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Abstract

The axisymmetric flow of a thin liquid film is considered for the problem of a vertically rotating disk that is partially
immersed in a liquid bath. A model for the fully three-dimensional free boundary problem of the rotating disk, that drags a
thin film out of the bath is set up. From this, a dimension-reduced extended lubrication approximation that includes the
meniscus region is derived. This problem constitutes a generalization of the classic drag-out and drag-in problem to the
case of axisymmetric flow. The resulting nonlinear fourth-order partial differential equation for the film profile is solved
numerically using a finite element scheme. For a range of parameters steady states are found and compared to asymptotic
solutions. Patterns of the film profile, as a function of immersion depth and angular velocity are discussed.
� 2007 Elsevier Inc. All rights reserved.
1. Introduction

The problem of rotating thin film flows has been investigated extensively, both theoretically and experimen-
tally, due to the many technological applications. Starting with the work by Emslie et al. [1], various aspects of
this type of surface tension driven flow, influencing the shape and stability of the film, have been studied.
These include for example non-Newtonian effects the paper by [2], for evaporation [3] and Coriolis force
[4,5], see also [6] for a recent experimental study. As with those studies most of them dealt with a configuration
where the fluid layer is moving on a horizontally rotating disk. Making use of the large scale separation
between the small thickness of the film and the length scale of the evolving patterns, thin film models where
used to derive dimension-reduced models of the underlying three-dimensional free boundary problems.

For the situation of a disk that is partially immersed in a bath of liquid and rotating about the horizontal
axis, thereby dragging out a thin film onto the disk (see Fig. 1), there are far fewer studies even though this
configuration is typical for many applications. For example, for oil disk skimmers, which is used as an effective
device for oil recovery and as an alternative to toxic chemical dispersants, used after an offshore oil spill.
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Fig. 1. Configuration of a single disk within a PET-reactor.
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Another application is the fluid dynamical aspects in connection with the synthesis of polyethylenterephthalat
(PET) in polycondensation reactors. These typically consist of a horizontal cylinder that is partially filled with
polymer melt and contains disks rotating about the horizontal axis of the cylinder, thus picking up and spread-
ing the melt in form of a thin film over a large area of the disks.

These type of problems always involve a meniscus region, that connects the thin film to the liquid bath and
a spacially oscillating region shortly before the film is dragged into the bath again. In these two regions the
scale separation is not large anymore and hence the lubrication approximation is not valid there. Nevertheless,
the meniscus does play the crucial role of fixing the height of the dragged out film and therefore both, the
meniscus region and similarly the drag-in region that connecting the thin film to the liquid bath must be
accounted for in a dimension-reduced model, which we will derive in this paper. The classic and far simpler
setting of the free boundary problems for falling and rising thin film flows on vertical as well as inclined planes
has been investigated as early as in the work by Landau and Levich [7]. Their work lead to the prediction of
the height and shape of the thin film emerging out of the meniscus. The results were improved by Wilson [8]
and for the case of a Marangoni-driven rising film by [9] and Münch [10], using systematic asymptotic analysis
in the limit of small capillary numbers. Such asymptotic analyses can be applied to more complex situations
such as the problem we consider here for the vertically rotating disk.

Previous studies for this problem was performed by Christodoulo et al. [11]. The employed the analysis of
the meniscus region by Wilson [8] for the problem of flow control for rotating oil disk skimmers. Their study
did not extend further into the thin film region on the remainder of the disk. However, for many applications it
is important to answer questions for example on the maximum surface area of the film profile or the optimum
volume of liquid that is dragged out and spread on the disk, for which the predictions resulting from the sim-
ple drag-out study will not be sufficient. Up to now no complete model for the vertically rotating disk, includ-
ing its numerical solution has appeared. This will be the topic of this paper.

In Section 2 we set up the corresponding three-dimensional free boundary problem. A fully three-dimen-
sional analysis of such flows represents a very time consuming task, analytically and numerically. To be able
to perform systematic parameter studies we therefore exploit the large separation of scales to obtain a dimen-
sion-reduced lubrication model. This model will then be extended to match to the flow field in the meniscus
region. For the resulting model we develop in Section 3 a weak formulation and a corresponding finite element
discretization for the full dynamical problem. Since we want to address here issues of maximum surface area of
the film profile or the optimum volume of liquid that is dragged out, we are interested mainly in the long-time
behavior. This will be the focus of the following sections. In Section 4 we solve and discuss for a range of
parameters the emerging steady state solutions. Their shapes near the meniscus region are then compared
Please cite this article in press as: K. Afanasiev et al., Thin film dynamics on a vertically rotating disk ..., Appl. Math.
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to the asymptotic solution of the corresponding drag-out problem. Away from the liquid bath the film profile
is compared to asymptotic solutions, by using the methods of characteristics. For both regions excellent agree-
ment is found. Finally, we discuss the novel patterns for the film profile as the immersion depth, or the angular
velocity is varied.

2. Formulation

2.1. Governing equations

We consider the isothermal flow of an incompressible, viscous liquid on a vertical disk rotating in the ver-
tical plane and partially immersed in the liquid. We assume that the disk of radius R rotates with the angular
velocity X about a horizontal axis, which has distance a to the bath, see Fig. 1.

To formulate the problem, we introduce cylindrical polar coordinates ðr; h; zÞ in the laboratory frame of
reference. We let the liquid velocity vector have components ðu; v;wÞ and let x denote the angular velocity
vector with components ð0; 0;XÞ. The momentum balance equations can be expressed as
Plea
Mod
q ut þ uur þ
v
r

uh �
v2

r
þ wuz

� �
¼ �pr þ l Du� 2vh

r2
� u

r2

� �
� qg sin h; ð2:1aÞ

q vt þ uvr þ
v
r

vh þ
uv
r
þ wvz

h i
¼ � ph

r
þ l Dvþ 2uh

r2
� v

r2

� �
� qg cos h; ð2:1bÞ

q wt þ uwr þ
v
r

wh þ wwz

h i
¼ �pz þ lDw; ð2:1cÞ
where
Df ¼ 1

r
ðrfrÞr þ

fhh

r2
þ fzz: ð2:2Þ
We let q, l and p denote the density, dynamic shear viscosity and the pressure of the liquid, respectively. The
external force here is gravity and g denotes the gravitational constant.

The continuity equation is
1

r
ðruÞr þ

1

r
vh þ wz ¼ 0: ð2:3Þ
For the boundary condition at the surface of the disk, i.e. z = 0, that rotates with the velocity X, we impose the
no-slip condition for u and v and the impermeability condition for w. Hence, we have
u ¼ 0; v ¼ rX; w ¼ 0; ð2:4Þ
respectively.
At the free boundary z ¼ hðr; h; tÞ we require the normal stress condition
nPn ¼ 2rj; ð2:5Þ
the tangential stress conditions
nPti ¼ 0; where i ¼ 1; 2 ð2:6Þ
and the kinematic condition
ht ¼ w� ujhhr �
1

r
vjhhh; ð2:7Þ
which can also be written, upon using the continuity equation, as
ht ¼ �
1

r
o

or
r
Z h

0

udz� 1

r
o

oh

Z h

0

vdz: ð2:8Þ
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The normal and the tangential vectors in radial and angular direction are given by
Plea
Mod
n ¼ ð�hr;�hh=r; 1Þ
ð1þ h2

r þ h2
h=r2Þ1=2

; t1 ¼
ð1; 0; hrÞ

ð1þ h2
h=r2Þ1=2

; t2 ¼
ð0; 1; hh=rÞ
ð1þ h2

h=r2Þ1=2
; ð2:9Þ
respectively. The stress tensor P is symmetric and has the components
Prr ¼ �p þ 2lur; Phh ¼ �p þ 2l
vh

r
þ u

r

� �
; Pzz ¼ �p þ 2lwz;

Prh ¼ l
uh

r
þ vr �

v
r

� �
; Phz ¼ l vz þ

wh

r

� �
; Prz ¼ lðwr þ uzÞ:

ð2:10Þ
Finally, we assume surface tension to be constant and denote it by r and the mean curvature is given by
j ¼ 1

2
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rhr
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h=r2Þ1=2

 !
: ð2:11Þ
Using this in Eqs. (2.5) and (2.6) we obtain the boundary conditions for the normal stress
�p þ 2l

1þ h2
r þ h2
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r
þ vr �
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� � hrhh
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� � hh

r
þ urh

2
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2
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r3
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rhr

ð1þ h2
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r
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oh
hh=r

ð1þ h2
r þ h2

h=r2Þ1=2

" #
; ð2:12Þ
the tangential stress condition in radial direction
2ðwz � urÞhr �
uh

r
þ vr �

v
r

� � hh

r
þ ðwr þ uzÞð1� h2

r Þ � vz þ
wh

r

� � hrhh

r
¼ 0 ð2:13Þ
and the tangential stress condition in angular direction
2 wz �
vh

r
� u

r

� � hh

r
� uh

r
þ vr �

v
r

� �
hr þ vz þ

wh

r

� �
1� h2

h

r2

� �
� ðwr þ uzÞ

hrhh

r
¼ 0: ð2:14Þ
2.2. Lubrication approximation

The solution of the above three-dimensional free boundary problem represents, analytically and numeri-
cally a time consuming task for making accurate parameter studies. The key idea that we make use of here
in order to obtain a mathematically and numerically tractable problem, is the exploitation of the scale sepa-
ration in most parts of this flow problem.

We begin by introducing dimensionless variables and set
r ¼ L�r; h ¼ �h; z ¼ H�z; u ¼ U�u; v ¼ U�v; w ¼ W �w; p ¼ P�p; t ¼ T �t: ð2:15Þ
The characteristic velocity U is set by the velocity of the rotating disk. For given radius R of the disk we let
U ¼ RX: ð2:16Þ
We determine the scale for the characteristic height H by balancing the dominant viscous term with gravita-
tional term in the u-momentum equation, which yields
H ¼
ffiffiffiffiffiffiffi
lU
qg

s
: ð2:17Þ
Furthermore, we require that the pressure must also balance the dominant viscous term, so that
P ¼ lUL

H 2
ð2:18Þ
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and that surface tension is important, so that from the normal stress boundary condition we find
Plea
Mod
P ¼ rH

L2
: ð2:19Þ
This yields the scale for L as
L ¼ H
lU
r

	 
1=3
ð2:20Þ
and the time scale is fixed by T ¼ L=U .
We assume that the liquid film is very thin and that the velocity in the direction normal to the disk is much

smaller than along the disk. We let
e ¼ H
L
� 1 ð2:21Þ
be a small parameter and W ¼ eU . Note that this also means that the capillary number Ca is small,
Ca1=3 ¼ lU
r

� �1=3

¼ H
L
� 1: ð2:22Þ
With these scales the non-dimensional equations are
e2Re ut þ uur þ
v
r

uh �
v2

r
þ wuz

� �
¼ �pr þ uzz � sin hþ e2 ðrurÞr
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þ uhh
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� 2vh
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� �
; ð2:23aÞ
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r
þ vzz � cos hþ e2 ðrvrÞr

r
þ vhh

r2
þ 2uh

r2
� v

r2

� �
; ð2:23bÞ

e4Re wt þ uwr þ
v
r

wh þ wwz

h i
¼ �pz þ e2wzz þ e4 ðrwrÞr

r
þ whh

r2

� �
; ð2:23cÞ
where the Reynolds number is Re ¼ qUL=l and we have dropped the ‘�’s.
The boundary conditions at the disk, z = 0 are
u ¼ 0; v ¼ ar; w ¼ 0; ð2:24Þ

where a ¼ L=R.

The boundary conditions at the free liquid surface z ¼ hðr; h; tÞ are the conditions for normal and tangential
stresses
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1þ e2h2
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þ e2urh
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þ 1
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; ð2:25Þ

2e2ðwz � urÞhr � e2 uh

r
þ vr �

v
r

� �hh

r
þ ðe2wr þ uzÞð1� e2h2

r Þ � e2 vz þ e2 wh

r

� �hrhh

r
¼ 0; ð2:26Þ

2e2 wz �
vh

r
� u

r

� �hh

r
� e2 uh

r
þ vr �

v
r

� �
hr þ vz þ e2 wh

r

� �
1� e2 h2

h

r2

� �
� e2ðe2wr þ uzÞ

hrhh

r
¼ 0; ð2:27Þ
and the kinematic boundary condition
oh
ot
¼ � 1

r
o

or
r
Z h

0

udz
� �

� 1

r
o

oh

Z h

0

vdz
� �

: ð2:28Þ
2.3. Region near the liquid bath

The scalings introduced so far are appropriate for the thin film region away from the liquid bath. This
yields a leading order theory that retains the terms that are dominant for the film profile on the disk, where
slopes are small. Towards the liquid bath the film profile becomes (in fact infinitely) steep and a lubrication
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scaling is no longer appropriate. Rather, the profile is governed by the balance of gravity and surface tension
forces, in fact, much as in a static meniscus. Hence, the appropriate length scales for all spatial coordinates is
the capillary length scale lcap ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðqgÞ

p
.

This length scale can be easily expressed in terms of the lubrication length scales H and L times an appro-
priate power of e, so that the new meniscus length scales (denoted by tildes) become
Plea
Mod
eH ¼ e�3=2H ; eL ¼ e�1=2L: ð2:29Þ

The parallel velocity scale is unchanged and equal to U ¼ RX, while the normal is now U instead of eU . The
time scale
eT ¼ eL
U
¼ e�1=2T ð2:30Þ
is again a result of the kinematic condition. The pressure scale is determined by surface tension, and we find
eP ¼ ffiffiffiffiffiffiffiffi
rqg
p ¼ e�1=2P : ð2:31Þ
Hence, all variables can be transformed to meniscus scalings simply by rescaling with powers of e, according to
r ¼ e�1=2~r; z ¼ e�3=2~z; h ¼ e�3=2~h; u ¼ ~u; v ¼ ~v; w ¼ e�1 ~w; t ¼ e�1=2~t; p ¼ e�1=2~p: ð2:32Þ

Inserting these scalings into (2.23a) and (2.28), yields the rescaled equations:
e3Re ut þ uur þ
v
r

uh �
v2

r
þ wuz

� �
¼ �pr þ e3uzz � sin hþ e3 ðrurÞr

r
þ uhh

r2
� 2vh

r2
� u

r2

� �
; ð2:33aÞ

e3Re vt þ uvr þ
v
r

vh þ
uv
r
þ wvz

h i
¼ � ph

r
þ e3vzz � cos hþ e3 ðrvrÞr

r
þ vhh

r2
þ 2uh

r2
� v

r2

� �
; ð2:33bÞ

e4Re wt þ uwr þ
v
r

wh þ wwz

h i
¼ �pz þ e3wzz þ e3 ðrwrÞr

r
þ whh

r2

� �
; ð2:33cÞ
where the Reynolds number is Re ¼ qUL=l ¼ e1=2qUeL=l ¼ e1=2 ~Re and where we have dropped the ‘~’s.
The boundary conditions at the disk, z = 0 are
u ¼ 0; v ¼ âr; w ¼ 0; ð2:34Þ

where â ¼ ‘cap=R.

The boundary conditions for normal and tangential stresses become at z ¼ hðr; h; tÞ:
� p þ 2e3

1þ h2
r þ h2

h=r2

uh

r
þ vr �

v
r

� � hrhh

r
� ðwr þ uzÞhr � vz þ

wh

r

� � hh

r
þ urh

2
r þ ðvh þ uÞ h

2
h

r3
þ wz

� �
¼ 1

r
o

or
rhr

1þ h2
r þ h2

h=r2
	 
1=2

þ 1

r
o

oh
hh=r

ð1þ h2
r þ h2

h=r2Þ1=2

" #
; ð2:35Þ

2ðwz � urÞhr �
uh

r
þ vr �

v
r

� � hh

r
þ ðwr þ uzÞð1� h2

r Þ � vz þ
wh

r

� � hrhh

r
¼ 0; ð2:36Þ

2 wz �
vh

r
� u

r

� � hh

r
� uh

r
þ vr �

v
r

� �
hr þ vz þ

wh

r

� �
1� h2

h

r2

� �
� ðwr þ uzÞ

hrhh

r
¼ 0: ð2:37Þ
We now retain all terms that appear to leading order either in the lubrication or the meniscus scalings. Note
that, in the meniscus scalings, the velocity field decouples to leading order from the pressure field that deter-
mines the surface profile. Hence the dominant terms that govern h in these scalings consists of the pressure and
gravity terms, and of surface tension, based on the full nonlinear expression for curvature. All these terms al-
ready appear also in the lubrication scaling, except for the nonlinear curvature. Hence our approximate model
retains essentially the terms from a leading order lubrication theory and the nonlinear curvature term, i.e., in
the bulk we have,
0 ¼ �pr þ e3uzz � sin h; 0 ¼ � ph

r
þ e3vzz � cos h; 0 ¼ �pz: ð2:38Þ
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Boundary conditions at z = 0 are given by (2.34), and at z ¼ h:
Plea
Mod
�p ¼ 1

r
o

or
rhr

ð1þ h2
r þ h2

h=r2Þ1=2
þ 1

r
o

oh
hh=r

ð1þ h2
r þ h2

h=r2Þ1=2

" #
; uz ¼ 0; vz ¼ 0: ð2:39Þ
Integrating first pz ¼ 0 yields a solution that does not depend on z, and the parallel components for the veloc-
ity can easily be found to be
u ¼ e�3ðpr þ sin hÞðz2=2� hzÞ; v ¼ e�3ðph=r þ cos hÞðz2=2� hzÞ þ âr: ð2:40Þ

We plug this into the mass conservation relation (2.8)
ht ¼ �
1

r
o

or
r
Z h

0

udz� 1

r
o

oh

Z h

0

vdz
and obtain, after rescaling time according to t ¼ ��3t0 (dropping the prime):
ht ¼
1

r
o

or
r

h3

3
ðpr þ sin hÞ

� �
þ 1

r
o

oh
h3

3
ðph=r þ cos hÞ � bXrh

� �
; ð2:41Þ
where we have introduced X̂ ¼ lX=
ffiffiffiffiffiffiffiffi
qgr
p

.
Far away from the disk we expect the liquid to be at rest, since the liquid flow diminishes. The shape of the

liquid is governed by the hydrostatic balance, so that the liquid surface is flat, i.e. its curvature is zero, and it is
orthogonal to the direction of the gravitational force. Therefore we require that the function h that describes
the surface tends to infinity as the far field level of the reservoir is approached (r! �a= sin h), and the non-
linear curvature tends to zero. Therefore, we have
hðr; hÞ ! 1; pðr; h; tÞ ! 0 as r! �a= sin h: ð2:42Þ

Note at this point, that for the numerical simulation, the domain has to be cut-off at a slightly higher level
r ¼ �a�= sin h. In the numerics, we enforce zero curvature at the cut-off of the domain, i.e., set p = 0 there.

Furthermore, the computational domain is intended to be an approximation of a very large reservoir,
which quickly equilibrates any mass change that occurs if liquid is transferred onto or from the disk. We cap-
ture this by setting h to a fixed value (h = 1) at the cut-off r ¼ �a�= sin h. We checked that the results of the
simulations were converged, i.e. changing the value of h at the cut-off did not affect the results significantly.
Summarizing, we use the following conditions for the cut-off domain:
h ¼ 1; p ¼ 0 at r ¼ �a�= sin h: ð2:43Þ

We remark here, that in a converged result, a� and a are very close values, so that in the following presentation
of the results, we will not distinguish these two quantities, and drop the �.

For the boundary conditions towards the inner (r ¼ Rin) and outer (r ¼ Rout) confinements of the disk we
assume that both, the reservoir and the disk to be enclosed in a cylinder that tightly surrounds the disk, which
is an arrangement that reflects the typical situation inside a PET reactor. No liquid is injected or lost at the
(solid) axis, nor through the cylinder; therefore, we set the mass flux to zero, which is the significance of
the following boundary conditions
pr þ sin h ¼ 0; as r! Rin;Rout: ð2:44Þ

A second condition is required. At the axis, the liquid surface meets the solid axis, forming a contact-line,
where it is natural to impose a contact angle condition. We set the contact angle to 90�, i.e. hr ¼ 0, which
is the easiest value to implement in our finite element approach. Hence, we have
hr ¼ 0; as r! Rin;Rout: ð2:45Þ
3. Numerical method

We now give a brief description of the numerical method used to solve problems (2.41) and (2.45). The
meniscus equations may be rewritten for simplicity as
se cite this article in press as: K. Afanasiev et al., Thin film dynamics on a vertically rotating disk ..., Appl. Math.
ell. (2007), doi:10.1016/j.apm.2007.06.020
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Plea
Mod
r
oh
ot
¼ oQr

or
þ oQh

oh
; ð3:1Þ

� 1

2
rp ¼ oqr

or
þ oqh

oh
; ð3:2Þ
where fluxes Qr; qr and Qh; qh in r and h directions are defined as
Qr ¼ r
h3

3
ðpr þ sin hÞ; qr ¼ rhrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h2
r þ h2

h=r2

q ; ð3:3Þ

Qh ¼ h3

3

1

r
ph þ cos h

� �
þ rXh; qh ¼ hh

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

r þ h2
h=r2

q ; ð3:4Þ
respectively. For the outlet boundary condition we take natural boundary condition, i.e. zero fluxes in the
direction of a normal vector.
Qrðr; h; tÞ ¼ 0; r! Rout; ð3:5Þ
qrðr; h; tÞ ¼ 0; r! Rout: ð3:6Þ
Similarly, we choose for the conditions towards the origin the natural boundary conditions
Qrðr; h; tÞ ¼ 0; r! Rin; ð3:7Þ
qrðr; h; tÞ ¼ 0; r! Rin: ð3:8Þ
For the immersing boundary condition, where the thin film connects to the liquid bath we let the curvature of
the free surface vanish. Hence, we require the boundary conditions (2.42) and (2.43).

The weak formulation for (3.1) and (3.2) under the boundary conditions (3.5), (3.8) and (2.42), (2.43) can be
derived by multiplying (3.1) and (3.2) by a suitable test function /, integrating over the domain K ¼ fðr; hÞ :
Rin < r < Rout and r sin h > �ag and evaluating at the boundary. Then the weak formulation of the boundary
value problem for (3.1,3.2) requires us to seek ðh; pÞ 2 H 1ðKÞ, such that
Z

K
r
oh
ot

/dK ¼ �
Z

K
Qr o/

or
þ Qh o/

oh

� �
dKþ

Z
C

Qr/nr dC; ð3:9Þ

1

2

Z
K

rp/dK ¼
Z

K
qr o/

or
þ qh o/

oh

� �
dK�

Z
C

qr/nr dC ð3:10Þ
for all functions / 2 V ¼ W 1
2ðKÞ. Respecting the boundary conditions pr ¼ 0; hr ¼ 0, the following integral

equations
Z
K

r
oh
ot

/dK ¼ �
Z

K
Qr o/

or
þ Qh o/

oh

� �
dKþ

Z
C

rh3

3
B cos h/

� �
dC; ð3:11Þ

1

2

Z
K

rp/dK ¼
Z

K
qr o/

or
þ qh o/

oh

� �
dK ð3:12Þ
will now be discretised. For the discretisation of the problem we divide the domain K in non-overlapping tri-
angular elements Ke and replace H 1ðKÞ and V ðKÞ by finite dimensional subspaces S and V h, respectively. We
also choose / ¼ /i; i ¼ 1; 2; . . . ;N with N denoting the number of nodes in the element Ke and let
heðr; h; tÞ ¼
X
i¼1;N

hiðtÞ/iðr; hÞ; ð3:13Þ

peðr; h; tÞ ¼
X
i¼1;N

piðtÞ/iðr; hÞ; ð3:14Þ
be the functions that approximate h and p on this element, respectively. The domain integrals can now be re-
placed by the sum of integrals taken separately over the elements of triangulation.

The details of the finite element scheme is described in the following section.
se cite this article in press as: K. Afanasiev et al., Thin film dynamics on a vertically rotating disk ..., Appl. Math.
ell. (2007), doi:10.1016/j.apm.2007.06.020
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3.1. Finite element scheme

Let the time interval ½0; T � be subdivided into intervals with the time step s, tn ¼ tn�1 þ s; n ¼ 1; 2; . . . ;NT

and denote
Plea
Mod
hn ¼

h1ðtnÞ
h2ðtnÞ

..

.

hN ðtnÞ

0BBBB@
1CCCCA; pn ¼

p1ðtnÞ
p2ðtnÞ

..

.

pNðtnÞ

0BBBB@
1CCCCA:
By substitution of Eqs. (3.13) and (3.14) into the weak formulation and its implicit backward Euler discreti-
sation, expressions (3.11) and (3.12) can be written in matrix notation as the following finite nonlinear system
Lhnþ1 þ s½Crgh
1ðhnþ1; pnþ1Þ þ Chgh

2ðhnþ1; pnþ1Þ þ sðhnþ1Þ� ¼ Lhn; ð3:15Þ
Lpnþ1 ¼ 2½Crgp

1ðhnþ1Þ þ Chgp
2ðhnþ1Þ�; ð3:16Þ
where matrices and vectors are defined by
Lij ¼
Z

Ke

r/i/j dK; ð3:17Þ

Cr
ij ¼

Z
Ke

o/i

or
/j dK; ð3:18Þ

Ch
ij ¼

Z
Ke

o/i

oh
/j dK; ð3:19Þ

Mij ¼
Z

Ke

/i/j dK; ð3:20Þ

gh
1 ¼

rw
3

qp
r þ B cos h

	 

; ð3:21Þ

gh
2 ¼

w
3

qp
h

r
� B sin hþ rKh

� �
; ð3:22Þ

gp
1 ¼

rqh
r

ð1þ ðqh
r Þ

2 þ ðqh
hÞ

2
=r2Þ

1
2

; ð3:23Þ

gp
2 ¼

qh
h

r2ð1þ ðqh
r Þ

2 þ ðqh
hÞ

2
=r2Þ

1
2

; ð3:24Þ

w ¼M�1a; ð3:25Þ

ai ¼
X
m;l;j

hmhlhj

Z
K

/m/l/j/i dK; ð3:26Þ

Y r ¼M�1ðCrÞT ; Y h ¼ M�1ðChÞT ; ð3:27Þ
qh

r ¼Y rh; qh
h ¼ Y hh; ð3:28Þ

qp
r ¼Y rp; qp

h ¼ Y hp; ð3:29Þ

si ¼
0; Ce :¼ Ke

T
C ¼ 0;R

Ce

h3
i

3
Br cos h

� �
dC; Ce 6¼ 0:

(
ð3:30Þ
Evaluation of matrix and vector coefficients: The various element matricies and vectors expressed by the
equations above are spatial integrals of the various interpolation functions and their derivatives. These inte-
grals can be evaluated analytically. The remaining ones are obtained using numerical quadrature procedure.
Matrix and vector coefficients for triangular elements are evaluated using a seven-point quadrature scheme for
quadratic triangles.
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Triangulation: We use the six node quadratic triangular elements as shown in Fig. 2 and following basic
functions written in the so called natural coordinates Li; i ¼ 1; 2; 3 based on area ratios (see in [12]). The grids
were generated by using the automatic mesh generator [13] based upon the Delaunay refinement algorithm.

Assembling the global equation system: The contributions of the element coefficient matrices and vectors
(3.17), (3.30) are added by the common global node for the assembling of the global nonlinear equation system
similar to [14]. The global equation system can be written in the form
Plea
Mod
RðUÞ ¼ F ; ð3:31Þ
where U is constructed from the vectors hnþ1 and pnþ1 in all grid nodes.
Time stepping: The time stepping algorithm is customarily implemented with a Newton–Raphson equilib-

rium iteration loop. In the each time step the following nonlinear problem must be solved
GðUÞ :¼ RðUÞ � F ¼ 0: ð3:32Þ
The linearized equation can be written on the basis of the Taylor expansion
GðUiþ1Þ ¼ GðU iÞ þ
oG
oU

����
U¼Ui|fflfflfflffl{zfflfflfflffl}

KðUiÞ

DU iþ1:
At each step of Newton’s method, some direct or iterative method must be used to solve the large linear alge-
bra problem produced by the two-dimensional linearized operator
KðU iÞDUiþ1 ¼ �GðU iÞ; ð3:33Þ
with U iþ1 ¼ U i þ DU iþ1: ð3:34Þ
Here, we find it convenient to use the non-symmetric multi-frontal method for large sparse linear systems from
the packet UMFPACK [15].

4. Steady states

4.1. The half-immersed disk

We first discuss the case for the half-immersed disk at some length and compare our numerical results to
asymptotic solutions near the liquid bath and in the thin film region of the disk before we consider different
immersion depths.

4.1.1. Numerical results

We consider now a disk rotating about the horizontal axis with a constant angular speed X and being half-
immersed in the liquid bath. The triangulation of the computational domain is performed in cylindrical coor-
dinates r; h. The finite element mesh, used here, consists of 9533 triangular elements and 19522 nodes. The
mesh is refined on the boundary Cpool to resolve the meniscus region. The steady state for Eqs. (3.1, 3.2) is
se cite this article in press as: K. Afanasiev et al., Thin film dynamics on a vertically rotating disk ..., Appl. Math.
ell. (2007), doi:10.1016/j.apm.2007.06.020
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obtained via time integration with an adaptive time step. As the stopping criterion for the Newton iterations a
general threshold for the residuum jjGðUÞjj < 10�13 is applied.

Without loss of generality we choose the following values for the parameters throughout the paper:
l ¼ 1 Pa s, q = 1000 kg/m3, r ¼ 72:7e� 3 N=m, R ¼ 2:723e� 2 m, g = 9.81 m/s2. For the initial state we
choose a partially constant profile on the top of the disk and a partially parabolic one towards the liquid bath,
as shown in the Fig. 3. For the given U ¼ 7:917 e� 4 m=s and R we find the angular velocity
X ¼ U=R ¼ 0:02908 s�1 ¼ 0:277 rpm, where the last equality is obtained by multiplying with 60=2p. For these
values the capillary number is small Ca = 0.01089, the length scales are eH ¼ eL ¼
lcap ¼ ðr=qgÞ1=2 ¼ 2:723e� 3 m, bX ¼ 1:089e� 3 and the dimensionless radius of the disk is 10. The resulting
steady state is shown on the top of Fig. 3. It shows the an increase of thickness as the radius and hence the
angular velocity increases, as expected. With increasing h gravity causes the film to move downwards resulting
in a ridge of fluid, that thickens with increasing h and reenters the bath with a typical capillary ridge. If we
increase X, while keeping the other dimensional parameters and disk radius fixed, neither the length scales
nor the dimensionless radius of the disk change, but U, the capillary number and bX do. As examples we let
Plea
Mod
X ¼ 1:0 rpm:U ¼ 0:2851e� 2 m=s; Ca ¼ 0:03922; bX ¼ 3:922e� 3;

X ¼ 2:0 rpm:U ¼ 0:5703e� 2 m=s; Ca ¼ 0:07845; bX ¼ 7:843e� 3:
Fig. 4 illustrates the steady states for rotation velocities X = 0.277, 1.0, 2.0 rpm from top to bottom, respec-
tively. In all cases the height of the film in the figures is multiplied by the factor of 10 to contrast more clearly
the structure of the film patterns.

One observes for all values of X of the steady solutions a region of liquid drag-out with a meniscus profile
and a drag-in region with a capillary wave on the opposite side of the axis. Such an oscillation of the height is
typically found for the reverse Landau–Levich problem when a liquid thin film is dragged into a liquid bath,
see for example [16–19]. It can be seen more clearly when comparing the cross sections of the liquid profiles at
constant radii. In Fig. 5 we compare for the radius r = 9 the cross section for X = 0.277, 1.0, 2.0, 3.0 rpm.
(Note, that here as further below, values such as for r without an explicit dimensions are in fact dimensionless.)
The figure also shows that the average liquid height increases when X increases.

These results are qualitatively in accordance with the problem for the drag-out and drag-in cases. We will
further investigate the quantitative comparison.

4.1.2. Comparison with the drag-out problem

Asymptotic estimate of the film thickness: We now derive an asymptotic approximation of the film thickness
using a one-dimensional approximation based on the results of Landau, Levich [7] and Wilson [8] for the pla-
nar-symmetric case.
0 6 8
y

0

0.005

0.01

0.015

0.02

h

2 4

Fig. 3. Initial state.
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For our comparisons we focus on the case where the disk is half-immersed, i.e. a = 0. Then, if we only
retain the axial components in the stationary form of (2.41), and after substituting rh 7! y, r dh 7! dy we obtain
the equation
Plea
Mod
d

dy
h3

3
ðpy þ 1Þ � bXrh

� �
¼ 0; ð4:1Þ
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into the bath a capillary wave is formed. This region is enlarged on the right figure. Note, ‘‘Arc length’’ denotes rh.
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with
Plea
Mod
p ¼ � d

dy
hy

ð1þ h2
yÞ

1=2
: ð4:2Þ
Boundary conditions are
lim
y!1

h ¼ h1; lim
y!0

h ¼ 1; lim
y!0

p ¼ 0: ð4:3Þ
Integrating (4.1) and (4.2) once and using the boundary conditions (4.3) yields
h3 d2

dy2

hy

ð1þ h2
yÞ

1=2
¼ �3rbXðh� h1Þ þ ðh3 � h3

1Þ: ð4:4Þ
We rescale this equation to bring it into the form
h ¼ ðrbXÞ1=2�h; h1 ¼ ðrbXÞ1=2�h1; y ¼ ðrbXÞ1=6�y; ð4:5Þ

to get
�h3 d2

d�y2

�h�y

ð1þ ðrbXÞ2=3�h2
�yÞ

1=2
¼ �3ð�h� �h1Þ þ ð�h3 � �h3

1Þ: ð4:6Þ
For this equation, Wilson’s formula [8] gives the asymptotic approximation for the film thickness
�h1 ¼ 0:94581ðrbXÞ1=6
;

i.e. from (4.5),
h1 ¼ 0:94581ðrbXÞ2=3
: ð4:7Þ
Fig. 6 shows h1 as a function of rbX. Good agreement of the one-dimensional numerical results with the
corresponding higher order asymptotic formula is achieved for small values of rbX.

The meniscus profile h(y) in Fig. 7 is now computed for the values given in Section 4.1.1 Recall thatbX ¼ 1:089e� 3: At r = 9, we have rbX ¼ 0:009801, hence, from (4.7), h1 ¼ 0:0433.
We now compare the meniscus profile computed with (4.6) for the drag-out problem with the numerical

solution for the steady state of our problems (2.41) and (2.45). For this we take results for the cross section
along constant radii. In Fig. 6 we performed the comparison for the cross section for the height profile at
radius r = 9, for 0 6 h 6 180, i.e. from the point where the film is dragged out to the point where it reenters
the liquid bath. We see that there is excellent quantitative agreement in the vicinity of the meniscus region as it
enters the thin film region.
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4.1.3. Comparison with the hyperbolic regime

Further out into the disk region the height profile will deviate from the height obtained for the drag-out
problem. There the variation of the height along the directions parallel to the disk is very small, which is
clearly seen in our numerical simulations, so that surface tension will play a negligible role.

Starting from Eq. (2.41) we consider the steady state problem
Fig.

Fig. 7.
(triang

Plea
Mod
o

or
r

h3

3
sin h

� �
þ o

oh
h3

3
cos h� bXrh

� �
¼ 0; ð4:8Þ
to describe the dynamics far away from the meniscus. This can be simplified to the hyperbolic equation
h2r sin h
oh
or
þ ðh2 cos h� bXrÞ oh

oh
¼ 0: ð4:9Þ
Using the method of characteristics, this problem can be solved in form of an initial value problem for the
system of the coupled ordinary differential equations
dr
ds
¼h2ðr0; 0Þr sin h; rð0Þ ¼ r0; ð4:10aÞ

dh
ds
¼h2ðr0; 0Þ cos h� bXr; hð0Þ ¼ 0: ð4:10bÞ
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6. Comparison of numerical results for the one-dimensional problem (4.4) with the asymptotic formula for h1 versus rbX, (4.7).
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Fig. 8. Comparison of contour lines from our FEM computation (black curves) for X = 0.277 with the characteristics (white curves) for
r0 = 1.962, 2.670, 3.560, 4.572, 5.759, 6.877 and corresponding heights of h0 = 0.0130, 0.0182, 0.0234, 0.0286, 0.0338, 0.0390, respectively.
Note, the corresponding 3D plot in Fig. 4.
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Using as the initial condition the height found from (4.6) or simply by making use of formula (4.7) for a cho-
sen r0 we can integrate (4.10a) and (4.10b) to obtain characteristics. This is shown in Fig. 8 for X = 0.277 as an
example. The results are similar for the other angular velocities. As can be seen, the comparison of the char-
acteristics that start from the meniscus region shows good agreement with the contour lines found from the
FEM computation. Note, that the contour lines that start at the boundary of the rotating disk strongly depend
on the conditions there.

Interestingly, one can get a good idea on the film profile as a function of the angular velocity bX by simply
solving (4.10a) and (4.10b) for r as a function of h directly by taking
Fig. 9. Steady solution at X = 1 rpm for immersion depth of a = 0.2, 0.4, 0.6, 0.8.
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dr=ds
dh=ds

¼ dr
dh
¼ r sin h

cos h� bXr=h2
0

; ð4:11Þ
which can be solved to yield
rðhÞ ¼ h2
0bX cos h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 h� 2c0

bX
h2

0

s0@ 1A; ð4:12Þ
where the integration constant is
c0 ¼ rð0Þ cos hð0Þ �
bXr2ð0Þ

2h2
0

: ð4:13Þ
Fig. 10. Steady solution for immersion depth of a = 0.8 at angular velocity X = 0.277, 1.0, 2.0 rpm.
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4.2. Film patterns for slightly immersed disks

When the disk is half-immersed (immersion height a = 0) the film thickness above the drag-out region will
be renewed with every rotation and can be described by the classic drag-out problem. Furthermore, the film
profile is slightly deformed by the effects of gravity before being drawn into the liquid bath accompanied by a
typical oscillation in the thickness of the film. The simple pattern emerging from this configuration changes
when the immersion height is a is increased.

So in the final part of the paper we are interested in the new patterns that emerge when changing the two
parameters a and X.

In the following Fig. 9 we first show the effect of varying the immersion depth from a = 0.2 to a = 0.8, leav-
ing all other parameters as in the case of the half-immersed disk with X = 1.0. We observe an emerging almost
symmetrical circular region where the film height has a minimum. This radius of the circular region increases
with the immersion depth a. In fact, the radius quite closely corresponds to the distance from the minimum of
the drag-in capillary wave to the vertical height of the rotation axis (a = 0, see Fig. 1). By adjusting a one can
therefore achieve thin and fairly constant film profiles.

When the angular velocity is increased, not only does the fluid volume on the disk increase but the circular
region is shifted towards the left, where the film is dragged out. This is demonstrated in Fig. 10 for the case of
the immersion height a = 0.8. To see this effect more clearly we compare horizontal cross sections at r = 0 for
the film thickness, shown in Fig. 11.
5. Conclusions

In this work we have derived a dimension-reduced generalized lubrication model for the problem of the
fully three-dimensional free boundary problem for the vertically rotating disk, dragging out a thin film from
a liquid bath. The resulting two-dimensional nonlinear degenerate fourth-order boundary value problem was
solved numerically using a finite element scheme. For the steady state solutions we performed an asymptotic
analysis near the meniscus region and a careful comparison with cross sections of the numerical solutions
along constant radii gave good agreement. Away from the liquid bath we could show good agreement of
our numerical solution with analytic solutions of the corresponding hyperbolic problem.

For slightly immersed disks we observed patterns for the film profile on the disk, which we studied as a
function of the immersion depth and the angular velocity. Interestingly, the dependence of surface area of
the film profile and of the volume fluid dragged out is not trivial. Of course we only touched upon the rich
structure of possible patterns and outlined some general tendencies. More detailed systematic study is subject
of current research. It is now possible to find optimum configurations that will be of importance for various
technological and industrial applications. For example, in PET-reactors the fluid mechanical problem is
Please cite this article in press as: K. Afanasiev et al., Thin film dynamics on a vertically rotating disk ..., Appl. Math.
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coupled to chemical reactions taking place mainly on the film surface, so that here it is important to obtain
thin films with high surface area.
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