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MODELING MICROSILICA PARTICLE FORMATION AND
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AND ROBERT A. VAN GORDER‡

Abstract. Microsilica particles arise as a byproduct of silicon furnace operation, created inside
high temperature flames due to the combustion reaction of silicon monoxide with oxygen. These
nanoparticles, which grow as silicon dioxide vapor condenses on the surface of existing particles, are
used in a variety of composite materials. The size and quality of the particles affect the performance
of the material used for such applications, and hence control of these quantities is of importance to
manufacturers. Motivated by this, we derive a mathematical model that connects local thermal and
chemical concentrations conditions to the formation and growth of microsilica particles. We consider
two distinct reductions of our general model: the case of initially well-mixed or spatially homogeneous
chemical species (modeling the region within the flame or reaction zone), and the case of initially
spatially separated chemical species, in which diffusion will play a dominant role in providing material
to a combustion front (modeling a larger cross section, which contains a reaction zone with limiting
quantities of fuel which must diffuse into the reaction zone). In both cases, we provide asymptotic
solutions for the temperature, chemical concentrations, and number density function of microsilica
particles in the oxygen rich limit, and compare them to numerical simulations. Motivated by realistic
furnace control mechanisms, we treat the relative quantity of oxygen to other fuel components and
the saturation concentration of silicon dioxide as control parameters, discussing how each may be
used to modify the properties (such as size and abundance) of microsilica particles formed. One
physically interesting finding is the theoretical description of a bimodal distribution for microsilica
particle size which was previously observed in experiments.

Key words. particle growth, reaction-diffusion systems, asymptotic analysis, moment equa-
tions, microsilica, silica fume
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1. Introduction. Microsilica or silica fume is a byproduct of the silicon and
ferrosilicon industry. It consists mainly of spherical particles of amorphous SiO2 with
more than 95% of them being finer than 1µm [31] (see Figure 1). These particles
mainly grow by condensation but can also form aggregates and agglomerates as dis-
cussed below. The primary industrial use of microsilica is as an additive in high
performance concrete, but it is also utilized for refractories and polymers. Modifica-
tions in the silicon production process affect not only the microsilica yield but also the
quality and properties of the particle. Depending on the application, certain particle
sizes or surface areas are preferred [10], and as such, there is a need to study which
conditions are favorable for microsilica formation and growth.

∗Received by the editors September 13, 2019; accepted for publication (in revised form) February
27, 2020; published electronically April 27, 2020.

https://doi.org/10.1137/19M1287080
Funding: This work was supported by the EPSRC Center for Doctoral Training in Industrially

Focused Mathematical Modelling through grant EP/L015803/1 in collaboration with Elkem.
†Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory

Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom (gonzalezfari@maths.ox.ac.uk,
muench@maths.ox.ac.uk, oliver@maths.ox.ac.uk).
‡Department of Mathematics and Statistics, University of Otago, P.O. Box 56, Dunedin 9054,

New Zealand (rvangorder@maths.otago.ac.nz).

1003

D
ow

nl
oa

de
d 

11
/0

6/
21

 to
 1

29
.6

7.
11

7.
91

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/19M1287080
mailto:gonzalezfari@maths.ox.ac.uk
mailto:muench@maths.ox.ac.uk
mailto:oliver@maths.ox.ac.uk
mailto:rvangorder@maths.otago.ac.nz


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1004 GONZÁLEZ-FARIÑA, MÜNCH, OLIVER, AND VAN GORDER

Fig. 1. SEM image of microsilica particles (provided by Elkem). The majority of the particles
are perfectly spherical and form agglomerates (weak bonds), while a small percentage form aggregates
(some with irregular shape as in the top right corner).

Fig. 2. Sketch of a silicon furnace indicating the location of the furnace hood (green dashed
square), that is, where the combustion reactions (1) happen. Reproduced from The Si Process Draw-
ings, by Thorsteinn Hannesson.

Microsilica particles are formed inside high temperature flames due to the com-
bustion of SiO gas with oxygen, which is a byproduct of the quartz reduction process
to obtain silicon. Another byproduct of the process is CO gas which also combusts,
producing less bright and thus less hot flames. Therefore, both chemicals, SiO and
CO, compete for oxygen. In Figure 2, we provide a sketch of an industrial silicon
furnace where both silicon and microsilica are produced (refer to [31, 35] for more
details on the silicon manufacturing process). In some configurations, the oxygen is
provided via air which enters the furnace hood through side doors, and hence the
quantity of oxygen can be controlled. We focus our attention on the two exothermic
combustion reactions happening in the furnace hood, namely

2SiO(g) + O2(g)
R1−→ 2SiO2(g) and 2CO(g) + O2(g)

R2−→ 2CO2(g).(1)

Before the particles form, SiO2 is in a vapor phase, which can be treated as an ideal
gas. When this vapor reaches saturation, it undergoes a change of state from gas into
solid that also releases energy and under which the particles form. After nucleation,
the growth of the primary particles is purely by condensation, that is, by molecular
addition of mass to the surface of existing particles, which is the main focus of this
paper. Additionally, some small percentage of the primary particles created show
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MODELING MICROSILICA PARTICLE FORMATION 1005

aggregation, like the one attached to the top of the largest particle in Figure 1 with
an irregular shape. In later stages of the process, when microsilica is collected, a high
percentage of particles agglomerate via weak interparticle forces, as can be seen from
Figure 1, where most particles are attached to each other. Since aggregation does not
occur frequently, and agglomeration at late stages is not very relevant to industrial
scale production (since the weak bonds can be broken easily with a dispersing machine
[10]), we will not study these mechanisms in this work and will only focus on the
formation and growth of the primary particles through condensation.

Several mathematical models [14, 22, 34, 35] have been developed for the heat
and mass balances, chemical reactions, and thermodynamics within silicon furnaces.
These models may be used to predict the behavior of the furnace below the charge
surface where the reduction of quartz occurs, resulting in molten silicon which then
exits the furnace, is collected, and solidifies into usable product [6]. Far less attention
has been focused on modeling processes inside the combustion chamber which lead
to the creation of microsilica, yet this too is of industrial use. In [17], NO formation
is considered at different parts of the silicon process (in the absence of chemical
reactions), which is strongly correlated to the formation of silica fume. A similar
model is introduced in [16] which is also coupled to chemical reactions due to the
combustion of the off-gases; however, this model captures the dynamics of taphole
gases during the tapping of the silicon, which is slightly different from the physics and
chemistry involved in a furnace hood.

Although the application is different, literature on the formation and growth of
aerosol particles will be useful in motivating aspects of our model. When studying
aerosols, a common approach is to use population balance equations to model phys-
ical mechanisms including nucleation, continuous growth, coagulation, and breakage
within a population of particles with different sizes [30], in order to predict particle
size distribution and other properties. Flagan and Lunden [12] considered growth of
nanoparticles by coagulation and coalescence from the vapor phase, giving expressions
for the Brownian collision rates for both spherical particles and complex agglomerate
structures. Pratsinis [28] considered a model for simultaneous nucleation, conden-
sation, and coagulation in aerosol reactors, in terms of the moments of the aerosol
size distribution. Surface reaction is another common growth mechanism, and Artelt,
Schmid, and Peukert [3] studied the formation and growth of titania particles from
the vapor phase, concluding that reaction on the surface of existing TiO2 is the dom-
inant growth mechanism. Similar studies on nucleation and growth of fine particles
have been undertaken for MgO smoke [37] and microalumina particles [4]; the latter
explores how the condensation reaction depends on thermal effects by deriving equa-
tions for the number density of each reacting species and for the temperature. We
adopt this approach for our model, focusing on the continuous growth of the particles
by condensation as the growth mechanism. There exist population balance models in
the literature for the formation of silica particles from the gas phase [19, 32, 33], yet
in these cases silica particles are generated under different conditions than the ones
in this study and therefore their properties, formation, and growth mechanisms are
slightly different.

Existing models for particle formation via combustion use simplified profiles and
equations for the chemicals and temperature variations in the combustion chamber,
leading to chemical models which are uncoupled or one way coupled with the particle
growth mechanism. In this work, we present a fully coupled system that includes the
effects of the chemical concentrations and temperature differences on the particles,
and vice versa. Motivated by studies carried out on heat and mass balances, chemical
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1006 GONZÁLEZ-FARIÑA, MÜNCH, OLIVER, AND VAN GORDER

reactions, and thermodynamics within silicon furnaces [34, 35], we couple a model
that predicts the local temperature profiles and chemistry within the furnace hood to
the population balance equation through the growth and nucleation rates. We couple
the population balance equation back into the temperature and concentration of the
condensed material within the furnace through source and sink terms similar to those
used in [1, 23].

The remainder of this paper is organized as follows. In section 2 we develop the
mathematical model and present a nondimensional version of it under the assumption
of a simplified geometry. While there are a number of parameters in our model, most
are well known, with the initial concentration of oxygen and saturation concentration
of silicon dioxide being the two free parameters which we may control. In section
3 we study the well-mixed limit for all chemical species, which is a caricature of the
zoomed in region within the combustion or reaction zone. In section 4 we consider the
scenario where oxygen is initially spatially segregated from the other chemical species,
with a reaction boundary forming between the two. In order to gain a qualitative
understanding of the heat and mass transfer problem, we obtain asymptotic solutions
for both reductions of our model for an oxygen rich environment and in the limit
where the feedback of particle growth on temperature and chemistry is small, while
we consider numerical simulations for more general parameter regimes. We discuss
our results and their relevance to industrial scale production of microsilica in section
5.

2. Mathematical model. We are interested in modeling the dynamics of the
main chemical species found in the furnace hood above the charge surface: N2(g),
O2(g), SiO(g), SiO2(g), CO(g), and CO2(g). Other compounds such as volatiles are
not taken into account. Thus, we model the fluid as a combination of the gaseous
species mentioned before, where the only chemical reactions occurring are the com-
bustion reactions (1). We consider equations for the conservation of mass and energy
coupled to a particle growth model, while greatly simplifying the flow problem by
choosing the velocity of the fluid to be uniform in space and time on an unbounded
spatial domain. For such a configuration, the velocity can be scaled out with a change
of space variable moving with the flow. Subsequent work will consider more realistic
flow regimes, but for now these assumptions are sufficient to study the regions local
to a reaction zone where the microsilica is produced, as is the focus of this paper.

2.1. Conservation of chemical species. The mass conservation equations ex-
press how the concentration of each species depends on the diffusion of species and
chemical reactions. Taking CX(x, t) to be the concentration of species X in units
mol/m3, where x denotes position in cartesian coordinates and t time, the governing
equations are given by

∂CN2

∂t
−DN2

∇2CN2
= 0,(2a)

∂CO2

∂t
−DO2

∇2CO2
= −R1 −R2,(2b)

∂CSiO

∂t
−DSiO∇2CSiO = −2R1,(2c)

∂CSiO2

∂t
−DSiO2∇2CSiO2 = 2R1 − SC ,(2d)

D
ow

nl
oa

de
d 

11
/0

6/
21

 to
 1

29
.6

7.
11

7.
91

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODELING MICROSILICA PARTICLE FORMATION 1007

∂CCO

∂t
−DCO∇2CCO = −2R2,(2e)

∂CCO2

∂t
−DCO2

∇2CCO2
= 2R2,(2f)

where DX is the diffusion rate of species X, Ri, i = 1, 2, are the source terms due
to the combustion reactions given in (1), and SC represents a sink term due to the
formation of the particles which will be defined in section 2.4. We have included
conservation of the two main components in air, N2 and O2, which appear to be in
much higher concentrations than the rest of the species. In addition, SiO and CO
are competing for the oxygen, while we assume the nitrogen to be nonreacting even
though in some cases it could react with oxygen forming NOx compounds. Here,
we only consider the dominant reactions, but note that others could in principle be
introduced to the model.

For elementary chemical reactions, the reaction rate is proportional to a power
of the concentrations of the reactants according to the law of mass action. How-
ever, for more complex reactions simplified kinetic models are often adopted, where
the powers may not be equal to the stochiometric coefficients of the reacting species
and are often instead determined experimentally [7, 39, 43]. In our case, the com-
bustion of SiO and CO with oxygen involves some intermediate chemical reactions
that are not fully understood by our industrial partners. However, since the essen-
tial nature of the process is that SiO, CO, and oxygen are consumed while products
and heat are generated, both combustion reactions are well approximated by one-
step irreversible processes represented by (1). Here we consider each reaction to be
first order in both reactants [11]. The reaction rates are typically highly dependent
on the temperature and this is included by considering an Arrhenius term of the
form Ki(T ) = Ai exp(−Ei/RT ), where Ei is the activation energy of the reaction, Ai
is a preexponential coefficient, T is the temperature of the system, and R = 8.314
J·mol−1K−1 is the universal gas constant. Thus, we adopt the reaction rates given
by R1 = K1(T )CSiOCO2

, R2 = K2(T )CCOCO2
. Notice that we can easily express the

concentrations used above in terms of partial pressures (Pi) by using Dalton’s law
of partial pressures, namely Ci = PiCT /P , for every chemical species i, where P is
the total pressure of the fluid, and CT =

∑
species i Ci. A full list of the dimensional

parameters used in our model is given in Table 1.

2.2. Conservation of energy. We now consider how the temperature, T (x, t),
varies in space and time. The temperature is affected by the thermal conductivity of
the fluid and by the heat released by the chemical reactions (SR) and the change of
state due to the formation of the particles (ST ). Thus, we have the conservation of
energy equation

∂

∂t
(ρ0cpT )−∇ · (κ∇T ) = SR + ST ,(3)

where ρ0, cp, and κ denote the fluid density, heat capacity, and thermal conductivity,
and are assumed to be constant. The source term due to the chemical reactions is
given by SR = ∆H1R1 + ∆H2R2, where ∆Hi is the heat release of reaction i, and ST
is given in section 2.4.

2.3. Population balance equation. We consider the particle formation and
growth mechanisms and introduce the population balance equation as the means to
model them. We assume that we have a population of particles with different sizes
growing at different rates that depend on the chemical species concentrations and
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1008 GONZÁLEZ-FARIÑA, MÜNCH, OLIVER, AND VAN GORDER

Table 1
Typical values of dimensional parameters used in the model. 1Estimated value obtained from

[11]. 2Stokes–Einstein theory approximates the diffusion coefficient of a particle of radius r by

the relation Dp = kBT1
6πµr

, where kB is the Boltzman’s constant. 3Obtained from the software HSC

Chemistry. 4Since air is the dominant component in the fluid. At T = 1000 K and P = 1 atm.

Parameter Typical value Units Reference

CO2,0 2 − 100 mol/m3 Input concentration of O1
2

CSiO,0 1 mol/m3 Input concentration of SiO1

CCO,0 1 mol/m3 Input concentration of CO1

A1 1.0 × 107 m3/(mol·s) [17]

A2 1.80 × 104 m3/(mol·s) [38]

T1 1713 K Temperature of the fuel [11]
T2 1073 K Temperature of the air [11]

DO2
4.7 × 10−4 m2/s [25]

DSiO 3.9 × 10−4 m2/s [25]

DSiO2 3.9 × 10−4 m2/s Taken to be the same as DSiO

DCO 1.804 × 10−5 m2/s [24]

DCO2
1.429 × 10−5 m2/s [24]

Dp 10−9 m2/s Determined from Stokes-Einstein theory2

cp 1005 J/(kg·K) [17]

∆H1 3.930 × 105 J/mol Enthalphy of SiO combustion3

∆H2 1.395 × 105 J/mol Enthalphy of CO combustion3

E1 27196 J/mol [17]
E2 9974.65 J/mol [38]
R 8.314 J/(mol·K) Universal gas constant

ρ0 0.3529 kg/m3 Density of air4

κ 5.784 × 10−2 W/(m·K) Thermal conductivity of air4

Ce 0 − 1 mol/m3 Estimated

M 6.008 × 10−2 kg/mol Molar mass of SiO2

m 9.96 × 10−26 kg Atomic mass of SiO2

ρp 2196 kg/m3 Density of SiO2

smin 2 × 10−8 m Smallest particle seen in experiments1

J0 1025 1/(m3· s) [21]

vC 4.536 × 10−29 m3 Volume of a molecule of SiO2

γ 3.20 × 10−2 J/m2 [11]

kB 1.3806 × 10−23 J/K Boltzman’s constant

LV 2.1930 × 1010 J/m3 [20]

temperature. Let dN be the number density of particles, that is, the number of
particles per unit volume of gas, at a given spatial location x, at a given time t,
and with size in the range [s, s + ds], where we take the diameter of the particle to
characterize the particle size. We write dN = n(s,x, t)ds, which defines the particle
size distribution function or number density function n(s,x, t) [30].

The dominant microsilica particle growth mechanisms considered in our model
are nucleation and condensation, the latter meaning surface growth by the deposi-
tion of monomers of SiO2 on SiO2 particles. Letting G be the growth rate due to
condensation, the population balance equation has the form

∂n

∂t
−Dp∇2n+

∂

∂s

(
G(x, t)n−Ds

∂n

∂s

)
= 0.(4)
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MODELING MICROSILICA PARTICLE FORMATION 1009

The particle-phase or molecular diffusivity, Dp, is usually negligible for fine particles
in turbulent flames [29, 44]. The main reason is that particles do not diffuse with
respect to the gas phase since their size is large compared to the gas-phase chemical
species. However, the diffusion term may be retained in order to account for turbulent
diffusivity [45]. We can also include diffusion in the size space (Ds) which represents
fluctuations around G. Notice that this diffusion coefficient is dependent on G, and as
an approximation it can be taken to be proportional to the growth rate [23]. Since the
inclusion of Ds regularizes the PDE (4), it is often added when needed for stability of
numerical solutions, though we set Ds = 0 throughout this work. In order to close the
model we need to determine the form of the rate expressions for nucleation, J , which
is built into the model via a boundary condition on (4), and for surface growth, G.

2.3.1. Nucleation rate. The nucleation rate of particles is included into the
model as a boundary condition for the particle size coordinate (s) in the govern-
ing equation (4), by equating it to the “particle flux” in at s = smin as in [30]:
n(smin, t)G(smin, t) = J . We consider homogeneous nucleation as opposed to het-
erogeneous, meaning that the new thermodynamic phase forms spontaneously and
randomly rather than at nucleation sites on surfaces. The rate at which nucleation
of particles occurs is determined by the probability of forming the critical nucleus
diameter. This is the diameter that maximizes the Gibbs free energy (∆G), which
corresponds to where the particle is at equilibrium with the surrounding vapor, and
is given by smin = 4γvC/(kBT lnSe), where γ, vc, and kB are the surface energy,
volume of a SiO2 molecule, and the Boltzman’s constant, respectively. The quantity
Se = CSiO2

/Ce denotes the saturation ratio, with Ce being the saturation or equilib-
rium concentration. Note that in some literature Se will be defined as the ratio of
partial pressures or vapor concentrations [27, 42, 44]. The value of Ce for SiO2 may
in general depend on a number of atmospheric variables and other considerations, as
varying ranges are given for different applications [2, 18]. Since a proper value or
range of Ce is not uniquely defined in the literature for our problem, we treat Ce as
a parameter which may be varied from zero to one, and determine the sensitivity of
solutions on this parameter.

The value smin is the minimum size required for nucleation to occur. The cor-
responding nucleation rate is usually given according to classical nucleation theory
[13, 44] as

J = J0 exp

(
−∆G∗

kBT

)
= J0 exp

(
− 16πγ3v2C

3(kBT )3(lnSe)2

)
,(5)

where we can take the form of the nucleation rate coefficient J0 from [44], although
throughout this paper it will be considered to be a constant. Refer to [13, 41] for
further details on the derivation of (5).

2.3.2. Growth rate. Consider a relatively small particle (diameter < 1µm) of
pure species SiO2 in air that also contains vapor molecules of SiO2, growing due to
vapor condensation. In our case, the mean free path of the gas surrounding the par-
ticle is large compared to the size of the growing particle itself (free-molecule regime)
[36], thus classical kinetic theory is applied in order to determine the growth rate.
We assume the particle to be spherical and do not take into account any interaction
forces between the particle and vapor. The collision rate of the gas molecules hitting
a unit area in unit time, also called the effusion flux, is given by F = Nc̄/4, where N
is the number concentration of molecules in the gas, and c̄ is the mean molecular ve-
locity. The mean velocity is obtained by finding the mean of the Maxwell–Boltzmann
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1010 GONZÁLEZ-FARIÑA, MÜNCH, OLIVER, AND VAN GORDER

distribution, and this is c̄ =
√

8kBT/(πm) where kB is the Boltzman’s constant and

m is the atomic mass of SiO2. Therefore, F = (CSiO2
− Ce)

√
8kBT/(πm)/4. The

rate of condensation, F , to the particle surface is obtained by multiplying the effusion
flux by the surface area of the particle [13], giving

F = (CSiO2
− Ce)

√
kBT

2πm
πs2.(6)

The rate of particle volume growth is then given by multiplying F by the ratio of
SiO2 molar mass to density so that the dimensions are consistent,

dv

dt
= F

M

ρp
=

√
kBT

2πm
(CSiO2 − Ce)πs2

M

ρp
,(7)

thus the diameter growth rate is

Ḡ =
ds

dt
=

2M

ρp

√
kBT

2πm
(CSiO2

− Ce).(8)

Since it is well known that microsilica particles do not shrink (Ḡ > 0), in our model
we will take

G = ḠH (CSiO2
− Ce)(9)

as the particle growth rate, where H represents the Heaviside function.

2.4. Coupling the particle growth and chemical reaction models. The
particle formation and growth model is coupled to the chemical species concentrations
and temperature directly via the growth rate for condensation, G, and the nucleation
rate, J . These rates depend on the concentration of vapor silicon dioxide, CSiO2 ,
predicted by (2d) and on the temperature of the system given by (3).

Moreover, in order to account for the material consumed and heat produced due
to the formation of the particles, we add a sink term SC (units [mol ·m−3 · s−1]) in
(2d) and a source term ST (units [J ·m−3 · s−1]) in (3). The form of these terms comes
from integrating the mass flux through the surface of a spherical particle, F as in (6),
times the particle density, n, over all particle diameters. That is,

SC =

∫ ∞
smin

Fnds =
π

2

ρp
M
G

∫ ∞
smin

s2nds.(10)

Since mass transfer is the driving mechanism for particle growth, the source term
for the energy released due to the formation of the particles is proportional to (10).
We simply multiply it by the enthalpy of formation of the particle, ∆Hp, which has
physical units [J · mol−1], or equivalently by LV

M
ρp

, where LV is the specific latent

heat for condensation with units [J ·m−3]. This is

ST = ∆Hp

∫ ∞
smin

Fnds =
π

2
LVG

∫ ∞
smin

s2nds.(11)
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2.5. Moments of the distribution. In practice, we can decouple the PDE for
particle formation (4) from the system of ODEs that models the temperature and
chemicals by including three extra ODEs for the zeroth, first, and second moments
of the particle distribution n, in the following way. First note that the kth moment
is given by Mk =

∫∞
smin

sknds, hence the integral part of the expressions derived for

SC and ST in the previous section corresponds to M2. Now, multiplying the PDE (4)
(with Ds = 0) by sk, for k = 0, 1, 2, and integrating each case with respect to s, we
obtain the ODEs

dM0

dt
−Dp∇2M0 = J,(12a)

dM1

dt
−Dp∇2M1 = sminJ +GM0,(12b)

dM2

dt
−Dp∇2M2 = (smin)

2
J + 2GM1.(12c)

Therefore, we can solve the latter three equations altogether with the concentrations
and temperature model, and separately from the equation for n which is slightly
more challenging due to the extra dimension. A similar approach has been considered
elsewhere [27, 42] for solving related population balance models in terms of moments.

2.6. Nondimensional model for a simplified geometry. From the form of
the reaction kinetics, the conservation equation for N2 decouples from the others, and
we do not include it in our model. We consider a simplified, one-dimensional geometry
given by a cross section of the reaction zone or flame front, that is, z ∈ (−∞,∞),
where CO2

is initially at maximal concentration as z →∞, whereas CSiO and CCO are
initially at maximal concentration as z → −∞. Initial data will be prescribed based on
the desired initial configuration, with either well-mixed or spatially partitioned initial
profiles for the initial concentrations of chemicals and temperature. We shall assume
a zero initial profile for the particle distribution as well as for the moments; there will
be no particles already in the system at the initial time. Thus, the initial conditions
can be written as CX = CX,initial(z), T = Tinitial(z), n = M0 = M1 = M2 = 0
at t = 0, where the form of the functions will be discussed later. We also have a
boundary condition for n, Gn = J at s = smin, with the dimensional particle growth,
G, and nucleation, J , rates given by (9) and (5), respectively.

We nondimensionalize the equations previously defined by scaling the variables
in the following way: T = (T1−T2)T̃ +T2, where T1 is the temperature of the fuel as
it leaves the charge surface and T2 is the temperature of the air coming from outside
the furnace (in practice T2 < T1), CX = CX,0C̃X , where CX,0 represents the input
concentration of the reactant X while for the products we take CSiO2,0 = CSiO,0 and

CCO2,0 = CCO,0, t = t0t̃, z = z0z̃, s = s0s̃, n = n0ñ, and Mi = miM̃i for i = 0, 1, 2.
We choose the timescale with the dominant reaction kinetics and the spatial scale is
taken with the dominant diffusion DO2

, namely

t0 =
1

2A1CO2,0
exp

(
E1

RT1

)
, z0 =

√
DO2t0 =

√
DO2

2A1CO2,0
exp

(
E1

2RT1

)
.(13)

Additionally, we scale the particle diameter with the critical diameter for nucleation,
s0 = smin, the number density function with the ratio between nucleation and growth
rate coefficients, n0 = J0/G0 whereG0 = 2MCSiO2,0

√
kB(T1 − T2)/(2πm)/ρp = 6.5×

10−3, and the moments with a combination of the latter two scalings, mi = n0s
i+1
0 ,

i = 0, 1, 2. A full list of dimensionless parameter groups is given in Table 2.
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1012 GONZÁLEZ-FARIÑA, MÜNCH, OLIVER, AND VAN GORDER

Table 2
Definitions and typical values for nondimensional parameters used in the model. We treat a

and Csat as control parameters, whereas the other parameters are determined from values in Table 1.

Dimensionless Relation with Typical
parameter dimensional parameters value

dSiO
DSiO
DO2

0.8298

dSiO2

DSiO2
DO2

0.8298

dCO
DCO
DO2

3.829 × 10−2

dCO2

DCO2
DO2

3.040 × 10−2

Le κ
ρ0cpDO2

0.3470

a
CSiO,0

CO2,0
10−3 − 0.2

ε A2
A1

exp
(
E1−E2
RT1

)
6.031 × 10−3

h1
CSiO,0∆H1

2(T1−T2)ρ0cp
0.8591

h2
CCO,0∆H2

2(T1−T2)ρ0cp
0.3073

α1 exp
(
−E1
R

(
1
T2

− 1
T1

))
0.32

α2 exp
(
−E2
R

(
1
T2

− 1
T1

))
0.659

ζ1
πρpJ0(smin)3

4MA1CO2,0CSiO2,0
exp
(
E1
RT1

)
3.875 × 10−2

ζ2
πLV J0(smin)3

4ρ0cpA1CO2,0(T1−T2)
exp
(
E1
RT1

)
0.1024

dp
Dp

DO2
2.128 × 10−6

T ∗ T2
T1−T2

1.677

G∗
MCSiO2,0

√
T1−T2

ρpA1CO2,0smin

√
kB

2πm
exp
(
E1
RT1

)
4.39 × 10−2

J∗
J0ρp

M×1023CSiO2,0
√
T1−T2

√
πm
2kB

1.538 × 104

Csat
Ce

CSiO2,0
0 − 1

λ
16πγ3v2C
3k3

B
T3
2

0.3474

With these scalings and dropping the over tilde notation, the dimensionless equa-
tions read

∂CO2

∂t
− ∂2CO2

∂z2
= −a

2
(f1(T )CO2

CSiO + εf2(T )CO2
CCO) ,(14a)

∂CSiO

∂t
− dSiO

∂2CSiO

∂z2
= −f1(T )CO2CSiO,(14b)
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MODELING MICROSILICA PARTICLE FORMATION 1013

∂CSiO2

∂t
− dSiO2

∂2CSiO2

∂z2
= f1(T )CO2CSiO − ζ1G(z, t)M2,(14c)

∂CCO

∂t
− dCO

∂2CCO

∂z2
= −εf2(T )CO2

CCO,(14d)

∂CCO2

∂t
− dCO2

∂2CCO2

∂z2
= εf2(T )CO2CCO,(14e)

∂T

∂t
− Le∂

2T

∂z2
= h1f1(T )CO2

CSiO + εh2f2(T )CO2
CCO(14f)

+ ζ2G(z, t)M2,

∂M0

∂t
− dp

∂2M0

∂z2
= G∗J(z, t),(14g)

∂M1

∂t
− dp

∂2M1

∂z2
= G∗J(z, t) +G∗G(z, t)M0,(14h)

∂M2

∂t
− dp

∂2M2

∂z2
= G∗J(z, t) + 2G∗G(z, t)M1,(14i)

for −∞ < z < ∞, t > 0. The dimensionless Arrhenius terms in the reaction rates
have the form

fj(T ) = exp

(
−Ej
R

(
1

(T1 − T2)T + T2
− 1

T1

))
, j = 1, 2,(15)

and the nondimensional particle growth and nucleation rates are given by

G =
√
T + T ∗ (CSiO2

− Csat)H (CSiO2
− Csat) and(16)

J = exp

− λ(
T
T∗ + 1

)3
ln2
(
CSiO2

Csat

)
 ,

respectively. The dimensionless initial conditions are the following:

CX =
CX,initial(z)

CX,0
, T =

Tinitial(z)− T2
T1 − T2

, M0 = M1 = M2 = 0 at t = 0.(17)

In the nondimensionalization we assumed that the input value of all the chemical
species is the same except for the oxygen, that is, CSiO,0 = CSiO2,0 = CCO,0 = CCO2,0.
Thus, a represents the ratio of the maximum concentration of these species to the
maximum concentration of oxygen, ε is the ratio between the reaction rates, and h1
and h2 measure the balance between the reactant concentration needed to give off
heat and the role of the respective reaction on generating heat.

Finally, the particle formation and growth problem in nondimensional form reads

∂n

∂t
− dp

∂2n

∂z2
= −G∗G(z, t)

∂n

∂s
for −∞ < z <∞, s > 1, t > 0,(18a)

n = 0 at t = 0, and Gn = J at s = 1.(18b)

3. The case of well-mixed chemical species. We first consider the case
where the chemical species are well-mixed, with uniform initial concentrations and
temperature for all z ∈ R, so that the concentrations and temperature are independent
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1014 GONZÁLEZ-FARIÑA, MÜNCH, OLIVER, AND VAN GORDER

of z for all t ≥ 0. This limit is best viewed as a simplification of the spatial structure
taken in order to better qualitatively understand the dynamics taking place within
the interior of the reaction zone, whereas in the next section we will more accurately
depict the macroscopic scale structure of the reaction zone between two larger non-
reacting regions. Under this assumption, (14a)–(14i) reduce to the system

dCO2

dt
= −a

2
(f1(T )CO2CSiO + εf2(T )CO2CCO) ,(19a)

dCSiO

dt
= −f1(T )CO2CSiO,(19b)

dCSiO2

dt
= f1(T )CO2

CSiO − ζ1G(t)M2,(19c)

dCCO

dt
= −εf2(T )CO2

CCO,(19d)

dCCO2

dt
= εf2(T )CO2

CCO,(19e)

dT

dt
= h1f1(T )CO2CSiO + εh2f2(T )CO2CCO + ζ2G(t)M2,(19f)

dM0

dt
= G∗J(t),(19g)

dM1

dt
= G∗J(t) +G∗G(t)M0,(19h)

dM2

dt
= G∗J(t) + 2G∗G(t)M1,(19i)

for t > 0, while the initial conditions become

CO2
= CSiO = CCO = T = 1, CSiO2

= CCO2
= M0 = M1 = M2 = 0 at t = 0.

(20)

The particle formation and growth system (18) reduces to

∂n

∂t
= −G∗G(t)

∂n

∂s
for s > 1, t > 0,(21a)

n = 0 at t = 0, and Gn = J at s = 1.(21b)

3.1. Analytical solution to the chemical-temperature problem. For an-
alytical tractability we shall set ζ1 = ζ2 = 0. Several conservation laws for the
concentrations and temperature are apparent and we no longer need to solve for the
moments of the distribution since they decouple from the system. Combining (19d)
and (19e), and (19b) and (19c), we obtain

CCO2
= 1− CCO, CSiO2

= 1− CSiO,(22a)

respectively. Now using (19a), (19b), and (19d), we find

CO2 = 1− a

2
[(1− CSiO) + (1− CCO)],(22b)

and finally combining (19b), (19d), and (19f), we obtain

T = 1 + h1(1− CSiO) + h2(1− CCO).(22c)

Making use of these conservation laws, we eliminate CO2
, CSiO2

, CCO2
, and T ,

obtaining the system
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dCSiO

dt
= −f1 (1 + h1(1− CSiO) + h2(1− CCO))(23a)

×
(

1− a

2
[(1− CSiO) + (1− CCO)]

)
CSiO,

dCCO

dt
= −εf2 (1 + h1(1− CSiO) + h2(1− CCO))(23b)

×
(

1− a

2
[(1− CSiO) + (1− CCO)]

)
CCO,

subject to CSiO(0) = CCO(0) = 1.

3.1.1. Multiple timescale analysis. In order to understand the dynamics
from (23), we first make several observations. First, for any CSiO(t), CCO(t) ∈ (0, 1],
we have that

0 < f1 (1 + h1(1− CSiO) + h2(1− CCO))
(

1− a

2
[(1− CSiO) + (1− CCO)]

)
CSiO

(24a)

≤ f1 (1 + h1 + h2) ,

0 < f2 (1 + h1(1− CSiO) + h2(1− CCO))
(

1− a

2
[(1− CSiO) + (1− CCO)]

)
CCO

(24b)

≤ f2 (1 + h1 + h2) ,

thus CSiO(t) and CCO(t) are monotone decreasing from 1 to 0. Second, since 0 < ε�
1, the dynamics of (23b) are on a slower timescale than those of (23a). Introducing
the slow timescale τ = εt, and writing CCO = CCO(τ), we have

dCSiO

dt
= −f1 (1 + h1(1− CSiO(t)) + h2(1− CCO(εt)))(25a)

×
(

1− a

2
[(1− CSiO(t)) + (1− CCO(εt))]

)
CSiO(t),

dCCO

dτ
= −f2 (1 + h1(1− CSiO(τ/ε)) + h2(1− CCO(τ)))(25b)

×
(

1− a

2
[(1− CSiO(τ/ε)) + (1− CCO(τ))]

)
CCO(τ).

In (25a), CCO(εt) is slowly varying and can be treated as a constant at lowest
order, relative to the timescale on which CSiO(t) varies. Similarly, in (25b), CSiO(τ/ε)
is rapidly varying and nears its equilibrium value before CCO(τ) responds. There-
fore, we approximate (25) by approximating CCO(εt) = 1 on the timescale t and
CSiO(τ/ε) = 0 on the timescale τ . We obtain

dCSiO

dt
= −f1 (1 + h1(1− CSiO(t)))

(
1− a

2
(1− CSiO(t))

)
CSiO(t),(26a)

dCCO

dτ
= −f2 (1 + h1 + h2(1− CCO(τ)))

(
1− a

2
[1 + (1− CCO(τ))]

)
CCO(τ).(26b)

Solving (26) by quadrature, we obtain the implicit relations∫ 1

CSiO

dξ

f1 (1 + h1(1− ξ))
(
1− a

2 (1− ξ)
)
ξ

= t,(27) ∫ 1

CCO

dξ

f2 (1 + h1 + h2(1− ξ))
(
1− a

2 (2− ξ)
)
ξ

= τ,
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1016 GONZÁLEZ-FARIÑA, MÜNCH, OLIVER, AND VAN GORDER

where it is clear that CSiO, CCO → 0 as t→∞, as expected. In order to obtain more
explicit representations of the solutions, we make further assumptions.

3.1.2. Approximating the Arrhenius terms. We shall at times find it con-
venient to approximate the Arrhenius terms in the reaction kinetics (15) with linear
approximations, fj(T ) ≈ Fj(T ), where

Fj(T ) = αj + (1− αj)T with αj = exp

(
−Ej
R

(
1

T2
− 1

T1

))
.(28)

The error estimate of this approximation based on the initial data for T is

maxT∈[0,1]
|f1(T )−F1(T )|

f1(T ) = 0.031 and maxT∈[0,1]
|f2(T )−F2(T )|

f2(T ) = 0.027 for parameter

values in Table 2. Hence, the maximal relative error for 0 ≤ T ≤ 1 is around 3%.
Later on we will see that at certain spatial locations and times the temperature can
go up to 2 approximately. In this case, the maximal relative error for 0 ≤ T ≤ 2 is
around 5% for F1 and 8% for F2. We conclude that the error of this approximation is
low enough over the range of temperatures considered so that the qualitative behavior
of the solutions is unaltered. Notice that the temperature will only go beyond 2 when
we solve the full problem numerically; however, there is no need for an approximation
of the Arrhenius terms in this case.

3.1.3. Small a asymptotics. Making use of the approximation (28), we write

dCSiO

dt
= − (α1 + (1− α1)[1 + h1(1− CSiO)])

(
1− a

2
(1− CSiO)

)
CSiO,

(29a)

dCCO

dτ
= − (α2 + (1− α2)[1 + h1 + h2(1− CCO)])

(
1− a

2
[1 + (1− CCO)]

)
CCO.

(29b)

Recall that 0 < a ≤ 0.2. We therefore treat a as a small parameter, a � 1, and at
lowest order in a, the ODEs (29) become quadratic rather than cubic. Solving these
lowest order equations subject to CSiO(0) = 1 and CCO(0) = 1, respectively, we find
that the asymptotic solutions in the small a limit are

CSiO(t) =
1 + h1 (1− α1)

exp ([1 + h1 (1− α1)] t) + h1 (1− α1)
+O(a),

(30a)

CCO(t) =
1 + (h1 + h2) (1− α2)

(1 + h1 (1− α2)) exp ([1 + (h1 + h2) (1− α2)] εt) + h2 (1− α2)
+O(a).

(30b)

Asymptotic solutions for all remaining quantities can be obtained from (30) and
the earlier mentioned conservation laws (22a)–(22c). We plot the approximate solu-
tions in Figure 3 for one small value of a (left) and the upper bound a = 0.2 (right).
We see that since CCO and CCO2

evolve on a slower timescale than the rest of the
chemical concentrations, the second reaction has not happened yet, while the first one
finishes within the selected timescale. When comparing the analytical approximations
(solid line) to the numerical simulations (dashed line) we find good agreement, even for
relatively large values of a, so the analytical solution retains validity in the physically
relevant parameter regime.
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MODELING MICROSILICA PARTICLE FORMATION 1017

Fig. 3. Dimensionless chemical concentrations and temperature as indicated in the legend
from solving the problem (19)–(20) numerically (dashed line) and analytically (solid line) assuming
ζ1 = ζ2 = 0. We compare the solutions for a = 0.01 (left) and a = 0.2 (right). We fix Csat = 0.1,
with other parameters taking values listed in Table 2.

3.2. Analytical solution of the particle density equation. We find an an-
alytical solution for the particle density function by solving the problem (21) in terms
of the growth rate G and nucleation rate J as given in (16), which depend on CSiO2

and T . First, we define tmin to be the minimal value of t such that CSiO2
(tmin) = Csat.

Noting that 1 − CSiO(tmin) = CSiO2
(tmin) = Csat, and employing the asymptotic so-

lution (30a), we find

tmin =
1

1 + h1 (1− α1)
log

(
1 + h1 (1− α1)Csat

1− Csat

)
+O(a)(31)

as a → 0. In the case where t ≤ tmin, (21a) reduces to ∂n/∂s = 0 for s > 1, with
n = 0 at t = 0, hence the solution is n = 0. This makes sense since no particles
are formed before the concentration reaches saturation. For the second case where
t > tmin, we use the method of characteristics to obtain a parametric solution for n.
For characteristics emanating from t = tmin, given by

s = s1 +G∗
∫ t

tmin

G(τ)dτ(32)

with s1 > 1, the solution is always n = 0. For characteristic curves emerging from
s = 1, given implicitly by

s = 1 +G∗
∫ t

t1

G(τ)dτ(33)

with t1 > tmin, the solution is

n =
J(t1)

G(t1)
.(34)

In Figure 4(a), we plot the characteristic curves, with the red curve corresponding to
the dividing characteristic that bounds both regions and is given implicitly by

s∗(t) = 1 +G∗
∫ t

tmin

G(τ)dτ.(35)
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(a) Characteristic curves (b) Number density functions

(c) Semi-log plot for the number density function (black) and asymptotic approximations
(dashed lines and circles).

Fig. 4. (a) Characteristic curves corresponding to problem (21) where the red line is the limiting
curve given by (35). In (b) we show the dimensionless number density function of particles for
different values of t from 1 to 10 with an increment of 1. The curves are obtained from solving
the problem (19a)–(19f), with ζ1, ζ2 = 0, numerically (dashed line) and analytically (solid line) for
a = 0.2 and using the formulae (33) and (34) for n. In (c) we provide a semi-log plot for the
number density functions from (b) (black solid line), for n with asymptotic approximations for the
characteristics (40) (green circles), and for the asymptotic approximations of the peak (41) (red
dashed line) and uniform (44) (blue dashed line) parts of the distribution. The legend indicates
the meaning of each curve. We have chosen Csat = 0.1 and have scaled n with the dimensionless
parameter J∗ = J0/(1023G0) from Table 2.

In the region above this curve the solution is n = 0, whereas below it is given by
(34). In Figure 4(b), we show the solution for n given by (33) and (34), where we
take CSiO2

and T from both the analytical approximations and numerical simulations
in the previous section with a = 0.2. The main difference we see between the particle
density functions obtained using both approximations is the position of the peaks.
This is due to the small shift in the CSiO2

curves in Figure 3; the concentration will
reach the saturation point at a slightly different time tmin. Here, we have chosen
Csat = 0.1, thus tmin = 0.106 in the numerics (dashed line) and tmin = 0.103 in the
analytics (solid line). Since in the latter case the particles start growing at an earlier
time, they grow to be larger.

In Figure 4(b), we see that as time evolves the peaks move to the right, meaning
that the particles grow. With respect to the shape of n for a specific time, we find
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MODELING MICROSILICA PARTICLE FORMATION 1019

a uniform distribution at smaller sizes and a peak around the largest sizes. The
largest number of particles are of the largest sizes, and these particles originated very
close to t = tmin, with their change in diameter over time (the position of the peaks)
determined approximately by the characteristic s∗(t) highlighted in red in Figure
4(a). We show the solution corresponding to the last peak in Figure 4(b) (t = 10) in
a semi-log plot in Figure 4(c) with a black solid curve.

In order to better understand the parameter dependence of the peak, we consider
an asymptotic analysis near the red characteristic. We use the approximated solutions
for CSiO2

and T from section 3.1, neglecting terms which evolve on the slow timescale
τ = εt and setting CCO(t) ≈ 1 for t � ε−1. We also neglect O(a) terms. From
Figure 4(c) (black solid line), there are two timescales to consider. The first timescale
corresponds to 0 < t−tmin � 1, for which 0 < s∗(t)−s� 1, and we have the observed
peak in Figures 4(b) and 4(c). For t − tmin � 1, we have the flat region of uniform
distribution away from the peak, which corresponds to CSiO2

∼ 1 and T (t) ∼ 1 + h1,
as seen in Figure 3. The reaction leading to particle growth happens before the very
large timescales on which CCO will play a role, so we consider 1� t− tmin � ε−1 for
our second timescale.

3.2.1. The small timescale, 0 < t − tmin � 1. Expanding the analytical
solutions for CSiO2

and T , (22a) and (22c) with (30), found in section 3.1 in t− tmin,
we write

CSiO2
(t) = Csat + (1− Csat) (1 + h1(1− α1)Csat) (t− tmin) +O

(
(t− tmin)

2
)
,

(36a)

T (t) = 1 + h1Csat + h1(1− Csat) (1 + h1(1− α1)Csat) (t− tmin) +O
(

(t− tmin)
2
)
.

(36b)

These approximations allow us to approximate the characteristic curves (33) by the
formula

s = 1 +
G∗

2

√
T ∗+1+h1Csat(1− Csat) (1+h1(1− α1)Csat)

{
(t− tmin)2−(t1−tmin)2

}
,

(37)

where we have used√
T ∗ + 1 + h1Csat + h1(1− Csat) (1 + h1(1− α1)Csat) (t− tmin) ≈

√
T ∗ + 1 + h1Csat.

We find

t1 = tmin +

√
(t− tmin)2 − s− 1

G∗

2

√
T ∗ + 1 + h1Csat(1− Csat) (1 + h1(1− α1)Csat)

,

(38)

and similarly for (35), we obtain

s∗(t) = 1 +
G∗

2

√
T ∗ + 1 + h1Csat(1− Csat) (1 + h1(1− α1)Csat) (t− tmin)2.(39)

Therefore, we may write

t1 ≈ t̂1 = tmin +

√
s∗(t)− s

G∗

2

√
T ∗ + 1 + h1Csat(1− Csat) (1 + h1(1− α1)Csat)

,(40)
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1020 GONZÁLEZ-FARIÑA, MÜNCH, OLIVER, AND VAN GORDER

where it will be convenient to define the moving coordinate S = s∗(t)− s. We remark
that the small t − tmin regime corresponds to the small S regime. We evaluate the
exact solution n(t1) at the explicit approximation of t1 as given by (40) and plot it
in Figure 4(c) with green circles to find that it matches the real solution (black solid
line) everywhere. As such, the approximate characteristic curves result in nearly the
same exact solution (plotted numerically) and do not introduce significant error.

From the implicit form of the exact solution, n(s, t) = J(t1)/G(t1), we now use
the approximation of t1 to construct an approximation n̂1 to n which is explicit in
the variables. We find

n =

exp

{
−λ
(
T (t1)
T∗ + 1

)−3 [
ln
(
CSiO2

(t1)

Csat

)]−2}
√
T ∗ + T (t1) (CSiO2

(t1)− Csat)
≈ n̂1(S) =

Γ√
S

exp

(
−Λ

S

)
,(41a)

where

Γ =

√
G∗

2
√
T ∗ + 1 + h1Csat(1− Csat) (1 + h1(1− α1)Csat)

,(41b)

Λ =
λG∗T ∗3C2

sat

2 (T ∗ + 1 + h1Csat)
5/2

(1− Csat) (1 + h1(1− α1)Csat)
.(41c)

Here Γ and Λ are constants which depend on model parameters. From (41a), the posi-
tion and height of the peak are given by sp=s∗(t)−2Λ and n̂1(sp)=Γ exp(−1/2)/

√
2Λ,

respectively. Note that the position is time-dependent. Using Table 2 and Csat = 0.1,
we find Γ = 0.117 and Λ = 3.268×10−5. We plot the approximation (41a) with a red
dashed curve in Figure 4(c) and find that the width of the peak is well represented, as
is the rate of change on each side of the peak, while the height of the peak is slightly
overestimated (and would, in principle, be improved by the inclusion of higher order
terms).

3.2.2. The larger timescale, 1 � t − tmin � ε−1. On the timescale 1 �
t− tmin � ε−1, we have CSiO2

(t) = 1−O(exp{−(1 + h1(1− α1))t}) and T (t) = 1 +
h1−O(exp{−(1 + h1(1− α1))t}), and we approximate CSiO2

(t) ≈ 1 and T (t) ≈ 1+h1.
Similar to the above, we find

s = 1 +G∗
∫ t

t1

√
T ∗ + T (τ) (CSiO2

(t)− Csat) dτ(42)

= 1 +G∗
√
T ∗ + 1 + h1(1− Csat) (t− t1) ,

s∗(t) = 1 +G∗
√
T ∗ + 1 + h1(1− Csat) (t− tmin) .(43)

From this we note that the characteristic curves become lines once S = O(1), consis-
tent with what is observed in Figure 4(a) once s is an O(1) distance away from the
curve s∗(t) (shown in red). Manipulating these equations, we obtain

t1 = tmin +
S

G∗
√
T ∗ + 1 + h1(1− Csat)

and(44)

n ≈ n̂2 =

exp

{
−λ
(
1+h1

T∗ + 1
)−3 [

ln
(

1
Csat

)]−2}
√
T ∗ + 1 + h1 (1− Csat)

,
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where n̂2 is a constant and S = s∗(t)− s is the moving coordinate. Using parameter
values from Table 2 as well as Csat = 0.1, we find n̂2 ≈ 5.773× 10−1, and scaling with
J∗ we have n̂2 ≈ 5.773× 10−1J∗ = 8.879× 103, which is consistent with the value n
levels off to in Figure 4(c) as S becomes O(1) (n ≈ n̂2 corresponds to the blue dashed
line).

To summarize, the asymptotic solutions provide an explicit formula for n in terms
of well-known parameters, capturing the qualitative behavior of the particle size dis-
tribution, with the small time (0 < t− tmin � 1) approximation n̂1(t̂1) capturing the
peak and the intermediate time (1� t− tmin � ε−1) approximation n̂2(t̂1) providing
the uniform distribution away from the peak. The largest timescale, t− tmin � ε−1,
will not play a strong role in modifying the distribution n (which is on the two
timescales felt by CSiO2

), and hence we do not consider it.

3.3. Numerical solution of the fully coupled system for ζ1, ζ2 > 0. We
solve the full problem (19) with ζ1, ζ2 > 0 numerically and then use the analytical
solution obtained for n in section 3.2, providing simulations in Figure 5. The SiO2

concentration (red curve in Figure 5(a)) reaches a maximum while the SiO combustion
reaction occurs, and it later decreases as SiO2 is consumed due to particle growth.
The temperature, shown in Figure 5(b), also increases initially due to the combustion
reaction, yet further increases due to energy given off during particle formation. The
peak in the particle density function, n, plotted in Figure 5(d), moves to the right
with time as particles grow. However, as the available CSiO2 decreases toward the
saturation concentration (around t = 25), the value of n = J/G at s = 1 gets very
large forming a second peak around the smallest particle size. Many particles are
created (due to the increasing temperature), but they cannot grow large (due to the
limited availability of SiO2). In Figure 5(c) we see that particle growth stops after
some critical time, and the maximum particle size is given by the value that the red
characteristic converges to, approximately 2.2 for the case plotted. In Figure 5(e) we
plot the first few moments of the distribution n, the number of particles, M0, the
mean, µ = M1/M0, and the variance, σ2 = M2/M0 − µ2. All moments tend to a
constant for t > 35, meaning that the particle density function converges to the red
curve in Figure 5(f) as CSiO2 → Csat = 0.1. This curve corresponds to a bimodal
distribution around the minimum and maximum particle size.

The existence of such a bimodal distribution for particle size is in agreement
with previous experimental studies [10] where the particle size distribution of well-
dispersed microsilica was found to be bimodal, with a submicron range of particle
sizes containing most of the particle mass, and a micron range with fewer but much
larger particles. In order to illustrate this finding, in Figure 6 we show a SEM picture
of a microsilica sample where we can see few large particles with many small particles
attached to them. As the value of Csat increases the distribution turns almost uniform,
since less particles are formed and their sizes are smaller since the time interval on
which the concentration of SiO2 is above saturation is reduced.

In Figure 7 we show both peaks on a semi-log plot. Notice that the order of the
peaks in Figure 7 is the opposite of the one found in Figure 5(d) and that the values
on the horizontal axis of Figure 7(b) are inverted. We use the same approximations as
in sections 3.2.1–3.2.2 to obtain an approximation for the large particle-size peak (red
dashed line) and uniform distribution between peaks (blue dashed line). However,
in the coupled case these approximations are only valid for early times, and the late
time peak shown in Figure 7(b) (around s = 1) is found numerically.
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1022 GONZÁLEZ-FARIÑA, MÜNCH, OLIVER, AND VAN GORDER

(a) Chemical concentrations (b) Temperature

(c) Characteristic curves (d) Number density functions

(e) Moments of the distributions for Csat

= 0.1
(f) Final particle density function for differ-

ent Csat

Fig. 5. Plot of the chemical concentrations (a), temperature (b), characteristic curves (c),
number density functions (d), and properties of the density distribution (e) obtained from solving
the fully coupled (ζ1, ζ2 > 0) problem (19) numerically and using these results in (33) and (34).
We take Csat = 0.1 and a = 0.2, with other parameters chosen from Table 2, and scale n with J∗.
The direction of the arrow in (d) indicates increasing time from tmin = 0.106 to tmin + 45, with an
increment of 5 at every iteration. As Csat is increased (f), particle formation initializes later, thus
particles have less time to grow, and hence the distribution skews toward smaller sized particles at
the final time t = 50. In (a) and (e), the legend indicates the meaning of each curve.D
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MODELING MICROSILICA PARTICLE FORMATION 1023

Fig. 6. SEM image of microsilica particles showing some large particles with many small
particles attached to them. Image from Næss [25].

(a) Semi-log plot for n around s∗ (b) Semi-log plot for n around 1

Fig. 7. Semi-log plots for the number density function around (a) s = s∗ zooming in the large
particle-size peak, and around (b) s = 1 zooming in the small particle-size peak. In (a) we show the
numerical results for n (black solid line), the real solution for n with asymptotic approximations for
the characteristics as in the uncoupled case (green circles), and the asymptotic approximations for
the peak (red dashed line) and uniform part (blue dashed line) taken from (41a) and (44) respectively,
whereas in (b) we only show the numerical result. In (a) the legend indicates the meaning of each
curve.

4. The case of initially spatially separated chemical species. In this sec-
tion, we turn our attention to the configuration where chemical concentrations CO2

,
CSiO, CCO and temperature are initially spatially heterogeneous, with CO2

present
primarily in the region z > 0 and CSiO and CCO in the region z < 0, with a small
overlap. Hence, the dimensionless initial conditions for the concentrations and tem-
perature are such that they are compatible with the following far-field behavior:

CO2
= CSiO2

= CCO2
= 0, CSiO = CCO = T = 1 as z → −∞,(45a)

CO2
= 1, CSiO = CCO = T = 0,

∂CSiO2

∂z
=
∂CCO2

∂z
= 0 as z →∞.(45b)

This is analogous to adding large quantities of oxygen into the top or side of a furnace
in more complicated geometries. For large enough temperatures to permit reactions,
this configuration results in a narrow reaction layer which then evolves over time. The
initial conditions for n and its moments remain unchanged.
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1024 GONZÁLEZ-FARIÑA, MÜNCH, OLIVER, AND VAN GORDER

4.1. Analytical solution for the coupled chemical-temperature subsys-
tem. The set of equations (14) constitutes a nonlinear, nonlocal reaction-diffusion
system. To make any progress outside of numerical simulations, we shall need to
make further simplifying assumptions. First, we neglect the coupling to the moments
and set ζ1 and ζ2 to be equal to zero as in section 3.1. We will include these cou-
pling parameters later when obtaining numerical simulations and compare them to
the asymptotic solutions. Further, since ε < ζ1 by an order of magnitude, we set
ε = 0 and neglect the slower reaction. Finally, observing that dSiO,Le = O(1), we
set dSiO = Le = 1 in order to have equal diffusion rates, which greatly simplifies the
derivations. Under these assumptions, the equations governing the dominant reaction
are

∂CO2

∂t
− ∂2CO2

∂z2
= −a

2
f1(T )CO2

CSiO,(46a)

∂CSiO

∂t
− ∂2CSiO

∂z2
= −f1(T )CO2CSiO,(46b)

∂T

∂t
− ∂2T

∂z2
= h1f1(T )CO2

CSiO.(46c)

Defining the quantities w1(z, t) = CO2
− a

2CSiO and w2(z, t) = T + h1CSiO, we
find from (45)–(46) that

∂w1

∂t
− ∂2w1

∂z2
= 0, w1 → 1 as z →∞, w1 → −

a

2
as z → −∞,(47a)

∂w2

∂t
− ∂2w2

∂z2
= 0, w2 → 0 as z →∞, w2 → 1 + h1 as z → −∞.(47b)

Solving (47) with appropriate Heaviside functions centered at z = 0 as initial data,
we find

w1(z, t) =
1 + erf(η)

2
− a(1− erf(η))

4
= φ(η)− a

2
φ(−η),(48a)

w2(z, t) = (1 + h1)
1− erf(η)

2
= (1 + h1)φ(−η),(48b)

where η = z
2
√
t

is the similarity variable and φ(η) = 1
2 (1 + erf(η)). From the defini-

tions of w1 and w2, we determine that

CO2
= φ(η)− a

2
(φ(−η)− CSiO) and T = φ(−η) + h1 (φ(−η)− CSiO) .(49)

We now search for a solution of the form CSiO(z, t) = u(η, τ), η = z
2
√
t
, τ = t, and

using (49), this puts (46b) into the form

∂u

∂τ
− 1

4τ

(
∂2u

∂η2
+ 2η

∂u

∂η

)
= −f1 (φ(−η) + h1 (φ(−η)− u))

(
φ(η)− a

2
(φ(−η)− u)

)
u.

(50)

In the small time limit τ → 0+, a solution is possible only if

∂2u

∂η2
+ 2η

∂u

∂η
= 0 as τ → 0+,(51)
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MODELING MICROSILICA PARTICLE FORMATION 1025

and using the conditions (45), we find that u ∼ Φ(−η) as τ → 0+, that is, CSiO(z, t) ∼
φ(− z

2
√
t
), CO2

∼ φ( z
2
√
t
), and T ∼ φ(− z

2
√
t
) as t → 0+. Thus the heat and mass

transfer mechanism is diffusion away from the initial conditions.
In the long time limit τ → ∞, we must resolve a moving front which corre-

sponds to the reaction zone. Motivated in part by the application of similar ap-
proaches to other reaction-diffusion systems in the literature [5, 8, 9, 15], we con-
sider a WKB approximation in order to resolve the sharp front, taking the ansatz
u(η, τ) = exp(−v(η, τ)), with v(η, τ) = O(τβ) for some β > 0 to be determined. As
the phase term v grows, localized rapid decay of the exponential results in a moving
front. Using the WKB ansatz in (50), and neglecting the small parameter a (as we
did in section 3.1.3), (50) becomes

∂v

∂τ
+

1

4τ

((
∂v

∂η

)2

− ∂2v

∂η2
− 2η

∂v

∂η

)
= f1 ((1 + h1)φ(−η))φ(η) +R,(52)

where the error term R = [f1((1 + h1)φ(−η)− h1u)− f1((1 + h1)φ(−η))]φ(η) results
from omitting the explicit dependence of u in the argument of f1 term given in (50).
We expand v as

v(η, τ) = τβ
∞∑
`=0

τ−β`V`(η) as τ →∞,(53)

and placing this into (52), we obtain the dominant balances which determine β: the
time derivative term is O(τβ−1), the dominant diffusion term is O(τ2β−1), and the
reaction term is O(τ0). Of the three possibilities, only the balance between the
dominant diffusion term and the reaction kinetics is consistent with our assumptions
and gives a value of β > 0. Taking the resulting β = 1/2 and placing (53) into (52),
we find

1

4

(
dV0
dη

)2

+
τ−1/2

2

(
V0 − η

dV0
dη
− 1

2

d2V0
dη2

+
dV0
dη

dV1
dη

)
+O(τ−1)(54)

= f1 ((1 + h1)φ(−η))φ(η) +R.

Within the reaction zone, u = O(e−
√
τ ) and η = O(1). Since f1 in (15) is positive

and bounded with bounded derivative, there exists O(1) constant R0 > 0 such that
|R| < R0φ(η)u = O(e−

√
τ ), and hence R is exponentially small within the reaction

zone. To the left of the reaction zone, u = O(1) and η � 1. In this region, φ(η) < e−η
2

while 0 ≤ u ≤ φ(−η) ≤ 1, so |R| < [f1(1 + h1)− f1(0)]e−η
2

= O(e−η
2

), and hence R
is exponentially small in this region, as well. As the expansion (53) is algebraic, the
exponentially small term R is subdominant at each order in the expansion (53) and
can be ignored when solving (54).

At leading order, O(1), we see that (54) gives

1

4

(
dV0
dη

)2

= f1 ((1 + h1)φ(−η))φ(η).(55)

Solving for V0 and taking the positive root (so that the expansion in the WKB ansatz
gives decay rather than blow-up at large time), we find

V0(η) = 2

∫ η−η0

−∞

√
f1 ((1 + h1)φ(−σ))φ(σ)dσ.(56)

D
ow

nl
oa

de
d 

11
/0

6/
21

 to
 1

29
.6

7.
11

7.
91

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1026 GONZÁLEZ-FARIÑA, MÜNCH, OLIVER, AND VAN GORDER

Since information about the initial configuration is lost in this long time limit, we
have taken η−η0 as the upper limit of the integral (56). Exploiting such a shift in the
similarity variable can prove useful, and for our purposes we will use it to calibrate
the large-time asymptotics to numerical simulations of the exact solution.

We then have u(η, τ) = exp
(
−τ1/2V0(η) +O(1)

)
as τ → ∞. For large yet finite

τ , limη→−∞ u = 1 while limη→∞ u = 0, in agreement with the boundary conditions
on CSiO, so no additional scaling of u is required at leading order. The next order
correction, V1(η), will slightly correct the core structure near the moving front, but
we find agreement with numerics is already good at leading order and omit higher
order terms for the sake of brevity. Having determined the large-time asymptotics for
CSiO, we construct an approximate solution for (46),

CSiO(z, t) ∼ exp

(
−
√
tV0

(
z

2
√
t

))
, CO2(z, t) ∼ φ

(
z

2
√
t

)
, and

T (z, t) ∼ φ
(
− z

2
√
t

)
(1 + h1)− h1exp

(
−
√
tV0

(
z

2
√
t

))
as t→∞.

(57)

The latter two quantities follow from (49) and the fact that the temperature depends
on both diffusion and a source which involves the asymptotic solution for CSiO. We
solve the initial-boundary value problem (46) numerically by the method of lines,
discretizing the PDEs in space and integrating the resulting ODEs in time. We use
appropriate Heaviside functions centered at the origin as initial data in the numer-
ics. As there will in general be an offset in the large-time asymptotics as large time
expansions neglect initial data, we calibrate the asymptotics to the simulations by
choosing η0 to match both the asymptotic solution and the numerics at the unique
value of z where CSiO = 0.5 for t = 100, finding η0 = 0.32. In Figure 8 we com-
pare both the asymptotic solution (solid lines) and the numerical result (dashed
lines), showing that the agreement between the two solutions remains good as time
increases.

We observe the reaction front moving to the left as SiO is being consumed by
the combustion reaction with the much more plentiful (a � 1) oxygen. Due to its
relative abundance, the oxygen slowly spreads due to diffusion, with a relatively small
proportion of the oxygen reacting with SiO. The temperature behind the reaction
front grows rapidly over time due to the combustion reaction, before leveling off to
T ∼ 1 + h1 within the core region as the reaction slows. The hot reaction zone
broadens as the front moves toward the left, with much of the new reactions between
SiO and oxygen occurring near the front.

Fig. 8. Plot of the approximate asymptotic solution (57) (solid lines) and numerical simulation
(dashed lines) for SiO (black) and O2 (blue) concentrations, and temperature (red), as indicated in
the legend, from solving problem (46).
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4.2. Analytical solution of the particle density equation. As the param-
eter dp ≈ 10−6, molecular diffusion is negligible relative to the chemical and thermal
diffusivities in (18a), thus the resulting PDE is equivalent to (21a). Therefore, the
analytical solution is similar to the one found for the case of initially well-mixed chem-
ical species, but with an additional z dependence arising from the spatial variations
in CSiO2

and T . Let CSiO2
(z, tmin(z)) = Csat; then the solution is given by

n =
J(z, t1)

G(z, t1)
with s = 1 +G∗

∫ t

t1

G(z, τ)dτ, t1 > tmin(z),(58)

for t > tmin(z). The solution is n = 0 for t ≤ tmin(z). Notice that in this case we
need to be careful with the domain of definition of the solution since the value of tmin

depends on z.

4.3. Numerical solution of the fully coupled model for ζ1, ζ2 > 0. Simi-
lar to what was done in section 3.3 in the well-mixed case, we solve the system (14) for
initially separated initial data numerically and then use these results in the analytical
solution for n found in section 4.2. We follow the same numerical scheme outlined at
the end of section 4.1, that is, the method of lines. This method involves discretizing
all PDEs in (14) in space while leaving the time variable continuous, which leads to a
larger system of ODEs that is then numerically integrated in time. We plot numerical
solutions for CSiO2 and T in Figure 9 for both ζ1 = ζ2 = 0 (left) and ζ1, ζ2 > 0

(a) CSiO2 with ζ1 = ζ2 = 0 (b) CSiO2 with ζ1, ζ2 > 0

(c) T with ζ1 = ζ2 = 0 (d) T with ζ1, ζ2 > 0

Fig. 9. (a), (b) Concentration of SiO2 (CSiO2) and (c), (d) temperature variations in z, for
different times equally spaced from t = 0 to 100 as shown in the legend in (c). This is for the case
ζ1 = ζ2 = 0 in (a), (c) and ζ1, ζ2 > 0 in (b), (d). We choose a = 0.2, Csat = 0.1, with all other
parameters as given in Table 2.
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(right), comparing each side-by-side at different values of time. In both cases there
is initially zero concentration of SiO2, and after a critical time the concentration in-
creases and starts spreading slightly toward the left since it forms from the reaction
between O2 and SiO, moving left with the reaction region as shown in Figure 8. In
the case of ζ1, ζ2 > 0, where we include a sink of SiO2 due to the particle formation
(Figure 9(b)), the concentration of SiO2 decreases after time, since CSiO2

is used up
and rate limiting. In both cases the temperature increases with time; however, when
ζ1, ζ2 > 0, heat is released during the particle formation process, and the extent of the
temperature increase within the reaction zone is much greater. Therefore, although
the asymptotic solutions are reasonable for a qualitative understanding of the dynam-
ics, including the coupling of the particle growth back into the chemical-temperature
system, (ζ1, ζ2 > 0) is needed for quantitative accuracy, and to determine how fast
SiO2 is used in particle formation and growth. One can therefore view the ζ1 = ζ2 = 0
limit as modeling a situation where there is plentiful SiO2 which is never used up due
to a slow rate of particle growth, whereas the case of ζ1, ζ2 > 0 models the situation
where SiO2 is strongly rate limited and is used up in particle growth more rapidly
than it is produced in the reaction zone.

To better understand properties of the particle distribution, n, we use the nu-
merical solution for the chemistry-temperature system in the analytical formula (58)
for n and plot J∗n over s and z for various time values in Figure 10. The largest
particles (largest s) are located in the center of the reaction zone (as they have had
time to grow), whereas smaller, newly formed particles are located near the bound-
ary of the zone. The region with particles (n > 0) grows in spatial extent with the
reaction zone, and the highest density of particles is at the boundary near the reac-
tion front. In the case where there is coupling of the particle growth back into the
chemistry-temperature system, ζ1, ζ2 > 0, we observe a resurgence of small particles
being formed over the entire reaction zone, rather than just near the boundary (see
lower right panel of Figure 10). We hypothesize that this originates from the com-
paratively high temperatures arising in the fully coupled system, which results in the
last of the SiO2 being used up to rapidly make smaller particles, after which point
the process ends as SiO2 is depleted, with these particles growing no further. Our
theoretical results showing a build-up of smaller particles (in addition to the existing
larger particles) are in agreement with earlier experimental findings [26].

The mean and variance of the particle distribution are shown in Figure 11. The
mean size of the particles, as well as their variance, is larger when ζ1, ζ2 = 0, since in
this case there is more SiO2 produced than is used in particle formation. This is also
apparent from Figure 10. In contrast, when ζ1, ζ2 > 0, the SiO2 is used in finite time,
hence there is less material available for particle growth, and smaller particles result.
Panels on the right-hand side of Figure 11 are akin to spatial generalizations of the
well-mixed case shown in Figure 5(e).

5. Discussion. Motivated by microsilica particle formation inside a silicon fur-
nace hood, we derived a mathematical model consisting of a heat and mass transfer
system associated with two dominant chemical reactions taking place within the fur-
nace coupled to a population balance equation for microsilica particle formation and
growth. The material consumed and heat released due to particle formation was also
coupled back to the relevant mass and energy conservation equations. After simpli-
fying the geometry, we studied a one-dimensional model in space for the dynamics
near, within, and around the reaction zone or flame. Making a variety of simplifying
assumptions and considering various cases for the coupling of particle growth with
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Fig. 10. Heat maps for J∗n with respect to s and z, for different values of time. This is for
the case ζ1 = ζ2 = 0 (left) and ζ1, ζ2 > 0 (right). We choose a = 0.2, Csat = 0.1, with all other
parameters as given in Table 2.

the heat and mass transfer system, we arrived at an assortment of asymptotic and
numerical results which give insight into the physical processes resulting in microsilica
formation.

We first considered a configuration where the chemical species are well-mixed,
and hence diffusion plays no role, with this case modeling dynamics most valid on a
small lengthscale within the reaction zone. In the case where the mass and energy
equations are coupled into the particle growth equation, but not the other way around
(ζ1 = ζ2 = 0), we obtained asymptotic solutions for small a, that is, for an oxygen rich
environment (which is the physically relevant limit), and these compared favorably
with numerical simulations. The SiO reaction occurs much faster than the CO reac-
tion, and if enough oxygen is available, all of the initial SiO will be consumed, hence
the same number of moles of SiO2 will be produced. As the sink term in the mass
conservation was neglected, particles continued to grow since the particle mass was
negligible to the total mass of SiO2 remaining. However, when the particle growth
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Fig. 11. Heat maps for µ and σ2 from top to bottom with respect to t and z. The figures on
the left are for the case ζ1 = ζ2 = 0 and the ones on the right for ζ1, ζ2 > 0. We choose a = 0.2,
Csat = 0.1, with all other parameters as given in Table 2.

process was coupled back to the mass and energy conservation (ζ1, ζ2 > 0 in which
case only numerical simulations were possible), we observed that the number and size
of particles formed was limited, with particle growth ending once the mass of SiO2

was depleted. Therefore, the asymptotics obtained for ζ1 = ζ2 = 0 and a � 1 are
most useful either for understanding early-time dynamics (before SiO2 is depleted due
to particle formation and growth) or in the regime where O2 is plentiful, and the rate
of depletion of SiO2 is small (i.e., when the reaction R1 in (1) produces a sufficiently
large quantity of SiO2 so that it is not depleted rapidly by the sink term (10)). The
sink term (10) therefore sets the timescale for the fully coupled system. An additional
finding was that our solutions result in a bimodal size distribution of microsilica par-
ticles, with a submicron range of particle sizes containing most of the particle mass,
and a micron range with fewer but much larger particles, and this finding is consistent
with experimental results present in the literature [10].

In the second configuration that we studied, the chemical species are initially
spatially separated, with O2 plentiful on one side of the domain and the other chem-
ical species plentiful on the other side of the domain. Given an initial temperature
distribution characteristic of what is found in a cross section of a furnace, reactions
occur within a narrow reaction zone. As O2 is the most plentiful of the reactants, the
reaction zone will propagate toward the other fuel components through diffusion. We
observe that the dynamics within the core of the reaction zone are indeed similar to
those of the spatially well-mixed case, verifying our intuition that the well-mixed case
is indeed a simple yet effective representation of the dynamics within the flame. The
longest-lived and largest particles arise in the center of the reaction zone, where SiO2

is most abundant, and these match best with the predictions from the well-mixed
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limit. Meanwhile, the full spatial model is useful for better understanding the distri-
bution of particles sizes over space and time, with gradually smaller particles being
produced toward the boundary of the reaction zone.

We conclude that O2 availability and a sufficiently high temperature are essential
for the combustion reactions to occur, strongly influencing both the width of the
reaction zone and the particle size distribution. A decrease in the availability of
O2 results in a more narrow reaction zone and hence limits SiO2 production over a
given time interval. Regarding industrial scale processes which motivate our work, this
finding suggests operators to provide adequate inflow of O2, particularly if larger SiO2

particles are sought. In addition, we find that increasing the saturation or equilibrium
concentration of SiO2 (for instance, by decreasing T ) will result in a decrease in mean
particle size, although this parameter depends on other environmental factors, and
may be more challenging to control in practical applications.

Our work provides a qualitative underlying of the physical processes at play when
microsilica is produced, yet in order to improve the quantitative agreement with
experiments and real-world furnace observations, there are some extensions to con-
sider in future work. The most immediate extension is to couple the model we have
developed to a momentum equation for the flow of gas within the furnace. While we
have considered the velocity to be uniform, and hence scaled it out of the problem, the
fluid problem is in practice more dynamic, with preliminary simulations suggesting the
emergence of eddies and related localized structures, which may trap particles, allow-
ing them to recirculate through reaction zones multiple times before they are ejected
from the furnace through the exhaust pipe. In related applications, microscopic zones
where individual particles grow may be several orders of magnitude smaller than
macroscopic turbulent eddies [40], with the reaction zones highly localized within the
turbulent flow. This suggests that the narrow reaction zones we study will likely still
exist within the larger flow, embedded within boundary layers formed near the inter-
face of O2 and SiO. There is recent work modeling fine-particle formation in turbulent
flames [29], large-scale simulation of aerosol nucleation and growth in turbulent mix-
ing layers [44], with Favre-averaged population balance equations being used in many
cases [45], and some of these approaches may prove useful. More complex and realistic
geometries for the furnace should also be considered, since the geometry of the prob-
lem domain will influence the flow problem, even if domain geometry does not strongly
modify dynamics within the reaction zone, which is orders of magnitude smaller.
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