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Abstract When a symmetric block diagonal matrix
[A1

A2

]
undergoes an off-

diagonal perturbation
[ A1 E12

E21 A2

]
, the eigenvalues of these matrices are known to dif-

fer only by O( ‖E12‖2
gap ), which scales quadratically with the norm of the perturbation.

Here gap measures the distance between eigenvalues, and plays a key role in the
constant. Closely related is the first-order perturbation expansion for simple eigen-
values of a matrix. It turns out that the accuracy of the first-order approximation
is also O( ‖E‖

2

gap ), where E is the perturbation matrix. Also connected is the residual
bounds of approximate eigenvalues obtained by the Rayleigh-Ritz process, whose
accuracy again scales quadratically in the residual, and inverse-proportionally with
the gap between eigenvalues. All these are tightly linked, but the connection ap-
pears to be rarely discussed. This work elucidates this connection by showing that
all these results can be understood in a unifying manner via the quadratic perturba-
tion bounds of block diagonal matrices undergoing off-diagonal perturbation. These
results are essentially known for a wide range of eigenvalue problems: symmetric
eigenproblems (for which the explicit constant can be derived), nonsymmetric and
generalized eigenvalue problems. We also extend such results to matrix polynomi-
als, and show that the accuracy of a first-order expansion also scales as O( ‖E‖

2

gap ),
and argue that two-sided projection methods are to be preferred to one-sided pro-
jection for nonsymmetric eigenproblems, to obtain higher accuracy in the computed
eigenvalues.
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1 Introduction

Classical eigenvalue perturbation theory studies bounds or approximations to the
eigenvalues and eigenvectors of A+E for some “small” E (such as small norm or
low rank), given the knowledge of some information on A, such as an eigenpair such
that Axi = λi(A)xi. Such results are of interest in large-scale scientific computing
because, for example, (i) given the information of A, they give estimates for the
eigenvalues and eigenvectors of A+E that can be obtained cheaply (for example the
first-order expansion (1)), and (ii) they can be used to give quantitative analysis for
the accuracy of the computed eigenpairs. See [7] and [14, Ch. IV] for an overview
of eigenvalue perturbation theory.

The eigenvalues of two unstructured matrices A and A+E generally differ by
O(‖E‖2), or sometimes more (as large as O(‖E‖1/n

2 ) in the worst case, when defec-
tive eigenvalues are present). However, there are important situations when eigen-
values behave more nicely than such general bounds suggest, and this work focuses
on such cases.

Among the most well-known results for the (simplest and most well-understood)
symmetric case A = AT ∈ Rn×n are Weyl’s theorem |λi(A)− λi(A + E)| ≤ ‖E‖
(throughout, we employ the spectral norm ‖A‖ = σmax(A) for matrices, and 2-
norm for vectors), and the first-order perturbation expansion for simple eigenvalues
(e.g. [3, §7.2.2])

λi(A+E) = λi(A)+
xT Ex
xT x

+O(‖E‖2). (1)

Here x is a nonzero eigenvector such that Ax = λi(A)x. Note that this gives an ap-
proximation λi(A)+ xT Ax

xT x to λi(A+E), rather than a bound as in Weyl’s theorem.
This work revolves around the less well-known (but, we argue, equally impor-

tant) quadratic perturbation bounds for eigenvalues of block-diagonal matrices that
undergo off-diagonal perturbation.

Theorem 1 ([6, 9]). Let A,E ∈ Rn×n are symmetric matrices partitioned as

A =

[
A1 0
0 A2

]
, E =

[
0 ET

1
E1 0

]
, (2)

then [9]

|λi(A+E)−λi(A)| ≤
‖E‖2

gapi
, (3)

and a slightly tighet bound [6] holds:

|λi(A+E)−λi(A)| ≤
2‖E‖2

gapi +
√

gap2
i +4‖E‖2

≤ ‖E‖ 2
gapi

. (4)

Here gapi is defined by
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gapi :=
{

minλ j∈λ (A2) |λi−λ j| if λi ∈ λ (A1)

minλ j∈λ (A1) |λi−λ j| if λi ∈ λ (A2).
(5)

Note that the bound in (3) scales quadratically with the perturbation ‖E‖, which is
significantly smaller than Weyl’s bound ‖E‖when ‖E‖ is small. We shall look at (3)
from many different viewpoints, and one central goal of this work is to reveal the
implications of such quadratic bounds. For simplicity, we refer to situations as in (2),
where a block-diagonal matrix undergoes off-diagonal perturbation, as off-diagonal
perturbation.

We note that the bounds in (4) are sharp in the sense that without further informa-
tion, there are examples where equality is attained. This sharpness can be confirmed
by verifying that the first bound in (4) is exact for 2×2 matrices, and it reduces to
the second bound in the limit ‖E‖→ 0.

Also of interest in this work is quadratic residual bounds [5], which claims for
symmetric eigenvalue problems that defining the residual by r = Ax̂− λ̂ x̂ where x̂
is an approximate eigenvector with ‖x̂‖= 1 and λ̂ = x̂T Ax̂ is the Rayleigh quotient,
we have

|λ − λ̂ | ≤ ‖r‖
2

gapi
, (6)

where gapi is as in (5) with A1 taken to be 1×1. The notion of gap is subtly different
between (6) and those in the literature, e.g. [1, § 4.8],[12, Thm. 11.7.1]: we explain
this more in Section 2.1. More generally, with the Ritz values {λ̂i}k

i=1 for a symmet-
ric matrix obtained as the eigenvalues of XT AX where X ∈ Rn×k has orthonormal
columns, we have

|λ − λ̂ | ≤ ‖R‖
2

gapi
, (7)

where gapi is again as in (5), which is “widened”, resulting in an improved bound.
We derive this below in Section 2.2.

The first-order expansion (1) and the off-diagonal quadratic perturbation bounds (3)
are closely connected: specifically, the first-order perturbation expansion (1) ex-
plains why off-diagonal perturbation results in quadratic eigenvalue perturbation
bounds (without information on the constant 1

gapi
). Conversely, using (3) one can ob-

tain (1), and moreover obtain the constant 1
gapi

hidden in the trailing term O(‖E‖2).
We shall see that the residual bound can also be regarded as a consequence of (3).
In other words, (3) can be regarded as a fundamental fact that implies many results
in eigenvalue perturbation theory.

These connections are known to experts in eigenvalue perturbation theory, but to
the author’s knowledge there is no literature that states them explicitly. One goal of
this work is to clarify this connection, which holds not only for symmetric eigen-
value problems but also for nonsymmetric and generalized eigenvalue problems. All
this is not exactly new, in that they are simply observations that connect results in
the literature.

The second goal of this work is to extend such results to polynomial eigenvalue
problems. For polynomial eigenvalue problems, the first-order perturbation expan-
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sion (1) is known [15], but no result seems to be available on off-diagonal perturba-
tion analogous to (3). We shall obtain such result, and show that if

P(λ ) =
[

P1(λ ) 0
0 P2(λ )

]
, E =

[
0 E12(λ )

E21(λ ) 0

]
, (8)

then

λi(P)−λi(P+E)≤ c
‖E(λi(P))‖2

gapi
, (9)

for some c, which depends on the conditioning of the eigenvectors. The point we
wish to convey here is that the eigenvalue gap plays the same role even in polynomial
eigenvalue problems. Note that E(λi(P)) is the value of the matrix polynomial E(λ )
(representing the perturbation) evaluated at λ = λi(P).

All in all, in this note we investigate the quadratic eigenvalue perturbation bounds
under off-diagonal perturbation such as (3) and (9) from different viewpoints, and
reveal some of their practical ramifications.

The only reason we stated the above results for symmetric matrices is for
simplicity; extensions to nonsymmetric and generalized eigenproblems are avail-
able [8, 9, 14]. We structure this note similarly: we first discuss the symmetric case
in Section 2, then deal with nonsymmetric and generalized eigenvalue problems,
and treat polynomial eigenvalue problems at the end.

In what follows, for simplicity we normalize any right eigenvector to have unit
norm, and we scale the left eigenvector via the orthogonality relation such as yT x= 1
or yT P(λi)

′x = 1. λi(A) denotes the ith eigenvalue of A, arranged in ascending order
if A is symmetric, and otherwise its ordering is insignificant: λi(A) denotes a specific
eigenvalue of A.

2 Symmetric case

We start by treating the simplest case of symmetric eigenvalue problems; entirely
analogous results hold for the complex Hermitian case.

As advertised, let us first explain how (1) implies off-diagonal perturbation
should result in quadratic eigenvalue perturbation bounds. Let the matrices A,E
be as in (2), and λi(A) ∈ λ (A1) with gapi > 0. Then Ax = λi(A)x with eigenvector

structure x =
[

x1
0

]
, and so by substituting into (1) we obtain

λi(A+E) = λi(A)+ xT Ex+O(‖E‖2)

= λi(A)+
[

x1
0

]T [ 0 ET
1

E1 0

][
x1
0

]
+O(‖E‖2)

= λi(A)+O(‖E‖2),
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in which we note that
[

x1
0

]T [ 0 ET
1

E1 0

][
x1
0

]
= 0 due to the block structure. That is,

the first-order term in (1) disappears because of the structure. Thus the first term in
the perturbation expansion scales quadratically with the perturbation ‖E‖.

2.1 First-order expansion and its constant via off-diagonal bounds

We now turn to the connection in the opposite direction and derive the first-order
expansion (1) using the quadratic bounds (3). We are not claiming the derivation
here is simpler than the standard method of differentiating the equation Ax = λx
and left-multiplying the left eigenvector (see [3, § 7.2.2] or [15]). However, as we
shall see, the derivation here reveals the constant in front of the quadratic term ‖E‖2.
In Section 3.4 we also give an explanation based on Gerschgorin’s theorem.

Using (3) we shall derive the following result, which can be seen as a variant
of (1) that reveals the constant hidden in O(‖E‖2). Note below that g̃api can be
regard as a modified gap.

Proposition 1. Let A,E ∈ Rn×n be symmetric matrices. Then

|λi(A+E)− (λi(A)+
xT Ex
xT x

)| ≤ ‖E‖
2

g̃api
, (10)

where g̃api = max(0,min j 6=i |λi +
xT Ex
xT x −λ j|−‖E‖), and g̃api→ gapi as E→ 0.

Proof. Consider the eigenvalue decomposition

XT AX =

λ1
. . .

λn

 ,
where X = [x1, . . . ,xn] is an orthogonal eigenvector matrix. Then

XT (A+E)X =

λ1
. . .

λn

+XT EX ,

whose (i, i) element is λi + xT
i Exi. We can then apply a permutation matrix P that

moves the ith position to the first (the specific choice of P does not matter), which
gives

PT XT (A+E)XP =


λi + xT

i Exi xT
i Ex j

. . .
xT

i Ex j λn + xT
n Exn

 .
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we now partition this matrix and write PT XT (A + E)XP =

[
A1

A2

]
+

[
0 ET

1
E1 0

]
,

where A1 = λi+xT
i Exi is 1×1 (highlighted in red), a scalar, hence A1 = λi+xT

i Exi.
Noting that λi(PT XT (A+E)XP) = λi(A+E), we now use Theorem 1 to obtain

|λi(A+E)− (λi(A)+ xT
i Exi)| ≤

‖E‖2

g̃api
,

where g̃api := max(0,gapi−‖E‖). This updated gap is obtained by using Weyl’s
bound for the lower-right (n+1)×(n+1) part of PT XT (A+E)XP, which is altered
from A2 by the lower-right part of PT XT EXP. This establishes (18) (and hence also
the first-order expansion (1)). �

Note that g̃api is different from gapi: as alluded to after (6), this difference is re-
flected in the formal statements of the residual bounds and quadratic off-diagonal
perturbation bounds in the following sense: in (6) the gap is between an approxi-
mate and exact eigenvalue. In (5) the gap is between two approximate eigenvalues.
While this subtlety is certainly present, we shall not expound on this further as this
difference diminishes as E → 0. Furthermore, they both convey the same message
that the accuracy scaled inverse-proportionally to the gap.

2.2 Connection to residual bounds

Now we explain how the residual bounds (6), (7) can be obtained from the off-
diagonal quadratic perturbation bound (3).

Recall that the Rayleigh-Ritz process employs a subspace spanned by a matrix
Q ∈Rn×k with orthonormal columns with k < n, and computes the k×k symmetric
eigenproblem QT AQ=VQΛQV T

Q , from which one extracts the Ritz values diag(ΛQ),
and Ritz vectors QVQ. Here we examine the accuracy of the Ritz values, and de-
rive (6) using (3).

Consider Q⊥ ∈ Rn×(n−k), which spans the orthogonal complement of Q so that
[Q Q⊥] is a square orthogonal matrix. Then we have

[Q Q⊥]T A[Q Q⊥] =
[

A11 A12
A21 A22

]
.

Then QT AQ = A11, and the problem essentially reduces to quantifying the accu-
racy of the eigenvalues of A11 as approximants to k of the eigenvalues of A. This
is exactly the problem treated in Theorem 1, and gives (6): again, the gap in the
literature differs subtly from what we get here. The above argument more generally
gives (7). Note how the definition of gap differs between (6) and (7); the gap is usu-
ally much wider in (7), giving better bounds if the residual norms are of comparable
magnitudes.
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3 Non-symmetric eigenvalue problems

The main message of the last section was the significance of the off-diagonal
quadratic perturbation bound (3) in symmetric eigenvalue problems. We now turn to
the analogous results for more general eigenvalue problems, focusing on nonsym-
metric standard eigenproblems.

3.1 Statements

Here we display the extensions of results in the previous section to nonsymmet-
ric matrices. When A is nonsymmetric, the first-order perturbation expansion (1)
becomes

λi(A+E) = λi(A)+
yT Ex
yT x

+O(‖E‖2), (11)

where Ax = λi(A)x as before and y is a left eigenvector, that is, yT A = yT λi(A). Here
and below, λi(A) denotes an eigenvalue of A (not necessarily ordered, as they can be
nonreal) and λi(A+E) denotes an eigenvalue that spawns from λi(A) in that λi(A+
tE) is continuous in t ∈ R and λi(A+ tE)→ λi(A) as t → 0. The expansion (11)
holds for any scaling of x,y; we scale them so that ‖x‖= 1 and yT x = 1.

The analogue of the key result (3) becomes [3, Ch. 7] the following (ignoring the
nontrivial issue of “ordering” the eigenvalues, which can be nonreal). Note below
that neither A nor E is assumed to be symmetric, but the block structure is preserved.

Theorem 2 ([9]). Let A,E ∈ Rn×n be matrices partitioned as

A =

[
A1 0
0 A2

]
, E =

[
0 E12

E21 0

]
. (12)

Then [9, Thm. 5]

λi(A+E)−λi(A)≤ c
‖E12‖‖E21‖

gapi
, (13)

where c is the product of condition numbers of eigenvector matrices of A+E and A.

Theorem 13 is lower in sophistication than Theorem 1 in terms of sharpness: for
example, it is not exact for 2×2 case. It nonetheless suffices for the argument here.

Bounds like (13) are often stated in terms of the quantity sep [13, § 4.2], which
here is sepi = 1/‖(A2−λi(A))−1‖. Note that sepi = gapi when the matrices are sym-
metric (or normal), and sepi takes into account the conditioning of the eigenvector
matrix. In this note, for simplicity we absorb this effect in the constant c, in order to
highlight the role played by the gap throughout eigenvalue problems.

Finally, the residual bound in the nonsymmetric case becomes [13, Thm. 4.2.12]

|λ − λ̂ | ≤ c
‖rr‖‖rl‖

gapi
, (14)
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where

λ̂ =
yT Ax
yT x

is the Ritz value (via two-sided projection) and rr,rl are the right and left residual
vectors defined by

rr = Ax− λ̂x, rl = yT A− λ̂yT . (15)

More generally, for block matrices (or projection onto a k > 1-dimensional subspace
is employed), we have

|λi− λ̂i| ≤ c
‖Rr‖‖Rl‖

gapi
, (16)

where
λ̂i = λi(Y T AX−λY T X)

are the eigenvalues of the matrix pencil Y T AX−λY T X (sometimes called Ritz val-
ues via two-sided projection), and denoting Λ̂ = diag(λ̂1, . . . , λ̂k), Rr,Rl are the right
and left residual matrices defined by

Rr = AX−XΛ̂ , Rl = Y T A− Λ̂Y T . (17)

Below we follow the same line of argument as in Section 2 and derive the first-
order expansion (11) and residual bound (14) using the off-diagonal quadratic per-
turbation bound (13).

3.2 First-order expansion and its constant via off-diagonal bounds

Let us establish an analogue of Proposition for the nonsymmetric case.

Proposition 2. Let A,E ∈ Rn×n be symmetric matrices. Then

|λi(A+E)− (λi(A)+
xT Ex
xT x

)| ≤ ‖E‖
2

g̃api
, (18)

where g̃api = max(0,min j 6=i |λi +
xT Ex
xT x −λ j|−‖E‖), and g̃api→ gapi as E→ 0.

To establish (11), assume that A is diagonalizable (this assumption is mainly for
simplicity: it can be relaxed to just λi(A) being simple, or even to multiple eigenval-
ues as long as they are not defective) and consider the eigenvalue decomposition

X−1AX =

λ1
. . .

λn

 ,
where X = [x1, . . . ,xn] is a nonsingular eigenvector matrix. Then
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X−1(A+E)X =

λ1
. . .

λn

+X−1EX ,

where recalling that [y1, . . . ,yn]
T = X−1, the (i, i) element is λi+yT

i Exi. We can then
apply a permutation matrix P that moves the ith position to the first, which gives

PT X−1(A+E)XP =


λi + yT

i Exi yT
i Ex j

. . .
yT

i Ex j λn + yT
n Exn

 . (19)

We now partition this matrix and write PT XT (A+E)XP =

[
A1

A2

]
+

[
0 ET

1
E1 0

]
,

where A1 is 1× 1, a scalar, hence A1 = λi + yT
i Exi. Noting that λi(PT X−1(A +

E)XP) = λi(A+E), we now use Theorem 2 to obtain

|λi(A+E)− (λi(A)+ yT
i Exi)| ≤ c

‖E‖2

g̃api
,

where g̃api := max(0,gapi − c̃‖E‖); this is a lower bound for the gap between
λi(A)+yT

i Exi) and the eigenvalues of the (n−1)×(n−1) bottom-right part of (19),
and c̃ depends on its eigenvector matrix. This establishes (18), and hence also the
first-order expansion (1).

3.3 Connection to residual bounds

Now we explain how the residual bound (14) can be obtained from (13).
For the nonsymmetric case, we analyze the two-sided projection method, which

spanned by two matrices: X ∈ Rn×k, hoped to approximate some right eigenvec-
tors), usually but not necessarily with orthonormal columns, and Y ∈ Rn×k (hoped
to approximate the same left eigenvectors; however, the simple choice Y =X is quite
common and natural in view of the Schur form.

We then compute the k×k generalized eigendecomposition V T
Y (Y T AX ,Y T X)VX =

(ΛXY , I), which reduces to a standard eigenproblem if we choose Y so that Y T X = I.
One then extracts the approximate eigenvalues (sometimes also called Ritz values)
as diag(ΛXY ), and approximate right and left eigenvectors (Ritz vectors) XVX and
YVY . Here we examine the accuracy of the Ritz values, and derive (16) using Theo-
rem 2.

For simplicity we discuss the case Y T X = Ik. Let X2,Y2 be such that [X X2], [Y Y2]
are nonsingular matrices and [Y Y2]

T [X X2] = In. Then we write
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[Y Y2]
T A[X X2] =

[
A11 A12
A21 A22

]
.

Then Y T AX = A11, and the problem essentially reduces to quantifying the accuracy
of the eigenvalues of A11 as approximants to k of the eigenvalues of A. This is exactly
the problem treated in Theorem 2, in which ‖A21‖ corresponds to the right residual
‖Rr‖ and ‖A21‖ to ‖Rl‖, leading to (16).

We note that the residual bounds become linear in ‖Rr‖ if we use a one-sided
projection method with Y = X , as then ‖Rl‖ will be O(1) rather than O(‖Rr‖). This
indicates that it is worth using two-sided projection when an approximation to the
left eigenvectors is available.

3.4 Gerschgorin’s viewpoint

Here we explain the same quadratic scaling |λi(A+E)− λ̂i| ≤ ‖E‖
2

gapi
from the view-

point of Gerschgorin’s theorem. We could have included such treatment in the sym-
metric case, but we have deferred its treatment until now since no simplification
accrues in the symmetric case. Gerschgorin’s theorem states that

λ (A) ∈
⋃

i

Γi, Γi = {z ∈ C| |z−aii| ≤∑
j 6=i
|ai j|},

that is, the eigenvalues of A lie in the union of Gerschgorin disks Γi of radius
∑ j 6=i |ai j| centered at aii. Now we focus on λi, and denoting by ε an entry bounded
by |ε| ≤ ‖E‖, we see that

PT X−1(A+E)XP =


λi

λ1
. . .

λn

+


ε ε . . . ε

ε

...
ε

ε · · · ε

...
. . .

...
ε · · · ε

 .

If λi is a simple eigenvalue and E is sufficiently small, we will have Γj ∩Γi = φ

for j 6= i, which means there is exactly one eigenvalue lying in Γi. Let δ be
a quantity smaller than gapi = min j 6=i |λi − λ j|. Then using the diagonal matrix
D = diag( ε

δ
,1, . . . ,1) we have

DPT X−1(A+E)XPD−1 =


λi

λ1
. . .

λn

+


εii
ε2

δ
. . . ε2

δ

δ

...
δ

ε · · · ε

...
. . .

...
ε · · · ε

 .
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Now with Gerschgorin’s theorem applied to this matrix, Γi∩Γj = φ still holds, and
Γi : |z− (λi + εii)| ≤ O( ε2

δ
). Note the radius of Γi is now O( ε2

gapi
). Noting that εii =

yT Ex/(yT x) where x,y are the left/right eigenvectors of A corresponding to λi, it
follows that λi + εii = λi + yT Ex/(yT x) approximates an eigenvalue of A + E to
O( ε2

gapi
) accuracy.

The above diagonal scaling technique combined with Gerschgorin’s theorem is
again commonly used, for example in [14, Ch. IV].

3.5 Extensions to generalized eigenproblem

Analogous results for generalized eigenvalue problems can be established, using
quadratic off-diagonal perturbation bounds presented in [8]. In particular, the Ger-
schgorin argument can be used for establishing quadratic perturbation bounds for
generalized nonsymmetric eigenvalue problems; see the last section of [10]. We
omit the details here.

4 Polynomial eigenvalue problems

We now turn to polynomial eigenvalue problems. In a polynomial eigenvalue prob-
lem, one is to find x 6= 0 such that P(λ )x = 0 where P(λ ) = ∑

k
i=0 λ iAi ∈ C[λ ]n×n

is a matrix polynomial. Let E(λ ) ∈ C[λ ]n×n be another matrix polynomial, repre-
senting a perturbation to P(λ ). The first-order perturbation expansion of an eigen-
value λi(P(λ )), with λi((P+ tE)(λ )) depending continuously on t (as in (11)), is
known [15] to be

λi((P+E)(λ )) = λi(P(λ ))−
yT E(λiP(λ ))x

yT P′(λ )x
+O(‖E(λiP(λ ))‖2

2). (20)

The denominator yT P′(λ )x in the first-order term is known to be nonzero when
λi(P(λ )) is simple. The expansion (20) is in fact valid without the restriction that
E(λ ) is a matrix polynomial of the same or less degree as P(λ ), but here we focus
on such cases (as otherwise the number of eigenvalues is not controlled). We can
verify that (20) reduces to the expansions (1) and (11) in the special case where
P(λ ) represents a linear standard eigenvalue problem P(λ ) = λ I−A.
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4.1 Analysis via linearization

The most common approach to studying polynomial eigenvalue problems, both in
theory and practice is linearization [2]. Here we follow this standard approach to ex-
amine the accuracy of first-order expansion (20) and to derive quadratic perturbation
bounds for matrix polynomials. The most well known and widely used linearization
is the companion linearization. For a monic matrix polynomial P(λ ) = ∑

k
i=0 Aiλ

i

with Ak = I, the companion linearization is defined by

C =


−Ak−1 −A2 −A1 −A0

I
. . .

I

 . (21)

This kn× kn matrix clearly has kn eigenvalues, which match those of P(λ ), so we
can write λi(C) = λi(P(λ )). The right eigenvectors of P(λ ) and C are related by the
Vandermonde structure as follows: if P(λi)xi = 0, then

C


λ

k−1
i x

...
λix
x

= λi


λ

k−1
i x

...
λix
x

 . (22)

In view of the first-order expansion, we also need the left eigenvector of C. Let y be
a left eigenvector of P such that yT P(λ ) = 0. Then the left eigenvector of C has the
structure of the Horner shift [4, eq. (3.12)]

y
(λiAk +Ak−1)y

...
(λ k

i Ak +λ k−1Ak−1 + · · ·+A1)y


T

C = λi


y

(λiAk +Ak−1)y
...

(λ k
i Ak +λ k−1Ak−1 + · · ·+A1)y


T

.

(23)
We denote the right and left eigenvectors of C by x and y respectively, and

use (22) and (23) for (20) to obtain the first-order expansion of the eigenvalue λi
of P as

λi((P+E)(λ )) = λi +
yT (∑k

j=0 λ i
i Ei)x

yT (∑k
j=1 λ

i−1
i Ai)x

+O(‖E(λi)‖2). (24)

On the other hand, denoting by C+∆C the companion linearization associated with
P+E, the expansion with respect to C becomes (using (11) with A←C)

λi(C+∆C) = λi +
yT (∆C)x

yT x
+O(‖∆C‖2), (25)
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which, in view of (22) and (23), is equivalent to (24); this is to be expected because
P+E and C+∆C have the same eigenvalues.

The value in the equivalence between (24) and (25) is that with (25), we can
invoke the analysis for linear eigenvalue problems to examine the eigenvalues of P
and its perturbed variant. Indeed, assuming λi is a simple eigenvalue, the exact same
arguments as in Section 3 shows that the second-order term in the expansion (25)
can be written as O(c ‖∆C‖2

gapi
). Note that this allows for general perturbation in the

matrix C, whereas the perturbation of interest here is structured, because, as we can
see in (23), the only elements in C that depend on P are those in the first block row.
In any case, we have proven the following result.

Theorem 3. Let P(λ ) = ∑
k
i=0 λ iAi ∈C[λ ]n×n be a monic matrix polynomials of de-

gree k, and E(λ ) = ∑
k−1
i=0 λ iEi ∈ C[λ ]n×n. Let (λi,xi,yi) be a simple eigentriple of

P(λ ). Then

λi((P+E)(λ )) = λi +
yT (∑k

j=0 λ i
i Ei)x

yT (∑k
j=1 λ

i−1
i Ai)x

+O(c
‖E(λi)‖2

gapi
), (26)

where gapi =min j 6=i |λi−λ j(P(λ ))| and c depends on the conditioning of the eigen-
vector matrix of C in (21).

We have not yet examined whether the un-structured perturbation results in a con-
stant that is smaller than the unstructured counterpart by (25) would indicate. To
examine whether this happens, we turn to MATLAB experiments in which we con-
struct a random matrix polynomial P(λ ) companion matrix as in (21), compute an
eigentriple (λi,xi,yi), then examine the perturbation in λi when we introduce per-
turbation in C in two different forms:

1. Perturb only the first block row by norm ε ,
2. Perturb the whole matrix C by norm ε ,

for some small ε , which here we set to 10−4. We then examine the difference in
the accuracy of λi + yT (∆C)x/(yT x) as an approximation to an eigenvalue of the
perturbed matrix; clearly, since the second type includes the first as a special case,
the second would lead to a larger perturbation in the worst case. We experimented
with various n and k = 2,3, . . . ,10, with randomly generated perturbation matrices,
and observed that there is never a significant difference between the sensitivity of
λi under the two types of perturbations. That said, making this observation precise
seems nontrivial, and we leave it as an open problem.

4.2 Quadratic bounds by off-diagonal perturbation

We now turn to off-diagonal perturbation and derive a bound analogous to (9).

Theorem 4. Let
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P(λ ) =
[

P1(λ ) 0
0 P2(λ )

]
, E(λ ) =

[
0 E12(λ )

E21(λ ) 0

]
(27)

be matrix polynomials, with P(λ ) being monic and degree k, and E(λ ) of degree
k−1 or less. Then

λi(P(λ ))−λi((P+E)(λ ))≤ c
‖E(λi(P))‖2

gapi
, (28)

where gapi = min j 6=i |λi(P(λ ))− λ j(P(λ ))| and c depends on the conditioning of
the eigenvector matrix of C in (21).

Proof. The argument is simple as we now have all the essential tools. Note that
for any eigenvalue of P1(λ ) that is not an eigenvalue of P2(λ ), the left and right

eigenvectors have the block zero structure
[

x1
0

]
and

[
y1
0

]
. Plugging this into (26),

we obtain (28). �

Note that the above argument takes the opposite route from before: now we
are using the first-order expansion to obtain the quadratic off-diagonal perturbation
bound. We conjecture that the gapi can be replaced with the “widened” gap as in
Theorem 1. However, it appears to be nontrivial to obtain a direct proof of (28) (with
the refined gap) by extending the argument in [6, 9], which rely on the Sylvester law
of intertia.

Observe in (28) that what matters for the perturbation in λi is the magnitude of
E(λ ) evaluated at λ = λi; for example, the perturbation is zero if E(λi) = 0, even if
E(λ ) takes large values away from λi.

4.2.1 Accuracy of eigenvalues obtained by projection methods

Another implication of Theorem 4 can be observed on an approximate eigenpair
(λ̂i, x̂i) obtained via a projection method applied to polynomial eigenvalue problems.
Consider for simplicity a symmetric matrix polynomial P(λ ). Suppose (λ̂i, x̂i) is
obtained by solving V T P(λ̂i)V yi = 0 for some orthonormal matrix V ∈Cn×k, k < n,
with x̂i =V yi. Then we can write, using an orthogonal matrix [V V⊥],

[V V⊥]T P(λ )[V V⊥] =
[

P1(λ ) E12(λ )
E21(λ ) P2(λ )

]
,

where P1(λ̂i) has λ̂i as an exact eigenvalue, and the residual ‖P(λi)x̂i‖ (which is
computable) is bounded by ‖E12(λ̂i)‖ = ‖E21(λ̂i)‖ (usually not computable). Thus
by the above theorem it follows that the computed eigenvalue λ̂i has accuracy

O( ‖E(λi(P))‖2
gapi

) = O( ‖P(λ̂i)x̂i‖2
gapi

).
Note that the same type of quadratic bound follows for nonsymmetric matrix

polynomials, provided that we employ a two-sided projection method in which
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we work with Y T P(λ )X where Y and X approximate the desired left and right
eigenspaces respectively. This is exactly the same situation as in linear eigenvalue
problems, for which we need two-sided projection to obtain quadratic eigenvalue
convergence in the nonsymmetric case. Put another way, because the left and right
eigenvectors are the same for symmetric eigenvalue problems, the Rayleigh-Ritz
method automatically approximates both the left and right eigenvectors simulta-
neously. The apparent difference in convergence speed for symmetric and nonsym-
metric eigenvalue problems (which is present e.g. in the QR algorithm and Rayleigh
quotient iteration) comes from the fact that the algorithm is implicitly employing a
one-sided projection method, not because the convergence is inherently hindered by
lack of symmetry.

5 Discussion

This work examined the ramifications of the fact that off-diagonal perturbation of a
block diagonal matrix (or matrix polynomial) result in perturbation in the eigenval-
ues that scale quadratically with the norm of the perturbation. The quadratic scaling
hinges on the block structure of the matrices as in (3) or (27), which the eigenvec-
tors inherit. In fact, even tighter bounds can be obtained if further block structure
is present, such as block tridiagonal [11]. In addition to some indicated in the text,
possible future directions include investigating the accuracy in the expansion and
residual bounds and in such cases, examine the implications in terms of the eigen-
vectors, and overcoming the case where the gap is too small for the bounds to be of
use. Eigenvalue perturbation theory is a well-established yet active and useful area
of research.

References

1. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the Solution of
Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, PA, USA, 2000.

2. I. Gohberg, P. Lancaster, and L. Rodman. Matrix polynomials. SIAM, Philadelphia, USA,
2009. Unabridged republication of book first published by Academic Press in 1982.

3. G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
4th edition, 2012.

4. N. J. Higham, R.-C. Li, and F. Tisseur. Backward error of polynomial eigenproblems solved
by linearization. SIAM J. Matrix Anal. Appl., 29(4):1218–1241, 2007.

5. W. Kahan, B. N. Parlett, and E. Jiang. Residual bounds on approximate eigensystems of
nonnormal matrices. SIAM J. Numer. Anal., 19(3):470–484, 1982.

6. C.-K. Li and R.-C. Li. A note on eigenvalues of perturbed Hermitian matrices. Linear Algebra
Appl., 395:183–190, 2005.

7. R.-C. Li. Matrix perturbation theory. In L. Hogben, R. Brualdi, A. Greenbaum, and R. Math-
ias, editors, Handbook of Linear Algebra, chapter 15. CRC Press, Boca Raton, FL, 2006.

8. R.-C. Li, Y. Nakatsukasa, N. Truhar, and S. Xu. Perturbation of partitioned Hermitian gener-
alized eigenvalue problem. SIAM J. Matrix Anal. Appl., 32(2):642–663, 2011.



16 Yuji Nakatsukasa

9. R. Mathias. Quadratic residual bounds for the Hermitian eigenvalue problem. SIAM J. Matrix
Anal. Appl., 19(2):541–550, 1998.

10. Y. Nakatsukasa. Gerschgorin’s theorem for generalized eigenvalue problems in the Euclidean
metric. Math. Comp., 80(276):2127–2142, 2011.

11. Y. Nakatsukasa. Eigenvalue perturbation bounds for Hermitian block tridiagonal matrices.
Appl. Numer. Math., 62(1):67 – 78, 2012.

12. B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1998.
13. G. W. Stewart. Matrix Algorithms Volume II: Eigensystems. SIAM, Philadelphia, 2001.
14. G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory (Computer Science and Scientific

Computing). Academic Press, 1990.
15. F. Tisseur. Backward error and condition of polynomial eigenvalue problems. Linear Algebra

Appl., 309(1):339–361, 2000.
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