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1. Introduction

We are concerned with eigenvalue perturbations of a generalized Hermitian eigenvalue problem

Ax = λBx, in which A, B ∈ Cn×n are Hermitian and B is positive definite. For a standard Hermitian

eigenvalueproblemAx = λx,Weyl’s theorem [16,13,3] is perhaps thebest-knownperturbation result.

We denote the spectral norm of a matrix by ‖ · ‖2 (the largest singular value, or matrix 2-norm).

Theorem1.1 (Weyl’s theorem). Let the eigenvalues of theHermitianmatrices A andA + E beλ1 � λ2 � · · ·
� λn and λ̃1 � λ̃2 � · · · � λ̃n respectively. Thenmaxi |λi − λ̃i| � ‖E‖2.
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Despite being merely a special case of the Lidskii-Mirsky-Wielandt theorem [9], Weyl’s theorem

stands out as a simple and useful result that

• Orders and pairs up the original and perturbed eigenvalues, so that we can discuss in terms of

the matching distance [15, pp. 167].

• Gives a bound on the largest distance between a perturbed and exact eigenvalue.

Owing to its simple expression andwide applicability, the theoremhas been used inmany contexts,

e.g., in the basic forward error analysis of standard eigenvalue problems [1, Chapter 4.8]. In order to

distinguish this theorem from the variants discussed below, in this paper we refer to it as the absolute

Weyl theorem.

The relative Weyl theorem, which can provide much tighter bounds for small eigenvalues, is also

known [3].

Theorem 1.2 (Relative Weyl theorem). Let A be Hermitian and X be nonsingular. Let the eigenvalues of A

be λ1 � λ2 � · · · � λn, let the eigenvalues of X
HAX be λ̃1 � λ̃2 � · · · � λ̃n, and let ε = ‖XHX − I‖2. Then

the eigenvalues differ by ε in the relative sense, i.e.,

|λi − λ̃i|
|λi| � ε, i = 1, 2, . . . , n.

This important observation leads to anumberof relativeperturbation results, alongwith algorithms

that compute eigenvalues/singular values to high relative accuracy including small ones [4,7,5].

For eigenvalues of a Hermitian definite pencil A − λB, in which A, B are Hermitian and B is positive

definite, many properties analogous to the eigenvalues of a Hermitian matrix carry over. For example,

the pencil has n real and finite eigenvalues, which satisfy a min-max property similar to that for

Hermitian matrices [14].

Some perturbation results for generalized eigenvalue problems are known, mostly in the chordal

metric [15, Chapter 6.3], [10,12,2]. Using the chordal metric is a natural choice for a general matrix

pencil because it deals uniformlywith infinite eigenvalues. However, thismetric is not invariant under

scaling, and bounds in this metric may be less intuitive than those defined in the standard Euclidean

metric. Most importantly, for a Hermitian definite pencil we know a priori that no infinite eigenvalues

exist, so in this case the Euclidean metric may be a more natural choice.

The goal of this paper is to derive Weyl-type theorems for Hermitian definite matrix pencils, both

the absolute (Section 2) and relative (Section 3) versions. Our results employ the Euclidean metric,

and have the two Weyl-type properties described above. Compared to known results, our absolute

Weyl theorem is simpler than some known bounds (e.g., [10]), and our relativeWeyl theorem assumes

no condition on A. By contrast, the relative perturbation results for Hermitian definite pairs obtained

in [9,11] are derived under the assumption that A and B are both positive definite, which limits their

applications; Hermitian definite pencils that arise in practice may not have this property (e.g., [6]).

We deal only with the case in which B is positive definite, and refer to such pencils as Hermitian

definite pencils. This type of problem appears in practice most often, and is sometimes simply called a

generalized Hermitian eigenvalue problem [1, Chapter 5]. In the literature a matrix pencil is often called

Hermitian definite ifαA + βB is positive definite for some scalarsα andβ [15, pp. 281].WhenαA + βB

is positive definite, we can reduce the problem to the positive definite case A − θ(αA + βB), noting
that this pencil has eigenvalues θi = λi/(β + αλi).

Notations:λi(A) denotes the ith smallest eigenvalue of a Hermitianmatrix A, andλmin(A) = λ1(A).
We use only the spectral norm ‖ · ‖2, and κ2(A) = ‖A‖2‖A−1‖2 is the condition number of A.

2. Absolute Weyl theorem for generalized eigenvalue problems

For a Hermitian definite pencil A − λB, we have the following generalization of the absolute Weyl

theorem [1, Chapter 5.7], when only A is perturbed.
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Theorem 2.1. Suppose that the Hermitian definite pencils A − λB and (A + �A) − λB have eigenvalues

λ1 � λ2 � · · · � λn and λ̃1 � λ̃2 � · · · � λ̃n, respectively. Then for all i = 1, 2, . . . , n,

|λi − λ̃i| �
‖�A‖2

λmin(B)
. (1)

Proof. Define Z = B−1/2 (the matrix square root [8, Chapter 6] of B). A congruence transformation

that multiplies by Z from both sides shows that the pencil A − λB is equivalent to the pencil ZAZ − λI.
Hence, these pencils and the Hermitian matrix ZAZ have the same eigenvalues. Similarly, the pencil

(A + �A) − λB and the Hermitian matrix Z(A + �A)Z have the same eigenvalues.

Now, tocompare theeigenvaluesofZAZ andZ(A + �A)Z ,weobserve that‖Z�AZ‖2 � ‖Z2‖2‖�A‖2 =
‖B−1‖2‖�A‖2 = ‖�A‖2/λmin(B), soweobtain (1) by using the absoluteWeyl theoremapplied to ZAZ

and Z(A + �A)Z . �

Theorem1 takes into account only perturbations in thematrix A. In practical problems, thematrix B

may be obtained from data thatmay include errors, or may be subject to floating-point representation

errors. Therefore, we are also interested in the impact of perturbations in B. The following result takes

such perturbations into account.

Theorem 2.2 (Absolute Weyl theorem for generalized eigenvalue problems). Suppose that a Hermi-

tian definite pencil A − λB has eigenvalues λ1 � λ2 � · · · � λn. If �A,�B are Hermitian and ‖�B‖2 <

λmin(B), then (A + �A) − λ(B + �B) is aHermitiandefinitepencilwhose eigenvalues λ̃1 � λ̃2 � · · · � λ̃n

satisfy

|λi − λ̃i| �
‖�A‖2

λmin(B)
+ ‖A‖2 + ‖�A‖2

λmin(B)(λmin(B) − ‖�B‖2)
‖�B‖2, i = 1, 2, . . . , n. (2)

Proof. The fact that (A + �A) − λ(B + �B) is a Hermitian definite pencil follows directly from apply-

ing the absolute Weyl theorem to B and B + �B, from which we see that λmin(B + �B) � λmin(B) −
‖�B‖2 > 0.

Define Z = B−1/2. By a congruence transformation that multiplies by Z from both sides, we see

that the pencil A − λB has the same eigenvalues as the Hermitianmatrix ZAZ . This transformation also

shows that the pencil A + �A − λ(B + �B) is equivalent to the pencil Z(A + �A)Z − λ(I + Z�BZ).
Note that ‖Z�BZ‖2 � ‖Z‖2

2‖�B‖2 = ‖B−1‖2‖�B‖2 = ‖�B‖2/λmin(B) < 1. Therefore, by the ab-

soluteWeyl theorem, all the eigenvalues of I + Z�BZ are positive and lie in [1 − ‖�B‖2/λmin(B), 1 +
‖�B‖2/λmin(B)]. Defining Z1 = (I + Z�BZ)−1/2, we see that

‖Z1Z1 − I‖2 �
1

1 − ‖�B‖2/λmin(B)
− 1 = ‖�B‖2

λmin(B) − ‖�B‖2

. (3)

We also see that Z(A + �A)Z − λ(I + Z�BZ) is equivalent to Z1Z(A + �A)ZZ1 − λI, a standard Her-

mitian eigenvalue problem. Thus, the original eigenvalue comparison between the pencils A − λB
and A + �A − λ(B + �B) can be reduced to a comparison between the eigenvalues of two Hermi-

tian matrices, ZAZ (whose eigenvalues are λi) and Z1Z(A + �A)ZZ1 (whose eigenvalues are λ̃i). This

comparison can be done by using both the absolute and the relative Weyl theorems, as follows.

First, using the absolute Weyl theorem for ZAZ and Z(A + �A)Z , we have

|λi − λi(Z(A + �A)Z)| � ‖Z�AZ‖2 �
‖�A‖2

λmin(B)
. (4)

Next, using the relative Weyl theorem for Z(A + �A)Z and Z1Z(A + �A)ZZ1, we have

|λi(Z(A + �A)Z) − λ̃i| � |λi(Z(A + �A)Z)| · ‖Z1Z1 − I‖2

�
(
|λi| + ‖�A‖2

λmin(B)

)
· ‖�B‖2

λmin(B) − ‖�B‖2

,
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in which we used (3) and (4). Combining these two results gives

|λi − λ̃i| �
‖�A‖2

λmin(B)
+ |λi|λmin(B) + ‖�A‖2

λmin(B)(λmin(B) − ‖�B‖2)
‖�B‖2.

Using |λi| � ‖ZAZ‖2 � ‖A‖2/λmin(B) for all i, we get (2). �

Several points are worth noting regarding Theorem 2.2.

• Theorem2.2 reduces to Theorem2.1when�B = 0.Moreover, for the standardHermitian eigen-

value problem (B = I and �B = 0), Theorem 2.2 becomes |λi(A) − λi(A + �A)| � ‖�A‖2, the

absolute Weyl theorem.

• The result is sharp. This can be seen by the simple example

A =
(
2 0

0 1

)
, B =

(
1 0

0 1

)
, �A =

(
2 0

0 0

)
, and �B =

(−0.8 0

0 0

)
. (5)

The eigenvalues of A − λB are {2,1} and those of A + �A − λ(B + �B) are {20,0}, somaxi |λi −
λ̃i| = 18. On the other hand, applying ‖A‖2 = 2, ‖�A‖2 = 2, ‖�B‖2 = 0.8, λmin(B) = 1 to (2)

gives maxi |λi − λ̃i| � 2/1 + 0.8(2 + 2)/(1 − 0.8) = 18, matching the actual perturbation.

• It is worth comparing our result with that of Stewart and Sun [15, Cor VI.3.3]. They give a bound

ρ(λi, λ̃i) ≤
√

‖�A‖2
2 + ‖�B‖2

2

γ (A, B)
, (6)

inwhichγ (A, B) = min‖x‖2=1

√
(xHAx)2 + (xHBx)2.Hereρ(a, b) = |a − b|/

√
(1 + a2)(1 + b2)

is the chordalmetric. Noting that the distance between any two numbers a and b is less than 1 in

the chordal metric, we see that (6) does not provide any information when ‖�A‖2
2 + ‖�B‖2

2 >

(γ (A, B))2. In fact, (6) is useless for the matrices in (5), because ‖�A‖2
2 + ‖�B‖2

2 = 4.64 while

(γ (A, B))2 = 2. On the other hand, Theorem 2.2 gives a nontrivial bound as long as ‖�B‖2 <
λmin(B). However, when ‖�B‖2 ≥ λmin(B) our result is not applicable, whereas it may still be

that ‖�A‖2
2 + ‖�B‖2

2 > (γ (A, B))2, in which case (6) is a nontrivial bound. Therefore the two

bounds are not comparable in general. An advantage of our result is that it is defined in the

Euclidean metric, making its application more direct and intuitive.

• In [10] a result similar to Theorem 2.2 is proved, using the chordal metric but directly applicable

to the Euclidean metric:

|λi − λ̃i| �
1√

λmin(B)λmin(B + �B)
‖�A‖2

+ ‖A‖2/
√

λmin(B) + ‖A + �A‖2/
√

λmin(B + �B)

λmin(B)λmin(B + �B)(‖B‖−1/2
2 + ‖B + �B‖−1/2

2 )
‖�B‖2.

Compared to this bound, our result is simpler and requires less information.

3. Relative Weyl theorem for generalized eigenvalue problems

We now discuss a generalization of the relative Weyl theorem to Hermitian definite pencils. We

show two classes of perturbations that preserve relative accuracy of eigenvalues.

First we observe that a simple analogy from the relative Weyl theorem for standard eigenvalue

problems does notwork, in the sense that the pencils XTAX − λB and A − λB can have totally different

eigenvalues forX such that‖XHX − I‖2 is small. This is seen by the simple exampleA = B =
(
100 0
0 1

)
and X =

(
0 1
1 0

)
; the second pencil has eigenvalues {1, 1} while those of the first are {100, 0.01}.
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Therefore, the allowed types of multiplicative perturbations have to be more restricted. The following

result claims that perturbations of the form (I + �A)TA(I + �A) are acceptable.

Theorem 3.1 (Relative Weyl theorem for generalized eigenvalue problems 1). Let a Hermitian definite

pencil A − λB have eigenvalues λ1 � λ2 � · · · � λn, and let
√

κ2(B)‖�A‖2 = ε. If ‖�B‖2 < λmin(B),

then (I + �A)TA(I + �A) − λ(B + �B) is a Hermitian definite pencil whose eigenvalues λ̃1 � λ̃2

� · · · � λ̃n satisfy

|λi − λ̃i| �
(
ε(2 + ε) + (1 + ε)2

‖�B‖2

λmin(B) − ‖�B‖2

)
|λi|, i = 1, 2, . . . , n. (7)

Proof. First, (I + �A)TA(I + �A) − λ(B + �B) is Hermitian definite for the same reason as in Theo-

rem 2.2.

DefineZ = B−1/2 andZ1 = (I + Z�BZ)−1/2. Byanargument similar to that in theproof of Theorem

2.2,we see that the comparison between the eigenvalues ofA − λB and (I + �A)TA(I + �A) − λ(B +
�B) is equivalent to a comparison between the eigenvalues of theHermitianmatrices ZAZ and Z1Z(I +
�A)HA(I + �A)ZZ1, so our goal is to compare the eigenvalues of these two matrices.

The key idea is to consider thematrix X = I + Z−1�AZ , which satisfies Z(I + �A)HA(I + �A)Z =
XHZAZX . Note that ‖Z−1�AZ‖2 � κ2(Z)‖�A‖2 = √

κ2(B)‖�A‖2(≡ ε), so

‖XHX − I‖2 = ‖Z−1�AZ + (Z−1�AZ)H + (Z−1�AZ)HZ−1�AZ‖2 � ε(2 + ε).

Therefore, by using the relative Weyl theorem for ZAZ and Z(I + �A)HA(I + �A)Z and recalling that

λi(ZAZ) = λi, we obtain

|λi(Z(I + �A)HA(I + �A)Z) − λi(ZAZ)| = |λi(X
HZAZX) − λi(ZAZ)|

� |λi(ZAZ)| · ‖XHX − I‖2

� ε(2 + ε)|λi|. (8)

Now to compare the eigenvalues between Z(I + �A)HA(I + �A)Z and Z1Z(I + �A)HA(I + �A)ZZ1,
we use the relative Weyl theorem again to get

|λi(Z1Z(I + �A)HA(I + �A)ZZ1) − λi(Z(I + �A)HA(I + �A)Z)|
� |λi(Z(I + �A)HA(I + �A)Z)| · ‖Z1Z1 − I‖2

� 1 + ε)2|λi| · ‖�B‖2

λmin(B) − ‖�B‖2

(∵ (8) and (3)).

Combining the above yields (9):

|λi(Z1Z(I + �A)HA(I + �A)ZZ1) − λi|
� ε(2 + ε)|λi| + (1 + ε)2|λi| · ‖�B‖2

λmin(B) − ‖�B‖2

�
(
ε(2 + ε) + (1 + ε)2

‖�B‖2

λmin(B) − ‖�B‖2

)
|λi|. �

The next result shows that a simpler result can be obtained when both perturbations are multi-

plicative and the pencil can be expressed as (I + �A)HA(I + �A) − λ(I + �B)HB(I + �B).

Theorem3.2 (RelativeWeyl theorem for generalized eigenvalue problems 2). Let the Hermitian definite

pencils A − λB and (I + �A)TA(I + �A) − λ(I + �B)HB(I + �B) have eigenvalues λ1 � λ2 � · · · � λn

and λ̃1 � λ̃2 � · · · � λ̃n, respectively. Suppose that
√

κ2(B)‖�A‖2 = ε and
√

κ2(B)‖�B‖2 = δ < 1.

Then, λ̃i (1� i � n) satisfy
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|λi − λ̃i| �
(
ε(2 + ε) + (1 + ε)2δ(2 − δ)

(1 − δ)2

)
|λi|, i = 1, 2, . . . , n. (9)

Proof. Define Z = B−1/2 and consider Y = I + Z−1�BZ , which satisfies (I + �B)TB(I + �B) =
Z−1YHYZ−1. We observe that the pencil (I + �A)TA(I + �A) − λ(I + �B)TB(I + �B) = (I + �A)T

A(I + �A) − λ(Z−1YHYZ−1) has the same eigenvalues as thematrix Y−HZ(I + �A)TA(I + �A)ZY−1.

Hence we shall compare the eigenvalues of the matrices ZAZ and Y−HZ(I + �A)TA(I + �A)ZY−1.

Using the same argument as in the proof of Theorem 3.1, we have (cf. (8))

|λi(Z(I + �A)HA(I + �A)Z) − λi| = ε(2 + ε)|λi|. (10)

Next we recall that Y = I + Z−1�BZ , and see that ‖Z−1�BZ‖2 � κ2(Z)‖�B‖2 = √
κ2(B)‖�B‖2(≡

δ). It follows that the singular values of Y−1 lie in [1/(1 + δ), 1/(1 − δ)], so we have

‖Y−HY−1 − I‖2 � 1/(1 − δ)2 − 1 = δ(2 − δ)

(1 − δ)2
.

Therefore, using the relative Weyl theorem and (10) we have

|λi(Y
−HZ(I + �A)HA(I + �A)ZY−1) − λi(Z(I + �A)HA(I + �A)Z)|

� |λi(Z(I + �A)HA(I + �A)Z)| · ‖Y−HY−1 − I‖2

� (1 + ε)2
δ(2 − δ)

(1 − δ)2
|λi|.

Therefore, (9) is obtained by

|λi(Y
−HZ(I + �A)HA(I + �A)ZY−1) − λi|

� ε(2 + ε)|λi| + (1 + ε)2δ(2 − δ)

(1 − δ)2
|λi|. �

Theorems 3.1 and 3.2 do not directly match the relative Weyl theorem for standard eigenvalue

problems by letting B = I and �B = 0, because a general unitary transformation on A is not allowed.

Nonetheless, our results are consistent, as the following argument indicates. Consider the pencil

XHAX − λI. If ‖XHX − I‖2 = ε and ε < 1 then the singular values of X must lie in [√1 − ε,
√

1 + ε].
Hence, X can be written as X = U + �U, in which U is the unitary polar factor of X (the closest

unitary matrix to X [8, pp. 197]) and ‖�U‖2 � 1 − √
1 − ε. Then, the pencil XHAX − λI is rewrit-

ten as UH

(
I +

(
�UUH

)H)
A
(
I + �UUH

)
U − λI, which a unitary transformation shows is equiva-

lent to (I + (�UUH)H)A(I + �UUH) − λI. Noting that ‖�UUH‖2 = ‖�U‖2 � 1 − √
1 − ε and using

Theorem 3.1 (or 3.2) for the pencils A − λI and (I + (�UUH)H)A(I + �UUH) − λI, we see that the

pencil XHAX − λI has eigenvalues that match those of the pencil A − λI to relative accuracy (1 −√
1 − ε)(2 + 1 − √

1 − ε). Notice that (1 − √
1 − ε)(2 + 1 − √

1 − ε) 	 ε when ε 
 1, yielding

the relative Weyl theorem. Hence, Theorems 3.1 and 3.2 become equivalent to the relative Weyl

theorem when B = I, �B = 0 and ε 
 1.
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