
and carry out simulations with the mobilities h2, 1

3
h3.

As long as the perturbations are small enough, the evolution
of the corrugations in the nonlinear model closely follows the
predictions from the linear stability analysis. After the pertur-
bations become comparable with the size of the rim, nonlinear
terms become relevant, and the growth rate changes.

Regarding the morphological evolution of the ridges for the
no-slip and intermediate-slip cases, our numerical simulations
show qualitatively and quantitatively very similar behavior dur-
ing the linear regime. However, deep into the nonlinear regime,
the breakup into droplets follows different scenarios. In the
no-slip case, a cascade of satellite droplets emerges, while for
the intermediate-slip case, they disappear. Starting with the
same initial condition, the evolution for both cases is shown in
Fig. 10. Interestingly, this different behavior is also observed
in our experimental results as seen in Fig. 11. The instability
mechanisms causing these different patterns are encoded in the
behavior near the self-similar pinch-off (e.g., refs. 58 and 59 are
related theoretical studies of thread breakup).

Conclusion and Discussion
We have introduced a highly adaptive finite element-based
numerical approach that correctly captures the complex dewet-
ting process described by a class of thin-film models with

degenerate mobilities. We showed that, for the no-slip condi-
tion, the droplet pinch-off is absent during the retraction of the
rim, while for the intermediate-slip case, self-repeating droplet
pinch-off occurs in excellent agreement with experimental obser-
vations. The ability to resolve the different length scales for long
timescales also enables the prediction of phenomena, such as the
formation of satellite droplets, as a function of the mobility. The
emergence of satellite droplets is well known during the break
up of liquid jets and the related problem of liquid filaments. For
the latter problem, destabilization is due to the difference in the
axial contribution to the capillary pressure between thicker and
thinner parts. In this system, the pressure is higher in the thin-
ner parts and squeezes the liquid into the bulges, thus increasing
the perturbation until the filament breaks up. Apart from the
huge literature on experimental studies, the problem has sparked
numerous numerical and analytical investigations (28, 60, 61). In
particular, the work by Tjahjadi et al. (27), where the emergence
of satellite droplets was captured numerically, and the highly
the accurate numerical schemes developed by Kim et al. (62)
improved the understanding the underlying physical processes
considerably.

For the situation of a ridge that destabilizes on a solid sub-
strate, the additional influence of the substrate enters the linear
stability analysis, in particular through the contact angle dynam-
ics. It will be interesting to investigate analytically the rupture
behavior for this problem to help understand the influence of
the boundary condition at the substrate. Similarly, it remains an
interesting open question how the dissipation due to a dynamic
contact angle would affect the whole pattern formation process.
Such a study would certainly require even more sophisticated
finite element techniques (63, 64).

The decision about the pathway leading to specific droplet
patterns is then often decided by the specific influence that the
dissipation has on flow instabilities. In this study, these insta-
bilities are the shedding of droplets from moving rims and the
symmetry of the Rayleigh–Plateau instability leading to satel-
lite droplets, and they are influenced by the magnitude of the
interface dissipation encoded in the Navier slip condition.

We conclude that, by controlling dissipative effects in this
dewetting films system, we can steer pattern formation without
changing the driving forces.
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