
FOURTH-ORDER TIME-STEPPING FOR STIFF PDES ON THE SPHERE

HADRIEN MONTANELLI∗ AND YUJI NAKATSUKASA†

Abstract. We present in this paper algorithms for solving stiff PDEs on the unit sphere with spectral accuracy
in space and fourth-order accuracy in time. These are based on a variant of the double Fourier sphere method
in coefficient space with multiplication matrices that differ from the usual ones, and implicit-explicit time-stepping
schemes. Operating in coefficient space with these new matrices allows one to use a sparse direct solver, avoids
the coordinate singularity and maintains smoothness at the poles, while implicit-explicit schemes circumvent severe
restrictions on the time-steps due to stiffness. A comparison is made against exponential integrators and it is found
that implicit-explicit schemes perform best. Implementations in MATLAB and Chebfun make it possible to compute
the solution of many PDEs to high accuracy in a very convenient fashion.

Key words. Stiff PDEs, exponential integrators, implicit-explicit, PDEs on the sphere, double Fourier sphere
method, Chebfun

AMS subject classifications. 65L04, 65L05, 65M20, 65M70, 65T40

1. Introduction. We are interested in computing smooth solutions of stiff PDEs on the unit
sphere of the form

ut = Lu+N (u), u(t = 0, x, y, z) = u0(x, y, z), (1.1)

where u(t, x, y, z) is a function of time t and Cartesian coordinates (x, y, z) with x2 + y2 + z2 = 1.
The function u can be real or complex and (1.1) can be a single equation, as well as a system
of equations. In this paper, we restrict our attention to Lu = α∆u and to a nonlinear non-
differential operator N with constant coefficients, but the techniques we present can be applied
to more general cases. A large number of PDEs of interest in science and engineering take this
form. Examples on the sphere include the (diffusive) Allen–Cahn equation ut = ε∆u+ u− u3 with
ε � 1 [18], the (dispersive) focusing nonlinear Schrödinger equation ut = i∆u + iu|u|2 [49], the
Gierer–Meinhardt [7], Ginzburg–Landau [44] and Brusselator [55] equations, and many others.

There are several methods to discretize the spatial part of (1.1) with spectral accuracy, including
spherical harmonics [5], radial basis functions (RBFs) [21] and the double Fourier sphere (DFS)
method [33, 37]. The DFS method is the only one that leads to a O(N logN) complexity per
time-step, where N is the total number of grid points in the spatial discretization of (1.1). For
spherical harmonics, the cost per time-step is O(N3/2) since there are no effective “fast” spherical
transforms,1 and for global RBFs [21, Ch. 6], the cost per time-step is O(N2) since these generate
dense differentiation matrices.2 We focus in this paper on the DFS method and present a novel
formulation operating in coefficient space.

∗Oxford University Mathematical Institute, Oxford OX2 6GG, UK. Supported by the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no. 291068.
The views expressed in this article are not those of the ERC or the European Commission, and the European Union
is not liable for any use that may be made of the information contained here.
†Oxford University Mathematical Institute, Oxford OX2 6GG, UK. Supported by JSPS as an Overseas Research

Fellow.
1Fast O(N logN) spherical transforms have received significant attention but require so far a O(N2) precomputa-

tional cost [43, 56, 57]. Note that in a recent manuscript [47] Slevinsky proposed a new fast spherical transform based
on conversions between spherical harmonics and bivariate Fourier series with a lower O(N3/2) precomputational cost.
For implicit-explicit schemes with the DFS method, the precomputation is O(N).

2RBF-FD [21, Ch. 7] generate sparse matrices but only achieve algebraic orders of accuracy. Moreover, the
solution time for these sparse matrices is not necessarily O(N).

1

2 MONTANELLI AND NAKATSUKASA

Fig. 1.1: Initial condition and real part of the solution at times t = 10, 20, 100 of the Ginzburg–
Landau equation computed by the spinsphere code. This solution is oriented in a direction at a
π/8 angle from the north-south axis, so the symmetry maintained in the computations is a reflection
of global accuracy.

Once the spatial part of (1.1) has been discretized by the DFS method on an n ×m uniform
longitude-latitude grid, it becomes a system of nm ODEs,

û′ = Lû+ N(û), û(0) = û0, (1.2)

where û(t) is a vector of nm Fourier coefficients and L (an nm × nm matrix) and N are the
discretized versions of L and N in Fourier space. Solving the system (1.2) with generic explicit
time-stepping schemes can be highly challenging because of stiffness: the large eigenvalues of L—
due to the second differentiation order in (1.1) and the clustering of points near the poles—force one
to use very small time-steps. Exponential integrators and implicit-explicit (IMEX) schemes are two
classes of numerical methods that are aimed at treating stiffness. For exponential integrators, the
linear part L is integrated exactly using the matrix exponential while a numerical scheme is applied
to the nonlinear part N. For IMEX schemes, an explicit formula is used to advance N while an
implicit scheme is used to advance L. We show in this paper that the DFS method combined with
IMEX schemes leads to O(nm log nm) per time-step algorithms for both diffusive and dispersive
PDEs, that exponential integrators achieve this complexity for diffusive PDEs only, and that IMEX
schemes outperform exponential integrators in both cases. For numerical comparisons, we consider
two versions of the fourth-order ETDRK4 exponential integrator of Cox and Matthews [13] and
two fourth-order IMEX schemes, the IMEX-BDF4 [28] and LIRK4 [9] schemes.

By contrast, Kassam and Trefethen demonstrated in [29] that exponential integrators (ET-
DRK4) outperform IMEX schemes (IMEX-BDF4); this can be explained by two factors. First,
they focused on problems with diagonal matrices L. (IMEX-BDF4 performed better than ET-
DRK4 for the only non-diagonal problem they considered.) For diagonal problems, exponential
integrators are particularly efficient since the computation of the matrix exponential is trivial and
the matrix exponential is diagonal too (hence, its action on vectors can trivially be computed in lin-
ear time). Second, IMEX-BDF4 is unstable for dispersive PDEs since it is based on the fourth-order
backward differentiation formula, which is unstable for dispersive PDEs—this is why they could
not make it work for the KdV equation. Our DFS method in coefficient space leads to matrices
that are not diagonal but have a sparsity structure that makes IMEX schemes particularly efficient,
and we consider not only IMEX-BDF4 but also LIRK4, which is stable for dispersive PDEs.

STIFF PDES ON THE SPHERE 3

There are libraries for solving time-dependent PDEs on the sphere, including SPHEREPACK [1]
and FEniCS [42]. However, none of these are aimed at solving stiff PDEs and easily allow for
computing in an integrated environment. The algorithms we shall describe in this paper are aimed
at solving stiff PDEs, and have been implemented in MATLAB and made available as part of
Chebfun [16] in the spinsphere code. (Note that spin stands for stiff PDE integrator.) The
recent extension of Chebfun to the sphere [51], built on its extension to periodic problems [59],
provides a very convenient framework for working with functions on the sphere. For example, the
function

f(λ, θ) = cos(1 + cosλ sin(2θ)) (1.3)

can be approximated to machine precision by the following command:

f = spherefun(@(lam,th) cos(1 + cos(lam).*sin(2*th)));

Using spherefun objects as initial conditions, the spinsphere code allows one to solve stiff PDEs
with a few lines of code, using IMEX-BDF4 for diffusive and LIRK4 for dispersive PDEs. For
example, the following MATLAB code solves the Ginzburg–Landau equation ut = 10−4∆u + u −
(1 + 1.5i)u|u|2 with 1024 grid points in longitude and latitude and a time-step h = 10−1:

n = 1024; % number of grid pts
h = 1e-1; % time-step
tspan = [0 100]; % time interval
S = spinopsphere(tspan); % initialize operator
S.lin = @(u) 1e-4*lap(u); % linear part
S.nonlin = @(u) u-(1+1.5i)*u.*abs(u).^2; % nonlinear part
u0 = @(x,y,z) 1/3*(cos(40*x)+cos(40*y)+cos(40*z)); % initial cond.
th = pi/8; c = cos(th); s = sin(th); % pi/8 rotation
S.init = spherefun(@(x,y,z)u0(c*x-s*z,y,s*x+c*z)); % rotated initial cond.
u = spinsphere(S, n, h); % solve

The initial condition and the solution at times t = 10, 20, 100 are shown in Figure 1.1. (The
Ginzburg–Landau equation in 2D goes back to the 1970s with the work of Stewartson and Stu-
art [48]. Rubinstein and Sternberg studied it on the sphere [44], with applications in the study of
liquid crystals [40] and nonequilibrium patterns [41].) Figure A.1 lists a detailed MATLAB code
to solve the same problem; a more sophisticated version of this code is used inside spinsphere.
(Note that this code might be a little bit slow; for speed, the reader might want to adjust n and
h, and change the initial condition. We also encourage the reader to type spinsphere(’gl’) or
spinsphere(’nls’) to invoke an example computation.)

The paper is structured as follows. In the next section, we review the DFS method (Section 2.1)
and present a new Fourier spectral method in coefficient space, which, using multiplication matrices
that differ from the usual ones, avoids the coordinate singularity (Section 2.2), takes advantage of
sparse direct solvers (Section 2.3), and maintains smoothness at the poles (Sections 2.4 and 2.5).
The time-stepping schemes are presented in Section 3 while Section 4 is dedicated to numerical
comparisons on simple PDEs.

2. A Fourier spectral method in coefficient space. We present in this section a Fourier
spectral method for the spatial discretization of (1.1), based on the DFS method and novel Fourier
multiplication matrices in coefficient space. The accuracy of the method is tested by solving the
Poisson and heat equations.

4 MONTANELLI AND NAKATSUKASA

2.1. The double Fourier sphere method. The DFS method uses the longitude-latitude
coordinate transform,

x = cosλ sin θ, y = sinλ sin θ, z = cos θ, (2.1)

with (λ, θ) ∈ [−π, π] × [0, π]. The azimuth angle λ corresponds to the longitude while the polar
(or zenith) angle θ corresponds to the latitude.3 A function u(x, y, z) on the sphere is written as
u(λ, θ) using (2.1), i.e.,

u(λ, θ) = u(cosλ sin θ, sinλ sin θ, cos θ), (λ, θ) ∈ [−π, π]× [0, π], (2.2)

and (1.1) with L = α∆ becomes

ut = α∆u+N (u), u(t = 0, λ, θ) = u0(λ, θ), (λ, θ) ∈ [−π, π]× [0, π]. (2.3)

Note that the function u(λ, θ) in (2.2) is 2π-periodic in λ but not periodic in θ. The key idea of
the DFS method—developed by Merilees [33] and further studied by Orszag [37] in the 1970’s, and
recently revisited by Townsend et al. with the use of low-rank approximations [51]—is to associate a
function ũ(λ, θ) with u(λ, θ), 2π-periodic in both λ and θ, defined on [−π, π]× [−π, π], and constant
along the lines θ = 0 and θ = ±π corresponding to the poles. Mathematically, the function ũ(λ, θ)
is defined as

ũ(λ, θ) =

 u(λ, θ), (λ, θ) ∈ [−π, π]× [0, π],
u(λ+ π,−θ), (λ, θ) ∈ [−π, 0]× [−π, 0],
u(λ− π,−θ), (λ, θ) ∈ [0, π]× [−π, 0].

(2.4)

The function u is “doubled-up” in the θ-direction and flipped; see, e.g., [51, Fig. 1]. Since the
function ũ is 2π-periodic in both λ and θ, it can be approximated by a 2D Fourier series,

ũ(λ, θ) ≈
m/2∑

j=−m/2

′
n/2∑

k=−n/2

′ ûjke
ijθeikλ. (2.5)

The numbers n and m are assumed to be even (this will be the case throughout this paper) and the
primes on the summation signs mean that the boundary terms j = ±m/2 or k = ±n/2 are halved.
The Fourier coefficients are defined by

ûjk =
1

nm

m∑
p=1

n∑
q=1

ũ(λq, θp)e
−ijθpe−ikλq , −m

2
≤ j ≤ m

2
− 1, −n

2
≤ k ≤ n

2
− 1, (2.6)

with ûj,n/2 = ûj,−n/2 for all j and ûm/2,k = û−m/2,k for all k, and correspond to a 2D uniform grid
with n points in longitude and m points in latitude,

λq = −π + (q − 1)
2π

n
, 1 ≤ q ≤ n, θp = −π + (p− 1)

2π

m
, 1 ≤ p ≤ m. (2.7)

The nm Fourier coefficients ûjk can be computed by sampling ũ on the grid and using the 2D FFT,
costing O(nm log nm) operations. In practice we take m = n since it leads to the same resolution
in each direction around the equator where the spacing is the coarsest.

3To be precise, θ is the colatitude, defined as “π/2 minus latitude” with latitude in [−π/2, π/2]. For simplicity,
we will refer to it as latitude. Note that θ = 0 corresponds to the north pole and θ = π to the south pole.

STIFF PDES ON THE SPHERE 5

As mentioned in [51], every smooth function u(λ, θ) on the sphere is associated with a smooth bi-
periodic function ũ(λ, θ) on [−π, π]2 via (2.4), but the converse is not true since smooth bi-periodic
functions might not be constant along the lines θ = 0 and θ = ±π corresponding to the poles.
To be smooth on the sphere, functions of the form (2.4) have to satisfy the pole conditions, which
ensures that ũ(λ, θ) is single-valued at the poles despite the fact that latitude circles degenerate
into a single point there. For approximations of the form (2.5)–(2.6), this is given by

m/2∑
j=−m/2

′ ûjk =

m/2∑
j=−m/2

′ (−1)j ûjk = 0, |k| ≥ 1. (2.8)

As we will see in the numerical experiments of Sections 2.4 and 2.5, when solving a PDE involving
the Laplacian operator, if the right-hand side (for Poisson’s equation) or the initial condition (for the
heat equation) is a smooth function on the sphere, then the solutions obtained with our DFS method
are also smooth functions on the sphere. Therefore, we do not have to impose the conditions (2.8).
Similarly, we do not impose the “doubled-up” symmetry in (2.4), as it was preserved throughout
our experiments (we leave as an open problem to prove this). For brevity we only illustrate the
condition (2.8) in our experiments.

Let us finish this section with some comments about Fourier series for solving PDEs on the
sphere. One way of using them is to use standard double Fourier series on a “doubled-up” version
of u, i.e., the DFS method (2.4)–(2.6). This is what Merilees did and, combined with a Fourier
spectral method in value space, he solved the shallow water equations [33]. Another way is to use
half-range cosine or sine series [8, 11, 37, 46, 60]—after all, spherical harmonics are represented as
proper combinations of half-ranged cosine or sine series. For example, Orszag [37] suggested the
use of approximations of the form

u(λ, θ) ≈
n/2∑

k=−n/2

n/2∑
j=0

ûjk sins θ cos jθeikλ, (2.9)

where s = 0 if k is even, s = 1 if k is odd. (Note that the Fourier series in (2.9) approximates u
directly, as opposed to ũ.) When using half-range cosine or sine terms as basis functions, one must
be careful that the pole conditions are satisfied. One can either select basis functions that satisfy the
pole conditions or impose a constraint on the Fourier coefficients to enforce it. For solving PDEs
involving the Laplacian operator (in both value and coefficient spaces), Orszag imposed certain
constraints on the coefficients ûjk in (2.9), analogous to those in (2.8),

n/2∑
j=0

ûjk =

n/2∑
j=0

(−1)j ûjk = 0, |k| ≥ 2. (2.10)

Boyd [8] studied Orszag’s method and showed that the constraints (2.10) are actually not neces-
sary for solving time-independent PDEs in value space but mentioned that the “absence of pole
constraints is still risky” when working with coefficients.

The spectral method we present in this paper is based on Merilees’ approach and is similar to
the method of Townsend et al. [51], but the Fourier multiplication matrices we use are different. It
is simpler to implement than the half-range cosine/sine methods since there are no constraints to
impose, and gives comparable accuracy.

6 MONTANELLI AND NAKATSUKASA

2.2. Fourier multiplication matrices in coefficient space. In this section, we are inter-
ested in finding a matrix for multiplication by sin2 θ that is nonsingular. This is crucial because
some of the time-stepping methods we shall describe in Section 3 need to compute the inverse of
such a matrix. For this discussion we can restrict our attention to the 1D case.

Consider an even number m of equispaced points {θp}mp=1 on [−π, π],

θp = −π + (p− 1)
2π

m
, 1 ≤ p ≤ m. (2.11)

(Note that these points include −π but not π.) Let u be a complex-valued function on [−π, π] with
values {up}mp=1 at these points. It is well known [25, Ch. 13] that there exists a unique degree m/2
trigonometric polynomial p(θ) that interpolates u(θ) at these m points, i.e., such that p(θp) = up
for each p, of the symmetric form

p(θ) =

m/2∑
j=−m/2

′ ûje
ijθ, (2.12)

with Fourier coefficients

ûj =
1

m

m∑
p=1

upe
−ijθp , −m

2
≤ j ≤ m

2
− 1, (2.13)

and ûm/2 = û−m/2. The prime on the summation sign indicates that the terms j = ±m/2 are
halved. Hence, we shall define the vector of m+ 1 Fourier coefficients as

û =
(û−m/2

2
, û−m/2+1, . . . , ûm/2−1,

ûm/2

2
=
û−m/2

2

)T
. (2.14)

Let us emphasize that if the trigonometric interpolant were defined as

p(θ) =

m/2−1∑
j=−m/2

ûje
ijθ, (2.15)

the derivative of (2.15) would have a mode (−im/2)e−imθ/2 leading to complex values for real data.4
However, FFT codes only store m coefficients, i.e., they assume that p(θ) is of the form (2.15) with

û =
(û−m/2

2
+
ûm/2

2
= û−m/2, û−m/2+1, . . . , ûm/2−1

)T
. (2.16)

As a consequence, the first entry of the m×m first-order Fourier differentiation matrix Dm, which
acts on (2.16), is zero,

Dm = diag
(
i(0,−m/2 + 1,−m/2 + 2, . . . ,m/2− 1)

)
, (2.17)

4Consider for example u(θ) = cos(θ) with m = 2. The representation (2.15) gives p(θ) = e−iθ with correct values
−1 and 1 at grid points θ1 = −π and θ2 = 0 but its derivative p′(θ) = −ie−iθ is complex-valued on the grid. The
representation (2.12) gives p(θ) = 1/2(e−iθ + eiθ), which is indeed the correct answer.

STIFF PDES ON THE SPHERE 7

to cancel the mode (−im/2)e−imθ/2. Another way of seeing this is to adopt the following point of
view: to compute derivatives, we map the vector ofm Fourier coefficients (2.16) to the representation
(2.14) with m+ 1 coefficients, differentiate, and then map back to m coefficients. Thus, Dm can be
written as the product of three matrices,5

Dm = QDm+1P (2.18)

where the (m+ 1)×m matrix P maps (2.16) to (2.14),

P =


1
2

1
. . .

1
1
2 0

 , (2.19)

Dm+1 is the (m+ 1)× (m+ 1) first-order Fourier differentiation matrix,

Dm+1 = diag
(
i(−m/2,−m/2 + 1, . . . ,m/2)

)
, (2.20)

and Q is the m× (m+ 1) matrix that maps back to m coefficients,

Q =


1 1

1
. . .

1 0

 . (2.21)

(Note that the first entry of the differentiation matrix (2.20) is nonzero.)
The same point of view can be adopted for multiplication matrices, with the difference that

multiplying by sin2 θ or cos θ sin θ will increase the length of the representation by four since

sin2 θ = −1

4
e−2iθ +

1

2
− 1

4
e2iθ, cos θ sin θ = −1

4
e−2iθ +

1

4
e2iθ. (2.22)

Therefore, to multiply by, e.g., sin2 θ, we map (2.16) to (2.14), multiply by sin2 θ with an (m+ 1 +
4) × (m + 1) matrix, and then truncate and map back to m coefficients. The resulting matrix for
multiplication by sin2 θ, which we denote by Tsin2 , is given by

Tsin2 = QMsin2(:, 3 : m+ 3)P, (2.23)

5Readers might find details such as (2.18)–(2.21) unexciting, and we would not disagree. But what trouble it
causes in computations if you do not get these details right!

8 MONTANELLI AND NAKATSUKASA

where Msin2 is the (m+ 1 + 4)× (m+ 1 + 4) matrix defined by

Msin2 =



1
2 0 − 1

4
0 1

2 0 − 1
4

− 1
4 0

.

− 1
4

.

. − 1
4

. 0

− 1
4 0 1

2


, (2.24)

P is defined as before and Q is the following m× (m+ 1 + 4) matrix,

Q =


0 0 1 1 0 0

1
. . .

1 0 0 0

 . (2.25)

We have used MATLAB notation in (2.23): Msin2(:, 3 : m+ 3) is obtained from (2.24) by removing
the first and last two columns—these columns would hit zero coefficients in the padded-with-zeros
version of û. This leads to

Tsin2 =



1
2 0 − 1

4 − 1
4 0

0 1
2 0 − 1

4 0

− 1
8 0

.

− 1
4

.

− 1
4

. − 1
4

. − 1
4

− 1
8 − 1

4

. . . 1
2 0

0 0 − 1
4 0 1

2



. (2.26)

Using the Gershgorin circle theorem [58] we see that the m×m matrix (2.26) is nonsingular since
it is row diagonally dominant, with strict diagonal dominance in the second row, and irreducible.

Let us add some comments about (2.26). If we operated in value space, we would obtain
a singular matrix, since the multiplication matrix in value space, Mv

sin2 , a diagonal matrix with
entries {sin2 θp}mp=1, has two zeros corresponding to θp = −π and θp = 0. (The standard remedy in
that case is to shift the θ-grid so that it does not contain the poles [33].) From this matrix, we can

STIFF PDES ON THE SPHERE 9

obtain a multiplication in coefficient space by multiplying by the DFT matrix F and its inverse,

FMv
sin2F−1 =



1
2 0 − 1

4 − 1
4 0

0 1
2 0 − 1

4 − 1
4

− 1
4 0

.

− 1
4

.

. − 1
4

. − 1
4

− 1
4 − 1

4

. . . 1
2 0

0 − 1
4 − 1

4 0 1
2



. (2.27)

This matrix is indeed singular since F defines a unitary transformation, and its null space contains
the vectors (1, 1, . . .)T and (1,−1, 1,−1, . . .)T , which correspond to the Fourier coefficients of the
delta functions at θ = 0 and θ = −π.

In [51], the authors use the m×m version of (2.24) (which is also nonsingular) as opposed to
(2.26); this leads to incorrect results for trigonometric polynomials of degree m/2− 2. To illustrate
this, let us considerm = 6 and multiply sin2(θ) by a trigonometric polynomial of degreem/2−2 = 1,
e.g., cos(θ). In the representation (2.16), the function cos(θ) = 1/2(e−iθ + eiθ) has coefficients

c =
(

0, 0,
1

2
, 0,

1

2
, 0
)T
, (2.28)

while the product cos(θ) sin(θ) = −1/8(e−3iθ + e3iθ) + 1/8(e−iθ + eiθ) has coefficients

d =
(
− 1

4
, 0,

1

8
, 0,

1

8
, 0
)T
. (2.29)

For m = 6, we have

Tsin2 =



1
2 0 − 1

4 0 − 1
4 0

0 1
2 0 − 1

4 0 0
− 1

8 0 1
2 0 − 1

4 0
0 − 1

4 0 1
2 0 − 1

4
− 1

8 0 − 1
4 0 1

2 0
0 0 0 − 1

4 0 1
2

 , Tsin2 c =
(
− 1

4
, 0,

1

8
, 0,

1

8
, 0
)T

= d, (2.30)

while

Msin2 =



1
2 0 − 1

4 0 0 0
0 1

2 0 − 1
4 0 0

− 1
4 0 1

2 0 − 1
4 0

0 − 1
4 0 1

2 0 − 1
4

0 0 − 1
4 0 1

2 0
0 0 0 − 1

4 0 1
2

 , Msin2 c =
(
− 1

8
, 0,

1

8
, 0,

1

8
, 0
)T
6= d. (2.31)

Similarly, the matrix for multiplication by cos θ sin θ is the product of three matrices,

Tcos sin = QMcos sin(:, 3 : m+ 3)P, (2.32)

10 MONTANELLI AND NAKATSUKASA

with

Mcos sin =



0 0 i
4

0 0 0 i
4

− i
4 0

.

− i
4

.

. i
4

. 0

− i
4 0 0


, (2.33)

and is given by

Tcos sin =



0 0 i
4 − i

4 0
0 0 0 i

4 0

− i
8 0

.

− i
4

.

− i
4

. i
4

. i
4

i
8 − i

4

. . . 0 0

0 0 − i
4 0 0



. (2.34)

2.3. Laplacian matrix and linear systems. The Laplacian operator on the sphere is

∆u =
1

sin θ

(
sin θ uθ

)
θ

+
1

sin2 θ
uλλ, (2.35)

which we write as

∆u = uθθ +
cos θ sin θ

sin2 θ
uθ +

1

sin2 θ
uλλ. (2.36)

We want to discretize ∆ with a matrix L using a Fourier spectral method in coefficient space on
an n×m uniform longitude-latitude grid (2.7), and we look for a solution of the form (2.5)–(2.6).
Using Kronecker products, we can write L as

L = In ⊗ (D(2)
m + T−1

sin2Tcos sinDm) + D(2)
n ⊗ (T−1

sin2), (2.37)

where Tsin2 , Tcos sin and Dm have been defined in the previous section, In is the n × n identity
matrix and D

(2)
m is the second-order Fourier differentiation matrix,

D(2)
m = diag

(
− (m/2)2,−(m/2− 1)2, . . . ,−1, 0,−1, . . . ,−(m/2− 1)2

)
. (2.38)

STIFF PDES ON THE SPHERE 11

1 8 16

1

8

16

1 8 16

1

8

16

1 8 16

1

8

16

Fig. 2.1: Sparsity pattern of the matrix zTsin2 + wTsin2Li (left), and its L (middle) and U (right)
factors for m = 16. Triangular systems involving L and U are solvable in O(m) operations.

Note that the matrix L is block diagonal with n dense blocks of size m × m. Let us emphasise
that the n blocks correspond to the n longitudinal wavenumbers −n/2 ≤ k ≤ n/2− 1 and that the
size m of each block corresponds to the m latitudinal wavenumbers −m/2 ≤ j ≤ m/2− 1.

Some of the time-stepping schemes we shall describe in Section 3 involve solving linear systems
of the form (zInm + wL)x = b, where Inm denotes the nm × nm identity matrix. Fortunately,
the matrix structure allows for a linear-cost direct solver. The key observation is that L is block
diagonal, and each m×m block Li of L,

Li = D(2)
m + T−1

sin2Tcos sinDm + D(2)
n (i, i)T−1

sin2 , (2.39)

is dense but (zIm + wLi)x = b can be solved in O(m) operations since it is equivalent to solving

(zTsin2 + wTsin2Li)x = Tsin2b, (2.40)

and (zTsin2 +wTsin2Li) is pentadiagonal with two (near-)corner elements. Therefore, using a sparse
direct solver based on the standard LU factorization without pivots [14], the L and U factors have
the sparsity patterns indicated in Figure 2.1 (due to the diagonal dominance in most blocks, the
LU factorization without pivoting completes without breaking down6). Since L and U have at most
three nonzero elements per column and row respectively, each triangular linear system is solvable
in O(m) operations; thus once an LU factorization is computed, the linear system (2.40) can be
solved in O(m) operations. Therefore, linear systems of the form

(zInm + wL)x = b (2.41)

can be solved blockwise in O(nm) operations.7 Because of the structure of the LU factors (see
Figure 2.1), the coefficients one gets when solving systems of the form (2.41) have the property

6For the IMEX schemes of Section 3.2, we can prove that all the blocks but one are diagonally dominant; for
ETDRK4-CF (see Section 3.1.1), the diagonal dominance is violated much more frequently. Nonetheless, diagonal
dominance is merely a sufficient condition for the LU factorization to not require pivoting, and in practice, all the
methods result in linear systems for which the LU factorization causes no stability issues.

7In practice we do not solve linear systems of the form (2.41) blockwise, i.e., by solving n linear systems (2.40).
Instead, a more efficient approach is to store the left-hand sides of (2.40) altogether as a sparse matrix and use
MATLAB’s sparse linear solver.

12 MONTANELLI AND NAKATSUKASA

that the even modes in λ correspond to even functions in θ and the odd modes to odd functions.
To see this, note that every other term in the LU factors is zero, so the even and odd modes are
decoupled.

2.4. Poisson’s equation. To test the accuracy of (2.37), we first solve a time-independent
PDE, Poisson’s equation, with a zero-mean condition for uniqueness,

∆u = f(λ, θ), (λ, θ) ∈ [−π, π]× [0, π],∫ π

0

∫ π

−π
u(λ, θ) sin θdλdθ = 0,

(2.42)

where f also has zero mean on [−π, π]× [0, π]. Using the DFS method, we seek a solution ũ of the
“doubled-up” version of (2.42),

∆ũ = f̃(λ, θ), (λ, θ) ∈ [−π, π]2,∫ π

0

∫ π

−π
ũ(λ, θ) sin θdλdθ = 0,

(2.43)

of the form (2.5)–(2.6). The true solution u can be recovered by restricting ũ to (λ, θ) ∈ [−π, π]×
[0, π]. (Note that the zero-mean condition in (2.43) is on the original domain [−π, π]× [0, π] since
ũ must coincide with u on this domain.) Townsend et al. [51] showed that the zero-mean condition
can be discretized as∫ π

0

∫ π

−π
ũ(λ, θ) sin θdλdθ ≈

m/2∑
j=−m/2

′
n/2∑

k=−n/2

′ ûjk

∫ π

0

sin θeijθdθ

∫ π

−π
eikλdλ

= 2π

m/2∑
j=−m/2

′ ûj0
1 + eijπ

1− j2
= 0.

(2.44)

Poisson’s equation (2.43) is then discretized by

Lû = f̂ , (2.45)

where û and f̂ are the vectors of nm Fourier coefficients (2.6) of ũ and f̃ , and L is the Laplacian
matrix (2.37). We impose the zero-mean condition by replacing the (m/2+1)st row of the (n/2+1)st
block of L by (2.44).8 Note that, given the Fourier coefficients of ũ and f̃ , (2.45) can be solved in
O(nm) operations since it is of the form (2.41) with z = 0.

Since the Laplacian operator on the sphere has real eigenvalues −l(l + 1), l ≥ 0, with eigen-
functions the spherical harmonics Y ml (λ, θ) [5], a simple test is to take the right-hand side f to be
a spherical harmonic Y ml with exact solution u = −1/(l(l + 1))Y ml . A slightly more complicated
test is given in [11] and this is what we shall present here. We solve Poisson’s equation for a family
of right-hand sides fl defined by

fl(λ, θ) = l(l + 1) sinl θ cos(lλ) + (l + 1)(l + 2) cos θ sinl θ cos(lλ), l ≥ 1. (2.46)

8The (n/2 + 1)st block of L corresponds to longitudinal wavenumber k = 0 while the (m/2 + 1)st row of this
block corresponds to latitudinal wavenumber j = 0.

STIFF PDES ON THE SPHERE 13

0 8 16 24 32 40 48 56 64

wavenumber l

-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

log10E

log10 P

Fig. 2.2: Variation of the relative error log10E and of the error in the pole condition log10 P with
wavenumber l for m = n = 128. The accuracy is excellent for every wavenumber 1 ≤ l ≤ 64.

The exact solution uexl (λ, θ) is given by

uexl (λ, θ) = − sinl θ cos(lλ)− cos θ sinl θ cos(lλ), l ≥ 1. (2.47)

We compute the solutions ul for m = n = 128 grid points in each direction for 1 ≤ l ≤ 64 and,
following [11, Fig. 1], we plot the logarithm (in base 10) of the relative L2-error E,

E =
||ul(λ, θ)− uexl (λ, θ)||2

||uexl (λ, θ)||2
, (2.48)

with (continuous) L2-norm on the sphere || · ||2, against l. (The L2-norm of a spherefun can be
computed in Chebfun with the norm command.) We also plot the logarithm of the error P in
satisfying the pole condition (2.8), i.e.,

P = max

(
max
k 6=0

∣∣∣∣∣
m/2∑

j=−m/2

′ ûljk

∣∣∣∣∣,max
k 6=0

∣∣∣∣∣
m/2∑

j=−m/2

′ (−1)j ûljk

∣∣∣∣∣
)
, (2.49)

where the ûljk are the computed coefficients of ũl; see Figure 2.2. The accuracy is excellent; the
results are similar to those shown in [11, Fig. 1] and to results we have obtained with the Poisson
solver of [51] (although the discretization matrices are different as noted in Section 2.2, the effect
on the solution is negligible when m and n are taken large enough).

2.5. Heat equation. As we mentioned in the introduction, Orszag [37] and Boyd [8] showed
that when solving a time-dependent PDE involving the Laplacian with half-range cosine/sine series
à la (2.9), it is crucial to impose the pole conditions (2.10); otherwise, they observed that “the
numerical solution still converged as the time step was shortened—to a wildly wrong answer.”
Therefore, let us now test the accuracy of (2.37) with a time-dependent PDE and illustrate that
the pole conditions (2.8) are also satisfied in this case.

14 MONTANELLI AND NAKATSUKASA

10
-4

10
-3

10
-2

10
-1

time-step h

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

O(h4)

E

P

Fig. 2.3: Variation of the relative error E at t = 1 and of the error in the pole condition P with
time-step h for m = n = 128. The error E scales as O(h4). Note that the initial condition Y 64

64 (λ, θ)
corresponds to the highest wavenumbers that can be resolved on a 128× 128 grid.

We consider the heat equation with a thermal diffusivity and an initial condition that lead to
a particularly simple exact solution,

ut =
1

l(l + 1)
∆u, u(t = 0, λ, θ) = Y ml (λ, θ), (λ, θ) ∈ [−π, π]× [0, π]. (2.50)

The exact solution is uex(t, λ, θ) = e−tY ml (λ, θ). Using the DFS method, we seek a solution ũ of
the “doubled-up” version of (2.50),

ũt =
1

l(l + 1)
∆ũ, ũ(t = 0, λ, θ) = Y ml (λ, θ), (λ, θ) ∈ [−π, π]2, (2.51)

of the form

ũ(t, λ, θ) ≈
m/2∑

j=−m/2

′
n/2∑

k=−n/2

′ ûjk(t)eijθeikλ. (2.52)

We discretize the Laplacian operator with (2.37) and use the fourth-order backward differentiation
formula to march in time. We take l = 64, ũ(t = 0, λ, θ) = Y 64

64 (λ, θ), m = n = 128 grid points and
solve (2.51) up to t = 1 for various time-steps h. We plot the relative L2-error E at t = 1,

E =
||u(t = 1, λ, θ)− uex(t = 1, λ, θ)||2

||uex(t = 1, λ, θ)||2
, (2.53)

and the error in the pole conditions (as defined in (2.49)) against h; the error E scales as O(h4),
see Figure 2.3. (With m = n = 128 grid points, the error due to the spatial discretization is small
compared to the error due to the time discretization, so we are really measuring the latter.)

STIFF PDES ON THE SPHERE 15

2.6. Bound for the eigenvalues of the Laplacian matrix. As mentioned in Section 2.4,
the eigenvalues of the Laplacian operator are−l(l+1), for integers l ≥ 0. What about the eigenvalues
of the Laplacian matrix (2.37)? We show in Appendix A that they are all real and nonpositive,
and have observed numerically that some of them are spectrally accurate approximations to the
eigenvalues −l(l + 1), but some others, the so-called outliers [52, Ch. 10], are of order O(n2m2)
as n = m → ∞. We shall prove the latter fact below. These large eigenvalues are meaningless
physically but of crucial importance in practice since for time-stepping algorithms applied to (1.2)
to be stable, we need the eigenvalues of (2.37), scaled by the time-step, to lie in their stability
region.

We examine now the largest (in magnitude) eigenvalues of (2.37). It suffices to examine each
block

Li =
(
D(2)
m + T−1

sin2Tcos sinDm + D(2)
n (i, i)T−1

sin2

)
, (2.54)

whose largest eigenvalue can be bounded as

|λmax(Li)| ≤ ‖Li‖ ≤ ‖D(2)
m ‖+ ‖T−1

sin2‖‖Tcos sinDm + D(2)
n (i, i)Im‖. (2.55)

We trivially have ‖D(2)
m ‖ = O(m2) and

‖Tcos sinDm + D(2)
n (i, i)Im‖ ≤ ‖Tcos sinDm‖+ |D(2)

n (i, i)| = O(m+ i2). (2.56)

It remains to bound ‖T−1
sin2‖; we claim that this is O(m2). To verify this, we come back to the

definition of Tsin2 = QMsin2(:, 3 : m+ 3)P from (2.23), and note that

QT =

02×m
P

02×m

diag(2, 1, . . . , 1). (2.57)

We can then write

Tsin2 = QMsin2QTdiag(
1

2
, 1, . . . , 1) = diag(

√
2, 1, . . . , 1)Q̃Msin2Q̃Tdiag(

1√
2
, 1, . . . , 1), (2.58)

where Q̃ := diag(1√
2
, 1, . . . , 1)Q has orthonormal rows. Hence, using the fact that σmin(ABC) ≥

σmin(A)σmin(B)σmin(C) (which holds when A and C are square), we obtain

σmin(Tsin2) ≥ 1√
2
σmin(Q̃Msin2Q̃T). (2.59)

Now, since Msin2 is symmetric positive definite, we have σmin(Q̃Msin2Q̃T) = λmin(Q̃Msin2Q̃T) ≥
λmin(Msin2(3 : m+ 3, 3 : m+ 3)), where we used the nonzero structure of Q̃ for the last inequality.
Moreover, the eigenvalues of Msin2(3 : m+ 3, 3 : m+ 3) are explicitly known to be

λj =
{1

2

(
cos(πj/(m/2+1))+1

)
, 1 ≤ j ≤ m

2

}
∪
{1

2

(
cos(πj/(m/2+2))+1

)
, 1 ≤ j ≤ m

2
+1
}
. (2.60)

Thus 1/σmin(Q̃Msin2Q̃T) ≤ 1/minj λj = O(m2), and hence ‖T−1
sin2‖ = 1/σmin(Tsin2) = O(m2), as

required. We conclude that ‖Li‖ = O(m2(i2 +m)); since this holds for every i, it follows that

|λmax(L)| = O(n2m2 +m3). (2.61)

16 MONTANELLI AND NAKATSUKASA

10
0

10
1

10
2

10
3

grid size m

10
0

10
2

10
4

10
6

10
8

10
10

|λmax(L)|

||T−1
sin2

||

O(n2m2)

Fig. 2.4: Variation of |λmax(L)| with m = n. The bound (2.61) is accurately reflected.

This bound scales as O(n2m2) when m = n (our usual choice). We illustrate (2.61) in Figure 2.4,
which suggests that it is sharp.

The fact that the largest eigenvalue has order n2m2 makes time-dependent PDEs on the sphere
particularly stiff. It is a consequence of both the second order of the Laplacian operator and
the clustering of the points near the poles in (2.60). It would imply severe restrictions on the
time-steps for generic explicit algorithms—this is why we use exponential integrators and IMEX
schemes, which we describe next. (In the literature, the severe time-stepping restrictions due to
uniform longitude-latitude grids is sometimes called the pole problem [8, 37]). Note that the time-
stepping restrictions resulting from the clustering near the poles can be addressed by truncating
high-frequency terms in the space discretization (see, e.g., [19, Sec. 2.1.6] and [22]). However, this
approach does not overcome stiffness resulting from the second-order operator.

3. Fourth-order time-stepping on the sphere. Using the DFS method, we seek a solution
ũ of the “doubled-up” version of (2.3),

ũt = α∆ũ+N (ũ), ũ(t = 0, λ, θ) = ũ0(λ, θ), (λ, θ) ∈ [−π, π]2, (3.1)

of the form (2.52). Discretizing the Laplacian operator with the Laplacian matrix (2.37), we obtain
the system of nm ODEs (1.2) where L is (2.37) multiplied by α. Time is discretized with time-step
h and the problem is to find the Fourier coefficients ûn+1 of ũ at tn+1 = (n+1)h from the coefficients
ûn at tn = nh and also coefficients at previous time-steps (for multistep schemes). Note that, in
practice, nonlinear evaluations N(ûn) are carried out in value space.

We present in this section four time-stepping algorithms for solving (1.2), and show how it
is possible to achieve O(nm log nm) complexity per time-step in most cases. Two of them are
exponential integrators based on the ETDRK4 scheme with different strategies for computing the
matrix exponential and related functions, while the two others are IMEX schemes. As before,
we have observed numerically that these schemes combined with our spatial discretization preserve
both the “doubled-up” symmetry (2.4) and the pole conditions (2.8), i.e., if one starts with a smooth

STIFF PDES ON THE SPHERE 17

“doubled-up” initial condition, then the solution at time t is also a smooth “doubled-up” function.

3.1. Exponential integrators. Dozens of exponential integration formulas of order four and
higher have been proposed over the last 15 years [13, 26, 27, 31, 32, 34, 38]. The first author
recently demonstrated [36] that it is hard to do much better than the ETDRK4 scheme of Cox and
Matthews [13]. The formula for this scheme is:

ân = ϕ0(hL/2)ûn + (h/2)ϕ1(hL/2)N(ûn),

b̂n = ϕ0(hL/2)ûn + (h/2)ϕ1(hL/2)N(ân),

ĉn = ϕ0(hL/2)ân + (h/2)ϕ1(hL/2)
[
2N(b̂n)−N(ûn)

]
,

ûn+1 = ϕ0(hL)ûn + hf1(hL)N(ûn) + hf2(hL)
[
N(ân) + N(b̂n)

]
+ hf3(hL)N(ĉn),

(3.2)

where the ϕ-functions are defined by

ϕ0(hL) = ehL,

ϕ1(hL) = h−1L−1(ehL − I),

ϕ2(hL) = h−2L−2(ehL − hL− I),

ϕ3(hL) = h−3L−3(ehL − h2L2/2− hL− I),

(3.3)

and the coefficients f1, f2 and f3 are linear combinations of the ϕ-functions,

f1(hL) = ϕ1(hL)− 3ϕ2(hL) + 4ϕ3(hL) = h−3L−3[−4I− hL + ehL(4− 3hL + (hL)2)],

f2(hL) = 2ϕ2(hL)− 4ϕ3(hL) = 2h−3L−3[2I + hL + ehL(−2I + hL)],

f3(hL) = −ϕ2(hL) + 4ϕ3(hL) = h−3L−3[−4I− 3hL− (hL)2 + ehL(4I− hL)].

(3.4)

When all the eigenvalues of L are real (i.e., α ∈ R, α > 0 corresponding to a diffusive PDE),
matrix-vector products ϕl(hL)v can be evaluated using rational approximations computed by the
Carathéodory–Fejér (CF) method, as described in [45]. If L has some imaginary eigenvalues—
the extreme case being when all the eigenvalues are imaginary (i.e., α ∈ iR, dispersive PDE)—
methods based on rational approximations necessarily become expensive, and the ϕ-functions have
to be precomputed before the time-stepping starts, e.g., using the eigenvalue decomposition of
L and contour integrals.9 We denote by ETDRK4-CF the method with CF approximations and
by ETDRK4-EIG the method with eigenvalue decomposition. We shall give details about the
precomputation of the coefficients for both ETDRK4-CF and ETDRK4-EIG below.

Note that Du and Zhu computed in [17] the stability region of (3.2) and showed that it includes
parts of both the negative real axis and the imaginary axis.

9A comparison of methods for computing the ϕ-functions can be found in [4].

18 MONTANELLI AND NAKATSUKASA

3.1.1. ETDRK4-CF. When all the eigenvalues of L are real, one can compute matrix-vector
products ϕl(hL)v in O(mn) operations using near-best rational approximations to the ϕ-functions
on the negative real axis [45]. For an efficient implementation, we use the algorithm that uses
common poles for approximating the exponential and other ϕ-functions [45], as we summarize
below. Using the CF method for the negative real line [53], we obtain a rational approximant

ez ≈ r∞ +

p∑
j=1

cj
z − zj

, (3.5)

which has error decaying like ≈ 9.28903−p with a type (p, p) function. (We use the MATLAB cf
code of Trefethen, Weideman and Schmelzer [54] in our experiments.) To obtain an approximant
to ϕl(z) using the approximant (3.5) to ez = ϕ0(z), we use the fact [45, Prop. 4.1] that defining

Bz =

(
z 1
0 0

)
(3.6)

we have

ϕl(Bz) =

ϕl(z) ϕl+1(z)

0 ϕl(0)

 , l ≥ 0. (3.7)

Together with the identity

(Bz − zjI)−1 =

(z − zj)−1 (z − zj)−1z−1
j

0 −z−1
j

 , (3.8)

we obtain the approximation

ϕl(z) ≈
p∑
j=1

cjz
−l
j

z − zj
, l ≥ 0. (3.9)

As suggested in [45, Prop. 4.1], we further incorporate a shift 1 in (3.5), which with p = 12 (the
default choice; the accuracy is ≈ 10−8 with p = 10) gives accuracy ≈ 10−10 on the negative real
axis for all ϕl, 0 ≤ l ≤ 3. Given (3.5) and (3.9), evaluating ϕl(hL)b for a vector b as in (3.2) can be
approximated as

ϕl(hL)b ≈
p∑
j=1

cjz
−l
j (hL− zjI)−1b, 0 ≤ l ≤ 3, (3.10)

which reduces to p = 12 shifted linear systems of the form (2.41), which we do with linear cost as
described in Section 2.3. In practice, we compute and store the LU factorizations of the matrices
that appear in (3.10) before the time-stepping starts. Note that computing different products
ϕl(hL)v at once with the same v requires no further linear systems.

Let us emphasize three aspects of this approach. First, it is not necessary to explicitly compute
and store the ϕ-functions; instead, their action on vectors is directly computed via (3.10). Second,

STIFF PDES ON THE SPHERE 19

10
0

10
1

10
2

10
3

grid size m

10
0

10
1

10
2

cond(V)

O(m)

Fig. 3.1: Variation of cond(V) with m = n. It is of order m and reasonably small; therefore, an
approach based on eigenvalues and eigenvectors for the computation of the ϕ-functions is valid.

the most expensive operation in (3.2)–(3.10) is the 2D FFT, which costs O(nm log nm) operations;
see Table 3.1. Third, this method is not applicable when L has some imaginary eigenvalues; this is
because low-degree rational functions are unable to approximate the exponential on the imaginary
axis, which is oscillatory. In this case one has to compute and store the ϕ-functions, and the
complexity increases to O(nm2) per time-step, as we describe next.

3.1.2. ETDRK4-EIG. To compute the ϕ-functions, one can use a method based on eigen-
values and eigenvectors. The idea is to diagonalize L = VΛV−1 and then apply the ϕ-functions to
the eigenvalues,

ϕl(hL) = Vϕl(hΛ)V−1, 0 ≤ l ≤ 3, (3.11)

with

ϕl(hΛ) =


ϕl(hλ1)

ϕl(hλ2)
. . .

ϕl(hλnm)

 . (3.12)

For a general nm × nm matrix L, this would require O(n3m3) operations, but for (2.37), this
can be done blockwise in O(nm3) operations. Note that this corresponds to Method 14 of [35].
Theoretically, this approach only works when L is nondefective, that is, when it has a complete set
of linearly independent eigenfunctions—this is a well known result for the Laplacian operator on the
sphere [5]. In practice, difficulties occur when the discretizaion L is “nearly” defective, i.e., when
cond(V) = ||V|| ||V−1|| is large. Fortunately, we have observed numerically that the condition
number is small and of order m as m = n increases; see Figure 3.1.

Once we have computed the eigenvalue decomposition, we follow the idea of Kassam and
Trefethen [29] and evaluate the ϕ-functions at each scaled eigenvalue hλ using Cauchy’s integral

20 MONTANELLI AND NAKATSUKASA

formula,

ϕl(hλ) =
1

2πi

∮
Γ

ϕl(z)

z − hλ
dz ≈ 1

M

M∑
k=1

ϕl
(
hλ+ e2πi(k−0.5)/M

)
, 0 ≤ l ≤ 3. (3.13)

The constant M is the number of points in the discretized contour integration; we take M = 32 in
our experiments.

The precomputation step costs O(nm3) operations, while the cost per time-step is O(nm2)
since one has to compute block diagonal matrix-vector products ϕl(hL)v; see Table 3.1.

3.2. Implicit-explicit schemes. We present in this section the two IMEX schemes we con-
sider in this paper. The first one, IMEX-BDF4 [3], is a multistep scheme which is stable only for
diffusive PDEs. The second one, LIRK4 [9], is a one-step scheme, stable for both diffusive and
dispersive PDEs.

3.2.1. IMEX-BDF4. Following Kassam and Trefethen [29], we consider a scheme known
either as SBDF4 (in [3]), AB4BD4 (in [13]) or IMEX-BDF4 (in [28]), which combines a fourth-
order Adams–Bashforth formula and a fourth-order backward differentiation scheme in a nontrivial
way. The method is given by:

(25Inm − 12hL)ûn+1 = 48ûn − 36ûn−1 + 16ûn−2 − 3ûn−3 + 48hN(ûn)− 72hN(ûn−1)

+ 48hN(ûn−2)− 12hN(ûn−3).
(3.14)

At each time-step, one has to solve a linear system to get the Fourier coefficients ûn+1, which
we do with linear cost by multiplying each block of (3.14) by Tsin2 , as explained in Section 2.3.
Therefore, the dominant cost in (3.14) is the O(nm log nm) 2D FFT for the nonlinear evaluations;
see Table 3.1 at the end of this section.

Let us add three comments about (3.14). First, the LU factorization of the left-hand side of
(3.14) is computed and stored before the time-stepping starts. Second, this is a multistep formula so
it has to be started with a one-step scheme—in the numerical comparisons of Section 4, we initialize
it with three steps of ETDRK4-CF. Third, it is unstable for dispersive PDEs since the stability
region of the fourth-order backward differentiation formula does not contain the portion of the
imaginary axis near the origin. In these cases, one can use IMEX Runge–Kutta schemes [9, 30, 39]
or extrapolation-based IMEX schemes [10, 12]. We have decided to focus on the former.

3.2.2. LIRK4. IMEX Runge–Kutta schemes combine explicit Runge–Kutta formulas to ada-
vance the nonlinear part and implicit Runge–Kutta to advance the linear part [9, 30, 39]. In this
paper, we use the fourth-order LIRK4 scheme of Calvo, de Frutos and Novo [9]. It combines an
implicit L-stable five-stage fourth-order Runge–Kutta method, whose Butcher tableau is given in
[24, Table 6.5], with a six-stage fourth-order explicit Runge–Kutta method, whose coefficients were

STIFF PDES ON THE SPHERE 21

Table 3.1: Computational costs (per time-step) of the time-stepping algorithms with p = 12 in the
CF approximation. The IMEX-BDF 4 scheme is particularly cheap while for ETDRK 4-CF one
needs to solve an extremely large number of linear systems. ETDRK 4-EIG is the only scheme that
has a O(nm2) cost per time-step and a O(nm3) precomputation step. Precomputations for the other
schemes (LU factorizations) cost O(nm) operations.

ETDRK4 IMEX

CF EIG BDF4 LIRK4

O(nm log nm) FFTs 8 8 2 12
O(nm) linear solves 9p = 108 0 1 5
O(nm2) matrix-vector products 0 9 0 0
diffusive PDEs X X X X

dispersive PDEs × X × X

derived in [9]. The formula for this scheme is:

(Inm − 1
4hL)ân = ûn + 1

4hN(ûn),

(Inm − 1
4hL)b̂n = ûn + 1

2hLân − 1
4hN(ûn) + hN(ân),

(Inm − 1
4hL)ĉn = ûn + 17

50hLân − 1
25hLb̂n − 13

100hN(ûn) + 43
75hN(ân) + 8

75hN(b̂n),

(Inm − 1
4hL)d̂n = ûn + 371

1360hLân − 137
2720hLb̂n + 15

544hLĉn − 6
85hN(ûn) + 42

85hN(ân),

+ 179
1360hN(b̂n)− 15

272hN(ĉn),

(Inm − 1
4hL)ên = ûn + 25

24hLân − 49
48hLb̂n + 125

16 hLĉn − 85
12hLd̂n + 79

24hN(ân)− 5
8hN(b̂n)

+ 25
2 hN(ĉn)− 85

6 hN(d̂n),

ûn+1 = ûn + 25
24hLân − 49

48hLb̂n + 125
16 hLĉn − 85

12hLd̂n + 1
4hLên + 25

24hN(ân)− 49
48hN(b̂n)

+ 125
16 hN(ĉn)− 85

12hN(d̂n) + 1
4hN(ên).

(3.15)

The LU factorization of the left-hand sides of (3.15) is computed and stored before the time-

22 MONTANELLI AND NAKATSUKASA

stepping starts. Note that the most expensive operations in the computation of the internal stages
ân, b̂n, ĉn, d̂n and ên are the nonlinear evaluations (O(nm log nm) work). The other operations,
i.e., linear solves and matrix-vector products in the right-hand side (each block being multiplied by
Tsin2), can be carried out in linear time. The computation of ûn+1 from ûn requires matrix-vector
products of the form Lv, which reduce to n dense matrix-vector products Liv; each can be done
in O(m) operations since Liv = T−1

sin2(Tsin2Li)v. (The LU factorization of Tsin2 is also computed
and stored before the time-stepping starts.)

4. Numerical comparisons.

4.1. Methodology. To compare time-stepping schemes, we follow the methodology of [29].
We solve a given PDE up to t = T for various time-steps h and a fixed number of grid points.
We estimate the “exact” solution uex(t = T, λ, θ) by using a very small time-step (half the smallest
time-step h) and ETDRK4-EIG (the most accurate time-stepping scheme). We then measure the
relative L2-error E at t = T between the computed solution u(t = T, λ, θ) and uex(t = T, λ, θ),

E =
‖u(t = T, λ, θ)− uex(t = T, λ, θ)‖2

‖uex(t = T, λ, θ)‖2
. (4.1)

For both u and uex we use m = n = 256 grid points. (With these grid sizes, the error due to the
spatial discretization is small compared to the error due to the time discretization.) We use p = 12 in
the CF approximation for ETDRK4-CF andM = 32 points to compute the contour integrals (3.13)
for ETDRK4-EIG. We plot (4.1) against relative time-steps h/T and computer times on a pair of
graphs.10 The former gives a measure of the accuracy of the time-stepping scheme for various time-
steps or, equivalently, for various number of integration steps. (If the relative time-step is 10−3, it
means that the scheme performed 103 steps to reach t = T .) However, it is possible that each step
is more costly, so it is the latter that ultimately matters.

4.2. Results for the diffusive case. The Allen–Cahn equation, derived by Allen and Cahn
in the 1970s, is a reaction-diffusion equation which describes the process of phase separation in iron
alloys [2], studied in the ball and on the sphere in, e.g., [18]. It is given by

ut = ε∆u+ u− u3, ε� 1, (4.2)

with linear diffusion ε∆u and a cubic reaction term u− u3. The function u is the order parameter,
a correlation function related to the positions of the different components of the alloy. The Allen–
Cahn equation exhibits stable equilibria at u = ±1, while u = 0 is an unstable equilibrium. Solutions
often display metastability where wells u ≈ −1 compete with peaks u ≈ 1, and structures remain
almost unchanged for long periods of time before changing suddenly. We take ε = 10−2 and

u(t = 0, x, y, z) = cos(cosh(5xz)− 10y), (4.3)

and solve up to t = 10. The initial condition and the solution at times t = 1, 2, 10 are shown in
Figure 4.1. The initial condition quickly converges to a metastable u ≈ ±1 solution (at around
t = 10) and eventually to the stable constant solution u = 1 (at around t = 60).

10The precomputation of the coefficients of the exponential integrators, the LU factorizations for the IMEX
schemes and the starting phase of IMEX-BDF4 are not included in the computing time. Timings were done on a
2.8GHz Intel i7 machine with 16GB of RAM using MATLAB R2015b and Chebfun v5.6.0.

STIFF PDES ON THE SPHERE 23

Fig. 4.1: Initial condition (4.3) and solution at times t = 1, 2, 10 of the Allen–Cahn equation (4.2).

10
-3

10
-2

10
-1

Relative time-step

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
el
at
iv
e
er
ro
r
E

at
t
=

10

ETDRK4-CF

ETDRK4-EIG

IMEX-BDF4

LIRK4

10
-1

10
0

10
1

10
2

10
3

Computer time (s)

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
el
at
iv
e
er
ro
r
E

at
t
=

10

ETDRK4-CF

ETDRK4-EIG

IMEX-BDF4

LIRK4

Fig. 4.2: Relative error E at t = 10 versus relative time-step and computer time for the Allen–Cahn
equation (4.2).

The results are shown in Figure 4.2. All the schemes are stable for the time-steps we have
considered, except IMEX-BDF4 for the largest time-step. The ETDRK4 schemes and LIRK4 have
similar accuracy, while IMEX-BDF4 is significantly less accurate. However, IMEX-BDF4 is the
most efficient scheme. This can be explained by looking at Table 3.1: IMEX-BDF4 requires very
few operations per time-step. Note that in this experiment, ETDRK4-CF (O(nm log nm) work per
time-step) is not more efficient than ETDRK4-EIG (O(nm2)). Again, the reason can be found in
Table 3.1: ETDRK4-CF requires the solution of 108 linear systems per time-step. (For m = n
sufficiently large, ETDRK4-CF will be indeed more efficient than ETDRK4-EIG.)

4.3. Results for the dispersive case. The nonlinear Schrödinger (NLS) equation,

ut = i∆u+ i|u|2u, (4.4)

24 MONTANELLI AND NAKATSUKASA

Fig. 4.3: Initial condition (4.5) and real part of the solution at times t = 0.3, 0.6, 1 of the NLS
equation (4.4).

10
-3

10
-2

10
-1

Relative time-step

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
el
at
iv
e
er
ro
r
E

at
t
=

1

ETDRK4-EIG

LIRK4

10
0

10
1

10
2

10
3

Computer time (s)

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
el
at
iv
e
er
ro
r
E

at
t
=

1

ETDRK4-EIG

LIRK4

Fig. 4.4: Relative error E at t = 1 versus relative time-step and computer time for the NLS equation.

models a variety of physical phenomena, including the propagation of light in optical fibres; on the
sphere, a recent theoretical study of its solutions can be found in [49]. A nonlinear variant of the
Schrödinger equation, it couples dispersion i∆u with a nonlinear potential i|u|2u. Note that the
wave function u is complex-valued. We take

u(t = 0, λ, θ) = A

(
2B2

2−
√

2
√

2−B2 cos(ABθ)
− 1

)
+ Y 3

3 (λ, θ) (4.5)

with A = B = 1 and solve up to t = 1. The initial condition and the real part of the solution
at times t = 0.3, 0.6, 1 are shown in Figure (4.3). The initial condition is the superposition of two
nonlinear waves in which energy concentrates in a localized and oscillatory fashion, a breather and
a spherical harmonic.

The results are shown in Figure 4.4. Both schemes are stable for the time-steps we have

STIFF PDES ON THE SPHERE 25

considered. LIRK4 is less accurate than ETDRK4-EIG in this case, but since it has a much
lower cost per time-step, it is more efficient. Let us emphasize that timings do not include the
precomputation step, which takes significantly longer for ETDRK4-EIG (O(nm3) versus O(nm)).
Also, since LIRK4 and ETDRK4-EIG have different scaling inm = n, the results ultimately depend
on the size of the discretization. For example, for m = n = 128 instead of 256, ETDRK4-EIG is
slightly more efficient.

5. Discussion. We have presented algorithms for solving stiff PDEs on the sphere with spec-
tral accuracy in space and fourth-order in time. For the spatial discretization, we have used a
variant of the DFS method in coefficient space. The main advantages of our method are that it is
not necessary to numerically impose the pole conditions (2.8), while operating in coefficient space
avoids the coordinate singularity without using shifted grids and leads to matrices L that can be
computed and inverted efficiently. We have tested our method with the Poisson and heat equations
and obtained excellent results.

For solving nonlinear time-dependent PDEs, we have used IMEX schemes and exponential in-
tegrators to circumvent the time-stepping restrictions due to the large eigenvalues of the Laplacian
matrix. For diagonal problems, exponential integrators are particularly efficient since the com-
putation and the action of the matrix exponential can trivially be computed in linear time. For
problems that allow for fast numerical linear algebra (fast sparse direct solver), as in this paper,
we have given numerical evidence that IMEX schemes outperform exponential integrators. The
IMEX-BDF4 time-stepping scheme is remarkably efficient for diffusive PDEs but since it is unsta-
ble for dispersive PDEs and needs to be started with another algorithm, it might be preferable to
use LIRK4 for both diffusive and dispersive PDEs. For problems that generate dense matrices L,
it is not clear which one would perform best. On a grid with N points, both exponential integra-
tors (dense matrix-vector products) and IMEX schemes (triangular systems from precomputed LU
factorizations) would have a O(N2) cost per time-step. Note that dense matrices correspond to,
e.g., the DFS method applied to (1.1) with highly oscillatory variable coefficients or a Chebyshev
discretization in value space of PDEs of the form (1.1) in 1D/2D/3D. However, as recently shown
by Aurentz in [6], it seems that all spectral differentiation matrices (even the dense ones!) might
allow for fast numerical linear algebra, which would render IMEX schemes more efficient for value-
based Chebyshev discretizations—this is a story to be continued. We summarize these observations
in Table 5.1.

We have not considered the “sliders” of Fornberg and Driscoll [15, 20]. While this can be an
efficient alternative to IMEX schemes and exponential integrators for diagonal problems [29], it is
not clear how it can be extended to non-diagonal ones.

Our method can in principle deal with nonsmooth initial conditions for diffusive problems,
as long as the diffusion is strong enough to smooth out the solution. Also, as we mentioned in
the introduction, our method could be applied to more general PDEs, including linear operators
consisting of powers of the Laplacian operator. These would have a larger bandwidth, but could
still be inverted efficiently. Therefore, we believe that the same conclusions would hold. Analogues
of the matrices P and Q would be involved.

Future directions include the application of our method to hyperbolic problems, e.g., the
barotropic vorticity equation or the shallow water equations. Such problems involve nonlinear
differential operators with large eigenvalues. While stiffness in the linear part (as in the Allen–
Cahn and NLS equations) can be treated by using IMEX schemes or exponential integrators, it is

26 MONTANELLI AND NAKATSUKASA

Table 5.1: Computation costs per time-step for a grid with N points and most efficient time-stepping
scheme in each case. Diagonal problems were considered in [29]. In this paper, we investigated non-
diagonal problems that allow for fast numerical linear algebra (i.e., linear systems can be solved in
linear time). In the latter case, IMEX schemes outperform exponential integrators. It is not clear
which scheme would perform best in the dense numerical linear algebra case.

diffusive PDEs dispersive PDEs

diagonal problems O(N logN) O(N logN)

ETDRK4 ETDRK4

non-diagonal problems O(N logN) O(N logN)

fast sparse direct solver IMEX-BDF4 LIRK4

non-diagonal problems O(N2) O(N2)

dense solver TBD TBD

not obvious how to deal with a stiff nonlinear operator. For the barotropic vorticity equation,

ut = N (u) = − (∆−1u)θ
sin θ

uλ +
(∆−1u)λ

sin θ
(uθ − 2Ω sin θ), (5.1)

a possible approach would be to use the EPIRK schemes [50], e.g., the EPIRK2 scheme given by

ûn+1 = ûn + J−1(ehJ − I)N(ûn), J =
dN

dû
(û),

with Arnoldi iteration for the matrix-vector products involving the Jacobian matrix J of the dis-
cretization N of N in Fourier space—the cost per time-step would also be O(N logN) operations.

Appendix A. Eigenvalues of the Laplacian matrix. The Laplacian matrix (2.37) is a
discretized Laplacian, so one might expect that the eigenvalues are all real and nonpositive. For
example, Gottlieb and Lustman [23] give a nontrivial proof that the discretization of the second
derivative operator in the Chebyshev collocation method on a real interval with separated boundary
conditions has real and negative eigenvalues. Here we show that essentially the same holds on the
sphere for (2.37) (a slight difference is that we have one zero eigenvalue since the Laplacian of a
constant is zero).

Theorem A.1. The eigenvalues of L in (2.37) are all real and nonpositive.
Proof. Clearly it suffices to examine each ith block Li = D

(2)
m +T−1

sin2Tcos sinDm+D
(2)
n (i, i)T−1

sin2 .
We first note that the eigenvalues of Li are equal to those of the matrix pencil

Ai − λBi := Tsin2D(2)
m + Tcos sinDm + D(2)

n (i, i)Im − λTsin2 , (A.1)

which corresponds to the generalized eigenvalue problem Aix = λBix. We shall prove that this

STIFF PDES ON THE SPHERE 27

pencil has negative real eigenvalues, regardless of i; we drop the subscript i for simplicity. Our
proof proceeds as follows:

1. The eigenvalues of A− λB are the values of λ0 for which the matrix A− λ0B has a zero
eigenvalue.

2. For any fixed λ0 ∈ (−∞, 0], all the eigenvalues of the matrix A− λ0B are real. Therefore
we can define m real continuous functions fj(λ0) := λj(A− λ0B) for j = 1, . . . ,m.

3. For every j, we have fj(0) ≤ 0, and fj(λ0) ≥ 0 for negative λ0 with sufficiently large |λ0|.
4. By the intermediate value theorem to each fj(λ0), there is at least one root fj(λ0) = 0

in λ0 ∈ (−∞, 0] for each j. It follows that A − λB has m real eigenvalues (counting
multiplicities), hence so does Li.

The only nontrivial parts are the second step, and the claim fj(0) ≤ 0.
We first prove the second step, that the matrix C(λ0) := A − λ0B has only real eigenvalues.

To do this we apply the similarity transformation with the permutation matrix P = Im(:, [1 : 2 :
m, 2 : 2 : m]), which gives PTC(λ0)P = diag(C1(λ0),C2(λ0)), a block-diagonal matrix with two
m
2 ×

m
2 := ` × ` blocks. Here C1(λ0) is tridiagonal with extra elements in the upper-right and

lower-left corners (as in (A.3) below), and C2(λ0) is tridiagonal.11
For C2(λ0), we can verify that the products of the neighboring off-diagonals are positive,

C2(λ0)j,j+1C2(λ0)j+1,j > 0, (A.2)

for all j (when λ0 = 0 the product can be 0; we exclude this case for the moment and assume
λ0 < 0). Hence, C2(λ0) is diagonally similar to a symmetric matrix, thus its eigenvalues are all
real.

It remains to prove that the eigenvalues of C1(λ0) are all real. Note that C1(λ0) is of the form

C1(λ0) =



α β′ β′

β α1 β1

β`−2 α2 β2

β`−3
.
.

. β`−1

β2 α2 β`−2

β β1 α1


. (A.3)

Several properties of C1(λ0) are worth noting: (i) the (` − 1) × (` − 1) submatrix obtained by
removing the first row and column is symmetric about the antidiagonal, both in the diagonal and
off-diagonal elements (note the double appearance of βi) and (ii) the products of the neighboring
off-diagonal blocks are all positive βjβ`−j−1 > 0 for all j, and ββ′ > 0. In Lemma A.2 below we
prove that any matrix (A.3) with such structure has only real eigenvalues, establishing that fj(λ0)
is real for any λ0 < 0. The claim extends to λ0 = 0 by continuity of the eigenvalues, completing
the second step in the proof.

It remains to show fj(0) ≤ 0 for every j, that is, A has only nonpositive eigenvalues. Since
D

(2)
n (i, i) ≤ 0 for all i, it suffices to treat the case for which D

(2)
n (i, i) = 0. We again examine

11It is possible to use this structure in the linear solvers. We did not do this in our experiments, as applying the
permutation also requires O(nm) operations.

28 MONTANELLI AND NAKATSUKASA

C1(0) and C2(0) separately. For each of these, after deflating the zero eigenvalue (if present) we
can apply a diagonal similarity transformation so that the Gershgorin disks, whose centers lie on
the negative half line, do not contain the origin, implying that all the eigenvalues are nonpositive.
This completes the proof of Theorem A.1.

It remains to prove that the eigenvalues of matrices of the form in (A.3) are all real. A key
fact is that a real tridiagonal matrix with the neighboring off-diagonals having the same sign is
diagonally similar to a symmetric tridiagonal matrix, and an analogous result holds for arrowhead
matrices.

Lemma A.2. For any real matrix of the form (A.3), with βiβ`−i−1 > 0 for all i and ββ′ > 0,
all the eigenvalues are real.

Proof. Denote the matrix by C. We can apply a diagonal similarity transformation to the
bottom-right (` − 1) × (` − 1) part C2, to obtain a symmetric matrix D−1C2D. Since C2 is
symmetric about the antidiagonal, so is the diagonal matrix D; thus D−1C2D is both symmetric
and symmetric about the antidiagonal, and so the transformation Ĉ =

[
1
D−1

]
C
[

1
D

]
preserves the

property that the off-diagonal parts of the first row and column are parallel (when one is transposed).
Now let Q be an orthogonal matrix of eigenvectors of D−1C2D such that QT (D−1C2D)Q is
diagonal, and consider the matrix C̃ =

[1
QT

]
Ĉ
[

1
Q

]
. By the antidiagonal symmetry of D−1C2D,

each eigenvector (column of Q) has the property that it is either in the form [v1, v2, . . . ,−v2,−v1]T

or [v1, v2, . . . , v2, v1]T . Therefore, C̃ is an arrowhead matrix with the property that for every j,
we have either C̃j,1 = C̃1,j = 0, or C̃j,1C̃1,j > 0. It follows that there exists a diagonal similarity
transformation that brings C̃ to symmetric form, hence has real eigenvalues.

Acknowledgements. We thank Grady Wright for a fruitful exchange of emails about multi-
plication matrices and for reading an early draft of this manuscript. We also thank Alex Townsend
and Heather Wilber for discussions about Fourier series on spheres, Jared Aurentz for various
suggestions related to numerical linear algebra, and the referees for their helpful comments. The
authors are much indebted to Nick Trefethen for his continual support and encouragement.

REFERENCES

[1] J. C. Adams and P. N. Swarztrauber, SPHEREPACK 3.0: a model development facility, Mon. Wea. Rev.,
127 (1999), pp. 1872–1878.

[2] S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to
antiphase domain coarsening, Acta Metall., 27 (1979), pp. 1085–1095.

[3] U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial
differential equations, SIAM J. Numer. Anal., 32 (1995), pp. 797–823.

[4] H. A. Ashi, L. J. Cummings, and P. C. Matthews, Comparison of methods for evaluating functions of a
matrix exponential, Appl. Numer. Math., 59 (2009), pp. 468–486.

[5] K. Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit Sphere: An Introduction,
Springer, Berlin Heidelberg, 2012.

[6] J. Aurentz, Fast algorithms for spectral differentiation matrices, Electron. Trans. Numer. Anal., 44 (2015),
pp. 281–288.

[7] S. Bhattacharya, Galerkin model for Turing patterns on a sphere, Phys. Rev. E, 72 (2005), p. 036208.
[8] J. P. Boyd, The choice of spectral functions on a sphere for boundary and eigenvalue problems: A comparison

of Chebyshev, Fourier and associated Legendre expansions, Mon. Wea. Rev., 106 (1978), pp. 1184–1191.
[9] M. P. Calvo, J. de Frutos, and J. Novo, Linearly implicit Runge-Kutta methods for advection-reaction-

diffusion equations, Appl. Numer. Math., 37 (2001), pp. 535–549.
[10] A. Cardone, Z. Jackiewicz, A. Sandu, and H. Zhang, Extrapolation-based implicit-explicit general linear

methods, Numer. Algor., 65 (2014), pp. 377–399.
[11] H.-B. Cheong, Double Fourier series on a sphere: Applications to elliptic and vorticity equations, J. Comput.

STIFF PDES ON THE SPHERE 29

% Parameters:
m = 1024; n = m; % number of grid points
h = 1e-1; T = 100; % time-step and final time
u0 = @(x,y,z) cos(40*x)+cos(40*y)+cos(40*z);
th = pi/8; c = cos(th); s = sin(th);
u0 = 1/3*spherefun(@(x,y,z) u0(c*x-s*z,y,s*x+c*z)); % initial condition
v0 = reshape(coeffs2(u0, m, n), m*n, 1); % Fourier coefficients

% Nonlinear operator (evaluated in value space):
g = @(u) u - (1+1.5i)*u.*(abs(u).^2); % N(u) = u-(1+1.5)i*u*|u|^2
c2v = @(u) trigtech.coeffs2vals(u); % coeffs to values in 1D
c2v = @(u) c2v(c2v(reshape(u,m,n)).').'; % coeffs to values in 2D
v2c = @(u) trigtech.vals2coeffs(u); % values to coeffs in 1D
v2c = @(u) reshape(v2c(v2c(u).').',m*n,1); % values to coeffs in 2D
N = @(u) v2c(g(c2v(u))); % nonlinear operator

% Construct the Laplacian matrix (multiplied by Tsin2 and 1e-4):
Dm = spdiags(1i*[0,-m/2+1:m/2-1]', 0, m, m);
D2m = spdiags(-(-m/2:m/2-1).^2', 0, m, m);
D2n = spdiags(-(-n/2:n/2-1).^2', 0, n, n);
Im = speye(m); In = speye(n);
P = speye(m+1); P = P(:, 1:m); P(1,1) = .5; P(m+1,1) = .5;
Q = speye(m+1+4); Q = Q(3:m+2,:); Q(1,3) = 1; Q(1,m+3) = 1;
Msin2 = toeplitz([1/2, 0, -1/4, zeros(1, m+2)]);
Msin2 = sparse(Msin2(:, 3:m+3));
Tsin2 = round(Q*Msin2*P, 15);
Mcossin = toeplitz([0, 0, 1i/4, zeros(1, m+2)]);
Mcossin = sparse(Mcossin(:, 3:m+3));
Tcossin = round(Q*Mcossin*P, 15);
Lap = 1e-4*(kron(In, Tsin2*D2m + Tcossin*Dm) + kron(D2n, Im));

% Compute LU factorizations of LIRK4 matrices:
Tsin2 = kron(In, Tsin2);
[L, U] = lu(Tsin2); [La, Ua] = lu(Tsin2 - 1/4*h*Lap);

% Time-stepping loop:
itermax = round(T/h); v = v0;
for iter = 1:itermax

Nv = N(v); w = Tsin2*v;
wa = w + h*Tsin2*1/4*Nv;
a = Ua\(La\wa); Na = N(a);
wb = w + h*Lap*1/2*a + h*Tsin2*(-1/4*Nv + Na);
b = Ua\(La\wb); Nb = N(b);
wc = w + h*Lap*(17/50*a - 1/25*b) + h*Tsin2*(-13/100*Nv + 43/75*Na + 8/75*Nb);
c = Ua\(La\wc); Nc = N(c);
wd = w + h*Lap*(371/1360*a - 137/2720*b + 15/544*c) ...

+ h*Tsin2*(-6/85*Nv + 42/85*Na + 179/1360*Nb - 15/272*Nc);
d = Ua\(La\wd); Nd = N(d);
we = w + h*Lap*(25/24*a - 49/48*b + 125/16*c - 85/12*d) ...

+ h*Tsin2*(79/24*Na - 5/8*Nb + 25/2*Nc - 85/6*Nd);
e = Ua\(La\we); Ne = N(e);
v = v + h*(U\(L\(Lap*(25/24*a - 49/48*b + 125/16*c - 85/12*d + 1/4*e)))) ...

+ h*(25/24*Na - 49/48*Nb + 125/16*Nc - 85/12*Nd + 1/4*Ne);
end
vals = c2v(v); % tramsform to value space
vals = vals([m/2+1:m 1], :); % restrict to [-pi,pi]x[0,pi]
u = spherefun(real(vals)); plot(u) % output real(u) and plot

Fig. A.1: MATLAB code to solve the Ginzburg–Landau equation on the sphere with the DFS method
and the LIRK 4 time-stepping scheme; this code can be used for both diffusive and dispersive PDEs.

30 MONTANELLI AND NAKATSUKASA

Phys., 157 (2000), pp. 327–349.
[12] E. M. Constantinescu and A. Sandu, Extrapolated implicit-explicit time stepping, SIAM J. Sci. Comput.,

31 (2010), pp. 4452–4477.
[13] S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys., 176

(2002), pp. 430–455.
[14] T. A. Davis, Direct Methods for Sparse Linear Systems, SIAM, Philadelphia, 2006.
[15] T. A. Driscoll, A composite Runge-Kutta method for the spectral solution of semilinear PDEs, J. Comput.

Phys., 182 (2002), pp. 357–367.
[16] T. A. Driscoll, N. Hale, and L. N. Trefethen, eds., Chebfun Guide, Pafnuty Publications, Oxford, 2014;

see also www.chebfun.org.
[17] Q. Du and W. Zhu, Analysis and applications of the exponential time differencing schmes and their contour

integral modifications, BIT, 45 (2005), pp. 307–328.
[18] Y. Du, The heterogeneous Allen–Cahn equation in a ball: Solutions with layers and spikes, J. Differential

Equations, 244 (2008), pp. 117–169.
[19] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge University Press, Cambridge, 1998.
[20] B. Fornberg and T. A. Driscoll, A fast spectral algorithm for nonlinear wave equations with linear dis-

persion, J. Comput. Phys., 155 (1999), pp. 456–467.
[21] B. Fornberg and N. Flyer, A Primer on Radial Basis Functions with Applications to the Geosciences,

SIAM, Philadelphia, 2015.
[22] B. Fornberg and D. Merrill, Comparison of finite difference- and pseudospectral methods for convective

flow over a sphere, Geophys. Res. Lett., 24 (1997), pp. 3245–3248.
[23] D. Gottlieb and L. Lustman, The spectrum of the Chebyshev collocation operator for the heat equation,

SIAM J. Numer. Anal., 20 (1983), pp. 909–921.
[24] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic

Problems, Springer, New York, 1991.
[25] P. Henrici, Applied and Computational Complex Analysis, vol. 3, Wiley, New York, 1986.
[26] M. Hochbruck and A. Ostermann, Explicit exponential Runge-Kutta methods for semilinear parabolic

problems, SIAM J. Numer. Anal., 43 (2005), pp. 1069–1090.
[27] , Exponential integrators, Acta Numer., 19 (2010), pp. 209–286.
[28] W. Hundsdorfer and S. J. Ruuth, IMEX extensions of linear multistep methods with general monotonicity

and boundedness properties, J. Comput. Phys., 225 (2007), pp. 2016–2042.
[29] A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput., 26

(2005), pp. 1214–1233.
[30] C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction

equations, Appl. Numer. Math., 44 (2003), pp. 139–181.
[31] S. Krogstad, Generalized integrating factor methods for stiff PDEs, J. Comput. Phys., 203 (2005), pp. 72–88.
[32] V. T. Luan and A. Ostermann, Explicit exponential Runge-Kutta methods of high order for parabolic

problems, J. Comput. Appl. Math., 256 (2014), pp. 168–179.
[33] P. E. Merilees, The pseudospectral approximation applied to the shallow water equations on a sphere, At-

mosphere, 11 (1973), pp. 13–20.
[34] B. V. Minchev, Exponential integrators for semilinear problems, PhD thesis, University of Bergen, 2004.
[35] C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five

years later, SIAM Rev., 45 (2003), pp. 3–49.
[36] H. Montanelli and N. Bootland, Solving periodic semilinear stiff PDEs in 1D, 2D and 3D with exponential

integrators, submitted (2016).
[37] S. A. Orszag, Fourier series on spheres, Mon. Wea. Rev., 102 (1974), pp. 56–75.
[38] A. Ostermann, M. Thalhammer, and W. M. Wright, A class of explicit exponential general linear

methods, BIT, 46 (2006), pp. 409–431.
[39] L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems

with relaxation, J. Sci. Comput., 25 (2005), pp. 129–155.
[40] L. Pismen and J. Rubinstein, Dynamics of disclinations in liquid crystals, Quart. Appl. Math., 50 (1992),

pp. 535–545.
[41] Y. Pomeau, S. Zaleski, and P. Manneville, Dislocation motion in cellular structures, Phys. Rev. A, 27

(1983), pp. 2710–2726.
[42] M. E. Rognes, D. A. Ham, C. J. Cotter, and A. T. T. McRae, Automating the solution of PDEs on

the sphere and other manifolds in FEniCS 1.2, Geosci. Model Dev., 6 (2013), pp. 2099–2119.
[43] V. Rokhlin and M. Tygert, Fast algorithms for spherical harmonic expansions, SIAM J. Sci. Comput., 27

(2006), pp. 1903–1928.

www.chebfun.org

STIFF PDES ON THE SPHERE 31

[44] J. Rubinstein and P. Sternberg, On the slow motion of vortices in the Ginzburg–Landau heat flow, SIAM
J. Math. Anal., 26 (1995), pp. 1452–1466.

[45] T. Schmelzer and L. N. Trefethen, Evaluating matrix functions for exponential integrators via
Carathéodory–Fejér approximation and contour integrals, Electron. Trans. Numer. Anal., 29 (2007), pp. 1–
18.

[46] J. Shen, Efficient spectral-Galerkin methods IV. Spherical geometries, SIAM J. Sci. Comput., 20 (1999),
pp. 1438–1455.

[47] R. M. Slevinsky, Fast and backward stable transforms between spherical harmonic expansions and bivariate
Fourier series, submitted (2017).

[48] K. Stewartson and J. T. Stuart, A non-linear instability theory for a wave system in plane Poiseuille
flow, J. Fluid Mech., 48 (1971), pp. 529–545.

[49] H. Takaoka, Local well-posedness of the nonlinear Schrödinger equations on the sphere for data in modulation
spaces, Commun. Part. Diff. Eq., 41 (2016), pp. 732–747.

[50] M. Tokman, Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI)
methods, J. Comput. Phys., 213 (2006), pp. 748–776.

[51] A. Townsend, H. Wilber, and G. B. Wright, Computing with functions in spherical and polar geometries,
I. The sphere, SIAM J. Sci. Comput., 38 (2016), pp. C403–C425.

[52] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2000.
[53] L. N. Trefethen and M. H. Gutknecht, The Carathéodory–Fejér method for real rational approximation,

SIAM J. Numer. Anal., 20 (1983), pp. 420–436.
[54] L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer, Talbot quadratures and rational approximations,

BIT, 46 (2006), pp. 653–670.
[55] P. H. Trinh and M. J. Ward, The dynamics of localized spot patterns for reaction-diffusion systems on the

sphere, Nonlinearity, 29 (2016), pp. 766–806.
[56] M. Tygert, Fast algorithms for spherical harmonic expansions, II, J. Comput. Phys., 227 (2008), pp. 4260–

4279.
[57] , Fast algorithms for spherical harmonic expansions, III, J. Comput. Phys., 229 (2010), pp. 6181–6192.
[58] R. S. Varga, Geršgorin and His Circles, Springer, Berlin, 2004.
[59] G. B. Wright, M. Javed, H. Montanelli, and L. N. Trefethen, Extension of Chebfun to periodic

functions, SIAM J. Sci. Comput., 37 (2015), pp. C554–C573.
[60] S. Y. K. Yee, Solution of Poisson’s equation on a sphere by truncated double Fourier series, Mon. Wea. Rev.,

109 (1980), pp. 501–505.

