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ON THE STABILITY OF COMPUTING POLYNOMIAL ROOTS

VIA CONFEDERATE LINEARIZATIONS

YUJI NAKATSUKASA AND VANNI NOFERINI

Abstract. A common way of computing the roots of a polynomial is to find
the eigenvalues of a linearization, such as the companion (when the polynomial
is expressed in the monomial basis), colleague (Chebyshev basis) or comrade
matrix (general orthogonal polynomial basis). For the monomial case, many
studies exist on the stability of linearization-based rootfinding algorithms. By
contrast, little seems to be known for other polynomial bases. This paper
studies the stability of algorithms that compute the roots via linearization in
nonmonomial bases, and has three goals. First we prove normwise stability
when the polynomial is properly scaled and the QZ algorithm (as opposed
to the more commonly used QR algorithm) is applied to a comrade pencil
associated with a Jacobi orthogonal polynomial. Second, we extend a result
by Arnold that leads to a first-order expansion of the backward error when
the eigenvalues are computed via QR, which shows that the method can be

unstable. Based on the analysis we suggest how to choose between QR and
QZ. Finally, we focus on the special case of the Chebyshev basis and finding
real roots of a general function on an interval, and discuss how to compute
accurate roots. The main message is that to guarantee backward stability QZ
applied to a properly scaled pencil is necessary.

1. Introduction

Let p(x) ∈ R[x]n be a nonzero polynomial of degree at most n with real coeffi-
cients. The rootfinding quest for the set of the solutions of the equation p(x) = 0
can rightly be deemed one of the oldest mathematical problems that mankind has
considered [17,46]. Since the classical algebraic results by Abel, Galois and Ruffini
in the 18th and 19th centuries, it has been known that, for high degree polynomials
(n ≥ 5), the search for a general algebraic method that gives the exact roots is
hopeless. Hence, it is not surprising that devising reliable numerical methods for
polynomial rootfinding is a central theme in numerical analysis.

Although most of our analysis carries over to polynomials with complex coeffi-
cients, some technical results (in Section 3.2) need the assumption that the coeffi-
cients are real. A complete extension to the complex case is likely to be achievable,
but since our main motivation comes from real rootfinding in the Chebyshev basis,
we consider it to be out of the scope of the present paper.

A related problem is that of finding the roots, or some roots, of a general non-
linear real function. Indeed, it is not uncommon to reduce the problem to the
polynomial case by approximation. For instance, a standard way to compute the
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real roots of a smooth function f(x) on an interval, as done in Chebfun [54], is to
approximate f(x) by a polynomial p(x) via Chebyshev interpolation, then compute
the roots of p(x) =

∑n
i=0 ciTi(x) expressed in the Chebyshev basis {Ti(x)} by com-

puting the eigenvalues of the linearized colleague matrix [27], [53, Ch. 18]. This
process is known to work well in practice, but no analysis has been carried out to
prove its numerical stability.

More generally, one practical way of finding the roots of a polynomial is to first
construct either a matrix or a matrix pencil whose eigenvalues coincide, with the
same algebraic and geometric multiplicities, with the roots of p(x). This process
is known as a linearization of p(x). The next step is of course approximating the
eigenvalues numerically: usual choices are the QR algorithm for matrices, or the
QZ algorithm for matrix pencils. In this paper we refer to these algorithms simply
as QR and QZ.

It should be noted that linearization is by no means the only option. Indeed,
many alternative ideas exist: the Durand–Kerner [34], the Ehrlich–Aberth [13], or
the Jenkins–Traub algorithms [32], and Weyl’s method [47] to name but a few.

Some of these alternative methods are strong competitors of the linearization
method, both for computational complexity and for stability (see, e.g., [9, 12, 13]
for the Ehrlich–Aberth method); on the other hand, special technologies, like sub-
division [16] or preservation of structures such as quasiseparable [5,6,10,11,14,15],
can be exploited in order to reduce the complexity of the linearization method
to O(n2). Among the many rootfinding algorithms available, our goal here is to
understand the stability of linearization-based methods, as they are often easy
to implement (given a black-box eigensolver) and widely used. For instance, the
Matlab function roots follows precisely the above described procedure via the
eigenvalues of the companion matrix.

Since the second step of computing the eigenvalues is numerical, it needs to be
investigated whether the roots are computed stably. Specifically, the two standard
backward stable eigensolvers, QR for a matrix C or QZ for a matrix pencil λX +
Y [26, Ch. 7,8], are known to be backward stable with respect to the matrix norms,
i.e., they compute1 the exact eigenvalues of slightly perturbed matrices C + ΔC
and λ(X + ΔX) + (Y + ΔY ) for ‖ΔC‖ ≤ ε‖C‖, ‖ΔX‖ ≤ ε‖X‖, ‖ΔY ‖ ≤ ε‖Y ‖,
where ε = q̂(n)u for a fixed unit roundoff u and some low-degree polynomial with
moderate coefficients q̂, whose exact form would depend on the number of iterations
before convergence and on the choice of norms in the bound. However, stability in
the matrix norm does not necessarily imply stability in the polynomial. Specifically,
let x̂i be the computed roots. Writing

(1.1) p(x) =
n∑

i=0

ciφi(x), p̂(x) = α
n∏

i=1

(x− x̂i) =
n∑

i=0

ĉiφi(x)

for some scalar α �= 0, and defining c = [c0, c1, . . . , cn], ĉ = [ĉ0, ĉ1, . . . , ĉn] and
Δc = c− ĉ, we say that the algorithm performed in a backward stable manner with

1Strictly speaking, we should add: if they converge. For the nonsymmetric case, no formal
proof of convergence of either QR or QZ is known to the authors. In practice, and possibly
relying on randomized shifts when dealing with counterexamples cleverly conceived to embarrass
one specific implementation, they do converge with no known exception.
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STABILITY OF COMPUTING POLYNOMIAL ROOTS 2393

respect to the polynomial p if the difference in the coefficients is within O(ε):

(1.2)

(
‖Δc‖2
‖c‖2

=

)
‖c− ĉ‖2
‖c‖2

= O(ε).

Note that the norm depends on the basis {φi(x)} and on the scaling, i.e., p ← αp

for a nonzero scalar α. In practice we set α to α = cT ĉ
‖ĉ‖2

2
, which is the minimizer of

‖c− αĉ‖2. Throughout we always denote by x̂i the computed roots of p, and by p̂
the polynomial with exact roots x̂i and ĉ its coefficients.

In this paper we are primarily interested in the normwise backward stability of
the computation of the roots. That is, our goal is to give bounds for the right-hand
side of (1.2). For example, the stability proof in [55] for the use of QZ to compute
the roots of p(x), expressed in the monomial basis, falls into this category, and we
extend their result to other orthogonal polynomial bases in Section 3.

We note that some authors have discussed the more stringent componentwise

backward stability which, for example, takes the form maxi
|Δci|
|ci| [22], [38], (also

[51] for matrix polynomials). However, even in the monomial case no known bound
appears to guarantee componentwise backward stability. For example, the analysis
in [22] for monic polynomials, i.e., cn = 1 expressed in the monomials gives

(1.3) Δci−1 =

i−1∑
m=0

cm

n∑
j=i+1

Ej,j+m−i −
n∑

m=i

cm

i∑
j=1

Ej,j+m−i,

where E is the backward error in C by QR so that the computed eigenvalues are
the exact eigenvalues of C + E. While (1.3) gives the exact backward error in ci
to first order, it is generally difficult to derive individual bounds for each i. Often,
componentwise bounds (see for instance [38] for QZ in monomials) are not much
more informative than the much simpler normwise bound (obtained as a corollary
of (1.3))

(1.4)
‖Δc‖2
‖c‖2

= O(ε)‖C‖2.

Here the dependence on n is hidden in O(ε), that is, O(ε) is a constant that has
size q(n)u where q is a modest low-degree polynomial.

We note that (1.4) suggests the crucial instability of QR: the backward error is
proportional to ‖C‖, meaning the computation is unstable if ‖c‖2 � 1. Note that
this issue cannot be resolved by a scaling p ← αp. A related discussion is given
in [38], which also examines the effect of diagonal balancing for QR and QZ; see
Section 4.4.

The authors feel a linearization-based rootfinder generally cannot achieve compo-
nentwise stability unless a special structure is present in p(x) or the basis. Indeed,
we argue further in the appendix that componentwise backward stability is not
achievable by any method, at least for a generic choice of the polynomial basis and
the machine number system (the monomials are a notable exception). Given the
discussion above, we focus on the normwise stability.

It is worth mentioning another possible definition of stability, which concerns
the individual stability for each computed root. For example, each root computed
by the Ehrlich–Aberth method is known to have a small componentwise backward
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error [13] in the monomial case. Specifically, each computed root x̂i satisfies2

p(x̂i)+Δpi(x̂i) = 0 with Δpi(x) =
∑n

j=0 ΔC
(i)
j φ

(i)
j (x) and

|Δc
(i)
j |

|cj | = O(ε); compare

this with (1.2), and note that Δpi here depends on i. The strongest backward

stability would be componentwise for the whole set of computed roots: |Δci|
|ci| = O(ε)

for p(x)+Δp(x) = κ
∏n

i=1(x−x̂i), but at present we are unaware of any polynomial
rootfinder that guarantees this.

When p(x) is expressed in the standard monomial basis, many studies exist
on the stability, or lack thereof, of the linearization-based rootfinders [14, 21, 22,
55]. For the Lagrange basis, stability analysis is carried out in [35, 36]. However,
little seems to be known for p(x) expressed in other nonmonomial bases such as
Chebyshev and other orthogonal polynomials. Such bases are becoming increasingly
important for numerical purposes [23, 43, 53], as particularly exemplified by the
prominence of Chebyshev polynomials in the Chebfun system, in which roots is an
important command called within various polynomial operations such as computing
the maxima and the L1 norm, or invoking abs.

In this work we focus on the normwise stability of linearization-based rootfind-
ing methods for polynomials expressed in certain nonmonomial bases. We will
review some basic notions concerning a commonly used class of linearizations in
nonmonomial bases in Section 2.

The paper has three main themes:

(1) In Section 3, we show that if p(x) is expressed in certain orthogonal poly-
nomial bases and the eigenvalues of a linearization of p(x), known as the
comrade pencil, are computed by QZ after scaling the polynomial to have
coeffcients O(1), the process is normwise backward stable. Note that Cheb-
fun QR, and not QZ, is used by default for a polynomial scaled to be monic
in the Chebyshev basis, and this may in some circumstances lead to a col-
league matrix with a large norm ‖C‖, which is undesirable in view of (1.4).
See also [14, 33] for a discussion for the monomial basis yielding a similar
conclusion that QZ is preferred to QR when the leading coefficient is small.
QR is safe, nonetheless, when the comrade matrix has norm O(1).

(2) In Section 4, we discuss QR applied to a monic polynomial, i.e., the leading
coefficient in the considered basis is 1, and in particular we show how some
results in [22] can be extended to other degree-graded bases, including any
orthogonal polynomial basis. The result reconfirms the advantage of QZ
over QR, at least when balancing is not used. In practice, the technique
of diagonal balancing often improves the stability of QR significantly, as
we discuss in Section 4.4. However, as the evidence provided in Section 6
illustrates, even with balancing QR-based rootfinding can be normwise un-
stable, whereas we prove QZ-based rootfinding is stable with a simple initial
normalization. Since QZ is empirically about 3 times more expensive than
QR, based on our analysis we make a suggestion on how to choose between
QR and QZ based on the norm of the comrade matrix.

(3) In Section 5 we focus on the Chebyshev basis and on the problem of finding
the real roots of a (possibly nonpolynomial) function f(x) on an interval.
We show that the polynomial approximation preserves the normwise stabil-
ity of the computed roots and that the subdivision technique can improve

2The weaker notion of normwise stability for each root is (p+Δpi)(x̂i) = 0 with
|Δci|
‖c‖2

= O(ε).
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STABILITY OF COMPUTING POLYNOMIAL ROOTS 2395

the accuracy if the original function f(x) is resampled. Again, when ‖C‖
is large, QZ is needed to guarantee stability, and indeed examples exist for
which QR misses real roots that cannot be moved off the real axis by a
small backward perturbation.

2. Preliminaries on confederate linearizations

Clearly, there are uncountably many linearizations of a polynomial p(x). For
example, if C ∈ R

n×n is a linearization and X ∈ GL(R, n), then XCX−1 is also a
linearization. Yet, it is natural to focus only on those that can be easily constructed
from its coefficient in a given basis. Even with this restriction, the number of
possibilities in the literature is huge, particularly in the monomial basis. We will
restrict ourselves to the case where {φi} is a degree-graded basis, that is, deg φi = i,
and to a certain class of linearizations that, following the nomenclature in [7], we
call confederate linearizations. In the following we assume that we can express
p(x) =

∑n
i=0 ciφi(x). We will visualize a few confederate linearizations by depicting

their version for n = 4.
First, we assume that p(x) is expressed in the monomials and that it is monic

in such a basis, i.e., pn = 1 (which is no loss of generality, modulo a global mul-
tiplicative scaling). The archetype of all linearizations is the companion matrix of
p(x):

(2.1) C =

⎡⎢⎢⎣
−c3 −c2 −c1 −c0
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎦ .

In the literature, there is not a fixed convention on how to define the companion
matrix. Many variants are found: for instance, the transpose of (2.1), the matrix
obtained by flipping both rows and columns of (2.1), and the transpose of the latter.
Moreover, while some authors call (2.1) and its variants just “companion” matrices,
others call them “Frobenius companion” matrices, thereby granting the status of
“companion” to other linearizations as well, e.g., Fiedler matrices (the linearizations
introduced by Fiedler [24]). All of this is, of course, only a matter of convention;
we clarify once and for all that, throughout our theoretical analysis in Sections 2,
3 and 4, we shall have no companion matrices other than (2.1). Nonetheless we
note that the four mathematically equivalent forms can exhibit nontrivial numerical
differences; see Section 6.

The deep algebraic meaning of the companion matrix is that it is nothing but
a representation, in the monomial basis, of the multiplication-by-x operator in the
quotient ring R[x]/〈p(x)〉 where 〈p(x)〉 is the ideal generated by p(x). In other
words, as it is immediate to verify,

C

⎡⎢⎢⎢⎢⎢⎣
xn−1

xn−2

...
x
1

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
xn − p(x)

xn−1

...
x2

x

⎤⎥⎥⎥⎥⎥⎦ ≡

⎡⎢⎢⎢⎢⎢⎣
xn

xn−1

...
x2

x

⎤⎥⎥⎥⎥⎥⎦
T

mod p(x).

For more details on this algebraic viewpoint, the reason it yields a linearization,
and some generalizations, see, e.g., [7, Ch. 5], [19, Sec. 10.4], and [45, Sec. 9].
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Clearly, this concept is easily generalizable to any other polynomial basis [7].
We now recall how. In particular, let {φi} be a degree-graded basis with φ0 = 1
and denote by κ the ratio between the leading coefficients of φn and φn−1, when
they are expressed in the monomial basis. We now assume that p(x) is monic in

the basis {φi}, i.e., p(x) = φn(x)+
∑n−1

i=0 ciφi(x). We consider the (unique) matrix
Cφ satisfying

Cφ

⎡⎢⎢⎢⎢⎢⎣
φn−1(x)
φn−2(x)

...
φ1(x)
φ0

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
xφn−1(x)− κ−1p(x)

xφn−2(x)
...

xφ1(x)
xφ0

⎤⎥⎥⎥⎥⎥⎦ .

We call Cφ the confederate matrix of p(x) in the basis {φi}. Now we introduce
some notation. Let B be the change of basis matrix such that[

φn−1(x) φn−2(x) . . . φ1(x) φ0

]T
= B

[
xn−1 xn−2 . . . x 1

]T
.

In particular, since {φi} is degree-graded, B is upper triangular. Moreover, let
FRn ⊆ R

n×n be the vector subspace of “first row matrices”, which we define as
those matrices whose rows are all zero except (possibly) the first. We state some
properties of Cφ. Their proof is omitted as it is not difficult, and can be found in
various sources, e.g., [7, Thm. 5.3].

Theorem 2.1 (Properties of confederate matrices). Let p(x)=φn(x)+
∑n−1

i=0 ciφi(x)
and let Cφ be the confederate matrix of p(x) in the degree-graded basis {φi}, and let
B be the change of basis matrix between the monomials and {φi}, defined as above.
Then, the following properties hold:

• Cφ = BCB−1.
• If p(μ) = 0, then μ is an eigenvalue of Cφ of geometric multiplicity 1, and
the corresponding eigenvector v has Vandermonde structure

v =
[
φn−1(μ) . . . φ0(μ)

]T
.

• Cφ = Hφ+Fφ(p), where Hφ is upper Hessenberg and depends only on {φi},
but not on p(x), while Fφ(p) ∈ FRn and its first row is

κ−1
[
−cn−1 . . . −c1 −c0

]
,

where κ is the ratio of the leading coefficients of φn and φn−1, when ex-
pressed in the monomial basis.

Note in the first item that if Cφ = BCB−1 is a confederate matrix for p(x), then
C is the companion matrix for αp(x), where α �= 0 is some constant. This scaling
is needed because, in general, a polynomial that is monic when represented in one
degree-graded basis need not be monic when represented in another one.

If {φi} are orthogonal polynomials, the corresponding confederate matrices are
called comrade matrices [7], and have the additional property that Hφ is tridiagonal
[7]. Among orthogonal polynomials, the Chebyshev polynomials of the first kind,
traditionally denoted by {Ti}, have great importance in practical applications. The
comrade matrix for the Chebyshev basis is known as the colleague matrix and we
denote it by CT . In its decomposition CT = HT + FT (p) as in Theorem 2.1, it
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STABILITY OF COMPUTING POLYNOMIAL ROOTS 2397

holds that κ = 2 and

HT =

⎡⎢⎢⎣
0 1

2 0 0
1
2 0 1

2 0
0 1

2 0 1
2

0 0 1 0

⎤⎥⎥⎦ .

So far, we have assumed that the polynomial p(x) is monic in the basis {φi}, i.e.,
in its expansion on the basis of choice its leading coefficient cn = 1. Although,
as argued above, this is no loss of generality, there are some circumstances where
cn �= 1 and one might find it more convenient not to scale all the coefficients by
cn. However, in this case the corresponding linearizations will not be confederate
matrices, but confederate pencils. For n = 4 the confederate pencil of p(x) =∑4

i=0 ciφi(x) is ⎡⎢⎢⎣
c4 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (xI4 − Cφ),

where Cφ is the confederate matrix of p(x)/c4. Analogously to the monic case,
we will use the expressions, resp., comrade pencil, colleague pencil and companion
pencil to refer to the confederate pencil in, resp., an orthogonal polynomial basis,
the first Chebyshev basis and the monomial basis.

Example 2.2. We illustrate the previous definitions with a concrete example. Let
p(x) = x4 + x3 + x2 + x+ 1. Then its companion matrix is

C =

⎡⎢⎢⎣
−1 −1 −1 −1
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎦ ,

and, since p(x) is monic in the monomial basis, its companion pencil is xI4 −
C. An easy computation shows that in the Chebyshev basis p(x) = 1

8T4(x) +
1
4T3(x) + T2(x) +

7
4T1(x) +

15
8 T0(x). Although p(x) is not monic in this basis, we

may scale it appropriately, and the colleague matrix associated with the monic (in
the Chebyshev basis) polynomial 8p(x) is

CT =

⎡⎢⎢⎣
−1 −7/2 −7 −15/2
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1 0

⎤⎥⎥⎦
whereas the colleague pencil associated with p(x) is

x

⎡⎢⎢⎣
1/8 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦−

⎡⎢⎢⎣
−1/8 −7/16 −7/8 −15/16
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1 0

⎤⎥⎥⎦ .
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Similarly, if {φi} is the Legendre basis, then expanding 35
8 p(x) = φ4(x)+

7
4φ3(x)+

65
12φ2(x) + 7φ1(x) +

161
24 φ0(x) we obtain the comrade matrix

Cφ =

⎡⎢⎢⎣
−1 −8/3 −4 −23/6
3/5 0 2/5 0
0 2/3 0 1/3
0 0 1 0

⎤⎥⎥⎦ ,

and so on.

We conclude this introductory section with a few comments. In principle, one
could consider any polynomial basis, not necessarily degree-graded. In other words,
B need not be triangular. Borrowing the terminology once again from [7], one
could use the name congenial matrices (or pencils) for this further generalization of
confederate matrices (or pencils). Note that any matrix similar to the companion
(that is, any linearization consisting of a matrix rather than a pencil) is a congenial
matrix in some polynomial basis. Although some bases of practical interest, e.g.,
Newton, Lagrange, or Bernstein, are not degree-graded, we argue that in practice,
if the QR algorithm is then used, there is not much to gain in analyzing congenial
matrices that are not confederate. Indeed, generally a congenial matrix will not be
upper Hessenberg, and the first task that QR performs is to reduce the matrix to
Hessenberg form. One can regard this process as implicitly performing a change
of basis towards a degree-graded one. We note in passing that QR-like algorithms
exist that do not first reduce the matrix to upper Hessenberg form [56], and this
approach is used in [8] for computing eigenvalues of companion matrices.

3. Stability of rootfinding via the QZ algorithm applied

to the colleague and a certain class of comrade pencils

In the concluding remark of [55], Van Dooren and Dewilde show that QZ applied
to the companion pencil for computing the roots of a scalar polynomial p(x) =∑

cix
i such that maxi |ci| = O(1) yields a normwise backward stable rootfinder.

In this section, we extend this result to the Chebyshev basis, corresponding to the
colleague pencil, and to a certain class of orthogonal polynomials, corresponding to
comrade pencils based on Jacobi polynomials with parameters |α|, |β| ≤ 1

2 .
This is the main technical result of the paper and the argument is not immediate.

We first show that the backward error caused in QZ can be compressed so that the
computed roots can be written as the exact roots of a polynomial with slightly
perturbed coefficients in a slightly perturbed basis. We then prove that orthogonal
polynomials on [−1, 1] defined by a three-term recurrence have roots that are not
sensitive to perturbation in the recurrence relation. We use this to conclude that
the computed roots are the exact roots of a polynomial with slightly perturbed
coefficients in the original basis.

For definiteness and simplicity we first derive the results for the Chebyshev basis.
Later we will argue that essentially the same result carries over more generally to

Jacobi polynomials P
(α,β)
n [50, Ch. 4], i.e., polynomials orthogonal with respect to

the weight function (1−x)α(1+x)β on [−1, 1], in which we impose the parameters
|α|, |β| ≤ 1

2 . Chebyshev is a special case in which α = β = − 1
2 , and other important

special cases include Legendre with α = β = 0, Chebyshev of the second kind with
α = β = 1

2 , and ultraspherical polynomials with α = β (up to normalizing each
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STABILITY OF COMPUTING POLYNOMIAL ROOTS 2399

φi(x) by constants). Extending the results to polynomials orthogonal on a general
real interval [a, b] is straightforward by an affine mapping.

3.1. Compressing backward error by QZ. Let p(x) be a scalar polynomial
expressed in the Chebyshev basis:

(3.1) p(x) =
n∑

i=0

ciTi(x), ‖c‖2 = 1,

where p(x) is normalized so that the vector of coefficients [c1, . . . , cn] have norm 1,
as assumed also in [55]; the essence of what follows remains valid for ‖c‖2 = O(1).
Suppose that p(x) is linearized with the colleague pencil, say, λX + Y . Then, the
QZ algorithm is applied to the latter. This ensures that the eigenvalues of the
linearization λX + Y are computed in a backward stable manner, that is, they are

the exact eigenvalues of some λX̃ + Ỹ , which is a pencil of the form (for n = 6)

(3.2) λ

⎡⎢⎢⎢⎢⎢⎢⎣

c̃6 0̃ 0̃ 0̃ 0̃ 0̃
0̃ 1̃ 0̃ 0̃ 0̃ 0̃
0̃ 0̃ 1̃ 0̃ 0̃ 0̃
0̃ 0̃ 0̃ 1̃ 0̃ 0̃
0̃ 0̃ 0̃ 0̃ 1̃ 0̃
0̃ 0̃ 0̃ 0̃ 0̃ 1̃

⎤⎥⎥⎥⎥⎥⎥⎦− 1

2

⎡⎢⎢⎢⎢⎢⎢⎣

−c̃5 c̃6 − c̃4 −c̃3 −c̃2 −c̃1 −c̃0
1̃ 0̃ 1̃ 0̃ 0̃ 0̃
0̃ 1̃ 0̃ 1̃ 0̃ 0̃
0̃ 0̃ 1̃ 0̃ 1̃ 0̃
0̃ 0̃ 0̃ 1̃ 0̃ 1̃
0̃ 0̃ 0̃ 0̃ 2̃ 0̃

⎤⎥⎥⎥⎥⎥⎥⎦ .

Here and below, we adopt the following notation: for any a ∈ R, ã is a real number
satisfying |ã − a| ≤ ε ≤ q̂(n)u for some low-degree polynomial q̂, denoting by u
the unit roundoff. In other words, ε represents the actual backward error of the
outcome of QZ, measured in the max-norm, and q̂(n)u is some theoretical upper
bound for ε. We now show that we can apply an equivalence transformation so

that (I + E)(λX̃ + Ỹ )(I + F ) is a comrade pencil and, at the same time, a small
perturbation of a colleague pencil. More specifically, it has the form

λ

⎡⎢⎢⎢⎢⎢⎢⎣
c̃6 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦− 1

2

⎡⎢⎢⎢⎢⎢⎢⎣

−c̃5 c̃6 − c̃4 −c̃3 −c̃2 −c̃1 −c̃0
1̃ 0̃ 1̃ 0 0 0
0 1̃ 0̃ 1̃ 0 0
0 0 1̃ 0̃ 1̃ 0
0 0 0̃ 1̃ 0̃ 1̃
0 0 0 0 2̃ 0̃

⎤⎥⎥⎥⎥⎥⎥⎦ .(3.3)

Lemma 3.1. Let λX̃ + Ỹ = λ(X + ΔX) + (Y + ΔY ) be a perturbed colleague
pencil as in (3.2), with |ΔXij |, |ΔYij | ≤ ε. Then there exist matrices E,F with

‖E‖2, ‖F‖2 = O(n3ε) such that the equivalent pencil (I + E)(λX̃ + Ỹ )(I + F ) has
the form as in (3.3), up to O(ε2) additive terms.

Proof. The proof is constructive and algorithmic, in the same vein as [55]. We
describe a procedure that generates a pencil of the form (3.3) by an equivalence
transformation starting from one of the form (3.2). The matrices E,F can be
chosen so that (I + E) =

∏
i(I + Ei) and (I + F ) =

∏
i(I + Fi), where I + Ei

(resp., I + Fi) represent elementary row (resp. column) operations. Observe that
this immediately implies that I+E and I+F are nonsingular, so that the outcome

(I+E)(λX̃+Ỹ )(I+F ) is indeed equivalent to the pencil λX̃+Ỹ . To help the reader
follow the algorithm, we first illustrate it graphically for n = 6: the first subscript
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2400 YUJI NAKATSUKASA AND VANNI NOFERINI

denotes the order in which perturbed zeros are annihilated, whereas the second
subscript indicates whether this is done via a row (r) or a column (c) operation.
(3.4)

λ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c̃ 0̃10,r 0̃10,r 0̃10,r 0̃10,r 0̃10,r
0̃1,c 1̃ 0̃11,r 0̃11,r 0̃11,r 0̃11,r
0̃1,c 0̃3,c 1̃ 0̃13,r 0̃13,r 0̃13,r
0̃1,c 0̃3,c 0̃5,c 1̃ 0̃15,r 0̃15,r
0̃1,c 0̃3,c 0̃5,c 0̃7,c 1̃ 0̃17,r
0̃1,c 0̃3,c 0̃5,c 0̃7,c 0̃9,c 1̃

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−1

2

⎡⎢⎢⎢⎢⎢⎢⎣

c̃ c̃ c̃ c̃ c̃ c̃

1̃ 0̃ 1̃ 0̃12,c 0̃12,c 0̃12,c
0̃2,r 1̃ 0̃ 1̃ 0̃14,c 0̃14,c
0̃2,r 0̃4,r 1̃ 0̃ 1̃ 0̃16,c
0̃2,r 0̃4,r 0̃6,r 1̃ 0̃ 1̃

0̃2,r 0̃4,r 0̃6,r 0̃8,r 2̃ 0̃

⎤⎥⎥⎥⎥⎥⎥⎦ .

The process perturbs the coefficients terms c and 1, which we do not keep track of
in (3.4), instead we simply write c̃ and 1̃.

Here the 0̃ terms (without subscripts) in the second matrix do not get eliminated;
they remain nonzero and O(ε) in absolute value.

The final step is to scale all but the first row in order to obtain 1 (unperturbed),

rather than 1̃, in the diagonal elements in X̃.
A more formal description of the algorithm for a generic n is as follows:

1 For j = 1 : n− 2
2 For i = (j + 1) : n

3 Annihilate X̃ij by adding a multiple of ith column to jth column.
4 end
5 For i = (j + 2) : n

6 Annihilate Ỹij by adding a multiple of (j + 1)th row to ith row.
7 end
8 end

9 Annihilate X̃n,n−1 by adding a multiple of nth column to (n−1)th column.
10 For j = 2 : n

11 Annihilate X̃1j by adding a multiple of jth row to 1st row.
12 end
13 For i = 2 : n− 2
14 For j = (i+ 1) : n

15 Annihilate X̃ij by adding a multiple of jth row to ith row.
16 end
17 For j = (i+ 2) : n

18 Annihilate Ỹij by adding a multiple of (i+ 1)th column to jth column.
19 end
20 end

21 Annihilate X̃n−1,n by adding a mutliple of nth row to (n− 1)th row.
22 For i = 2 : n

23 Set X̃ii = 1 by scaling the ith row.
24 end

Now we represent each single operation in the pseudocode above either as I + Ei

or as I + Fi, according to whether it is a row or column operation. Observe the
two key features of the process that: (i) once a zero element is created, it is never
subsequently perturbed again (except for second, or higher, order terms in ε), and
(ii) to annihilate an element we always add a small multiple of 1̃, ensuring that Ei
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and Fi are indeed small (this might not be the case if we needed to add a multiple
of some c̃). This guarantees that eventually the form (3.3) can be obtained.

A possible source of error growth is the fact that we eliminate the 0̃ terms using
the pivot 1

2 , thus resulting in growth of 0̃ by a factor 2. For example, when the 0̃2,r
terms are eliminated, terms of size 5ε can arise in the second column of X̃. When
eliminating 0̃4,r, it appears that the third column of X̃ can have elements of size
13ε. This effect is subtle and can seem to potentially grow exponentially with n.
Here we claim that this is not the case, and the terms are bounded by O(n2ε). This
can be understood as follows. Let sk, tk be bounds for the entries 0̃2k−1,c and 0̃2k,r
right before they are eliminated. Consider the kth column of X̃. It is unaffected by
more than O(ε2) until the (k − 1)th row-elimination operation, which introduces
an element bounded by 2tk−1, thus sk = 2tk−1+ ε, where ε here denotes the initial
value of 0̃ (their specific values do not matter much). To bound tk, note that the
02k−4,r eliminiation introduces elements −tk−2, and the 02k−1,c elimination adds
−sk, thus tk = −tk−2 − sk + ε. Together we obtain tk = −tk−2 +2tk−1 + cε, where
|c| ≤ 3. Hence (tk − tk−1) = tk−1 − tk−2 + cε. Solving this by taking t1 = ε yields

tk = 3k(k+1)
2 , thus tk = O(k2ε). This also gives sk = O(k2ε). Each Ei, Fi has only

one nonzero element, of absolute value bounded by n2ε. Moreover, examining lines
6, 11, 15 and 21 of the pseudocode we see that the nonzero elements are always in
different positions in each Ei, and the same is true for each Fi.

Hence, E =
∑

i Ei + O(ε2) and F =
∑

i Fi + O(ε2) are both bounded, to first
order, by n2ε in the max-norm. But in turn this implies [30, Ch. 5] that for the
spectral norm we have ‖E‖2, ‖F‖2 ≤ n3ε+O(ε2). �
Remark 3.2. Although, for definiteness, we have chosen to give the statement of
Lemma 3.1 in the spectral norm, similar results are as easily obtainable for other
choices of norms. For example, a simple modification of the proof shows that
‖E‖, ‖F‖ ≤ n3.5ε + O(ε2) where ‖ · ‖ is any unitarily invariant norm, e.g., the
Frobenius norm, or the nuclear norm [30, Sec. 5.6].

As a consequence of Lemma 3.1, we see that QZ gives the exact roots of

(3.5) p̂(x) =

n∑
i=0

c̃iT̃i(x),

which, with respect to the original p(x) in (3.1), is a polynomial with slightly per-

turbed coefficients in a slightly perturbed basis T̃i(x). Concerning the coefficients
c̃i in (3.5), by the assumptions on the outcome of QZ and by Lemma 3.1 one can
check that they satisfy

(3.6) max
i

|c̃i − ci| = O(q1(n)u),

where q1 is some slowly growing function ≤ αn
5
2+τ where τ = deg q̂(n), the error by

QZ, and α is a moderate constant. Note the factor n2.5 instead of ‖E‖2, ‖F‖2 ≈ n3,
which we obtain since only one row or column of E and F affect each c̃i. On

the other hand, the perturbed Chebyshev polynomials T̃i(x) satisfy the perturbed
recurrence relation

(3.7) 2xT̃i(x) = (1 + εi,i+1)T̃i+1(x) + εi,iT̃i(x) + (1 + εi,i−1)T̃i−1(x),

which is a slight perturbation of the original Chebyshev recurrence relation

(3.8) 2xTi(x) = Ti+1(x) + Ti−1(x).
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In (3.7), the εi,j terms are modest multiples of the unit roundoff u, satisfying
max |εi,j | ≤ q2(n)u. Here again q2(n) ≤ αn2.5+τ . To simplify notation, we also
introduce a third slowly growing function q(n) = max(q1(n), q2(n)) and define
(note that we distinguish ε and ε)

(3.9) ε = |q(n)u|.

Observe that by definition we have maxi |c̃i − ci| ≤ ε and |εi,j | < ε. The exact
exponent of n in q(n) might in principle be obtained by using strict error bounds
for QZ and keeping track of each step in the proof of Lemma 3.1. Such a bound
might be obtainable by applying with some care the results of [29, Ch. 19], and
would clearly also depend on the number of iterations3. However, here we will not
go into such level of detail. We just assume in the following that, for a given unit
roundoff u, n is moderate so that ε = |q(n)u| � n−2.

The question therefore is whether the roots of p̂(x) in (3.5) can be regarded as
backward stably computed roots of p(x). We prove this in the affirmative:

Theorem 3.3. Let T̃i(x) be perturbed Chebyshev polynomials defined by (3.7), and
let p̂(x) be as in (3.5) with maxi |ci − c̃i| ≤ ε. Suppose moreover that ε � n−2.
Then we can write

(3.10) (p̂(x) =)

n∑
i=0

c̃iT̃i(x) =

n∑
i=0

ĉiTi(x)

for some ĉi, which satisfy ‖ĉ− c‖2 = O(n2.5ε), where ε is defined by (3.9).

The proof of Theorem 3.3 needs some tools from the theory of orthogonal poly-
nomials. These tools are used in Section 3.2 to develop some intermediate results:
building on these, we will then prove Theorem 3.3 in Section 3.3.

3.2. Orthogonal polynomials with perturbed recurrence relation. For def-
initeness we will first focus on the Chebyshev polynomial of the first kind. We
will then discuss how to extend the results to certain Jacobi orthogonal polynomi-
als [50, Ch. 4].

Let {T̃i(x)}i≤n be the perturbed Chebyshev polynomials satisfying (3.7). Letting
K = [−1, 1], we show that

(3.11) ‖T̃k − Tk‖K = O(k2ε).

Here and below ‖p‖K := maxx∈K |p(x)| denotes the L∞ norm of a continuous
function p(x) on the compact interval K. We prove (3.11) via the following steps:

(1) Prove the roots of T̃k(x) are within O(ε) of those of Tk(x).

(2) Prove the polynomial value T̃k(x) is stable under perturbation in the roots:

‖T̃k − Tk‖K = O(k2ε).

Our results extend previous studies on perturbed orthogonal polynomials [31,
39, 40] in that we consider perturbation in any of the recurrence relations.

3It is commonly observed that, in practice, the number of iterations is ≈ 2n. Again, no
rigourous proof of this fact for a general pencil is, to our knowledge, currently available.
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3.2.1. Roots of orthogonal polynomials are insensitive to perturbation in the recur-

rence relations. For the orthogonal polynomials {T̃i(x)} defined by the recurrence
relation (3.7) the following statement holds [25, 58]: for all j = 0, . . . , n − 1, the

roots of T̃j+1(x) are the eigenvalues of the (j + 1)× (j + 1) Jacobi matrix

(3.12)
1

2

⎡⎢⎢⎢⎢⎢⎢⎣

−2εj,j 1 + εj,j−1

1 + εj−1,j −2εj−1,j−1 1 + εj−1,j−2

. . .
. . .

. . .

1 + ε1,2
. . . 1 + ε1,0

2 + 2ε0,1 −2ε0,0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where εij are the same as in (3.7). Let ε be as in (3.9). Then (3.12) can be easily
transformed into a symmetric tridiagonal matrix plus an O(ε) perturbation via a

diagonal similarity transformation defined by the matrix D = diag(In−1,
√

1
2 ). It

is known that simple eigenvalues of a symmetric matrix are well-conditioned, even
under nonsymmetric perturbation [49, Sec. IV.5.1]. Specifically, the perturbation
in the roots is linear, with constant γ of magnitude ≈ 1, in the spectral norm of
the perturbation matrix ΔT . The latter is O(ε), due to the tridiagonal structure,
as can be verified via Gerschgorin’s theorem applied to (ΔT )TΔT . To summarize,

labelling the roots of Tj(x) (resp. T̃j(x) as r
(j)
i (resp. r̃

(j)
i ), we can write

(3.13) max
j=1,...,n

max
i=1,...,j

|r(j)i − r̃
(j)
i | := η ≤ ρε,

where ρ is a small constant independent of n. Furthermore, if the perturbation
is real, as always happens if p has real coefficients, then the roots will stay real
unless the perturbation is large enough to make the roots collide, which does not
happen under our assumption ε = |q(n)u| � n−2, because the roots of Tj(x)
are separated by at least a distance O(n−2) [50, Thm. 6.21.2]. We note that for
Chebyshev polynomials Tj(x) whose roots are cos( iπ2j ) a simple argument improves

the separation to 4
n2 , as can be seen by adapting (B.2) in the appendix to the

specific case of Chebyshev polynomials. This allows for a slightly larger ε (i.e., the
results are applicable to larger n).

3.2.2. Values of Chebyshev polynomials are insensitive to perturbation in the roots.
As a preliminary, we need to prove a technical lemma involving the digamma func-
tion [1, Sec. 6.3].

Lemma 3.4. Let ψ(y) be the digamma function and consider the smooth function

y ∈ [0, 1] �→
{
f(y) = −ψ(y) sin(πy) if y > 0,

f(0) = π.

The following properties hold:

(1) For any y ∈ [0, 1/4], f(y) < 3.2222;
(2) For any y ∈ [1/4, 1], f(y) is decreasing.

Proof. Note first that f(y) > 0 for all y ∈ [0, 1], being the product of two positive
functions. It is immediate that f(y) is decreasing in [1/2, 1], because it is the
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product of two positive decreasing functions. We claim, and will prove later, that
f(y) is concave on [0, 1/2]. Observe that by the expansion [1, eqs. (6.3.5),(6.3.14)]

−ψ(y) =
1

y
+ γ −

∞∑
n=2

(−1)nζ(n)yn−1,

where γ ≈ 0.5772 is the Euler-Mascheroni constant and ζ(x) is Riemann’s zeta
function, it is straightforward to show that f ′(0) = γπ > 0. Similarly, from [1,
eq. (6.4.4)] one can prove f ′(1/2) = −π2/2 < 0. Therefore, f(y) has a unique
maximum in (0, 1/2). Both f(y) and f ′(y) can be reliably evaluated numerically [3,
42], and hence, we may approximate the maximum and its value with arbitrary
precision, e.g., by finding the unique root of f ′(y) by the bisection method. With
this technique, it is readily estimated that f ′(y∗) = 0 for y∗ � 0.089638 < 1/4.
Therefore f is decreasing for any y > y∗, and a fortiori for any y > 1/4. To
conclude the proof, from a numerical approximation of f(y∗) up to the desired
precision we obtain f(y) ≤ f(y∗) < 3.2222.

It remains to prove that f(y) is concave on [0, 1/2]. By [1, eq. (6.3.16)],

f(y) = −ψ(y) sin(πy) = γ sin(πy)− sin(πy)

∞∑
n=1

y − 1

n(n+ y − 1)
.

Writing gn(y) = sin(πy) y−1
n(n+y−1) , we can show that gn(y) is convex for n ≥ 2.

Indeed, we have

g′′n(y) =
2nπ(n+y−1) cos(πy)+(−2n(1+π2(1−y)2)+n2π2(1−y)+π2(1−y)3) sin(πy)

n(n+y−1)3

Since y ∈ [0, 1/2], the numerator is larger than sin(πy)hn(1− y) where

hn(z) = n2π2z − 2n
(
1 + π2z2

)
+ π2z3,

having performed the simple change of variable 1− y =: z ∈ [1/2, 1]. We get

hn+1 − hn = (2n+ 1)π2z − 2n
(
1 + π2z2

)
≥ 0 ∀n, ∀z ∈ [1/2, 1],

as is clear because the equation above is a concave function of z that takes the
values, resp., nπ2 − 2 > 0 and (2n − 1)π2 − 2 > 0 at, resp., z = 1/2 and z = 1.
Hence together with h2(1− y) > 0 for y ∈ [0, 1/2] (which can be verified easily) we
conclude that hn(1 − y) > 0 for all n ≥ 2 and y ∈ [0, 1/2]. Since the first term in
the sum sin(πy)

∑∞
n=1

y−1
n(n+y−1) is not convex, it remains to prove that for a partial

sum sin(πy)
(∑k

n=1
y−1

n(n+y−1) − γ
)
is convex on [0, 1/2] for some k. This is true for

k = 2, as can be verified by direct calculation, and hence, the claim is proved. �

Now, for any interval I, we denote the L∞(I) norm of a continuous function by
‖ · ‖I ; also, recall K := [−1, 1]. Let Tn(x) be the Chebyshev polynomial of degree
n; recall that ‖Tn‖K = 1. Observe that we can write Tn(x) = α

∏
i(x − ri) where

α > 0 depends on n (more precisely α = 1 for n ≤ 1 and α = 2n−1 otherwise).
Here and below, ri are the roots of the nth Chebyshev polynomial. Suppose each

root of Tn(x) is perturbed by ηi, and let T̃n(x) = α
∏

i(x − ri − ηi). We denote
�r = [r1, . . . , rn] ∈ R

n, �η = [η1, . . . , ηn] ∈ R
n, η = ‖�η‖∞.

Our goal is to prove that the perturbation in the polynomial value ‖Tn − T̃n‖K/
‖Tn‖K is insensitive to perturbation in the roots. In particular, we will prove the
following.
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Theorem 3.5. Let Tn ∈ R[x] be the Chebyshev polynomial of degree n, and T̃n

defined as above. Then ‖T̃n − Tn‖K ≤ ηn2‖Tn‖K +O(η2). Moreover, the constant
is tight, i.e., for any c < 1 there exists a choice of �η such that ‖�η‖∞ ≤ η and

‖T̃n − Tn‖K > cηn2‖Tn‖K .

Proof. Let us consider the function f(�y;x) = α
∏

i(x− yi) : R
n → R. Noting that

Tn(x) = f(�r;x) and expanding f in a Taylor series around �y = �r we get

T̃n(x)− Tn(x) = ∇f(�r;x) · �η +O(η2).

Observe that
∣∣ ∂f
∂yi

∣∣= ∣∣ f
x−yi

∣∣. Hence, to first order in η, ‖Tn−T̃n‖K ≤ η
∑

i ‖
Tn(x)
x−ri

‖K .

Hence, we only need to estimate the function

P(x) :=
∑
i

|Tn(x)|
|x− ri|

.

This function satisfies the property that P(ri) = |T ′
n(ri)| for all i, and furthermore

P(±1) = |T ′
n(±1)|. Observe further that P(x) is even, so it suffices to study it for

0 ≤ x ≤ 1.
Clearly, since the involved absolute values can be resolved with a unique choice of

signs in each interval of the form [rj+1,rj ], we have that P(x) is piecewise polynomial
and equal to T ′

n(x) for x ≥ r1. Furthermore it is equal to

(−1)j

(
T ′
n(x) + 2

j∑
i=1

Tn(x)

ri − x

)
for all rj+1 ≤ x ≤ rj . We may limit our study to j ≤ n/2, by symmetry.

Moreover, note that for n = 1, 2 we have, respectively,

P(x) = 1 and 2P(x) = |x− 1√
2
|+ |x+

1√
2
| ≤ 2,

and hence, we may assume n ≥ 3 in the following.
Now let us parametrize x = cos( 2j−1+2y

2n π) for y ∈ [0, 1], except if n is even
and j = n/2; in this case y ∈ [0, 1/2]. Then, recall T ′

n(x) = nUn−1(x). We can

use Tn(x) = cos(n acos(x)) = cos(n( 2j−1+2y
2n π)) = cos( 2j−1+2y

2 π) = (−1)j sin(πy)

and similarly, using Un−1(x) = sin(nacos(x))
sin(acos(x)) we have sin( 2j−1+2y

2n π)Un−1(x) =

sin( 2j−1+2y
2 π) = (−1)j+1 cos(πy). Thus we have

(3.14) P(x) = −n
cos(πy)

sin( 2j−1+2y
2n π)

+

j∑
i=1

sin(πy)

sin( i+j−1+y
2n π) sin( j−i+y

2n π)
.

We distinguish the cases j = 1 and j > 1. First, let j = 1, then

P(x) = −n
cos(πy)

sin( 1+2y
2n π)

+
sin(πy)

sin( 1+y
2n π) sin( y

2nπ)
.

Suppose first y ≤ 1/2. Then 1+y
2n ≤ 1

4 implying sin( 1+y
2n π) ≥

√
2(1+y)
n , and

similarly from y
2n ≤ 1

12 we see that sin( y
2nπ) ≥ 3(

√
3−1)y√
2n

. Therefore we get the

upper bound

P(x) ≤ n2

(
π

3(
√
3− 1)(1 + y)

− 2 cos(πy)

π(1 + 2y)

)
,
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and studying the function between brackets it is revealed that its maximum in
[0, 1/2] is achieved at y = 1/2 and therefore we have the upper bound

P(x) ≤ 2π

9(
√
3− 1)

n2 � 0.954n2 < n2.

Now suppose 1/2 ≤ y ≤ 1. In this case 1+y
2n π ≤ 1

3π so we can estimate

sin( 1+y
2n π) ≥ 3

√
3(1+y)
4n , sin( y

2nπ) ≥ 3y
2n , and sin( 1+2y

2n π) ≥ 1+2y
n , yielding the up-

per bound

P(x) ≤ n2

(
8 sin(πy)

9
√
3y(1 + y)

− cos(πy)

1 + 2y

)
.

Once again studying this function we see that its maximum is achieved at y = 1/2,
where it is

P(x) ≤ 32

27
√
3
n2 � 0.685n2,

concluding the analysis for j = 1.
For j ≥ 2, defining δ = j − i we estimate the second term in P(x) by

j∑
i=1

sin(πy)

sin( i+j−1+y
2n π) sin( j−i+y

2n π)
≤ n2 sin(πy)√

2

j−1∑
δ=0

1

2j − 1− δ + y

1

δ + y
.

Recall that the digamma function ψ(z) satisfies [1, eq. (6.3.5),(6.3.6)]

(3.15) ψ(j + z)− ψ(z) =

j−1∑
δ=0

1

δ + z
,

and note that we can write

(2j + 2y − 1)

j−1∑
δ=0

1

2j − 1− δ + y

1

δ + y
=

j−1∑
δ=0

1

δ + y
+

j−1∑
δ=0

1

j + y + δ
,

where in the second summation we have relabelled δ → j−1−δ. Thus, using (3.15)
twice, we obtain

(3.16)

j−1∑
δ=0

1

2j − 1− δ + y

1

δ + y
=

ψ(2j + y)− ψ(y)

2j − 1 + 2y
.

Hence
j∑

i=1

sin(πy)

sin( i+j−1+y
2n π) sin( j−i+y

2n π)
≤n2 sin(πy)√

2

ψ(2j + y)− ψ(y)

2j − 1 + 2y
.

From [1, eq. (6.3.2)] we see that ψ(2j+y)
2j+2y−1 ≤ H2j−1−γ

2j−1 , with γ the Euler-Mascheroni

constant and Hj the jth harmonic number. It is easy to verify that
H2j−1−γ

2j−1 is a

decreasing function of j, and so using j ≥ 2 we get

ψ(2j + y)

2j + 2y − 1
≤ H3 − γ

3
=

11− 6γ

18
.

By Lemma 3.4, −ψ(y) sin(πy) < 3.2222 on y ∈ [0, 1]. Hence for any y ∈ [0, 1/4],
since sin(πy) ≤ 1√

2
, the summation (3.16) is bounded by

n2

(
3.2222

6
+

11− 6γ

36

)
< 0.74644n2 < n2,
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STABILITY OF COMPUTING POLYNOMIAL ROOTS 2407

yielding a bound for P(x) in (3.14) because the cosine term is negative. If 1/4 ≤ y ≤
1/2, we cannot bound the sine other than with 1, but we can use the better bounds

−ψ(y) sin(πy) ≤ −ψ(1/4) sin(π/4) = π+6 log 2+2γ

2
√
2

, by Lemma 3.4, and ψ(2j+y)
2j+2y−1 ≤

2H3−γ
7 = 11−6γ

21 . These yield the upper bound

P(x) ≤ n2

(
π + 6 log 2 + 2γ

14
+

11− 6γ

21
√
2

)
< 0.9n2 < n2.

Finally, when y ≥ 1/2 we must also control the cosine term, since it is posi-

tive. This is easily done since 2j − 1 + 2y ≥ 2j ≥ 4 and hence sin( 2j−1+2y
2n π) ≥

4
n , yielding −n cos(πn) csc( 2j−1+2y

2n π) ≤ | cos(πy)|n2

4 . Note the improved bounds

−ψ(y) sin(πy) ≤ −ψ(1/2) sin(π/2) = 2 log 2 + γ and ψ(2j+y)
2j−1+2y ≤ H2j−1−γ

2j ≤ 11−6γ
24 .

Hence we get the bound

n2

(
1

4
+

γ + 2 log 2

4
√
2

+
11− 6γ

24
√
2

)
< 0.81922n2,

and we are done.
Finally, for the tightness, since ‖T ′

n‖K = n2‖Tn‖K = n2, and this is achieved at
x = 1 [41, Ch. 2] this is the best bound we can get. Note that it is realizable by
choosing ηi = η in the definition of p̂. �

Finally, we must slightly weaken one assumption in Theorem 3.5. Indeed, T̃k(x)
might not have the same leading coefficient as Tk(x). Let c̃k and ck denote the
respective leading coefficients. By (3.7) we deduce that c̃k ≤ (1 + ε)k, hence c̃k ≤
(1 + kε)ck +O(ε2). Therefore

‖T̃k − Tk‖K ≤ ‖T̂k − Tk‖K + ‖( c̃k
ck

− 1)T̂k‖K

≤ ‖T̂k − Tk‖K + kε(‖T̂k − Tk‖K + ‖Tk‖K)

≤ k2η + kε+O(ε2) ≤ 2ρk2ε,

recalling from the discussion in Section 3.2.1 that η=ρε for a moderate constant ρ.

3.3. Proof of Theorem 3.3. Now we prove (3.10). We have

p̂(x) =

n∑
i=0

c̃iT̃i(x) =

n∑
i=0

c̃iTi(x) +

n∑
i=0

c̃i(T̃i(x)− Ti(x)) =: p1(x) + p2(x),

where p2(x) is a polynomial of degree n or lower. To bound ‖p2‖K we use The-
orem 3.5 together with ‖c‖2 = 1 + O(ε) to obtain ‖p2‖K ≤

∑n
k=0 2|c̃i|ρk2ε ≤

ρn2.5ε+O(ε2) where ρ′ is some moderate constant. Therefore by Chebyshev inter-
polation we can write

p2(x) =
n∑

i=0

diTi(x).

Denote by ‖p‖L2 the L2(K) norm with weight function 1√
1−x2 ,

√
2
π

∫ 1

−1
|p(x)|2 dx√

1−x2 .

Then by the orthogonality of the Chebyshev polynomials it is immediate that
‖p2‖2L2 = 2d20 +

∑n
i=1 d

2
i ≥ d20 +

∑n
i=1 d

2
i = ‖d‖22 where d = [d0, d1, . . . , dn]. By
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2408 YUJI NAKATSUKASA AND VANNI NOFERINI

standard Lp norms embedding inequalities (see [2, Thm. 2.14] and [57, Thm. 2])

we then have ‖d‖2 ≤ ‖p2‖L2 ≤
√
2‖p2‖K ≤

√
2ρ′n2.5ε. We conclude that

p̂(x) =

n∑
i=0

(c̃i + di)Ti(x) =

n∑
i=0

ĉiTi(x),

where ĉi := c̃i + di satisfies ‖ĉ − c‖2 ≤ ‖ĉ − c̃‖2 + ‖c̃ − c‖2 = ‖d‖2 + ‖c̃ − c‖2 ≤√
2ρ′n2.5ε+

√
nε+O(ε2) = O(n2.5ε).

This completes the proof of Theorem 3.3.

3.4. Generalizing the argument to Jacobi orthogonal polynomials. Ex-
tending the results more generally to comrade pencils based on Jacobi orthogonal

polynomials {P (α,β)
i (x)} with |α|, |β| ≤ 1

2 can be done essentially by following the

same argument as above. The key properties that we need in P
(α,β)
i (x) are:

(i) ‖P (α,β)
n ‖K = O(1) or a slowly growing function of n; indeed we have

‖P (α,β)
n ‖K ≤ nmax (α,β) [50, Thm. 7.32.1] for Jacobi (due to the difference

in normalization, the bound is 1 and n for Chebyshev polynomials of the
first and second kinds, respectively).

(ii) {P (α,β)
i } is defined by a three-term recurrence xP

(α,β)
i (x) = aiP

(α,β)
i+1 (x) +

biP
(α,β)
i (x) + diP

(α,β)
i−1 (x), with ai, bi, di all being O(1).

(iii) The roots of P
(α,β)
n (x) lie in the interval [−1 +O( 1

n2 ), 1−O( 1
n2 )].

(iv) There is no exponential growth in the elimination stage of the proof of
Lemma 3.1.

Regarding (iii), indeed the ith root of any Jacobi polynomial of degree n lies in the
interval [cos( 2i

2n+1π), cos(
2i−1
2n+1π)] and furthermore for the ultraspherical case α = β

it lies in [cos( iπ
n+1 ), cos((i−

1
2 )

π
n )] [50, Thm. 6.3.2]. Hence, one can prove an analogue

of Theorem 3.5. The proof is deferred to the appendix in Theorem B.2. For (iv),
however, the analysis appears to become subtle, since the three-term recurrence
ai, bi, di take non-constant values.

Nonetheless, there is a short argument based on the fact that the condition
number κ2(A) and norm ‖R‖2 of the upper triangular matrix R that maps Jacobi
to Chebyshev polynomials are bounded by a polynomial in the degree n. This fact
can be shown [52] via techniques used in [28]. Hence, combining the previous results
with a similarity transformation with respect to R shows that the backward error
is bounded by a polnomial in n, κ2(R) and ‖R‖2, hence overall polynomial in n

To summarize, a comrade pencil for polynomials p(x) expressed in a Jacobi

polynomial basis {P (α,β)
i (x)} with parameters |α|, |β| ≤ 1

2 gives a small backward
error for the roots if p(x) is scaled to have coefficients ‖c‖2 = O(1) in that basis
and QZ is used to compute the eigenvalues.

4. Stability of rootfinding via the QR algorithm

for confederate matrices

In this section, we analyze the stability of rootfinding via QR. To this goal we
will extend to some non-monomial basis a geometric result of Arnold [4] and its
ramifications in numerical analysis [22].
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STABILITY OF COMPUTING POLYNOMIAL ROOTS 2409

4.1. Arnold transversality theorem for confederate matrices. First, we
briefly summarize Arnold’s theorem.

Let Λ,M be smooth manifolds [37] and N ⊂ M a smooth submanifold
[37, Ch. 5]; let A : Λ → M be a smooth mapping [37, pp. 34]. Following Arnold [4],
A is said to be transversal to N at the point c ∈ N if it holds

TcM = dA(TA−1(c)Λ) + TcN ,

where TxY denotes the tangent space [37, pp. 54] to Y at x and dA is the pushfor-
ward [37, pp. 55, 63] of A.

Now we take Λ = R
n and M = R

n×n, and we let A be the smooth mapping
from the nonleading coefficients of a monic polynomial φn(x)+

∑n−1
i=0 ciφi(x) to the

associated confederate matrix Cφ. Thus, Im(A) is the set of confederate matrices
in the basis {φi}. Let N be the orbit under similarity of Cφ ∈ Im(A). Then a first-
order expansion shows that the tangent space of N at Cφ is the set of commutators
TCφ

N = {[Cφ, X] for some X ∈ R
n×n}. On the other hand, it is known that

TCφ
M is isomorphic to M and TA−1(Cφ)Λ is isomorphic to Λ [37, pp. 51], while by

Theorem 2.1 one can see that dA(TA−1(Cφ)Λ)
∼= FRn. Hence, the interpretation of

the statement “the mapping A is transversal to N at Cφ” is the following (see also
[21, 22]): “given any matrix Y ∈ R

n×n and a specific confederate matrix Cφ, it is
possible to find X ∈ R

n×n, and F0 ∈ FRn, such that

(4.1) Y = αF0 + β[Cφ, X]

for some α, β ∈ R”.
Arnold states this result for companion matrices [4]. A proof is not explicitly

given by Arnold, but is easy to obtain constructively, e.g., by setting α = β = 1
and by forming X and F0 given Y and Cφ. Specifically, we can let the last row of
X be zero (or arbitrary), and since CφX −XCφ and Y are the same except for the
first row, this determines the (n − i)th row of X inductively for i = 1, . . . , n − 1.
Thus the whole matrix X is determined, and F0 is obtained directly by the first
row of (4.1).

We now claim that the theorem holds more generally for confederate matrices.
Indeed, let M ∈ M and suppose that Cφ is a confederate matrix. Denote by B
the upper triangular change of basis matrix from the monomials {xi}i=0,...,n−1 to
the basis {φi}i=0,...,n−1. Then C := B−1CφB is a companion matrix. Hence, there
exist F0 ∈ FRn and X ∈ R

n×n such that B−1MB = F0 + [C,X]. Therefore,
M = BF0B

−1 + [Cφ, BXB−1]. Note that, since B is upper triangular, G0 :=
BF0B

−1 ∈ FRn. Formally, we can state:

Theorem 4.1 (Arnold’s transversality theorem for confederate matrices). Let A :

γ0 =
[
cn−1 . . . c0

]T ∈ R
n �→ A(γ0) = Cφ ∈ R

n×n, where Cφ is the confederate

matrix in the basis {φi} of p(x) = φn(x) +
∑n−1

i=0 ciφi(x). Then A is transversal to
N = {XCφX

−1|X ∈ GLn(R)} at any point Cφ ∈ Im(A).

Arnold also notes that universality holds, that is, the decomposition in (4.1)
is unique for the companion case once α and β are fixed, and this holds also for
confederate matrices.

An important consequence of Theorem 4.1 is that if εE is a small perturbation,
then εE = εG0+ε[Cφ, X]. Therefore, Cφ+εE = (I−εX)(Cφ+εG0)(I+εX)+O(ε2).
Observing that Cφ + εG0 is in turn a confederate matrix for another polynomial p̂,
we deduce that a small perturbation of the confederate matrix of p is similar (to first
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2410 YUJI NAKATSUKASA AND VANNI NOFERINI

order in the norm of the perturbation) to the confederate matrix of a perturbation
of p.

Going even further, Edelman and Murakami [22] exploit Arnold’s transversality
theorem to show that, if F = F0 + [C,X] for some companion matrix C and
F0 ∈ FRn, then the elements of F0 are affine functions of the coefficients of p(x).
Now we argue that this property also extends to any degree-graded basis. Write
E = G0 + [Cφ, Y ]. Then, F = F0 + [C,X] where F = B−1EB, F0 = B−1G0B,

C = B−1CφB. Let B̂ = [ ν �
0 B ] be the change of basis matrix from {xi}i=0,...,n

to {φi}i=0,...,n; the symbol � denotes elements not relevant to the discussion. Let

p(x) =
[
1 μ0

]
[xn, . . . , x0]T = ν−1

[
1 γ0

]
B̂[xn, . . . , x0]T , i.e., the coefficients of

p(x) in the monomial basis are
[
1 μ0

]
, and the coefficients of νp(x) in the basis

{φi} are
[
1 γ0

]
. Now, G0 = BF0B

−1 is an affine function of F0, which by [22,
Thm 2.1] is an affine function of μ0, which in turn, by construction, is an affine
function of γ0. Now it suffices to recall that the composition of affine maps is an
affine map. Summarizing, we conclude that for any degree-graded basis we have
the following theorem.

Theorem 4.2 (Edelman–Murakami theorem for confederate matrices). Let Cφ be
a confederate matrix in the degree-graded basis {φi} and E ∈ R

n×n. Denote by p(x)
(resp., p̂(x)) the characteristic polynomial of Cφ (resp., Cφ + εE). Then it holds
that

p̂(x)− p(x) = ε
n−1∑
i=0

δiφi(x) +O(ε2),

where δi are polynomials in the coefficients of p(x) in the basis {φi}, and in the
Eij. Moreover, for each i, δi is an affine function of the coefficients of p(x) and,
separately, of the elements of E.

We have stated Theorem 4.2 in terms of the characteristic polynomial, which is
usually defined to be monic in the monomial basis. Note that with this convention
p(x) may not be monic in the basis {φi}: as explained in Section 2, the elements
in the first row of Cφ are the coefficients of νκ−1p(x), where νκ−1 is the leading
coefficient of φn−1(x) expressed in the monomial basis. In the statement of Theorem
4.2, any scaling factor can be absorbed in the δi. However, for our goals it is simpler
to absorb this factor into p(x) and p̂(x): therefore, from now on we slightly modify
the definition of characteristic polynomial, scaling by νκ−1.

4.2. Backward error when approximating roots by QR. Suppose that a
backward stable eigensolver is applied to Cφ. It will compute the eigenvalues of a
slightly perturbed Cφ+εE, ‖E‖ ≤ ‖Cφ‖, for some small constant ε. The eigenvalues
of Cφ + εE are the roots of p̂(x), and the previous theorem yields (recall (1.2))

‖ĉ− c‖2
‖c‖2

≤ kε.

Here, k depends on the basis, on the degree of p, and (linearly) on the norm of
E, which is O(max{‖c‖2, α}), where α = ‖Hφ‖2 is the norm of the constant part
of the confederate matrix (recall Theorem 2.1), and generally α = O(1) in all the
polynomial bases we consider. Therefore,

(4.2) ‖ĉ− c‖2 ≤ εk′‖c‖2 max{‖c‖2, α}.
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STABILITY OF COMPUTING POLYNOMIAL ROOTS 2411

Note the quadratic dependence on ‖c‖2 when ‖c‖2 > α, in which case ‖ĉ−c‖2

‖c‖2
≤

εk′‖c‖2, suggesting the backward error can be much larger than O(ε) if ‖c‖2 � 1.
Observe that Theorem 4.2 does not necessarily imply that k′ is of moderate size.

It only says that, if p(x) = νκ−1(φn(x) +
∑n−1

i=0 ciφi(x)), then δi is of the form
δi =

∑
i,j,
 βij
c
Eij . In principle, it could happen that |βij
| � 1; the only way

to check is to carry out the specific calculations in the given basis. From [22], we
know that in the case of monomials max |βij
| = 1. From the similarity argument
that we used, it is possible to obtain bounds for any degree-graded basis, but they
involve a factor cond(B), which may be large (for instance, for the Chebyshev
basis cond(B) ∼ 2n). In practice, it could happen that, by a more elaborate
argument working directly in a specific basis, much better bounds may be obtained.
Remarkably, for the colleague matrix, i.e., the Chebyshev basis, max |βij
| = 4, as
will be reported in a future paper in preparation as of writing.

One difficulty in bounding |βij
| for a generic basis lies in the fact that the Horner
shift matrices appearing in the backward error representation [22] can have norms
growing with n for bases other than monomials. It appears therefore that further
work would be required to obtain sharp bounds for |βij
|.

However, we will not pursue a more detailed theoretical analysis because, even
if k′ = O(1), our main point is that for QR, unlike QZ, the backward error ‖ĉ −
c‖2 depends superlinearly (more precisely, quadratically) on ‖c‖2 when ‖c‖2 > 1.
Note that while we regarded E as an arbitrary perturbation matrix, in [22], it
is advocated that a “more realistic model of errors” in which E has structure
such as upper Hessenberg can possibly predict a much better performance of QR.
Nonetheless, even for nonmonomial bases, we verified that QR often gives accurate
answers. Yet, counterexamples exist where QR performs much worse than QZ, as
we illustrate in Section 6.

4.3. Why Theorem 4.2 does not hold for Fiedler matrices. In [21] a study
appears of an extension of Arnold’s theorem to Fiedler linearizations, and its re-
lations to rootfinding stability. In principle, Fiedler matrices can be viewed as
congenial matrices of p(x) in a certain basis that, unlike all other bases considered
in this paper, depends on p(x) itself. To see this, recall the second statement in
Theorem 2.1, which although stated for confederate matrices, can easily be gener-
alized to congenial matrices: the right eigenvector of a congenial matrix takes the
form [φn(xi), . . . , φ0(xi)]

T for each root xi. Analytic formulae for the eigenvectors
of Fiedler linearizations are known [20, Sec. 7]: they involve the so-called Horner
shifts of p(x). Hence, the polynomial basis in which a Fiedler matrix is a congenial
linearization is also explicitly known. Such a basis is “almost” degree-graded, in the
sense that degφi = σ(i), where σ is some permutation of {0, 1, . . . , n− 1} (a proof
of this fact is not difficult to obtain from the results in [20]). Hence, any Fiedler
matrix is permutation similar to a confederate linearization, and it is tempting to
conjecture that the arguments of the previous section could be generalized. Tempt-
ing, yet wrong: because of the presence of the Horner shifts, in this case the change
of basis matrix B depends on p(x) itself, whereas in the derivation of Theorem 4.2
it was tacitly assumed that B is independent of p and E.

Remarkably, Arnold’s transversality theorem is true for Fiedler also when they
are seen as linearizations of p(x) expressed in the monomial basis (as opposed
to the Horner shift basis in which they are congenial linearizations), as shown
in [21, Thm 5.4]. However, the authors of [21] conclude that there is a cubic, as
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opposed to quadratic, dependence on ‖c‖2, thus showing that indeed, when B is not
constant, nonlinearity can occur. To summarize, QR-based rootifinding is unstable
also for Fiedler linearizations.

4.4. Diagonal balancing. Balancing is a technique to improve the accuracy of
computed eigenvalues by reducing the matrix norm, which initially applies a simi-
larity transformation,

Ĉ := XCX−1,

with the hope that the eigenvalues of the resulting Ĉ are better conditioned. Diag-
onal balancing [48] is employed by default in Matlab’s command eig.

Lemonnier and Van Dooren [38] investigate the effect of balancing the compan-
ion matrix. For QR, they show that when one allows nondiagonal balancing the
optimal balancing is the one that diagonalizes C (they tacitly make the generic
assumption that there are no double roots), that is, when X is the eigenvector
matrix. Of course in practice the eigenvector matrix is unknown, and [38] shows
that diagonal balancing still attempts to find a reduction of ‖C‖ within diagonal
similarity transformations. A similar argument is given there for QZ applied to the
companion pencil.

However, even if balancing is applied to the confederate matrix, ‖Ĉ‖ is never
smaller than the largest eigenvalue of C. This is true with any X, not necessarily
diagonal. In some cases such as in Chebfun, one may be looking for roots of p(x)
in a certain interval and those outside are irrelevant for the application. In such

cases the presence of an irrelevant but large root causes ‖Ĉ‖ to be large, and
this impairs the stability of the relevant roots. This suggests that polynomials
with a large second leading coefficient, which is the only contributor (besides the
leading coefficient) to the diagonals of confederate matrices, are problematic for QR
stability. We investigate and confirm this effect in the experiments in Section 6.

4.5. QR or QZ?. We have shown that QZ is stable, and QR is not. Indeed, in
Section 6 we show an example where QZ gives significantly better stability than QR
or the Chebfun rootfinder (which is based on QR), illustrating that indeed there
exist cases where QZ is certainly recommended over QR.

However, QR is lower in arithmetic by about a factor three, and thus has fewer
sources of numerical errors. Therefore for problems for which QR is known to
be stable, by all means QR is recommended. Fortunately, QR can be shown to
be stable when the comrade matrix Cφ is O(1) in norm; this is indicated by the
bound (4.2), and can also be verified by repeating the analysis in Section 3 with

X = X̃ = I. We recommend QZ when ‖Cφ‖ � 1.

5. Chebyshev basis and roots on an interval

In this section we focus on the Chebyshev basis and finding real roots on a real
interval K.

5.1. Polynomial approximation preserves normwise backward stability.
One common way of finding roots of a continuous function f(x) (not necessarily a
polynomial) on an interval is to approximate f(x) by a polynomial p(x), then find
the roots of p(x) [16]. A common and reliable way to obtain p(x) is via Chebyshev
interpolation, expressing p(x) in the Chebyshev basis. Chebyshev interpolation at
n + 1 points is known to yield p(x) ∈ R[x]n whose error ‖p − f‖K is only within
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STABILITY OF COMPUTING POLYNOMIAL ROOTS 2413

a factor O(log n) that of the best degree-n polynomial approximant to f(x) [53,
Ch. 15], so for sufficiently smooth f , the error ‖p−f‖K decays rapidly (exponentially
if f is analytic on K) with n. Once p(x) is obtained, finding its roots can be done
in a normwise stable manner, as we proved in Section 3.

Here we claim that provided that the polynomial approximant is accurate enough
such that on the interval of interest K we have

(5.1) ‖f − p‖K = ε1‖p‖K ,

where ε1 = q1(n)u (here and below qi denotes a modest polynomial), an algorithm
that stably computes the roots of p is in turn a backward stable rootfinder for f .
This can be verified as follows: as shown in Section 3, QZ applied to a colleague
pencil for a normalized polynomial in the Chebyshev basis computes the roots of a
polynomial p̂ with

(5.2) ‖p− p̂‖K ≤ ε2‖p‖K , ε2 = q2(n)u.

Together with (5.1) we obtain

‖f − p̂‖K ≤ ‖f − p‖K + ‖p̂− p‖K = (ε1 + ε2)‖f‖K .

Overall this means that the roots of f(x) are computed in a backward stable
manner.

5.2. Accuracy estimate of computed roots. So far our discussion has been
on the backward stability of rootfinding algorithms. Here we turn to the forward
stability; see [29, Ch. 1] for a discussion on backward and forward stability. Consider
the computed approximation x̂ to a root x0 of p(x) such that p(x0) = 0. By the
first-order expansion around x0 we have

p(x̂) = p(x0) + p′(x0)(x̂− x0) +O(x̂− x0)
2,

so the absolute accuracy Δx = x̂− x0 is estimated by |Δx| ≈ |p(x̂)|
|p′(x0)| . To estimate

|p(x̂)|
|p′(x0)| we first examine the value |p(x̂)|. Assuming a stable rootfinder such as QZ

is used, the computed roots are exact roots of p̂ satisfying (5.2) so we have

(5.3) |p(x̂)| = |p(x̂)− p̂(x̂)| ≤ ‖p̂− p‖K = q̂2(n)ε‖p‖K .

For the denominator |p′(x0)|, we use the fact that for sufficiently smooth f(x),
approximation in the function value (5.1) also implies approximation in the deriva-
tives p′(x) ≈ f ′(x) [53, Thm. 21.1]. We conclude that the accuracy |Δx| of the
computed root is

(5.4) |Δx| ≈ |p(x̂)|
|p′(x0)|

� q̂(n)ε
‖f‖K
|f ′(x0)|

.

This shows that the computed roots are accurate if the function value on the
interval ‖f‖K is not too large relative to the derivative |f ′(x0)| at the roots. Con-
versely, roots at which |f ′(x0)| � ‖f‖K may not be computed reliably. For an

illustrative example, the famous Wilkinson polynomial f(x) =
∏20

i=1(x − i) makes
|f ′(x0)| too small for roots in the middle compared with maxx∈[0,20] |f(x)|, thus
a normwise backward stable algorithm fails to compute accurate roots. A related
discussion is given in [16], under the name “dynamical range”.

Licensed to Kokuritsu Johogaku Kenyujo. Prepared on Tue Feb 12 01:27:42 EST 2019 for download from IP 136.187.169.83.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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5.3. Cause for inaccurate roots and remedy by subdivision. The above

observation indicates that roots x0 for which ‖f‖K

|f ′(x0)| � 1 generally cannot be

computed accurately by a polynomial rootfinder that is normwise backward stable.
We next argue that sometimes the accuracy can be improved4.

We discuss two possible remedies for this issue, besides the obvious attempt of
using higher-precision arithmetic. The first idea is to attempt to reduce the value
of ‖f‖K on the whole interval. This can be done for example by introducing a
weighting function w(x) > 0, and finding the roots of g(x) := f(x)w(x), which has

the same roots as f(x). If w(x) is chosen in such a way that ‖g‖K

|g′(x0)| is not too large

at the roots, the roots can be computed accurately. Clearly, the question is how to
find such a w(x). A suggestion is made in [16] for the Wilkinson polynomial, but
in general constructing an effective w(x) is nontrivial.

The second remedy is to subdivide the interval into smaller pieces. Since the
O(n3) cost of computing the eigenvalues of the colleague matrix for a polynomial
p(x) is high when the degree n is large, especially when compared with the O(n2)
cost of other rootfinders such as Ehrlich–Aberth, a technique called subdivision
is commonly employed [16, 53]. The idea, simply put, is to divide the interval of
interest [−1, 1] into two (or more) subintervals [−1, δ] and [δ, 1], and find the roots
in each by approximating p(x) by lower-degree polynomials p1(x), p2(x) such that
p1(x) ≈ p(x) on [−1, δ] and p2(x) ≈ p(x) on [δ, 1], then computing the roots of p1, p2
via the eigenvalues of two colleague matrices. This results in cost reduction provided

that the degrees of p1, p2 are lower than
(
1
2

)1/3
n ≈ 0.79n, which is typically the

case [16].
Here we argue that subdivision can be beneficial also for improving the accuracy

of the computed roots, especially if we resample the original function f(x) instead
of the polynomial interpolant p(x) to obtain p1(x), p2(x).

For definiteness, suppose the original interval is [−1, 1] and after subdivision we
work with the interval [a, b]. Then the same argument as above shows that the
accuracy of a computed root is

|Δx| = O
(
ε
maxx∈[a,b] |f(x)|

|f ′(x0)|

)
.

The crucial difference from (5.4) is that the interval is replaced by a smaller [a, b],
so the numerator maxx∈[a,b] |f(x)| is smaller than in (5.4), hence so is the error esti-
mate. Clearly, the difference is significant if maxx∈[a,b] |f(x)| � maxx∈[−1,1] |f(x)|.
See Section 6.3 for an example where subdivision improves the accuracy signifi-
cantly.

In practice, it may be difficult to determine a priori how to subdivide in or-
der to achieve good accuracy. One strategy is to first find the Chebyshev inter-
polant p(x) of f(x) on the whole interval, find the roots, and for roots x̂i for which
maxx∈[−1,1] |p(x)|

|p′(x)| is large, recompute the roots in intervals [ai, bi] � x̂i chosen small

enough so that
maxx∈[ai,bi]

|f(x)|
|f ′(x)| is moderate.

We note that the whole argument assumed that the evaluation of the original
function f(x) can be done with high (relative) accuracy. If this is not the case, and

4We do not discuss algorithms that may achieve componentwise stability such as the Ehrlich–
Aberth method in the monomial basis (for each root), but rather focus on improving the accuracy
using a normwise stable algorithm.
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STABILITY OF COMPUTING POLYNOMIAL ROOTS 2415

evaluating f(x) involves an error of size δ, then taking |p(x̂)| ≈ δ in (5.4) shows
that the accuracy of x̂i is limited by δ

|f ′(x0)| .

For example, in Chebfun, p1, p2 are obtained by sampling the global polynomial
approximant p on each interval, not the original f . This means that generally the
accuracy of the roots cannot be improved by subdivision, because the value of p(x)
generally contains an error ‖p − f‖K = O(ε‖p‖K). Our result suggests that when
high accuracy is a priority, it is recommended to resample the original function f
instead of p when subdividing.

We note that a related statement is given in [44], in which subdivision is shown
to be important for accuracy when computing common roots of two bivariate func-
tions. In that case subdivision helps even when the polynomial approximant is
resampled, as the conditioning depends on the square of the polynomial norms.

To summarize this section: roots with small derivatives may be computed inac-
curately by a normwise stable algorithm, and one way to improve the accuracy is
to subdivide the interval and work in intervals in which the functions have values
comparable with the derivatives at the roots. In addition, subdivision also has the
additional accuracy benefit from the reduced degree, hence reduced matrix size n;
see the experiments in Section 6.2.

6. Numerical experiments

All the experiments were carried out in Matlab version R2013a on a desktop
machine with Intel Core i7 Processor and 16GB RAM, using IEEE double precision
arithmetic.

6.1. Balancing and QR vs. QZ. The discussion in Section 4.4 suggested that
rootfinding based on QR applied to a comrade matrix may be unstable if the second
leading coefficient is large. To illustrate this observation we test the following
linearization-based rootfinders using the Chebyshev basis:

(1) QR applied to the colleague matrix CT , without balancing.
(2) QR applied to the colleague matrix CT , with balancing.
(3) Chebfun command roots.
(4) Chebfun command roots(p,’qz’), which invokes QZ: an option made

available as of version 5.
(5) QZ applied to the colleague pencil λX + Y .

The default Chebfun roots algorithm is based on QR for the colleague ma-
trix CT , with balancing and subdivision, along with other techniques [53, Ch. 18].
Section 3 established that the bottom two algorithms are backward stable.

For comparison purposes, we also show results with the Ehrlich–Aberth method
[12, 13], modified to work in the Chebyshev basis (we have coded our own imple-
mentation, which is not highly optimized), shown as ChebEA in the tables below.

Small leading coefficient, large trace. As a test polynomial we construct the degree
eight polynomial
(6.1)

p(x) =
n∑

i=0

ciTi(x), c = [− 1

10
,− 1

10
,− 1

10
,− 1

10
,− 1

10
,− 1

10
, 10−10, 1, 10−20],

and attempt to compute its seven roots on the interval [−1, 1] by the four methods;
there is another “irrelevant” root well off the interval. The construction of p(x) is
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2416 YUJI NAKATSUKASA AND VANNI NOFERINI

not too special: any coefficient vector c for which the leading coefficient is small
and the second leading coefficient is large would show similar behaviors.

Figure 1 plots p(x) and shows the roots computed by each method. The roots
computed by QR are visibly inaccurate, with or without balancing and, in fact, in
this case balancing appears to do more harm than good. QZ, ChebEA and Chebfun
roots (with QR and QZ) computed all roots accurately5.

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

 

 QR nobalance
QR balance
QZ
Chebfun roots

Figure 1. A degree eight polynomial p(x) as in (6.1) and its com-
puted roots by QR with/witout balancing, and QZ. QZ computes
stable results while QR does not, and balancing does not help.

Table 1 shows the backward errors ‖c−ĉ‖2

‖c‖2
, in which ĉ is the coefficients of the

degree eight polynomial p̂ whose roots are the computed x̂i, scaled p̂ ← αp̂ with

α = cT ĉ
‖ĉ‖2

2
, which minimizes ‖c − αĉ‖2. We also show the values at the computed

roots maxi |p(x̂i)|, which is a measure of the individual backward errors: if p(x̂) = ε,
then p̂(x̂) = 0 with p̂(x) =

∑n
i=0 ciTi(x) − εT0(x), so ‖p̂ − p‖K = ε. The latter is

the smallest possible backward error in coefficients ‖c − αĉ‖2 such that p̂(x̂i) = 0,
because |Ti(x)| ≤ 1 for x ∈ [−1, 1].

Table 1. Normwise backward error ‖c−ĉ‖2

‖c‖2
and |p(x̂i)| for p(x) in (6.1).

method ‖c−ĉ‖2

‖c‖2
|maxi p(x̂i)|

QR no balancing 2.6e-01 4.7e-01
QR balancing 3.7e-01 5.6e-01
Chebfun roots 1.1e-14 2.4e-14

Chebfun roots(p,’qz’) 1.3e-14 1.5e-14
QZ 9.0e-15 1.6e-14

ChebEA 7.1e-16 1.0e-15

Recall from Section 2 that three possible variants of the colleague matrix are
available: namely, CT

T , PCTP and PCT
T P , where P is the antidiagonal permuta-

tion matrix. Although for our theoretical analysis we argued that the choice of one

5The reason Chebfun roots differ from that of QR with balancing and Chebfun does signifi-
cantly better is that it employs a number of techniques such as recursive subdivision and removing
very small leading coefficients if present.
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STABILITY OF COMPUTING POLYNOMIAL ROOTS 2417

of these four possibilities was just a matter of convention, we now note that nu-
merically it can have nontrivial consequences for the stability of QR. In the above
example, QR for CT

T gave normwise backward error 9.2e-01 without balancing and
4.0e-05 with balancing, for PCTP the error was 1.4e+00 and 1.3e+00, respectively,
and 2.4e-01 and 5.4e-04 for (PCTP )T . Generally, the form that has the coefficients
in the last row never seems to be the most accurate, but among the other three,
the best choice appears to depend on p(x). This difference is not observed with
QZ, which is stable regardless of the choice; indeed essentially the same argument
as in Theorem 3.3 proves stability for each variant.

Unstable results with Chebfun roots. In the last example QR failed but the default
Chebfun roots worked well. Although extensive experiments suggest that Chebfun
roots usually gives backward error of size O(u), there are examples where QZ (or
adding the optional flag ’qz’) gives significantly better accuracy. Table 2 shows
the results for a polynomial obtained by changing the leading coefficient c8 from
10−20 to 10−10 and c6 from 10−10 to −10−20.

Table 2. Normwise backward error ‖c−ĉ‖2

‖c‖2
and |p(x̂i)|, second example.

method ‖c−ĉ‖2

‖c‖2
maxi |p(x̂i)|

QR no balancing 8.4e-15 4.9e-15
QR balancing 7.9e-09 9.9e-09
Chebfun roots 1.5e-10 3.6e-10

Chebfun roots(p,’qz’) 1.1e-14 1.1e-14
QZ 2.3e-15 3.8e-15

ChebEA 8.8e-16 1.1e-15

Overall, the two QZ-based algorithms (QZ and roots(p,’qz’)) and ChebEA
performed stably in all our experiments. Among the stable methods, Ehrlich–
Aberth has the advantage of typically giving slightly better accuracy and having
O(n2) cost, while the advantage of QZ includes its robustness and ease of imple-
mentation (and the observed cost is O(n2) when subdivision is employed).

Missed solutions with Chebfun roots. We present an example where the large back-
ward error by QR can cause a solution to be missed. We form a degree three
polynomial p(x) by p = chebfun(@(x)1e− 10 ∗ x.3 + x.2 − 1e− 12).

p(x) has two real roots near ±10−6, and their condition number is such that an
O(u) perturbation in p(x) cannot move them off the real line, which means a stable
algorithm should successfully find the roots. QZ for the colleague pencil does this
with |p(x)| = O(u) at both roots. However, Chebfun roots, which by default looks
for real roots, misses both solutions because QR applied to the colleague matrix
finds two nonreal roots near 0 with imaginary parts O(

√
u). The explanation is

that the large backward error in QR caused eigenvalues to coalesce and then move
off the real line. Again, with the QZ option roots(p,’qz’) computed the two
roots stably.

Forward error. The next example concerns the forward error. Our results show, and
the above examples illustrate, that QZ is to be preferred to guarantee backward
stability. In applications, however, one might be interested more in the forward
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errors of the computed roots |xi− x̂i|. Somewhat surprisingly, sometimes QR gives
smaller forward error for some roots than QZ, even with a larger backward error.
For example, consider the polynomial p whose exact roots are

(6.2) x = [−1, 0.1, 1, 1010, 2× 1010, 1015].

Table 3 shows the results; we do not show the results with Chebfun, because due
to some preprocessing step such as truncation, it computed a wrong number of real
roots (even with the ’all’ flag); note that a small perturbation in p on [−1, 1015]
can change the number of real roots.

Table 3. Backward error ‖c−ĉ‖2

‖c‖2
and relative forward errors

|x̂i−xi|
|xi| for i = 1, . . . , 6 for polynomial whose roots are (6.2). “Inf”

means the computed root was infinity.

method back err. i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

QR no balancing 2.8e-07 9.9e-11 2.2e-09 1.2e-10 4.0e-15 4.2e-15 1.3e-16
QR balancing 6.0e-10 7.6e-08 4.8e-07 5.5e-08 5.7e-16 1.9e-16 1.3e-16

QZ 1.2e-15 3.3e-16 0 0 3.3e-01 Inf Inf

ChebEA 3.2e-16 0 2.8e-16 0 9.5e-16 5.7e-16 2.5e-16

We observe that while QZ is backward stable, the forward error can be much
worse than QR for some roots, in particular for |xi| � 1. This is unsurprising as an
O(u) perturbation in the coefficients is enough to alter the roots by this amount,
because Tn(x) grows rapidly for |x| > 1. What is surprising is the accuracy that
QR achieves for such large roots. We do not have a clear explanation to this;
we conceive that the structure of the colleague matrix is playing a role. This is
another reason we recommend QR unless the norm of the comrade matrix is large.
Moreover, at least in our experiments, ChebEA seems to get the best of both worlds,
both backward and forward errors being small.

This is not necessarily bad news for QZ, at least for computing roots on [−1, 1] as
done in Chebfun; its proven backward stability, together with the fact |Tn(x)| ≤ 1
on [−1, 1], guarantee that these roots are computed with accuracy O( u

|p′(xi)| ).

6.2. Error growth with n for colleague pencil. In Section 3 we analyzed the
backward stability of rootfinding algorithms based on QZ applied to the colleague
pencil, and derived the bound O(n2.5ε). Clearly, the analysis accounts for the
worst-case bound, which usually gives a significant overestimation.

To examine the tightness of the bound, we computed the roots of the degree n
Chebyshev polynomial Tn(x) for varying n by forming the n × n colleague pencil
and computing the eigenvalues. We then compute the backward error by forming
p̂(x) =

∏n
i=1(x−x̂i) and expressing it in the Chebyshev basis p̂(x) = α

∑n
i=0 ĉiTi(x)

and normalizing α = cT ĉ
‖ĉ‖2

2
as before, then computing the backward error ‖c − ĉ‖2.

The exact roots are xi = cos( (2i−1)π
2n ) for i = 1, . . . , n, and we also computed the

forward error as maxi |xi − x̂i|.
Figure 2 shows the resulting backward and forward errors for n ∈ [10, 750], which

illustrates that the backward error grows like O(n2.5). The forward error grew like
O(n) in the experiment.

We note that the overall error of QZ for colleague consists of: (i) the backward
error resulting from QZ, (ii) error compression to preserve the colleague nonzero
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Figure 2. Backward and forward error for computing the roots of Tn(x).

structure, and (iii) error from perturbation in the orthogonal polynomial basis and
coefficients. We gave a quantitative bound O(n2.5) for the third error, but the

contribution from the first two are, respectively, nτ and n
5
2 , so altogether our

analysis gives a bound O(n5+τ ).

6.3. Improving accuracy by subdivision. In Section 5 we argued that if f(x)
varies widely in magnitude on [−1, 1], then the accuracy of the computed roots
of f(x) can be improved by subdivision and resampling f(x). To verify this we
consider the function

(6.3) f(x) = xe20x,

which clearly has one root at x = 0. Chebfun approximates f(x) on [−1, 1] by a
polynomial p(x) of degree 41, which satisfies ‖f−p‖K ≤ ε‖f‖K , and computes nine
roots of p(x) (i.e., eight spurious roots), the one closest to 0 being ≈ −9.9× 10−8.
This is an issue caused by the ill-conditioning of the problem, not the stability of
the algorithm, and using QZ here does not improve the accuracy.

We can resolve this inaccuracy as follows: subdivide [−1, 1] into ten intervals of
width 0.2 (or any width sufficiently smaller than 1 would suffice) and let Chebfun
compute the roots of the polynomial approximant of f(x) on each interval. This
results in a single computed root at −5×10−16. Note that resampling f(x) instead
of the polynomial approximant is crucial: if the polynomial approximant p(x) is
resampled on each interval, Chebfun computed two roots, the smaller being −7.3×
10−8.

Appendix A. Impossibility of a generic coefficientwise

backward stable root-finder

In the introduction we mentioned several types of stability that we can consider
for a rootfinding algorithm. This paper focused on the normwise backward stability
for all the computed roots. Here we argue that the more stringent stability of

requiring coefficientwise backward stability maxi
|Δci|
|ci| = O(q(n)u) is generically

not possible.
For instance, consider the Chebyshev polynomial Tn(x) for n ≥ 2, whose exact

roots are xi = cos( (2i−1)π
2n ) for i = 1, . . . , n. Now suppose the computed roots x̂i are
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obtained with high relative accuracy satisfying |xi− x̂i| = O(u)|xi|, which (if xi are
not machine representable) is the best one can hope for in finite precision arithmetic.

Then the computed roots are the exact roots of the polynomial T̂n(x) = α
∏n

i=1(x−
x̂i) for any constant α > 0. Expressing T̂n(x) in the Chebyshev basis T̂n(x) =∑n

i=0 ĉiTi(x) necessarily involves ĉi �= 0 for some i < n. Since the original coefficient
is ci = 0 for all i < n, this implies that no algorithm is able to compute the roots
of Tn(x) with coefficientwise backward stability in finite precision arithmetic.

Note that the above argument holds even when one is looking for the looser
condition of coefficientwise stability for each root, because x̂i is not an exact root
of (1 + ε)Tn(x) for any scalar ε.

The argument generalizes easily to give the conclusion that, for almost every
arbitrary polynomial basis (the crux being that almost any polynomial bases will
have roots that are not machine representable), there exists a polynomial for which
coefficientwise backward stability cannot be obtained in finite precision arithmetic.
It is worth mentioning that nonetheless the argument fails when the polynomials in
the basis have roots that are representable in finite precision arithmetic. A notable
example of this kind is when the polynomial basis is the monomials.

Appendix B. An analogue of Theorem 3.5
for Jacobi orthogonal polynomials

Here we extend Theorem 3.5 to Jacobi orthogonal polynomials with parameters
|α|, |β| ≤ 1

2 . The constant we obtain is larger and not necessarily tight, but the
main message remains valid that polynomial value is insensitive to perturbation in
the roots. We start with a technical lemma applicable to any polynomial q.

Lemma B.1. Let q ∈ R[x] be a polynomial of degree n ≥ 1. Suppose, moreover,
q(r) = 0 for some r ∈ K = [−1, 1] and let J = [r − n−2, r + n−2] ⊆ K. Then∥∥∥∥ q(x)

x− r

∥∥∥∥
J

≤ (e− 1)n2‖q‖K .

Proof. Expanding q(x) around x = r we get

q(x)

(x− r)
=

n∑
j=1

q(j)(r)

j!
(x− r)j−1.

Hence, we need a bound for |q(j)(r)|. To this end we invoke the Markov brothers’
inequality [18], which states that for q(x) ∈ R[x]n,

max
x∈[−1,1]

|q(j)(x)| ≤ γj;n max
x∈[−1,1]

|q(x)|,

γj;n =
n2(n2 − 1)(n2 − 4) · · · (n2 − (j − 1)2)

(2j − 1)!!
.

Observing that γj;n ≤ n2j , we conclude that ‖q(j)‖J ≤ ‖q(j)‖K ≤ n2j‖q‖K .
Therefore we get∥∥∥∥ q(x)

(x− r)

∥∥∥∥
Ji

≤
n∑

j=1

‖q(j)‖Ji

j!
n2−2j ≤ n2‖q‖K

n∑
j=1

1

j!
≤ (e− 1)n2‖q‖K . �
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Now we specialize to the case where p(x) is a Jacobi polynomial of degree n
with parameters |α|, |β| ≤ 1

2 , such that we can write p(x) =
∏

i c(x− ri) for some
nonzero scalar c. We adopt the same notation as in Section 3.2.2: ri are the
roots of the nth Jacobi polynomial. Suppose each root is perturbed by ηi, and let
p̃(x) = c

∏
i(x − ri − ηi). We denote �r = [r1, . . . , rn] ∈ R

n, �η = [η1, . . . , ηn] ∈ R
n,

η = ‖�η‖∞.

Theorem B.2. Let p ∈ R[x] be a Jacobi polynomial of degree n ≥ 5 with param-
eters |α|, |β| ≤ 1

2 , and p̃ defined as above. Then it holds that ‖p − p̃‖K/‖p‖K ≤
20.22n2η +O(η2).

Proof. For simplicity of discussion we prove the statement for the scaled variant in
which c = 1, i.e., p(x) :=

∏
i(x− ri).

As in Theorem 3.5 we consider the function f(�y;x) =
∏

i(x − yi) : Rn → R.
Noting that p(x) = f(�r;x), we have

p̃(x)− p(x) = ∇f(�r;x) · �η +O(η2).

Hence, to first order in η, ‖p − p̃‖K ≤ η
∑

i ‖
p(x)
x−ri

‖K , so we only need to estimate

‖ p(x)
x−ri

‖K .

It is known [50, Thm. 6.3.2] that the ith root of any Jacobi polynomial of degree
n with |α|, |β| ≤ 1

2 lies in the interval [cos( 2i
2n+1π), cos(

2i−1
2n+1π)]. Define Ji = [ri −

n−2, ri + n−2]. We first make two simple observations. First, i �= j ⇒ Ji ∩ Jj = ∅.
Indeed, the distance between any two roots is bounded from below by 2n−2. To
see this observe that, for any i < j,

(B.1) cos(
2iπ

2n+ 1
)− cos(

(2j − 1)π

2n+ 1
) = 2 sin(

(i+ j − 1
2 )π

2n+ 1
) sin(

(j − i− 1
2 )π

2n+ 1
),

so using (B.1) and sin(θ) > 2π−1θ for any θ ∈ (0, π/2), we obtain the lower bound

(B.2) |ri − rj | ≥ 2
5

2n+ 1

1

2n+ 1
=

10

(2n+ 1)2
>

2

n2
.

For the last inequality we used the assumption n ≥ 5. The second observation is:
Ji ⊂ K ∀i. By symmetry, it suffices to check this for 1 − r1 ≥ n.2. But again,
1− cos( π

2n ) = 2 sin2( π
4n ) ≥

1
n2 .

Let us now fix a particular x ∈ K = [−1, 1], and let j ∈ {0, . . . , n} be the unique
index such that rj+1 < x < rj (if j = 0 or j = n, this condition reduces to just
x > r1 or x < rn). From the above, we have

(B.3) |p(x)− p̃(x)| ≤ η
∑
i

|p(x)|
|x− ri|

+O(η2),

so we see that we essentially need to bound
∑

i |p(x)||x− ri|−1, which is bounded
by ‖p‖K

∑
i |x− ri|−1.

Now, there are three cases: either x ∈ Jj , or x ∈ Jj+1, or x is in the complement
of all Ji. We claim that this implies

(B.4)
|p(x)|
|x− rj |

+
|p(x)|

|x− rj+1|
≤ en2‖p‖K .

To obtain this bound we have used Lemma B.1 and the fact that at least one of
|x − rj | and |x − rj+1| is bounded below by n−2, thus the sum (B.4) is bounded
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by en2‖p‖K . To handle the special cases j ∈ {0, n}, one may just formally define
|p(x)|

|x−rn+1| =
|p(x)|
|x−r0| = 0, so that the bound clearly remains valid.

It remains to find an upper bound for∑
i<j

1

|x− ri|
+

∑
i>j+1

1

|x− ri|
≤

∑
i<j

1

|ri − rj |
+

∑
i>j+1

1

|rj+1 − ri|
.

To do so we use the following bounds: for i+ j − 1
2 ≤ n+ 1

2 ,

|ri − rj | ≥ 2
(i+ j − 1

2 )(j − i− 1
2 )

(2n+ 1)2
⇒ 1

|ri − rj |
≤ (2n+ 1)2

2(i+ j − 1
2 )(j − i− 1

2 )
,

and for i+ j − 1
2 > n+ 1

2 we have

|ri − rj | ≥ 2
(2n+ 1− i− j + 1

2 )(j − i− 1
2 )

(2n+ 1)2

⇒ 1

|ri − rj |
≤ (2n+ 1)2

2(2n− i− j + 3
2 )(j − i− 1

2 )
.

Now observe that we can split the summation (if 2j < n+3 the second summation
is empty and the first one actually stops at i = j − 1):∑

i<j

1

|ri − rj |
=

n+1−j∑
i=1

1

|ri − rj |
+

j−1∑
i=n+2−j

1

|ri − rj |
,

and by defining δ = j − i this can be bounded by

j−1∑
δ=2j−n−1

(2n+ 1)2

2

1

δ − 1
2

1

2j − δ − 1
2

+

2j−n−2∑
δ=1

(2n+ 1)2

2

1

δ − 1
2

1

2n+ 3
2 + δ − 2j

≤ (2n+ 1)2

2

(
j−1∑
δ=1

1

(j + 1
2 )(δ −

1
2 )

+
∞∑
δ=1

1

δ2 − 1
4

)
≤ (2n+ 1)2

2

(
4

5
+ 2

)
≤ 35

4
n2.

Here we have used the facts that
∑j−1

δ=1
1

(j+ 1
2 )(δ−

1
2 )

is a decreasing function of j on

[1,∞) and
∑∞

δ=1
1

δ2− 1
4

= 2
∑∞

δ=1

(
1

2δ−1 − 1
2δ+1

)
= 2(1− 1

3 +
1
3 −

1
5 +

1
5 · · · ) = 2. By

symmetry we can bound the term
∑

i>j+1
1

|rj+1−ri| analogously by 35
4 n2. Putting

it all together we obtain∑
i

1

|x− ri|
≤

(
e+

35

2

)
n2 ≤ 20.22n2,

hence together with (B.3) we obtain

|p(x)− p̃(x)|
‖p‖K

≤ 20.22n2η +O(η2),

as required. �

The assumption n ≥ 5 is a technical one needed to get the separation bound
2
n2 in (B.2). For n ≥ 2 we can obtain the bound 1

n2 , with which we can proceed
similarly to obtain a result with a slightly larger constant. However, little is lost
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in focusing on n ≥ 5, since otherwise exact algebraic formulae for the roots are
available.
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