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HOW DO DEGENERATE MOBILITIES DETERMINE
SINGULARITY FORMATION IN CAHN--HILLIARD EQUATIONS?\ast 

CATALINA PESCE\dagger AND ANDREAS MUENCH\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Cahn--Hilliard models are central for describing the evolution of interfaces in phase
separation processes and free boundary problems. In general, they have nonconstant and often
degenerate mobilities. However, in the latter case, the spontaneous appearance of points of vanishing
mobility and their impact on the solution are not well understood. In this paper we develop a singular
perturbation theory to identify a range of degeneracies for which the solution of the Cahn--Hilliard
equation forms a singularity in infinite time. This analysis forms the basis for a rigorous sharp
interface theory and enables the systematic development of robust numerical methods for this family
of model equations.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . phase-field models, sharp interface, lubrication theory, degenerate fourth order
partial differential equations, matched asymptotic expansions

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35A21, 35B40, 35G20, 74N20, 76M45, 82C26

\bfD \bfO \bfI . 10.1137/21M1391249

1. Introduction. Since its introduction [23, 20, 21, 24], the Cahn--Hilliard equa-
tion and its many variations have become fundamental tools for describing the sep-
aration of phases over a large range of time and space scales in many applications.
In the most basic case of two partially miscible materials, such as binary alloys or
polymeric liquids, this includes the early onset of the phase separation from a homo-
geneous, unstable state via spinodal decomposition [20, 21] and subsequent nonlinear
evolution at later stages where coarsening occurs [41, 67] until the quasi-stationary
stages where only few, large, and almost homogeneous domains remain. Due also to
its ability to allow for topological changes of the domain, phase-field models based
on extensions of the Cahn--Hilliard equation are frequently used as the basis for nu-
merical simulations of, for example, the evolution of interfaces between immiscible
liquids. These applications exploit the fact that in a phase-field model, the inter-
faces are represented by a thin layer over which the order parameter varies rapidly
but continuously. Examples of such processes are surface diffusion and electromigra-
tion in crystals and alloys [25, 70, 22, 37, 17, 8, 9], motion of immiscible fluids with
free boundaries [36, 1, 46, 19, 69], polymer blends [57, 35, 26], tumor growth models
[29, 62, 54], and lithiation in battery electrodes [58], to name just a few.

Stated in the form introduced by [23, 24], the Cahn--Hilliard equation can be
written as

ut =  - \nabla \cdot j, j =  - M(u)\nabla \mu , \mu =  - \varepsilon 2\nabla 2u+ f \prime (u),(1.1a)

with the (conserved) order parameter u, such that | u| \leq 1 and \varepsilon > 0. The homoge-
neous free energy and mobility are, respectively,
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1144 CATALINA PESCE AND ANDREAS MUENCH

f(u) = (\theta /2) [(1 - u) ln(1 - u) + (1 + u) ln(1 + u)] + (1 - u2)/2, M(u) = 1 - u2,

(1.1b)

where \theta \geq 0 denotes a normalized temperature. For 0 < \theta < 1 the free energy in
(1.1b) has two distinct minima u\pm and the system separates into two phases with
those relative concentration values. The diffuse interface layers between these phases
domains are thin if \varepsilon is small. The term Cahn--Hilliard is often used more broadly to
describe a class of phase-field models that have the general form (1.1) but different
free energies and mobilities, for example, a quartic polynomial with fixed minima
u = \pm 1, such as

f(u) =
1

2
(1 - u2)2,(1.2)

and a constant mobility M(u) \equiv 1.
While a different mobility does not change the energy landscape, it does strongly

affect the kinetics of the process. For constant mobility, the flux depends only on
the gradient of the chemical potential \mu and the diffusive flux j can freely transport
material through the bulk in the direction of decreasing \mu . The kinetics become clearer
when one takes \varepsilon , and thus the interface width, to 0. For the constant mobility Cahn--
Hilliard equation, Pego [63] showed, via matched asymptotics, that the sharp interface
limit is the Mullins--Sekerka problem, which inspired the rigorous proof by Alikakos,
Bates, and Chen [3]. The Mullins--Sekerka problem couples the interface motion to
the bulk diffusion between the domains at the late stages of the coarsening process.

In contrast, nonlinear mobilities that degenerate at or near the minima of the
free energy suppress bulk diffusion, so that transport along the interface, i.e., surface
diffusion, becomes more important. Using asymptotic methods, Cahn and Taylor
[25] demonstrated that for \theta \ll 1 and for a double-obstacle free energy (\theta = 0),
the sharp interface limit for (1.1) is simply the surface diffusion equation, with no
transport across the bulk, at least to leading order. On the other hand, for the
case of a quartic free energy ((1.1a) and (1.2)), the degenerate mobility leads to a
subtle balance between bulk and surface diffusion, so that to leading order, both
enter the sharp interface limit [31, 53]. This has come as a surprise to some in the
community, as by routine application of Pego's asymptotic approach, one can easily
miss the contribution from bulk diffusion and obtain the wrong sharp interface model
[51, 52, 76]. The correct and consistent evaluation of the flux requires the use of
exponential matching [53].

The results in [51, 53, 52] highlight the subtleties arising from degenerate mobili-
ties and the importance of investigating the equations carefully. Besides the derivation
of the sharp interface limit in [53], another aspect became apparent upon solving the
axisymmetric PDE on a circular, two-dimensional domain with initial data u0 strictly
bounded between  - 1 and +1. This represents a situation where the phases have
separated into two domains, a disc centered at the origin with a composition close
to one phase, surrounded by an annular region with a composition near the opposite
phase, and a diffuse interface between them. As a numerical result in [53] reveals,
the solution evolves so that near the interface, | u| develops a maximum that quickly
approaches 1, that is, the value for which the mobility degenerates.

This phenomenon is intimately connected with a property of stationary solu-
tions to Cahn--Hilliard equations with smooth polynomial free energies. These are
well-studied and, in particular, existence and uniqueness of small energy stationary
solutions have been proven in Niethammer [60] using a rigorous matched asymptotics
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TOUCHDOWN SINGULARITIES IN CAHN--HILLIARD EQUATIONS 1145

expansion technique that also captures the qualitative features of the solution. Non-
theless the following property (referred to as the Gibbs-Thompson effect in [31]) has
often been overlooked: In the presence of curved interface layers between phases, the
chemical potential is non-zero in equilibrium, and the ``outer"" solution i.e. the solu-
tion away from interface layers, differs from the minima of the free energy by a small
amount proportional to the curvature. Inside convex domains, the value is in fact out-
side of the interval delineated by the minima of the free energy (i.e. here \pm 1). Since
time dependent solutions of Cahn--Hilliard equations monotonically decrease their en-
ergy, they are expected to converge to stationary solutions; in particular, to the one
investigated by Niethammer [60]. As a result, u must approach \pm 1 somewhere, thus
forcing the degenerate mobility M(u) in (1.1b) to become zero.

This observation raises interesting questions that have important implications for
established practices. To begin with, is u = \pm 1 achieved in finite or infinite time?
What determines this? Since at those points mobilities like (1.1b) degenerate, does it
depend on how degenerate M is? We note that some authors [56, 66, 71, 72, 73, 78]
choose a low-degeneracy mobility with a degree of two, that is, the square of the
form used in (1.1b), but higher degeneracies can also be useful to understand the full
spectrum of the solution's behavior. Next, what happens, for example, in the case
that | u| approaches 1 (and hence M(u) approaches 0) in finite time? Can this lead
to loss of regularity and, thus, to singularity formation? Will the vanishing mobility
freeze the solution there and prevent the set \{ M(u) = 0\} from moving, and how
will that influence the evolution of the diffuse interface and hence the sharp interface
limit? How will that affect long-time pattern formation in numerical simulations?

An early paper by Elliott and Garcke [38], where they proved existence of solutions
for a class of degenerate Cahn--Hilliard models, first raised the question of how the set
\{ M(u) = 0\} evolves. In fact, pinning was observed in numerical solutions of degener-
ate Allen--Cahn/Cahn--Hilliard systems [6], in contrast to the constant mobility case.
Moreover, solutions with a waiting time behavior are also conceivable [61]. Numerical
experiments in [7] demonstrate that the choice of the relative magnitudes of the mesh
and the temporal step size yields at least two solutions with very different behavior.
If the mesh sizes are taken to zero much faster than the step size, the solution the
scheme converges to is pinned at the boundary of the set \{ M(u) = 0\} and hence it
is stationary, while another, moving, solution emerges if the step and mesh sizes are
in a distinguished limit with each other. Such a behavior is important to know and
understand, as selecting and changing step and mesh sizes is standard practice in nu-
merical simulations, and in fact is often done automatically as part of the adaptivity
implemented in ready-to-run simulation packages. These results highlight the role of
nonuniqueness of solutions, which also prompts questions about the implications for
the sharp interface limit, in particular, can different solutions have different sharp
interface limits? As a consequence, it becomes essential to investigate the situation at
points \{ M(u) = 0\} , which are typically points where the solution becomes singular,
in the sense that the regularity is reduced [27], requiring the introduction of weak
solution concepts [38, 11].

These questions overlap with another important class of fourth order PDEs with
degenerate mobility, namely the surface tension driven thin film model. The thin film
equation for surface tension driven flows (and its variants) has a rich history and a
huge literature covering questions (1) on the formation and evolution of sets where
the mobility is zero [27, 28, 14, 11, 15, 12, 74, 75, 77, 39, 65, 64, 59], especially in
the context of the fundamental questions in fluid mechanics about the moving three-
phase contact-line (see, e.g., [43, 5, 50, 45], and see also [13]), and (2) on the impact
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1146 CATALINA PESCE AND ANDREAS MUENCH

of the degree of degeneracy on the solutions [4, 49]. In a situation where sufficient
pressure is applied to the boundary of a thin film, singularities are always forced. In
particular, questions about how the thin film height goes to zero and if the singularity
occurs in finite or infinite time have been discussed in the literature [27, 28, 14]. The
connection between thin films and degenerate Cahn--Hilliard problems offers a lot of
potential, and even though it has been highlighted earlier [48, 61], it has rarely been
directly exploited. Furthermore, in this paper, the asymptotic techniques from the
thin film literature have proven to be fundamental for understanding the behavior of
a degenerate Cahn--Hilliard problem.

We will focus on polynomial double well potentials which have their minima
aligned with the zeros of the degenerate mobilities. The vast majority of numerical
simulations in practical applications use this combination rather than a logarithmic
free energy (1.1b), for example in tumor growth models [29, 62, 54], in diffusive
models of interfaces in fluid flow problems [42, 55, 36], and also for surface diffusion
in materials [56, 66, 71, 72, 73, 78]. It is therefore important to develop a thorough
understanding for models with this combination and their sharp interface limits, on
which, for example in the case of surface diffusion, the physical justification hinges.
Above we have given an overview of the intricacies that arise for these models, and an
example where a lack of clear understanding has led to an erroneous sharp interface
limit. Degenerate mobilities combined with the logarithmic free energy (which is
directly motivated by statistical mechanics) also need to be explored beyond what
is known from classical references, e.g., [22], regarding regions where the mobility
becomes small or zero, but this requires a separate investigation that is part of ongoing
work.

We will also consider the solution on a particular domain, namely on a two-
dimensional axially symmetric domain with a quartic polynomial free energy f and a
mobility M which vanishes at the minima of f , and where the degree of degeneracy
is treated as a parameter n \in \BbbR +. We show that the solution develops points where
| u| \rightarrow 1, which can form in either finite or infinite time, and that for a range of
mobilities, there are attracting solutions that belong to the latter category. These
solutions are analyzed by singular perturbation methods.

Summarizing, we find the following picture for the long-time asymptotic solution
to the specific degenerate Cahn--Hilliard problem we consider here, depending on the
degree of degeneracy n of the mobility. For n > 2, we obtain an infinite-time solution
consisting of three spatial regimes: the annular region where the solution is quasi-
stationary, a touchdown region where the fastest approach to zero in the mobility
occurs, and the central region near the center of the disc. Three subcases (2 < n < 3,
n = 3, 3 < n) occur because the higher order terms in the expansions for the solution
in these subregions change, i.e., the matching to leading order is not affected. For
n \leq 2, the leading order term in these expansions changes, signaling a transition into a
new asymptotic state. Preliminary investigations suggest that a solution with infinite
time touchdown exists for 1/2 < n < 2 and for n = 2, with different scalings than
the one for n > 2. Determining the asymptotic solution for n \leq 2 is part of ongoing
work.

The layout of the paper is as follows. In section 2, we summarize the precise state-
ment of the axially symmetric Cahn--Hilliard equation that we consider. In section 3,
we present the result of numerical solutions for a range of values n for the degree of
degeneracy of M . In particular, we determine the self-similar regions that develop in
the long-time solution for the example of n = 4. In section 4, we systematically derive
an asymptotic approximation for the long-time behavior of this solution for the case
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TOUCHDOWN SINGULARITIES IN CAHN--HILLIARD EQUATIONS 1147

n > 2 using matched asymptotics. In section 5, we discuss our results and point to
possible further questions and avenues of research.

2. Problem statement. We take (1.1a) on the two-dimensional unitary ball for
a radially symmetric smooth function u = u(r, t), which written in polar coordinates
corresponds to

ut =  - 1

r

\partial (rj)

\partial r
, j =  - M(u)

\partial \mu 

\partial r
, \mu =  - \varepsilon 

2

r

\partial 

\partial r

\biggl( 
r
\partial u

\partial r

\biggr) 
+ f \prime (u),(2.1a)

for 0 < r < 1 and t > 0. We also assume that u and its derivatives with respect
to Cartesian coordinates are continuous at the origin, which implies the boundary
conditions

\partial ru = 0, \partial rrru = 0, at r = 0,(2.1b)

and moreover, we assume that we have a neutral surface at r = 1 and no flux, so that

\partial ru = 0, j = 0, at r = 1.(2.1c)

We also need to prescribe an initial condition

u(r, 0) = uinit(r),(2.1d)

which we specify further in the next section. Typically, it will be a scaled tanh-profile
that is strictly bounded between +1 and  - 1. The homogeneous free energy is given
by a double-well potential

f(u) =
1

2
(1 - u2)2,(2.1e)

and the mobility by

M(u) = (1 - u2)n,(2.1f)

where n > 0 is a real parameter. Common values for this parameter are n = 1, 2.
They are used in models for surface diffusion [56, 66, 71, 72, 73, 78], tumor growth
[29, 62, 54], and the motion of interfaces in fluid flow [42, 55, 36]. However, in thin
film flow, conducting a systematic study that allows the degree of degeneracy n to
vary continuously over a large range of (even negative) values has proved to be a
very fruitful approach. In particular, large n often have solutions with the simpler
structure from which it is then easier to expand the study to smaller n by identifying
the values where, for example, an asymptotic regime ceases to be valid [18, 49, 14]. We
therefore adopt this approach here, too, and focus in this paper on n > 2. Moreover,
regularizations of low-degenerate mobilities that increase the mobility to large n are
very useful for selecting nonnegative solutions of (2.1), especially when combined with
a positivity preserving numerical scheme [79].

The mobility in (2.1f) is the form that we shall use most often in this paper,
though we also discuss two variants, in particular where we refer to results in the
literature. One variant, considered, for example, by Elliott and Garcke [38], is to
truncate the mobility, so that

M(u) = (1 - u2)n+,(2.2)
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1148 CATALINA PESCE AND ANDREAS MUENCH

where the subscript + denotes the positive part of the expression (taken before the
expression is raised to the power of n). A second variant, used by Dai and Du
[31, 32, 33], is to take instead the absolute value,

M(u) = | 1 - u2| n.(2.3)

In all cases, the parameter n > 0 determines the degree of degeneracy of the mobility.
These variants differ for values of u with | u| > 1, where (2.1f) becomes undefined for
noninteger n or changes sign for odd n, leading to ill-posedness unless n is even. We
avoid these situations in the current article by focusing on bounded solutions | u| \leq 1.

3. Numerical solution. We begin by inspecting numerical solutions of (2.1) for
three different groups of the mobility: (a) constant mobility, M = 1, corresponding to
(2.1f) with n = 0; (b) degenerate mobility with n = 1; (c) degenerate mobility with
n = 4. The initial data is given by (2.1d), with

uinit(r) =  - 0.95 tanh

\biggl( 
r  - 0.5

\varepsilon 

\biggr) 
.(3.1)

Such tanh-like profiles are a common choice for numerical simulations where phase-
field models are used to track the evolution of a free interface, or to capture the late
stages of a phase separation process; see [72], [71]. Unless otherwise stated, we choose

\varepsilon = 0.1.(3.2)

Notice the initial profile above satisfies the boundary conditions (2.1b), (2.1c) except
for exponentially small terms. Replacing (3.1) in the vicinity of r = 0 and r = 1
by constant values +1 and  - 1, respectively, so that the initial profile satisfies the
boundary conditions, did not change the numerical results in any noticeable way.

The numerical solutions for (2.1) with initial data (3.1) presented here were ob-
tained by a finite difference code using centered differences in space and and implicit
Euler scheme in time. The spatial grid was equidistant, and we used a step doubling
scheme to control the error in time.

Constant mobility. We see in Figure 1, left, that the solution develops a maximum
at a radius \=r(t) near r = 0.15, which quickly crosses u = 1 at t = t\ast = 0.0106, after
which u settles into a stationary solution. To understand better the intuition behind
the long-time solution of the constant mobility case we need to introduce the free
energy associated with this system, which, in polar coordinates, is given by

\scrF [u] =

\int 1

0

\biggl[ 
\varepsilon 2

2
(\partial ru)

2 + f(u)

\biggr] 
rdr.(3.3)

This energy is always nonincreasing along a solution trajectory, i.e., if u(t) is a solution
of (2.1a), (2.1c), then E(t) := \scrF [u(t)] satisfies

dE

dt
=  - 

\int 1

0

M(u) (\partial r\mu )
2
rdr \leq 0.(3.4)

Since E \geq 0, this means that E \rightarrow E\infty as t \rightarrow \infty , and dE/dt \rightarrow 0. (Notice this is
true also for general nonlinear mobilities provided they are nonnegative.) Since M is
constant, \mu converges to a constant, say, \mu c. If the solution converges to a stationary
solution U(r) of (2.1), which is known to be true at least for the case of constant
mobility with logarithmic [2] or quartic polynomial homogeneous free energy [68],
then U(r) must satisfy
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0 0.2
t

0.067

0.068

0.069

E(t)

Fig. 1. Left: Solution u of (2.1) with constant mobility M = 1, at different times t = 0,
t = t\ast = 1.06 \times 10 - 2, t = 1. This is compared with the stationary solution U(r), which satisfies
(3.5) and (3.7). The right inset shows a zoom of the area delineated by a thin solid box, and the
left inset in turn zooms into the area between the horizontal vertical lines in the first inset. A
thin dotted line at u = 1 has been added to both insets for guidance. Right: Top, evolution of
1  - maxr u(r, t), and bottom, of the energy E(t) of the solution. The thin dotted line shows the
energy for the stationary solution of (3.5), (3.7).

 - \varepsilon 
2

r

d

dr

\biggl( 
r
dU

dr

\biggr) 
+ f \prime (U) = \mu c,(3.5a)

U \prime (1) = 0,(3.5b)

U \prime (0) = 0.(3.5c)

The additional degree of freedom \mu c is used to accommodate a mass constraint that the
solution inherits from the initial condition. The system (2.1), (2.1b), (2.1c) conserves
mass, that is, for

m(t) :=

\int 1

0

u(r, t)rdr(3.6)

one easily finds that dm/dt = 0 along a solution u(r, t); therefore, for the stationary
solution, we need to enforce \int 1

0

U(r)rdr = m0,(3.7)

where

m0 =

\int 1

0

uinit(r)rdr.(3.8)

It has been shown in [60] that for any initial mass m0, there exists a unique pair
of solutions to (3.5), in the set of smooth functions with sufficiently small energy
\scrF [U ] = O(\varepsilon ), which are identical up to a reflection u \rightarrow  - u. Hence for initial data
with small enough energy, we expect the solution of the initial boundary value problem
to converge to one of these stationary states, namely the one closer to the initial data.
We can check this by superimposing the solution for (3.5) onto the long-time profile for
the initial boundary value problem. In addition, the stationary solution U(r) exceeds
1 by an O(\varepsilon ) amount. This fact, which is a manifestation of the Gibbs--Thomson
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0 0.5 1
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*
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1
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r
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u(r,0)
u(r,t
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0.999

1
0 1

1e-7

1

1-u(r,t
f
)

Fig. 2. Left: Solution u of (2.1) with degenerate mobility n = 1, for the initial time (t = 0)
and after the touchdown, as illustrated by the zoom in the inset. See (3.7). Right: Solution of (2.1)
with mobility n = 4, for the initial time and for t = tfinal = 1015, when we stopped the simulation
(though it could still have been continued). The maximum of u is very close to the value u = 1 (see
bottom left inset), but, as a semilog plot of 1 - u in the top right inset reveals, has touched there.

effect [31, 53], is often missed, but it is an important feature of the evolution. It
basically precludes the possibility that | u| < 1  - \delta pointwise for some positive \delta . If
that were the case, the small-energy stationary profile to which the solution converges
would be strictly bounded by | u| < 1, contradicting the result in [60]. This is a strong
indication that | u| \rightarrow 1 at some point(s) r\ast and at either a time t\ast < \infty or at the
limit t \rightarrow \infty . We refer to these two cases as finite-time and infinite-time touchdown,
respectively. For constant mobility, the former of the two occurs.

Degenerate mobilities with n = 1. The numerical solution behaves similarly to
the constant mobility case in that maxr u reaches 1 in finite time, at t = t\ast = 3.44
for a grid spacing of \Delta r = 10 - 4; see Figure 2, left, and the inset. However, we
noticed that t\ast increases significantly upon decreasing \Delta r, suggesting the possibility
that this finite-time touchdown is a numerical artifact and that for \Delta r \rightarrow 0, the
value t\ast \rightarrow \infty and hence that the numerical solution converges to an infinite-time
touchdown solution.

Finite-time touchdowns---or in fact crossings---of | u| = 1 have been reported in
the literature. For example, for the fully two-dimensional simulations in [33], where
the authors use an absolute value mobility (2.3), the solution u crosses the bound
| u| = 1 on the convex side of interfaces between different phases and converges to a
quasi-stationary profile with a larger value than the one as predicted by the Gibbs--
Thomson effect. Other analytical results [38] prove existence of solutions u \leq 1,
which allow for touchdowns but not for crossings into | u| > 1. The occurrence of
qualitative different behaviors for one initial value problem is consistent with the
nonuniqueness of solutions that is known to occur for initial value problems of high-
order degenerate parabolic PDEs in the Cahn--Hilliard and thin film context; see, for
example, [32, 30, 49, 10, 34].

Moreover, where the solution achieves a value for which the mobility vanishes, it
typically loses regularity. This can be illustrated by a formal argument made for a
Hele-Shaw model in [27] (see also a rigorous version in [28] and a similar argument for
a more general thin film problem in [14]), applied here to v := 1 - u. Letting n = 1,
at the minimum r = \=r(t) of v at time t, which we denote \=v(t) := v(\=r(t), t), we have
that

1

2

d

dt
ln

\biggl( 
2 - \=v

\=v

\biggr) 
=

1

r
\partial r (r\partial r\mu )

\bigm| \bigm| \bigm| \bigm| 
r=\=r(t)

.(3.9)
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TOUCHDOWN SINGULARITIES IN CAHN--HILLIARD EQUATIONS 1151

When \=v(t) \rightarrow 0, the left-hand side blows up and the second derivative of \mu , and hence
the fourth derivative of v (or u), must do so too. The argument can also be extended
to n > 1 by computing instead d

dt

\bigl( 
\=v1 - n

\bigr) 
. As a consequence, rigorous treatments

of (1.1a), (2.1e), and (2.2) or (2.3) introduce weak formulations and then typically
prove existence of such solutions via regularization of the degeneracy, with different
outcomes depending on the details of the weak formulation and the regularization
method. In [38], for example, the authors prove existence of solutions for n \geq 1
that satisfy | u| \leq 1, using a regularized version of (2.2), while in [32], Dai and Du
introduce a weak solution concept and a regularization of the mobility (2.3) that
allows for solutions where | u| can exceed 1. This is consistent with the solutions they
present in their numerical study [33].

At this stage one may ask if the vanishing of the mobility along the solution can
be avoided, so that, for example, the existence of solutions with | u| \leq 1 by Elliott and
Garcke [38] can be strengthened to show the existence of a solution u for which | u| 
stays strictly below 1 even in the limit as t \rightarrow \infty . However, in the preceding section
on the constant mobility case, we gave an argument that rules out convergence to a
stationary solution with modulus less than 1 - \delta for some \delta > 0, which also carries over
to the degenerate case n > 0. This implies that the solution (provided it converges
to a stationary solution) either achieves maxr | u| = 1 in finite time or converges as
maxr | u| \rightarrow 1 in infinite time.

Degenerate mobilities with n = 4. As before, a maximum forms in the numerical
solution that approaches u = 1 at some point r = \=r(t), but 1 - u remains positive over
many decades of t. In Figure 2, right, u still has not touched u = 1 at t = 1015. This
suggests that the singularity is only approached in infinite time. Moreover, the PDE
remains strictly parabolic and hence we expect it to have a unique classical solution,
that is, the same evolution should emerge for any other convergent numerical scheme.

In the following, we investigate the behavior shown by this third example in
more detail numerically and via asymptotic analysis for the long-time limit t\rightarrow \infty , to
conclude that the numerical solutions of (2.1), (2.1f), (3.1) converge to a leading order
asymptotic approximation that touches down in infinite time (and remains bounded
away from | u| = 1 for any finite value of t).

3.1. Self-similar regions. We consider numerical results for three different val-
ues of n = 3, 4, 5, with the aim of investigating the structure of the solution at large
times. To characterize the evolution as t \rightarrow \infty , we let v = 1  - u and zoom in to the
regions of r \in (0, 1) where | v| is small. We first observe that the region of v closer to
r = 0, which we refer to as the central region, evolves differently from the touchdown
region near r = \=r(t). There, the solution has a pronounced minimum v(\=r(t), t), and
the function decreases more rapidly than for v(0, t). In fact, the log-log plot in Figure
3 suggests that v(0, t) and v(\=r(t), t) display a power law behavior for large t. Fur-
thermore, both regions keep their qualitative shape, prompting us to seek self-similar
solutions with power law scaling factors.

In the central region, we specifically make the ansatz

v(r, t) \sim t\alpha \psi (r)(3.10)

with some \alpha < 0. The independent variable is not scaled as the region it spans extends
from r = 0 to near \=r(t), which is an O(1) interval. The scaling (3.10) can be tested
by plotting v(r, t)/v(0, t) in Figure 4, left, where we observe that all curves collapse
near r = 0. Moreover, the location of the minimum of v, i.e., r = \=r(t), appears to
converge to a limit, which we denote by r\ast for future reference. Here this limit is
approximately r\ast = 0.25.
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1152 CATALINA PESCE AND ANDREAS MUENCH

Fig. 3. Left: The profile v = 1  - u for the solution of (2.1) with mobility n = 4, for different
times. The dotted line represents the 0 value line. Right: Evolution of v(0, t) and v(\=r(t), t) in a
log-log plot.

Fig. 4. Left: Central region rescaled according to r versus v(r, t)/v(0, t) for different times
Right: Rescaled touchdown region, w versus \rho , for the same times as in (a). The definition of w
and \rho are given in the main text.

In the touchdown region, we introduce a scaling for both variables, so that

v(r, t) \sim t\beta \varphi (\eta ), \eta :=
r  - r\ast 
t\gamma 

,(3.11)

for some \beta , \gamma < 0. We test the self-similar scaling by scaling

w :=
v(r, t)

min
r\in [0,1]

v(t)

so that the minimum value of the new function is now 1 for all t. If \=r(t) is, as before,
the point where this minimum is located, and if r = \=r(t) + \Delta r(t), with \Delta r(t) > 0, is
the point where w(r, t) = 3, then we define the rescaled independent variable as

\rho =
(r  - \=r(t))

\Delta r(t)
.

Plotting w versus \rho , we clearly see in Figure 4, right, that around \rho = 0, the curves
collapse nicely over at least three orders of magnitude t = 1010, . . . , 1015.

Similarity exponent for the central region. Next, we determine the approximate
numerical values for \alpha , \beta , and \gamma from the numerical data in the central and touchdown
regions. We first look at log-log plots for v(0, t) for three different values of n. The
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TOUCHDOWN SINGULARITIES IN CAHN--HILLIARD EQUATIONS 1153

Fig. 5. Linear fitting of log(v(0, t)) versus log(t) for \varepsilon = 0.1. Left: n = 3; middle: n = 4; right:
n = 5.

Fig. 6. Numerical approximation \sigma for the power law exponent versus s up to the final time
tfinal = 1015 where we ended the simulation, and \varepsilon = 0.1. Left: for n = 3; middle: n = 4; right:
n = 5. Definitions of \sigma and s are given in the main text; see (3.12).

result is shown in Figure 5 for n = 3, 4, 5. We see that for long times log v(0, t) is
linear in log t, though it appears that two different slopes emerge at different times.
To analyze this further, in Figure 6 we also plot

\sigma (s) :=
d log v(0, t)

ds
, s := log t,(3.12)

which gives the effective exponent of a power-law behavior (for a pure power law, \sigma (s)
would be constant and exactly equal to the exponent). It is clear in Figure 6 that \sigma 
takes a dip, with the minimum at  - 1/3,  - 1/4,  - 1/5 for n = 3, 4, and 5, respectively,
suggesting that for general n, \sigma =  - 1/n at its minimum value. However, this is a
transient in the sense that after the minimum, \sigma increases again and then tends to
 - 1/4,  - 1/6,  - 1/8 for the three values of n. This indicates that for very long times,
in general, we have

\alpha =  - 1

2(n - 1)
.(3.13)

Similarity exponents for the touchdown region. In the touchdown region, the log-
log plot for v(\=r(t), t) in Figure 7 reveals that, for long times, the evolution of this value
indeed approaches a power-law behavior. As in the central region, approximations for
the similarity exponent \beta can be extracted from

\sigma \ast (s) :=
d log v(\=r(t), t)

ds
.

Note that even though the touchdown region should be centered at r\ast = limt\rightarrow \infty \=r(t),
because we do not know its value a priori, we must use instead \=r(t). The result is
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1154 CATALINA PESCE AND ANDREAS MUENCH

Fig. 7. Linear fitting for log(v(\=r(t), t)) versus log(t) for \varepsilon = 0.1. Left: n = 3; middle: n = 4;
right: n = 5.

Fig. 8. Numerical approximation \sigma \ast for the power law exponent up to the final time tfinal =
1015 where we stopped the simulation, and \varepsilon = 0.1, for (left) n = 3, (middle) n = 4, and (right)
n = 5. Definitions of \sigma \ast and s are in the main text.

shown in Figure 8, where \sigma \ast approaches  - 1/2,  - 1/3, and  - 1/4 for the three values
n = 3, 4, 5, respectively. This is consistent with

\beta =  - 1

n - 1
.(3.14)

On the other hand, we obtained that \partial rrv(\=r(t), t) tends to a constant as t\rightarrow \infty . Since
\partial rrv(\=r(t), t) \propto t\beta  - 2\gamma , this means \beta = 2\gamma , and thus

\gamma =  - 1

2(n - 1)
.(3.15)

Varying \varepsilon . We conclude our numerical exploration by studying the effect of vary-
ing \varepsilon for fixed n = 4. Results are shown in Figure 9 for \sigma (s) and \sigma \ast (s) for a range
of \varepsilon \leq 1. All curves show the two self-similar scalings that we already reported on
earlier. In the left figure, \sigma approaches a minimum  - 1/n first and eventually the
value for \alpha in (3.13). The time it takes to move from the minimum close to the final
asymptotic value increases as \varepsilon decreases. A similar observation is made in the right
figure for \sigma \ast and its approach to \beta as in (3.14), except that here, the minimum itself
shifts as \varepsilon is decreased.

4. Long-time asymptotic analysis for \bfitn > 2. In this section we carry out
a long-time asymptotic analysis of the solution to (2.1), via singular perturbation
theory. For the purpose of carrying out the long-time expansion, it is helpful to
separate magnitude from variable by introducing the scaling

t = \tau /\delta .(4.1)

We then seek expansions in terms of 0 < \delta \ll 1 as the small parameter, with fixed \tau .
We note that while \varepsilon is also small, we treat it as a fixed parameter.
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TOUCHDOWN SINGULARITIES IN CAHN--HILLIARD EQUATIONS 1155

Fig. 9. Impact of \varepsilon on the evolution into the final self-similar behavior in the central and
touchdown regions. In both cases, n = 4. Left: results for \sigma the central region; right: results for \sigma \ast 
in the touchdown region.

We first formulate the leading order problem in each of the three regions---central,
touchdown, and annular---and solve and match them. Then we construct the com-
posite solution and compare it with the numerical results.

For the central and touchdown regions, it is convenient to formulate the problem
in terms of the function v = 1  - u. Since we are interested in solutions that are
bounded | u(r, t)| \leq 1 for all r \in ( - 0, 1), t \in (0,\infty ), we look for nonnegative v.
Substituting v into (2.1a), (2.1b), (2.1c), (2.1e), (2.1f) and rescaling time according
to (4.1) we obtain

\delta \partial \tau v =  - 1

r
\partial r (rM(v)\partial r\mu ) ,(4.2a)

\mu = \varepsilon 2
\biggl( 
\partial rrv +

1

r
\partial rv

\biggr) 
+ 2( - v3 + 3v2  - 2v)(4.2b)

with boundary conditions

\partial rv(1, t) = 0,(4.2c)

M(v(1, t))\partial r\mu (1, t) = 0,(4.2d)

\partial rv(0, t) = 0,(4.2e)

\partial r\mu (0, t) = 0,(4.2f)

where M(v) = vn(2 - v)n+, for n > 2. For later uses, we record that the radial flux is
given by

j =  - M(v)\partial r\mu .(4.2g)

4.1. Central region. We start from (4.2) and assume, using the insight gained
from the numerical results, that v can be expanded as

vcentral(r, \tau ) = \delta  - \alpha \tau \alpha \psi 0(r) + o(\delta  - \alpha ),(4.3)

where \alpha \in \BbbR and \psi 0 is a nonnegative function. Since the solution must be bounded
as \delta \rightarrow 0, we restrict our attention to \alpha < 0.

We substitute (4.3) into (4.2a), (4.2b), combine the equations into a single one
by eliminating \mu , and drop all terms that we already know are of lower order to get

\alpha \delta  - \alpha +1\tau \alpha  - 1\psi 0 =  - \delta  - (n+1)\alpha \tau (n+1)\alpha 2
n

r
\partial r

\biggl[ 
r\psi n

0 \partial r

\biggl( 
\varepsilon 2

1

r
\partial r (r\partial r\psi 0) - 4\psi 0

\biggr) \biggr] 
.(4.4)
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1156 CATALINA PESCE AND ANDREAS MUENCH

Balancing both sides would require \alpha =  - 1/n, but this is not consistent with the
numerical results, for which \alpha is clearly larger. In that case, the right-hand side of
the equation dominates the left-hand side, so that we obtain, after integrating twice
with respect to r and using the Neumann boundary condition at the origin (4.2f), the
leading order problem

\varepsilon 2
\biggl( 
\partial rr\psi 0(r) +

1

r
\partial r\psi 0(r)

\biggr) 
 - 4\psi 0(r) = c1,(4.5a)

\partial r\psi 0(0) = 0,(4.5b)

where c1 is an unknown constant that comes from the second integration. The general
solution of (4.5a)--(4.5b) can be directly computed as

\psi 0(r) =  - c1
4

+ c2I0

\biggl( 
2

\varepsilon 
r

\biggr) 
,

where I0 is the modified Bessel function of the first kind and c2 is another unknown
constant of integration.

This solution will be matched to the one in the touchdown region, which plays the
role of an inner expansion where the dependent variable is small (in terms of \delta \ll 1)
compared to the expansion in the central region. Thus, \psi 0 must vanish at r = r\ast ,
that is,

\psi 0(r\ast ) = 0,

which we use to eliminate c1, giving

\psi 0(r) = c2

\biggl( 
I0

\biggl( 
2

\varepsilon 
r

\biggr) 
 - I0

\biggl( 
2

\varepsilon 
r\ast 

\biggr) \biggr) 
.(4.6)

This expression is, of course, only valid for 0 \leq r \leq r\ast ; we extend it by \psi 0 = 0 for
r\ast < r \leq 1 where this is needed (for example, in the evaluation of the composite
expansion). The remaining constant, c2, represents a normalization of v that we
keep as a parameter and that we fix when we numerically solve the problem in the
touchdown region. For later, we record that the Taylor expansion of \psi 0 near r\ast is

\psi 0(r) = a1(r  - r\ast ) +O((r  - r\ast )
2), a1 =

2c2
\varepsilon 
I \prime 0

\biggl( 
2

\varepsilon 
r\ast 

\biggr) 
.(4.7)

4.2. Touchdown region. In this region, we introduce the independent variable

\eta =
r  - r\ast 
\delta  - \gamma \tau \gamma 

,(4.8)

with \gamma < 0, and expand

vtouchdown = \delta  - \beta \tau \beta \varphi 0(\eta ) + o(\delta  - \beta ),(4.9)

where \beta < 0, as suggested by our previous numerical results, and \varphi 0 is a nonnegative
function. Dropping higher order terms and eliminating \mu gives

\delta 1 - \beta ( - \gamma \eta \tau  - 1\partial \eta \varphi 0) = - \varepsilon 2
\delta 4\gamma  - (n+1)\beta \tau  - 4\gamma 2n

\eta 
\bigl( 
\tau 
\delta 

\bigr) \gamma 
+ r\ast 

\partial \eta 

\Bigl( \Bigl( 
\eta 
\Bigl( \tau 
\delta 

\Bigr) \gamma 

+ r\ast 

\Bigr) 
\varphi n
0\partial \eta \eta \eta \varphi 0

\Bigr) 
.
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TOUCHDOWN SINGULARITIES IN CAHN--HILLIARD EQUATIONS 1157

There are three possibilities here: either the left-hand side goes to zero faster than
the right-hand side, and hence \beta > 4\gamma  - 1

n , the other way around, thus \beta < 4\gamma  - 1
n , or

they balance each other with \beta = 4\gamma  - 1
n . From our previous numerical results, we can

infer that the first case is the relevant one. Integrating the resulting leading order
long-time equation once, we arrive at the ODE

\varphi n
0 (\eta )\partial \eta \eta \eta \varphi 0(\eta ) = J,(4.10)

where the unknown flux J appears as an integration constant. This third order
problem has to be matched to the central (as \eta \rightarrow  - \infty ) and annular (as \eta \rightarrow \infty )
regions, which both act as larger, i.e., outer, layers. To match to a leading order O(1)
contribution in the annular region, the leading order term of \varphi 0(\eta ) must be \sim \eta \beta /\gamma 

for \eta \rightarrow \infty , so that upon scaling back into annular variables, the \delta -factors cancel.
From the numerical results, we have already observed that \beta /\gamma is closer to 2 than
to 1, hence \varphi 0 grows faster than linear, and this selects the behavior of the annular
solution to be quadratic near r\ast .

4.3. Annular region. In the numerical simulations we saw that the solution
evolves much slower to the right of r(t), at least compared with the central and
touchdown regions. This leads us to believe that a good first approximation in the
interval (r\ast , 1) is given by the stationary problem. For the annular region, we expect
a stationary solution to leading order, as the only time dependence comes from the
slow drainage of material from the central region. This is supported by the numerical
evidence, and therefore we let for the leading order annular solution

vannular(r, \tau ) = 1 - U\ast (r).(4.11)

Substituting into (4.2a)--(4.2f) and integrating twice, we obtain

 - \varepsilon 
2

r

d

dr

\biggl( 
r
dU\ast 

dr

\biggr) 
 - 2U\ast (1 - U2

\ast ) =\mu 0,(4.12a)

dU\ast 

dr
(1) =0,(4.12b)

for r \in (r\ast , 1), where \mu 0 is an unknown integration constant. The solutions can
be locally expanded in a Taylor series, which does not have a constant or linear
contribution to be matchable to the touchdown region, which grows superlinearly as
observed in the previous section. Thus

U\ast (r\ast ) = 1,
dU\ast 

dr
(r\ast ) = 0.(4.12c)

For r \in [0, r\ast ] we set the solution to U\ast \equiv 1. Note that this is exactly the problem
treated by Lee, M\"unch, and S\"uli [53]. From (4.12a) and (4.12c), we obtain the leading
term in the Taylor series expansion for vannular,

vannular = b2(r  - r\ast )
2 +O((r  - r\ast )

3), b2 =
\mu 0

2\varepsilon 2
.(4.13)

4.4. Matching.
Central and touchdown region. We first match the central and touchdown solu-

tions. First, we expand the inner expansion of vcentral as r \rightarrow r\ast and rewrite the result
in terms of \eta , giving
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1158 CATALINA PESCE AND ANDREAS MUENCH

vcentral = \delta  - \alpha \tau \alpha a1(r  - r\ast ) + h.o.t. = \delta  - \gamma  - \alpha \tau \alpha +\gamma a1\eta + h.o.t.,(4.14)

where we recall that a1 is given in terms of r\ast via the modified Bessel function;
see (4.7). This has to be matched with

vtouchdown = \delta  - \beta \tau \beta A - \eta + h.o.t.,(4.15)

and therefore

\beta = \alpha + \gamma , A - = a1.(4.16)

Annular and touchdown region. On the other side of r\ast , we know that vannular
has a Taylor expansion as r \rightarrow r\ast that starts quadratically, hence

vannular = b2\delta 
 - 2\gamma \tau 2\gamma \eta 2 + h.o.t.,(4.17)

where again b2 is known from (4.12) in terms of r\ast . Thus, the expansion of the solution
in the touchdown region at \eta \rightarrow \infty must also be quadratic,

vtouchdown = \delta  - \beta \tau \beta A+\eta 
2 + h.o.t.,(4.18)

and completing the matching requires

\beta = 2\gamma , A+ = b2.(4.19)

Matching of the flux between central and touchdown region. So far, we have only
got two relations for \alpha , \beta , and \gamma ; we need one more to completely fix the similarity
exponents. One can obtain a partial mass conservation condition in the interval (0, r\ast )
by multiplying (4.2a) by r, then integrating in r \in (0, r\ast ) and using the boundary
condition at r = 0 (4.2f). This gives\int r\ast 

0

\partial tv(r, t)rdr =  - r\ast M(v(r\ast , t))\partial r\mu (r\ast , t).

This means that the rate of change in mass in the interval (0, r\ast ) is equivalent to
the flux at r\ast . We rescale the right-hand side into touchdown variables and use the
leading order asymptotic solutions (4.3) and (4.9) to obtain

 - \alpha \delta  - \alpha +1\tau \alpha  - 1 c2r
\ast 2

2
I2

\biggl( 
2r\ast 
\varepsilon 

\biggr) 
=  - r\ast \delta  - \beta (n+1)+3\gamma \tau \beta (n+1) - 3\gamma 2n\varepsilon 2J,

and, therefore, matching requires

\alpha  - 1 = \beta (n+ 1) - 3\gamma ,(4.20)

J = \alpha 
c2r\ast 

2n+1\varepsilon 2
I2

\biggl( 
2r\ast 
\varepsilon 

\biggr) 
.(4.21)

We note that this could also be obtained from matching at higher order in the expan-
sions instead of using the mass conservation derived from the equation. The solution
to (4.16), (4.19), (4.20) is

\alpha = \gamma =  - 1

2(n - 1)
, \beta =  - 1

n - 1
.(4.22)

These are exactly the values that we observed in the numerical results in section.
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4.5. Solution in the touchdown region. We analyze the touchdown region
in more detail to ensure that a solution can be obtained, at least numerically, that
satisfies all the matching conditions. In particular, we carry out an overall degree of
freedom count and briefly explain how we solve for \phi 0.

The expansions of solutions \phi 0 of (4.10) for large negative and positive arguments
can be obtained from the literature (see, e.g., the systematic study of such expansions
for thin film type equations in [18]), but to be self-contained, we give a derivation in
the appendix for the case of linear leading order as \eta \rightarrow  - \infty and quadratic leading
order for \eta \rightarrow \infty . In summary, within the n > 2 case we have the following subcases:

\varphi 0(\eta ) =

\left\{       
A - \eta +

JA - n
 - ( - \eta )3 - n

(n - 1)(n - 2)(n - 3) +B - +O(1) if 2 < n < 3,

A - \eta +
J

2A3
 - 
ln( - \eta ) +B - +O(1) if n = 3,

A - \eta +B - +O(1) if n > 3,

(4.23a)

as \eta \rightarrow  - \infty , and

\varphi 0(\eta ) = A+\eta 
2 +B+\eta + C+ +O(1) for n > 3/2 as \eta \rightarrow \infty ,(4.23b)

where A\pm , B\pm , C+, J are unknown constants. The limitations on n arise from the
requirement that the correction terms must be asymptotically small compared to the
leading order term. In particular, the leading order linear expansion for large negative
arguments is only valid for n > 2 and sets the lower bound for n that we consider in
this study.

The degree of freedom count is as follows: We have six unknown constants, A\pm ,
B\pm , C+, and J . Two of them (A+ and A - ) have been fixed by matching to the
appropriate outer problems, though this introduces additional unknowns, which we
will return to later. The third order differential equation takes care of another three
degrees of freedom, so that only one is left. This degree of freedom is the result of
the ODE (4.10) being autonomous and represents an arbitrary shift of the solution.
This shift is fixed by the requirement that \eta is defined in (3.1) through the position
r\ast where v touches down (for t\rightarrow \infty ). Hence \varphi 0 must have its minimum at \eta = 0.

Returning first to A - , we see that matching specifies this constant in terms of c2
and r\ast (see (4.7) and (4.16)), but we can use (4.21) to eliminate c2. For A+, (4.19)
and (4.13) introduce a dependence on \mu 0. However, both r\ast and \mu 0 are completely
determined by solving the leading order problem in the annular region (4.13), (4.12)
if this is supplemented by an overall mass constraint. Hence after matching all layers,
the solutions in all regions are completely determined.

The solution strategy for the touchdown region is as follows. We consider (4.10)
first with the condition (4.13). Since B - represents a translation in \eta we do not need
to enforce its value and only impose the leading order behavior A - \eta . By rescaling

\varphi 0(\eta ) = c\phi 0(y), \eta = dy,

with

c :=

\biggl( 
J

( - A - )3

\biggr) 1
n - 2

> 0, d :=

\biggl( 
J

( - A - )n+1

\biggr) 1
n - 2

> 0,

we see that \phi 0 satisfies the parameter-free problem

\phi n0 (y)\partial yyy\phi 0(y) = 1, y \in ( - \infty ,\infty ),(4.24a)
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\phi 0(y) =  - y as y \rightarrow  - \infty ,(4.24b)

and read off \kappa = \partial yy\phi 0(y0) from the numerical solution. Scaling back and using
(4.19), (4.13) gives

\mu 0

\varepsilon 2
= 2A+ = \kappa 

c

d2
.

This is essentially an equation between J , A - , and \mu 0, the latter being fixed by the
annular region. Replacing A - = a1 by the second equation in (4.7) and using (4.21),
we obtain the expression for c2

c2 =  - 

\bigm| \bigm| \bigm| \bigm| \bigm| \mu n - 2
0 \varepsilon I2

\bigl( 
2r\ast 
\varepsilon 

\bigr) 
23n+1(n - 1)\kappa n - 2I1

\bigl( 
2r\ast 
\varepsilon 

\bigr) 2n - 1

\bigm| \bigm| \bigm| \bigm| \bigm| 
1

2(n - 1)

,

which now fixes c2 once \mu 0 and r\ast have been obtained by solving the annular problem.
Numerically, (4.24) is solved on a large truncated domain and then extended, where
necessary, to an infinite domain by using the expansions (4.23a), (4.23b).

4.6. Solution in the annular region. The solution in the annular region also
needs to be obtained numerically. As noted in [53] we need an extra condition to
solve for the unknown \mu 0, which may be obtained by either fixing the position of the
interface or adding a mass constraint. We choose the latter and impose\int 1

r\ast 

U\ast (s)s ds = m0  - 
r2\ast 
2
,(4.25)

with m0 is the initial mass, as defined in (3.8). The problem (4.12), (4.25) is then
solved by picking r\ast , solving all conditions except for (4.25) using the MATLAB solver
bvp4c, and then iterating over r\ast until the mass constraint is satisfied, too. Practical
details, such as the conversion into a boundary value problem for a system of first
order ODEs, are discussed in an appendix. For the problem here, we obtain a solution
with the required mass for r\ast = 0.2516.

4.7. Composite approximation. We now construct the composite approxi-
mation from the asymptotic solutions found in the previous sections. We add each
of the approximations---central, touchdown, and annular---in the same variables and
subtract common terms; in other words,

vcomp(r, t) =vcentral(r, t) + vtouchdown(r, t) + vannular(r, t)

 - A - t
\alpha (r  - r\ast ) -  - A+(r  - r\ast )

2
+.(4.26)

The subscript `` - "" (``+"") means that we take the value of the brackets where it is
negative (positive) and zero elsewhere.

In Figure 10 we present the leading order of the composite expansion at two
times, t1 = 1013 and t2 = 1015, and compare them with the numerical PDE solution
for r \in [0, 1] at both times. We use a semilog plot on the right so that all relevant
parts of the solution, which differ by several orders of magnitude, can be shown in
a single plot. Note that we only use the PDE solution for comparison and the only
external data that is fed into the computation of composite expansion is the mass of
the initial conditionm0. The composite solution closely follows the numerical solution
of the full problem for v in the whole interval [0, 1]. The agreement is excellent, as
shown in Figure 10, at times t = t1 and t2. In fact, the overall agreement becomes
better at the later time, t = t2, as the absolute error
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Fig. 10. Left: Plot of vcomp v/s r compared to numerical PDE solution v, for t1 = 1013,
t2 = 1015, \Delta r = 10 - 6, n = 4, \varepsilon = 0.1, and r\ast = 0.2516. Right: Comparison of vcomp with the PDE
solution, on a scale that shows the complete solution. Parameter values and times carry over from
the left.

error(t) = max
r\in [0,1]

| v(r, t) - vcomp(r, t)| (4.27)

decreases between t1 and t2.

5. Discussion and outlook. While the spontaneous appearance of touchdowns,
that is, the emergence of points \{ M(u) = 0\} for the degenerate Cahn--Hilliard equa-
tion, is a well-known phenomenon in the development of numerical algorithms for
these types of PDEs, so far, they have been addressed by ad hoc measures such as
adding a small positive constant to the mobility; see, for example, [72]. In this study,
we systematically investigate how such points of vanishing mobility arise. Important
results of this work are that small energy solutions to the degenerate Cahn--Hilliard
problem (2.1) touch down, in either finite or infinite time, and that for n > 2 and
practically relevant tanh-like initial data, the solution converges to a long-time profile
that touches down in infinite time, suggesting this is the generic behavior for large
enough values of n. Our asymptotic analysis also revealed that for n \leq 2, the as-
ymptotic structure of the solution changes so that these values of n \leq 2 require a
separate investigation, which will appear in an upcoming paper. There it is shown
that asymptotic approximations for infinite-time touchdown solutions can be found
also for 1/2 < n \leq 2. Based on the experience with thin film problems with pressure
boundary conditions [14], however, these solutions could become increasingly fragile
closer to n = 1/2, and finite time solutions are more likely to emerge.

Future work could investigate fully two-dimensional situations and nonconvex
interfaces between the phases, and the impact of touchdown regions on the sharp
interface evolution. For finite-time touchdown, once the solution has reached | u| = 1,
further questions arise about how to continue the solution, noting that already more
than one weak solution concept has been considered in the literature [38, 32]. Also,
thin film theory could provide insight into how to construct numerical schemes that
maintain | u| < 1, e.g., [79, 44]. Another avenue of research could be to introduce
a further parameter by taking f(u) = (1  - u2)m with m \geq 2 and exploring the
singularity formation depending on the degree of degeneracy of both n and m. This
could lead to a parameter plane for (m,n) with an additional interesting structure.
Similar studies have been done for solutions of thin film equations [16, 40, 47].

More generally, our study underscores the close connection of degenerate Cahn--
Hilliard equations with thin film models, and the still untapped potential for using
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1162 CATALINA PESCE AND ANDREAS MUENCH

not only the rigorous proofs but also the asymptotic results from thin film theory
to understand singularity formation in degenerate Cahn--Hilliard models. Inside a
spherically symmetric phase domain (more generally, convex domain) in the late stages
of phase separation, the degenerate Cahn--Hilliard model is closely related to the
thin film equation with pressure boundary conditions [14] and hence the points with
vanishing mobility can be analyzed in a similar way. This opens up a rich source
of analytical tools, both asymptotic and rigorous, that we can apply to degenerate
Cahn--Hilliard problems [27, 28, 10, 12].

Appendix A. Expansion of \bfitphi \bfzero for large arguments.
Expansion at \eta \rightarrow  - \infty . We let x =  - \eta and look for an expansion of \phi (x) := \varphi 0(\eta )

such that

\phi n\phi \prime \prime \prime =  - J,(A.1)

as x\rightarrow \infty , where \prime denotes derivatives with respect to x.
Starting with the expansion \phi (x) = Ax+ \xi (x) with \xi \ll x as x\rightarrow \infty gives, upon

substituting this ansatz into (A.1) and balancing, the following corrections:

\xi (x) =
 - J

An(n - 1)(n - 2)(n - 3)
x3 - n +B,(A.2)

where B is a constant, provided n \not = 3. We note that the first term dominates the
second if n < 3, and vice versa if n > 3. Consistency between the leading order and
correction requires that 3 - n < 1, i.e., n > 2, because only then we have that \xi \ll x.
Moreover, if n = 3, the confluence of x3 - n and the contribution from xp with p = 0
produces a logarithmic term, that is,

\xi (x) =
 - J
2A3

ln(x) +B.(A.3)

Returning to the original variables then gives (4.23a).
Expansion at \eta \rightarrow \infty . For \eta \rightarrow \infty we are looking for an expansion of solutions of

(4.10) starting with a quadratic term, where \prime denotes derivatives with respect to \eta .
We make the ansatz

\varphi 0(\eta ) = A\eta 2 + \xi (\eta )

with \xi \ll \eta 2 and A a constant. Introducing this into the differential equation, we
obtain

\xi (\eta ) = D\eta +
 - J

An(2n - 1)(2n - 2)(2n - 3)
\eta 3 - 2n + E,(A.4)

where D and E are unknown constants. For n \leq 1/2, the second term grows faster
than quadratic and therefore the expansion of \phi 0 is not consistent. Hence we require
n > 1/2. Note that the order of the terms in (A.4) changes as the values n = 3/2 and
n = 1. If n > 3/2, the term proportional to J decays for large \eta and therefore in this
case the first three terms in the \eta \rightarrow \infty expansion of \phi 0 are as claimed in (4.23b).

Appendix B. Details of the numerical approach in the annular region.
We define

S(r) :=

\int r

r\ast 

U\ast (s)s ds.
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Then the system (4.12) with (4.25) can be written as

S\prime = U\ast r,(B.1a)

U \prime 
\ast =W,(B.1b)

W \prime =
2

\varepsilon 2
U\ast (U

2
\ast  - 1) - \mu 0

\varepsilon 2
 - 1

r
W,(B.1c)

\mu \prime 
0 = 0,(B.1d)

U\ast (r\ast ) = 1, W (r\ast ) = 0, S(r\ast ) = 0(B.1e)

W (1) = 0, S(1) = m0  - 
r2\ast 
2
.(B.1f)

For an initial choice of r\ast \in (0, 1) we solve (B.1) except for the condition on S(1)
using bvp4c from MATLAB, and then iterate over r\ast until the condition on S(1) is
satisfied, too. As an initial guess for bvp4c we use

S(r) =  - 
\int 1

0

tanh

\biggl( 
r  - 0.5

\varepsilon 

\biggr) 
rdr, U\ast (r) =  - tanh

\biggl( 
r  - 0.5

\varepsilon 

\biggr) 
,

W (r) =  - 1

\varepsilon 
sech

\biggl( 
r  - 0.5

\varepsilon 

\biggr) 2

, \mu 0(r) = 1,

which proved to be sufficient so that the algorithm converges.
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