

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2012 Society for Industrial and Applied Mathematics
Vol. 33, No. 1, pp. 22–51

dqds WITH AGGRESSIVE EARLY DEFLATION∗

YUJI NAKATSUKASA† , KENSUKE AISHIMA‡ , AND ICHITARO YAMAZAKI§

Abstract. The dqds algorithm computes all the singular values of an n× n bidiagonal matrix
to high relative accuracy in O(n2) cost. Its efficient implementation is now available as a LAPACK
subroutine and is the preferred algorithm for this purpose. In this paper we incorporate into dqds a
technique called aggressive early deflation, which has been applied successfully to the Hessenberg QR
algorithm. Extensive numerical experiments show that aggressive early deflation often reduces the
dqds runtime significantly. In addition, our theoretical analysis suggests that with aggressive early
deflation, the performance of dqds is largely independent of the shift strategy. We confirm through
experiments that the zero-shift version is often as fast as the shifted version. We give a detailed error
analysis to prove that with our proposed deflation strategy, dqds computes all the singular values to
high relative accuracy.

Key words. aggressive early deflation, dqds, singular values, bidiagonal matrix

AMS subject classifications. 65F15, 15A18

DOI. 10.1137/110821330

1. Introduction. The differential quotient difference with shifts (dqds) algo-
rithm computes all the singular values of an n× n bidiagonal matrix to high relative
accuracy in O(n2) cost [11]. Its efficient implementation has been developed and is
now available as a LAPACK subroutine DLASQ [30]. Because of its guaranteed rela-
tive accuracy and efficiency, dqds has now replaced the QR algorithm [7], which had
been the default algorithm to compute the singular values of a bidiagonal matrix. The
standard way of computing the singular values of a general matrix is to first apply
suitable orthogonal transformations to reduce the matrix to bidiagonal form, then
use dqds [6]. dqds is also a major computational kernel in the MRRR algorithm for
computing orthogonal eigenvectors of a symmetric tridiagonal matrix [8, 9, 10] and
the singular value decomposition (SVD) of a bidiagonal matrix [35] in O(n2) cost.

The aggressive early deflation strategy, introduced in [5], is known to greatly
improve the performance of the Hessenberg QR algorithm for computing the eigen-
values of a general square matrix by deflating converged eigenvalues long before a
conventional deflation strategy does. The primary contribution of this paper is the
proposal of two deflation strategies for dqds based on aggressive early deflation. The
first strategy is a direct specialization of aggressive early deflation to dqds. The sec-
ond strategy, which takes full advantage of the bidiagonal structure of the matrix,
is computationally more efficient. We present a detailed mixed forward-backward
stability analysis that proves the second strategy guarantees high relative accuracy

∗Received by the editors January 18, 2011; accepted for publication (in revised form) by J. L.
Barlow October 18, 2011; published electronically January 5, 2012.

http://www.siam.org/journals/simax/33-1/82133.html
†Department of Mathematics, University of California, Davis, CA 95616 (ynakatsukasa@ucdavis.

edu). Current address: School of Mathematics, The University of Manchester, Manchester, M13
9PL, UK (yuji.nakatsukasa@manchester.ac.uk).

‡Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8656,
Japan (kensuke aishima@mist.i.u-tokyo.ac.jp). This author’s work was supported in part by the
Global 21 Center of Excellence “The research and training center for new development in mathe-
matics.”

§Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
(ic.yamazaki@gmail.com).

22

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

dqds WITH AGGRESSIVE DEFLATION 23

of all the computed singular values. The results of extensive numerical experiments
demonstrate that performing aggressive early deflation significantly reduces the solu-
tion time of dqds in many cases. We observed speedups of up to a factor 50, and in
all our experiments the second strategy was at least as fast as DLASQ for any matrix
larger than 3000.

With a conventional deflation strategy, the zero-shift version dqd is too slow to
be practical. Hence, DLASQ adopts a sophisticated shift strategy to improve the con-
vergence of the bottom off-diagonal element [30]. We demonstrate both theoretically
and experimentally that when aggressive early deflation is incorporated, dqd is often
as fast as dqds. Besides making it unnecessary to compute a shift, this observation
provides a potential to parallelize our algorithm by running multiple dqd iterations in
a pipelined fashion, which has been successfully done in the QR algorithm [3, 24, 34].

The structure of this paper is as follows. In section 2, we briefly review dqds and
aggressive early deflation. Sections 3 and 4 describe our two aggressive early deflation
strategies for dqds. Then in section 5 we present convergence analysis of dqds with
aggressive early deflation, which explains its speedup and motivates the use of dqd.
Numerical results are presented in section 6 to illustrate the efficiency and accuracy
of our algorithms.

Notation. For a general matrix X , σi(X) is its ith largest singular value, σmin(X)
and σmax(X) are X ’s smallest and largest singular values, respectively, and λi(X) is
X ’s ith eigenvalue, arranged in descending order of magnitude. When the matrix is
clear we just write σi or λi. We use MATLAB notation, in which V (i, j : k) denotes
the jth to kth elements of the ith row of V , and V (:, end) is the last column of V .
v(k) denotes the kth element of a vector v, ε denotes the machine precision, and εx
with any subscript represents a number such that |εx| ≤ ε.

2. Backgrounds. In this section we briefly summarize the two key components
of the paper, the dqds algorithm and aggressive early deflation.

2.1. The dqds algorithm. The dqds algorithm introduced in [11] computes
the singular values of a bidiagonal matrix B of the following form:

(2.1) B = bidiag

(√
e1 . .

√
en−2

√
en−1√

q1 . . .
√
qn−1

√
qn

)
,

which denotes a bidiagonal matrix whose diagonal elements are
√
q1, . . . ,

√
qn and

whose off-diagonal elements are
√
e1, . . . ,

√
en−1. dqds is mathematically equivalent

to the Cholesky LR algorithm on BTB with shifts, expressed as (B(m+1))TB(m+1) =
B(m)(B(m))T − s(m)I, where B(m) is the bidiagonal matrix of the form (2.1) obtained
after m dqds iterations.

It is known [1] that if the shifts s(m) are taken such that 0 ≤ s(m) < (σmin(B
(m)))2

at each iteration, then as m→∞, B(m) converges to the diagonal matrix

lim
m→∞B(m) = bidiag

(
0 . 0√

σ1
2 − S . .

√
σn

2 − S

)
,

where S =
∑∞

m=0 s
(m) is the sum of the previously applied shifts. Moreover, the

asymptotic convergence rate of the off-diagonal elements is described by

(2.2) lim
m→∞

e
(m+1)
i

e
(m)
i

=
σi+1

2 − S

σi
2 − S

< 1 for i = 1, . . . , n− 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

24 Y. NAKATSUKASA, K. AISHIMA, AND I. YAMAZAKI

Therefore, the convergence of e
(m)
i for 1 ≤ i ≤ n − 2 is linear, while the bottom

off-diagonal e
(m)
n−1 converges superlinearly if σ2

n −
∑∞

m=0 s
(m) = 0. In view of this,

practical deflation strategies, such as that adopted in DLASQ, check whether any of
the off-diagonal elements, particularly the bottom one, is small enough to be deflated
[30, 2]. For detailed descriptions and analyses of dqds, see [1, 11, 30].

For notational simplicity, in the following we omit the superscript m.

2.2. Aggressive early deflation. Aggressive early deflation [5] aims to deflate
eigenvalues long before conventional deflating strategies do by looking for converged
eigenvalues in a k × k deflation window. This is in contrast to conventional deflat-
ing strategies, which typically look only at the bottom off-diagonal element (or two
consecutive off-diagonals as described in [12, 13]). In this section, we briefly review
aggressive early deflation, and discuss its specialization to the symmetric tridiagonal
case.

2.2.1. Nonsymmetric case. Let H be an irreducible n×n Hessenberg matrix
obtained after several Hessenberg QR iterations. H can be partitioned as

(2.3) H =

⎡
⎣

n−k−1 1 k

n−k−1 H11 H12 H13

1 H21 H22 H23

k 0 H32 H33

⎤
⎦,

where k ≥ 1 is the window size for aggressive early deflation. To perform aggressive
early deflation, one computes a Schur decomposition H33 = V TV H , and considers
the unitary transformation

(2.4)

⎡
⎣I 0 0
0 1 0
0 0 V

⎤
⎦

H ⎡
⎣H11 H12 H13

H21 H22 H23

0 H32 H33

⎤
⎦
⎡
⎣I 0 0
0 1 0
0 0 V

⎤
⎦ =

⎡
⎣H11 H12 H13V
H21 H22 H23V
0 t T

⎤
⎦ ,

where t is a k×1 vector, referred to as the spike vector. In practice, many of the trailing
elements of t are negligibly small so that they can be set to zero. If k� elements of t are
set to zero, then the corresponding k� eigenvalues are effectively deflated. In practice,
more deflatable eigenvalues may be found by recomputing the Schur decomposition
with a different eigenvalue ordering.

The leading (n−k�)× (n−k�) submatrix of (2.4) is then reduced to a Hessenberg
form, then the process is repeated of applying multiple QR iterations and executing
aggressive early deflation.

This process of aggressive early deflation often drastically improves the perfor-
mance of the QR algorithm. In [19] it is shown that the process can be regarded as
extracting converged Ritz vectors by the Krylov–Schur algorithm.

In [5] it is shown that |t�|, the �th element of t, has the expression

(2.5) |t�| =

∣∣∣∏n−1
i=n−k hi+1,i

∣∣∣∣∣∣∏i�=�(μi − μ�)
∣∣∣ |xk,�|

,

where μi (1 ≤ i ≤ k) is the ith diagonal of T and xk,� is the last element of the
eigenvector x corresponding to μ�. The expression (2.5) partially explains why |t�|
can be negligibly small even when none of the subdiagonal elements hi+1,i is.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

dqds WITH AGGRESSIVE DEFLATION 25

2.2.2. Symmetric case. Since aggressive early deflation is so effective for the
Hessenberg QR algorithm, a similar improvement can be expected in the symmetric
tridiagonal case. Here we consider aggressive early deflation applied to the symmetric
tridiagonal QR algorithm. Let A be a symmetric tridiagonal matrix, defined by

(2.6) A = tridiag

⎧⎨⎩
b1 b2 . bn−2 bn−1

a1 a2 . . an−1 an
b1 b2 . bn−2 bn−1

⎫⎬⎭ ,

whose diagonals are a1, . . . , an and whose off-diagonals are b1, . . . , bn−1. We assume
without loss of generality that bi are positive.

Let A2 = V DV T be an eigendecomposition of A’s lower-right k×k submatrix A2,
where the diagonals of D are in decreasing order of magnitude. Then, we have

(2.7)

[
I

V

]T
A

[
I

V

]
=

[
A1 un−kt

T

tuT
n−k D

]
,

where A1 is the upper-left (n− k) × (n− k) submatrix of A, un−k = [0, 0, . . . , 1]T ∈
R

(n−k)×1 and the spike vector t = [t1, . . . , tk]
T is given by t = bn−kV (1, :)T . If k�

elements of t are smaller than a tolerance τ , for example, τ = ε‖A‖2, then Weyl’s
theorem [27] ensures that the k� corresponding diagonal elements of D approximate
the eigenvalues of A with errors bounded by τ . Hence, we deflate these elements as
converged eigenvalues and obtain the symmetric matrix of size n− k� of the form[

A1 un−k t̃
T

t̃uT
n−k D

]
,

where t̃ = [t1, . . . , tk−k�
]T and D̃ = diag(d1, . . . , dk−k�

). Now, the bottom-right
(k − k� + 1) × (k − k� + 1) arrowhead matrix needs to be tridiagonalized before we
proceed to the next QR iteration. This tridiagonalization can be done in O(k2) flops
by the algorithms in [25, 36].

Contrary to the nonsymmetric case, in the symmetric case there is no need to con-
sider another eigendecomposition of A2 with a different eigenvalue ordering, because
it does not change the number of deflatable eigenvalues. The QR algorithm is known
to be backward stable, although it can be forward unstable [29]. In the symmetric
case the backward stability of the QR algorithm implies the computed eigenvalues are
correct to ε‖A‖2, so they are accurate in the absolute sense. For bidiagonal matrices
the dqds algorithm computes singular values with high relative accuracy, so in our
algorithm development in this paper we ensure relative accuracy is maintained when
aggressive early deflation is incorporated into dqds.

3. Aggressive early deflation for dqds—version 1: Aggdef(1). In this
section, we describe our first aggressive early deflation strategy for dqds, which is
referred to as Aggdef(1) and is more or less a direct application of aggressive early
deflation to the bidiagonal case.

3.1. Algorithm. Let B2 = UΣV T be the SVD of the lower-right k × k sub-
matrix B2 of a bidiagonal matrix B as in (2.1), where the singular values appear in
decreasing order of magnitude. Then, we compute the orthogonal transformation

(3.1)

[
I

UT

]
B

[
I

V

]
=

[
B1 un−kt

T

Σ

]
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

26 Y. NAKATSUKASA, K. AISHIMA, AND I. YAMAZAKI

where B1 is the top-left (n − k) × (n − k) submatrix of B, and the right-hand side
matrix has the nonzero pattern

(3.2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

∗ ∗
∗ ∗ ∗ ∗

∗
∗

∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

We now look for elements of the spike vector tT =
√
en−kV (1, :) that are small enough

to be neglected, and deflate the corresponding diagonals of Σ to obtain the reduced
(n − k�) × (n − k�) matrix, where k� is the number of negligible elements in t. This
matrix needs to be rebidiagonalized in order to return to the dqds iterations. Al-
gorithm 1 shows the pseudocode of this aggressive deflation strategy, which we call
Aggdef(1).

Algorithm 1. Aggressive early deflation—version 1: Aggdef(1).

Inputs: Bidiagonal B, window size k, sum of previous shifts S
1: Compute the singular values of B2, the lower-right k × k submatrix of B.
2: Compute the spike vector t in (3.1).
3: Find negligible elements in t and deflate converged singular values.
4: Bidiagonalize matrix of form (3.2).

Below we discuss the details of each step of Aggdef(1).
Computing the singular values of B2. On line 1 of Aggdef(1), we use standard

dqds (without aggressive early deflation) to compute the singular values of B2. This
generally requires O(k2) flops.

Computing the spike vector. To compute the spike vector t on line 2, the first
elements of the right singular vectors V of B2 need to be computed. This can be
done by computing the full SVD of B2, which requires at least O(k2) flops. We
can reduce the cost by noting that only the first element of each singular vector is
needed to compute t. This corresponds to the Gauss quadrature, whose computational
algorithms are discussed in [15, 14]. However, this approach generally still requires
O(k2) flops.

When to neglect elements of the spike vector. Basic singular value perturbation
theory [33, p. 69] tells us that the perturbation on the computed singular values
caused by neglecting the �th element t� of t is bounded by |t�|. Since the unconverged
singular values are greater than

√
S where S is the sum of previous shifts, we can

safely neglect elements of t that are smaller than
√
Sε (ε is the machine precision)

without causing loss of relative accuracy of any singular value.
Rebidiagonalization process. Since the upper-left part of the matrix is already

bidiagonal, we need only bidiagonalize the bottom-right (k0 + 1) × (k0 + 1) part of
the matrix of the form (3.2), where k0 = k − k�.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

dqds WITH AGGRESSIVE DEFLATION 27

We use a 4×4 (k0 = 3) example to illustrate our bidiagonalization process, which
is based on a sequence of Givens rotations:⎡
⎢⎢⎣
∗ ∗ ∗ ∗

∗
∗

∗

⎤
⎥⎥⎦ GR(3, 4)

→

⎡
⎢⎢⎣
∗ ∗ ∗ 0

∗
∗ +
+ ∗

⎤
⎥⎥⎦ GL(3, 4)

→

⎡
⎢⎢⎣
∗ ∗ ∗

∗
∗ ∗
0 ∗

⎤
⎥⎥⎦ GR(2, 3)

→

⎡
⎢⎢⎣
∗ ∗ 0

∗ +
+ ∗ ∗

∗

⎤
⎥⎥⎦

GL(2, 3)

→

⎡
⎢⎢⎣
∗ ∗

∗ ∗ +
0 ∗ ∗

∗

⎤
⎥⎥⎦ GR(3, 4)

→

⎡
⎢⎢⎣
∗ ∗

∗ ∗ 0
∗ ∗
+ ∗

⎤
⎥⎥⎦ GL(3, 4)

→

⎡
⎢⎢⎣
∗ ∗

∗ ∗
∗ ∗
0 ∗

⎤
⎥⎥⎦ .

Here, GL(i, j) (or GR(i, j)) above the arrow indicates the application of a Givens
rotation from the left (or right) to the ith and jth rows (or columns). “0” indicates
an element that was zeroed out by the rotation, and “+” is a nonzero that was
newly created. By counting the number of rotations, we can show that the total flops
required for this process is at most 18k20, which is generally O(k2). We note that this
process can be regarded as a bidiagonal version of the tridiagonalization algorithm of
an arrowhead matrix discussed in [25, 36].

Maintaining high relative accuracy. The computation of the spike vector t and the
bidiagonalization process described above can cause errors of order ε‖B2‖2 in finite
precision arithmetic. This may result in loss of relative accuracy for small singular
values. To avoid this, we dynamically adjust the deflation window size (shrink from
input size k) so that B2 does not contain elements that are larger than c

√
S, where

S is the sum of previous shifts and c is a modest constant. In our experiments we let
c = 1.0.

4. Aggressive early deflation for dqds—version 2: Aggdef(2). Numerical
experiments in section 6 illustrate that Aggdef(1) described above significantly reduces
the number of dqds iterations in many cases. However, computing the spike vector t
and rebidiagonalizing the matrix generally require at least O(k2) flops, which can be
expensive. Furthermore, Aggdef(1) requires the computation of the square roots of
qi and ei, and it needs to consider a safe window size to guarantee the high relative
accuracy. In this section, we discuss an alternative deflation strategy, Aggdef(2),
which addresses these issues by seeking one deflatable singular value at a time.

4.1. Process to deflate one singular value. To introduce Aggdef(2) we first
describe Aggdef(2)-1, a simplified process to deflate one smallest singular value. As
before, B2 is the lower-right k × k submatrix of B.

Algorithm 2. Aggdef(2)-1, process for deflating one singular value.

Inputs: Bidiagonal B, window size k, sum of previous shifts S
1: Compute s = (σmin(B2))

2
.

2: Compute B̂2 such that B̂T
2 B̂2 = BT

2 B2− sI by dstqds. Set B̂2(end, end)← 0 if it
is negligible (see (4.7)), otherwise exit.

3: Compute B̆2 = B̂2

∏i0
i=1 GR(k − i, k) for i0 = 1, . . . , k − 2 until w as in (4.1)

becomes negligible (see (4.9)), then w← 0. Exit if w never becomes negligible.

4: Compute B̃2 such that B̃T
2 B̃2 = B̆T

2 B̆2 + sI by dstqds and update B by replacing

B2 with B̃2.

On the first line of Aggdef(2)-1, only the smallest singular value of B2 is computed
using dqds, which requires O(k) flops.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

28 Y. NAKATSUKASA, K. AISHIMA, AND I. YAMAZAKI

On lines 2 and 4, we use the dstqds algorithm [9, 10], which was originally devel-
oped to obtain the LDLT decomposition of a shifted tridiagonal matrix in a mixed
forward-backward stable manner in the relative sense. We slightly modify this al-
gorithm to reflect the bidiagonal structure. This allows us to compute the k × k
bidiagonal B̂2 with q̂n−k+i = (B̂2(i, i))

2 and ên−k+i = (B̂2(i, i + 1))2 from B2 such

that B̂T
2 B̂2 = BT

2 B2 − sI in about 5k flops, without losing relative accuracy of the
computed singular values. Algorithm 3 shows the pseudocode of our dstqds algorithm.

Algorithm 3. Differential stationary qds (dstqds).

Inputs: s, qi = (B(i, i))2 (i = n − k + 1, . . . , n), ei = (B(i, i + 1))2 (i = n − k +
1, . . . , n− 1)

1: d = −s
2: q̂n−k+1 = qn−k+1 + d
3: for i := n− k + 1, . . . , n− 1 do
4: êi = qiei/q̂i
5: d = dei/q̂i − s
6: q̂i+1 = qi+1 + d
7: end for

The bottom diagonal element of B̂2 is 0 in exact arithmetic. However, in practice
its computed value is nonzero, and we safely set it to 0 when it is small enough, as
detailed in (4.7). In exact arithmetic, the bidiagonal elements of B̂2 are all positive
except for the bottom zero element. However, in finite precision arithmetic, negative
elements could appear. When negative elements exist other than at the bottom diag-
onal, this indicates a breakdown of the Cholesky factorization. When this happens,
we exit Aggdef(2)-1 and return to the dqds iterations.

On line 3 of Aggdef(2)-1, to determine if
√
s+ S can be deflated as a converged

singular value, we apply a sequence of i0 (≤ k− 2) Givens transformations (note that
they are not strictly Givens rotations: we apply matrices of the form [c s

s −c] to specified

columns, where c2+s2 = 1) to B̂2 on the right to compute B̆2 = B̂2

∏i0
i=1 GR(k−i, k),

where GR(k − i, k) is the Givens transformation acting on the (k − i)th and kth
columns. Below we describe this process for the case k = 5 and i0 = 3:

(4.1)

⎡
⎢⎢⎢⎣
∗ ∗

∗ ∗
∗ ∗

∗ ∗

⎤
⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎣
∗ ∗

∗ ∗
∗ ∗ w

∗ 0

⎤
⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎣
∗ ∗

∗ ∗ w
∗ ∗ 0

∗ 0

⎤
⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎣
∗ ∗ w

∗ ∗ 0
∗ ∗ 0

∗ 0

⎤
⎥⎥⎥⎦ .

Here, “0” represents the element that was zeroed out and “w” is the nonzero that was
newly created by the transformation. The Givens transformations are applied so that
all but the bottom diagonals of the matrices in (4.1) are positive. We stop applying
the transformations once w becomes negligibly small so that (4.9) is satisfied.

Let us denote x =
√
w and express the effects of the ith Givens transformation

in (4.1) as follows:

(4.2)

⎡
⎢⎢⎢⎢⎣

∗ ∗
∗ √

êj√
q̂j+1 ∗ √

x
∗ 0

⎤
⎥⎥⎥⎥⎦
GR(k − i, k)

→

⎡
⎢⎢⎢⎢⎣

∗ ∗
∗ √

ĕj
√
x̆√

q̆j+1 ∗ 0
∗ 0

⎤
⎥⎥⎥⎥⎦ ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

dqds WITH AGGRESSIVE DEFLATION 29

where j = n− i− 1. The triplet (q̆j+1, ĕj , x̆) can be computed from (q̂j+1, êj, x) by

(4.3) q̆j+1 = q̂j+1 + x, ĕj =
q̂j+1êj
q̂j+1 + x

, x̆ =
xêj

q̂j+1 + x
.

Hence, Aggdef(2)-1 can be executed without computing square roots. Note that (4.3)

provides a decreasing factor of the element x, i.e., x̆ < x
êj

q̂j+1
. Now, since B̂2 converges

to a diagonal matrix, the diagonal element q̂j+1 is typically larger than the off-diagonal
element êj . This suggests that the size of x̆ tends to decrease as it is chased up, i.e.,
0 < x̆
 x if q̂j+1 � êj. In practice, we observed that x̆ often becomes negligible
long before it reaches the top, that is, i0
 k − 2.

4.2. Theoretical justifications. Here we express the key steps of Aggdef(2)-1

in matrix notations when it deflates a singular value. We denote by B and B̃ the
input and output n× n bidiagonals of Aggdef(2)-1, respectively.

Line 2 of Aggdef(2)-1 computes B̂2 such that B̂T
2 B̂2 = BT

2 B2 − sI. Then, line 3

postmultiplies B̂2 by the unitary matrix
∏i0

i=1 GR(k − i, k) ≡ [
1
Q

]
, where Q is a

(k− 1)× (k− 1) unitary matrix. Once w in (4.1) becomes negligible it is set to 0, and
we thus obtain the bidiagonal matrix B̆2 such that

B̆T
2 B̆2 =

(
B̂2

[
1

Q

]
−
[

w
])T (

B̂2

[
1

Q

]
−
[

w
])

≡
[

1
QT

]
BT

2 B2

[
1

Q

]
− sI + E.(4.4)

We will carefully examine the “error matrix” E later in section 4.3.
Finally, line 4 computes B̃2 such that

B̃T
2 B̃2 = B̆T

2 B̆2 + sI

=

[
1

QT

]
BT

2 B2

[
1

Q

]
+ E.

Since denoting u1 = [1, 0, 0, . . . , 0]T ∈ R
k×1 and un−k = [0, 0, 0, . . . , 1]T ∈ R

n−k×1 we
have

BTB =

[
BT

1 B1
√
qn−ken−kun−ku

T
1√

qn−ken−ku1u
T
n−k BT

2 B2 + en−ku1u
T
1

]
,

and noting that uT
1

[
1
Q

]
= uT

1 we obtain

B̃T B̃ =

[
BT

1 B1
√
qn−ken−kun−ku

T
1

√
qn−ken−ku1u

T
n−k B̃T

2 B̃2 + en−ku1u
T
1

]

=

[
In−k

1
QT

][
BT

1 B1
√
qn−ken−kun−ku

T
1√

qn−ken−ku1u
T
n−k BT

2 B2 + en−ku1u
T
1

][
In−k

1
Q

]

+

[
E

]
(4.5)

=

[
In−k+1

QT

]
BTB

[
In−k+1

Q

]
+

[
E

]
.(4.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

30 Y. NAKATSUKASA, K. AISHIMA, AND I. YAMAZAKI

Later in section 4.3 we show that the condition (4.9) implies ‖E‖2 is small enough

to ensure |λi(B̃
T B̃+SI)−λi(B

TB+SI)| ≤ 2cSε for a modest constant c, from which
we conclude that high relative accuracy of the computed singular values is maintained.

The above arguments tell us that the entire process of Aggdef(2)-1 (which is to
peel off the submatrix B2, “shift” it by sI, multiply a unitary matrix, shift it back,
then copy it back to the originalB2) is a valid process only because the unitary matrix∏i0

i=1 GR(k − i, k) we right-multiply to B̂2 preserves the first column: multiplying a
general unitary matrix destroys the crucial equality uT

1

[
1
Q

]
= uT

1 , and is not allowed
here.

4.3. When to neglect elements. In this section, we derive conditions that
ensure neglecting the bottom diagonal element

√
q̂n of B̂2 and the error matrix E in

(4.4) does not cause loss of relative accuracy of the computed singular values.
We first examine when it is safe to neglect a nonzero computed q̂n.
First suppose that q̂n is positive. Since setting q̂n to zero only changes the bottom

diagonal of B̂T
2 B̂2+(s+S)I by q̂n, Weyl’s theorem ensures that high relative accuracy

of the unconverged singular values is maintained if q̂n < cSε for a modest constant c.
Next consider the case q̂n < 0. dstqds of Algorithm 3 computes q̂n as q̂n = qn+d,

where d does not depend on qn. Hence, setting q̂n to 0 is equivalent to replacing qn
of the original matrix BT

2 B2 with qn − q̂n. Weyl’s theorem applied to B2B
T
2 + SI

guarantees that high relative accuracy of the singular values is preserved if |q̂n| < cSε.
In summary, we can safely neglect q̂n if

(4.7) |q̂n| ≤ cSε.

We next examine when to neglect w =
√
x (or equivalently E) when applying the

Givens transformations. After setting q̂n to zero and applying i0 Givens transforma-
tions to B̂2, we have B̂T

2 B̂2 + sI = BT
2 B2, where B̂2 is of the form

(4.8) B̂2 =

⎡
⎢⎢⎢⎢⎣

∗ ∗√
q̂j

√
ĕj

√
x

∗ ∗
∗

0

⎤
⎥⎥⎥⎥⎦ ,

where j = n− i0 − 1 is the row index of x. Then, recalling x = w2, we see that E as
in (4.4), (4.6) is

E =

⎡
⎢⎢⎢⎣

−√
xq̂j

−√
xĕj

−√
xq̂j −√

xĕj x

⎤
⎥⎥⎥⎦ .

Hence, Weyl’s theorem ensures that the perturbation to the eigenvalues of B̂T
2 B̂2+

(S+s)I caused by setting x to zero is bounded by ‖E‖2 ≤
√
x(q̂j + ĕj)+x. Therefore,

it is safe to neglect x when
√
x(q̂j + ĕj) ≤ cSε and x ≤ cSε, or equivalently

(4.9) x(q̂j + ĕj) ≤ (cSε)2 and x ≤ cSε.

In our numerical experiments, we set c = 1.0 in both (4.7) and (4.9).
We note that as the dqds iterations proceed, the sum of the previous shifts S

typically becomes larger than q̂n, q̂j , and ĕj , so that the three inequalities all become
more likely to hold. As a result, more singular values are expected to be deflated.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

dqds WITH AGGRESSIVE DEFLATION 31

In the discussion here and in section 3 we use only the Weyl bound. If some
information on the gap between singular values is available, a sharper, quadratic
perturbation bound can be used [20, 23]. We do not use such bounds here because
estimating the gap is a nontrivial task, involving the whole matrix B instead of just
B2 or B̂2, and experiments suggest that the improvement we get is marginal.

Let us give more details. In practice we are unwilling to spend O(n) flops for

estimating the gap, so instead we estimate the gap using only B̂2. One choice is to
estimate a lower bound for the smallest singular value σmin of the top-left (k − 1)×
(k − 1) submatrix of B2, and apply the bound in [20] to obtain the bound

(4.10) |σi(B̂2)− σi(B̂2,0)| ≤ 2x

σmin +
√
σ2
min + 4x

,

where B̂2,0 is the matrix obtained by setting x to 0 in (4.8). We emphasize that (4.10)
is not a bound in terms of the entire matrix B, which is what we need to guarantee
the desired accuracy. In practice estimating σmin can also be costly, so we attempt to
estimate it simply by

√
q̂n−1. Combining this with (4.10), we tried neglecting the x

values when

(4.11)
2x√

q̂n−1 +
√
q̂n−1 + 4x

≤
√
cSε.

We observed through experiments that using this criterion sometimes results in loss of
relative accuracy. Moreover, there was no performance gain on average, no particular
case giving more than 5% speedup. To guarantee relative accuracy while using a
quadratic perturbation bound we need a more complicated and restrictive criterion
than (4.11), which is unlikely to provide a faster implementation. Therefore we decide
to use the simple and safe criterion (4.9) using Weyl’s theorem.

4.4. High relative accuracy of Aggdef(2)-1 in floating point arithmetic.
Here we show that Aggdef(2)-1 preserves high relative accuracy of singular values.
We use the standard model of floating point arithmetic

fl(x ◦ y) = (x ◦ y)(1 + δ) = (x ◦ y)/(1 + η),

where ◦ ∈ {+,−,×,÷} and δ, η satisfy

(1 + ε)−1(x ◦ y) ≤ fl(x ◦ y) ≤ (1 + ε)(x ◦ y).

For the error analysis below, we need to define B̂2 clearly. In this subsection, we let B̂2

be the first bidiagonal matrix in (4.1). In other words, B̂2 is obtained by computing
the dstqds transform from B2 in floating point arithmetic, then setting the bottom
element q̂n to 0, supposing that (4.7) is satisfied.

First we show that high relative accuracy of singular values of the lower-right
submatrices B2 is preserved. We do this by using direct mixed stability analysis with
respect to B2, B̂2, B̆2, B̃2, using an argument similar to that in [11, sect. 7.2].

Let us first analyze the transformation from B2 to B̂2. We introduce two ideal

matrices Ḃ2,
¨̂
B2 satisfying

¨̂
B

T

2
¨̂
B2 = ḂT

2 Ḃ2 − sI for all but the bottom element ¨̂qn

of
¨̂
B2, which is set to 0 (note that this is equivalent to setting q̂n to 0). We seek

such Ḃ2 and
¨̂
B2 so that Ḃ2 is a small relative entrywise perturbation of B2 and

¨̂
B2

is a small relative entrywise perturbation of B̂2. In this subsection, we use a dot to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

32 Y. NAKATSUKASA, K. AISHIMA, AND I. YAMAZAKI

denote backward-type ideal matrices, and a double dot to denote forward-type ideal

matrices. The ith main and off-diagonals of Ḃ2 are q̇i and ėi, and those of
¨̂
B2 are ¨̂qi

and ¨̂ei.
All the results in this subsection state errors in terms of the relative error, and we

use the statement “q̇i differs from qi by αε” to mean (1+ ε)−αq̇i ≤ qi ≤ (1 + ε)αq̇i (�
(1 + αε)q̇i). Below we specify the values of d as in Algorithm 3 and x as in (4.3) by
denoting them with subscripts di and xi.

Lemma 4.1. Concerning the mixed stability analysis in the transformation from
B2 to B̂2, q̇i differs from qi by ε and ėi differs from ei by 3ε, and q̂i differs from ¨̂qi
by 2ε and êi differs from ¨̂ei by 2ε.

Proof. From the dstqds transform, we have

êi = (qiei/q̂i)(1 + εi,∗1)(1 + εi,/),

di+1 = ((diei/q̂i)(1 + εi+1,∗2)(1 + εi,/)− s)(1 + εi+1,−),
q̂i+1 = (qi+1 + di+1)(1 + εi+1,+).

From these equalities for di+1 and q̂i+1, we have

di+1

1 + εi+1,−
=

diei(1 + εi+1,∗2)(1 + εi,/)

(qi + di)(1 + εi,+)
− s.

This tells us how to define Ḃ2. We let them be

ḋi+1 = di+1/(1 + εi+1,−),(4.12)

q̇i+1 = qi+1/(1 + εi+1,−),(4.13)

ėi = ei(1 + εi+1,∗2)(1 + εi+1,/)/(1 + εi,+).(4.14)

Then we see that

ḋi+1 = ḋiėi/(q̇i + ḋi)− s,

so the recurrence for ḋi+1 of the dstqds transformation is satisfied. We then define

the elements of the ideal
¨̂
B2 as

¨̂qi+1 = q̂i+1/(1 + εi+1,+)(1 + εi+1,−),(4.15)

¨̂ei = êi(1 + εi+1,∗2)/(1 + εi,∗1).(4.16)

Then the dstqds transformation from Ḃ2 to
¨̂
B2, expressed in matrix form as

¨̂
B

T

2
¨̂
B2 =

ḂT
2 Ḃ2 + sI, is satisfied.

We next prove two lemmas regarding the connections between B̂2, B̆2, and B̃2,
and their corresponding ideal matrices denoted with dots. Similarly to B̂2, the bidi-
agonal matrix B̆2 is here defined as the (k − 1) × (k − 1) deflated matrix obtained
after applying the Givens transformations and setting x to 0.

Lemma 4.2. Concerning the mixed stability analysis in the transformation from
B̂2 to B̆2, we have ˙̂qi = q̂i, and ˙̂ei differs from êi by 3ε, q̆i differs from ¨̆qi by ε, and ĕi
differs from ¨̆ei by 2ε.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

dqds WITH AGGRESSIVE DEFLATION 33

�

�

�

�

�
�

�

�

�
�

�

�

B2

Ḃ2
¨̂
B2 (

῭
B2)

B̂2 (B̀2) B̂2(B̀2)

˙̂
B2(

˙̀
B2)

¨̆
B2 (

΅
B2)

B̆2 (B́2) B̆2(B́2)

˙̆
B2(

˙́
B2)

¨̃
B2

B̃2
Step (a)

computed

Step (b)

computed

Step (c)

computed

exact exact exact

change

qn−k+i

by ε

en−k+i

by 3ε

change

q̂n−k+i

by 2ε

ên−k+i

by 2ε

change

q̂n−k+i

by 0

ên−k+i

by 3ε

change

q̆n−k+i

by ε

ĕn−k+i

by 2ε

change

q̆n−k+i

by ε

ĕn−k+i

by 3ε

change

q̃n−k+i

by 2ε

ẽn−k+i

by 2ε

Fig. 4.1. Effect of roundoff.

Proof. Recalling (4.3) we have

q̆i+1 = (q̂i+1 + xi+1)(1 + εi+1,+),

ĕi =
q̂i+1êi(1 + εi+1,∗1)(1 + εi+1,/)

(q̂i+1 + xi+1)(1 + εi+1,+)
,

xi =
xi+1êi(1 + εi+1,∗2)(1 + εi+1,/)

(q̂i+1 + xi+1)(1 + εi+1,+)
.

Hence, we define the variables for the ideal matrix
˙̂
B2 as

ẋi = xi,
˙̂qi+1 = q̂i+1,

˙̂ei = êi(1 + εi+1,∗2)(1 + εi+1,/)/(1 + εi+1,+).

Then it follows that

ẋi =
ẋi+1

˙̂ei
˙̂qi+1 + ẋi+1

,

so the recurrence for ẋi is satisfied.

Similarly, we define the variables for the ideal matrix
¨̆
B2 as

¨̆qi+1 = q̆i+1/(1 + εi+1,+),

¨̆ei = ĕi(1 + εi+1,∗2)/(1 + εi+1,∗1).

Then the transformation from
˙̂
B2 to

¨̆
B2 is realized in exact arithmetic.

Lemma 4.3. Concerning the mixed stability analysis in the transformation from
B̆2 to B̃2, ˙̆qi differs from q̆i by ε, ˙̆ei differs from ĕi by 3ε, q̃i differs from ¨̃qi by 2ε, and

ẽi differs from ¨̃ei by 2ε.
Proof. The proof is the same as in Lemma 4.1.
The above results are summarized in Figure 4.1. We will discuss the matrices B̀2,

B́2 shortly.
Combining Lemma 4.1, (4.7), and a result by Demmel and Kahan [7, Corollary 2]

that shows that the relative perturbation of bidiagonal elements produces only small

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

34 Y. NAKATSUKASA, K. AISHIMA, AND I. YAMAZAKI

relative perturbation in the singular values, we see that relative accuracy of the de-
flated singular value is preserved. We next show that Aggdef(2)-1 preserves high
relative accuracy of all singular values of the whole bidiagonal matrix B.

The key idea of the proof below is to define bidiagonal matrices B̀2 and B́2

satisfying B̀T
2 B̀2 = B̂T

2 B̂2 + sI and B́T
2 B́2 = B̆T

2 B̆2 + sI in exact arithmetic, so
that we can discuss solely in terms of matrices that are not shifted by −sI. We

first consider the bidiagonal matrices B̀2 and
῭
B2 satisfying B̀T

2 B̀2 = B̂T
2 B̂2 + sI and

῭
BT

2
῭
B2 =

¨̂
B

T

2
¨̂
B2 + sI. We have the following lemma.

Lemma 4.4. Concerning the relative errors between B̀2 and
῭
B2, q̀n−k+i differs

from ῭qn−k+i by 4iε and èn−k+i differs from ῭en−k+i by 4(i+ 1)ε for i = 1, . . . , k.

Proof. The dstqds transformation from B̂2 to B̀2 gives

èi = q̂iêi/q̀i, d̀i+1 = d̀iêi/q̀i + s, q̀i+1 = q̂i+1 + d̀i+1.(4.17)

Hence

d̀i+1 =
d̀iêi

q̂i + d̀i
+ s =

êi

q̂i/d̀i + 1
+ s.(4.18)

Regarding the variables of
῭
B, by Lemma 4.1 the relative perturbations of q̂i, êi from

¨̂qi,
¨̂ei are both 2ε, that is,

(1 + ε)−2q̂i ≤ ¨̂qi ≤ (1 + ε)2q̂i,(4.19)

(1 + ε)−2êi ≤ ¨̂ei ≤ (1 + ε)2êi.(4.20)

Moreover, similar to (4.18) we have

῭
di+1 =

¨̂ei

¨̂qi/
῭
di + 1

+ s.

Note that in the computation of d̀i,
῭
di, subtraction is not involved and d̀n−k+1 =

῭
dn−k+1 = s. We claim that the relative perturbation of d̀n−k+i of B̂2 from

῭
dn−k+i of

¨̂
B2 is less than 4iε:

(4.21) (1 + ε)−4id̀n−k+i ≤ ῭
dn−k+i ≤ (1 + ε)4id̀n−k+i

for i = 1, . . . , k. We can prove (4.21) by backward induction on i. For i = k it is
obvious. Next, if (4.21) holds for i = j − 1, then for i = j we have

῭
dn−k+j =

¨̂en−k+j−1

¨̂qn−k+j−1/
῭
dn−k+j−1 + 1

+ s

≤ ên−k+j−1(1 + ε)2

q̂n−k+j−1(1 + ε)−2/d̀n−k+j−1(1 + ε)4(j−1) + 1
+ s

≤ d̀n−k+j−1 ên−k+j−1(1 + ε)4j

q̂n−k+j−1/d̀n−k+j−1 + (1 + ε)4j−2
+ s

≤ d̀n−k+j−1 ên−k+j−1(1 + ε)4j

q̂n−k+j−1/d̀n−k+j−1 + 1
+ (1 + ε)4js

= (1 + ε)4j d̀n−k+j .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

dqds WITH AGGRESSIVE DEFLATION 35

The first inequality in (4.21) can be shown similarly. Using (4.17), (4.20), and (4.21)
we get

(1 + ε)−4iq̀n−k+i = (1 + ε)−4i(q̂n−k+i + d̀n−k+i)

≤ ¨̂qn−k+i +
῭
dn−k+i(= ῭qn−k+i)

≤ (1 + ε)4i(q̂n−k+i + d̀n−k+i)

= (1 + ε)4iq̀n−k+i.

Therefore,

(4.22) (1 + ε)−4iq̀n−k+i ≤ ῭qn−k+i ≤ (1 + ε)4iq̀n−k+i

for i = 1, . . . , k. Therefore, the relative error between q̀n−k+i and ῭qn−k+i is 4iε.
Similarly, we estimate the relative error between èn−k+i and ῭en−k+i. We see that

(1 + ε)−4(i+1)èn−k+i = (1 + ε)−4(i+1)q̂n−k+iên−k+i/q̀n−k+i

≤ ¨̂qn−k+i
¨̂en−k+i/ ῭qn−k+i(= ῭en−k+i)

≤ (1 + ε)4(i+1)q̂n−k+iên−k+i/q̀n−k+i

= (1 + ε)4(i+1)èn−k+i,

where we used (4.17), (4.20), (4.21), and (4.22). Therefore, the relative error between
èn−k+i and ῭en−k+i is 4(i+ 1)ε for i = 1, . . . , k − 1.

Now, from the n×n bidiagonal matrix B we define a new n×n bidiagonal matrix
Ḃ obtained by replacing the lower right k×k part by Ḃ2, and let σ̇i be its ith singular
value. In general, in this subsection we denote by
B (in which → represents any
accent) an n× n bidiagonal matrix obtained by replacing the lower right k × k part

of B by
B2, and denote by
σi the singular values of
B.
By Lemma 4.1 and Demmel–Kahan’s result [7, Corollary 2], we have

k∏
i=1

√
(1 + ε)−3

k−1∏
i=1

√
(1 + ε)−1σi ≤ σ̇i ≤

k∏
i=1

√
(1 + ε)3

k−1∏
i=1

√
(1 + ε)σi,

where σ̇i denotes the ith singular value of Ḃ. Here the square roots come from the facts

Bi,i =
√
qi and Bi,i+1 =

√
ei. Using

∏k
i=1

√
(1 + ε)3

∏k−1
i=1

√
(1 + ε) ≤∏k

i=1(1+ε)2 ≤
exp(2kε) and an analogous inequality for the lower bound we get

(4.23) exp(2kε)−1σi ≤ σ̇i ≤ exp(2kε)σi for i = 1, . . . , n.

Similarly, regarding B̀ and
῭
B (whose lower right submatrix is replaced by B̀2 and

῭
B2), by Lemma 4.4 and Demmel–Kahan’s result we have

(4.24) exp((2k2 + 4k)ε)−1 ῭σi ≤ σ̀i ≤ exp((2k2 + 4k)ε)῭σi for i = 1, . . . , n,

where ῭σi and σ̀i are the singular values of
῭
B and B̀. This analysis is summarized in

Figure 4.2.
Recall that assuming (4.7) is satisfied, we set q̂n and ¨̂qn to 0. We next bound

the effect of the operation ¨̂qn ← 0 on the singular values of Ḃ2 and
῭
B2. Noting that

the bounds in Lemma 4.1 hold for the bottom elements q̂n and ¨̂qn even before setting

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

36 Y. NAKATSUKASA, K. AISHIMA, AND I. YAMAZAKI

�

�

�

�

�

B̂2

¨̂
B2

῭
B2

B̀2
exact

exact

change

q̂n−k+i

by 2ε

ên−k+i

by 2ε

change

q̀n−k+i

by 4iε

èn−k+i

by 4(i+ 1)ε

�

�῭
B

B̀

perturbation of

singular values are

less than (2k2 + 4k)ε

Fig. 4.2. Effect of roundoff for singular values of
῭
B and B̀.

them to 0, by the argument leading to (4.7) we obtain (recall that
√
σ2
i + S are the

singular values to be computed)

(4.25) (1−c(1+ ε)2ε)(σ̇2
i +S) ≤ ῭σ2

i +S ≤ (1+c(1+ ε)2ε)(σ̇2
i +S) for i = 1, . . . , n.

For simplicity we rewrite (4.25) as

(4.26) exp(c′ε)−1
√
σ̇2
i + S ≤

√
῭σ2
i + S ≤ exp(c′ε)

√
σ̇2
i + S for i = 1, . . . , n,

where c′(≈ c/2) is a suitable constant such that the original inequality (4.25) is
satisfied.

Since S ≥ 0, we see that (4.23) implies exp(2kε)−1
√
σ2
i + S ≤ √

σ̇2
i + S ≤

exp(2kε)
√
σ2
i + S, and an analogous inequality holds for (4.24). Combining the three

bounds we obtain a bound for the relative error in step (a) in Figure 4.1:

(4.27) exp((2k2+6k+ c′)ε)−1
√
σ2
i + S ≤

√
σ̀2
i + S ≤ exp((2k2+6k+ c′)ε)

√
σ2
i + S

for i = 1, . . . , n.
We next discuss step (b) in Figure 4.1. Similarly to the above discussion, we

define a bidiagonal matrix
˙̀
B2 satisfying

˙̀
BT

2
˙̀
B2 =

˙̂
B

T

2
˙̂
B2 + sI in exact arithmetic.

Lemma 4.5.
˙̀qn−k+i differs from q̀n−k+i by 3iε and ˙̀en−k+i differs from èn−k+i

by 3(i+ 1)ε for i = 1, . . . , k.
Proof. Similarly to (4.19) and (4.20), by Lemma 4.2 we have

˙̂qi = q̂i,(4.28)

(1 + ε)−3êi ≤ ˙̂ei ≤ (1 + ε)3êi.(4.29)

Therefore, similarly to (4.21), we have

(4.30) (1 + ε)−3id̀n−k+i ≤ ˙̀
dn−k+i ≤ (1 + ε)3id̀n−k+i,

so the proof is completed as in Lemma 4.4.
Therefore, we have

(4.31) exp((3k2/2 + 3k)ε)−1σ̀i ≤ ˙̀σi ≤ exp((3k2/2 + 3k)ε)σ̀i for i = 1, . . . , n.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

dqds WITH AGGRESSIVE DEFLATION 37

We next define and compare the bidiagonal matrices B́2 and
΅
B2 satisfying B́T

2 B́2 =

B̆T
2 B̆2 + sI and

΅
BT

2
΅
B2 =

¨̆
BT

2
¨̆
B2 + sI in exact arithmetic.

Lemma 4.6. q́n−k+i differs from ΅qn−k+i by 3iε and én−k+i differs from ΅en−k+i

by 3(i+ 1)ε for i = 1, . . . , k.
Proof. By Lemma 4.2 we have

(1 + ε)−1q̆i ≤ ¨̆qi ≤ (1 + ε)q̆i,

(1 + ε)−2ĕi ≤ ¨̆ei ≤ (1 + ε)2ĕi.

Therefore, similarly to (4.21), we have

(4.32) (1 + ε)−3id́n−k+i ≤ ΅
dn−k+i ≤ (1 + ε)3id́n−k+i.

The same argument as in Lemma 4.4 completes the proof.
Therefore, we have

(4.33) exp((3k2/2 + 3k)ε)−1 ΅σi ≤ σ́i ≤ exp((3k2/2 + 3k)ε)΅σi for i = 1, . . . , n.

Recall that the kth column of B̆2 is set to the zero vector when (4.9) is satisfied,
and hence by Lemma 4.2 we see that

(1− 2c(1 + ε)ε)(˙̀σ2
i + S) ≤ (΅σ2

i + S) ≤ (1 + 2c(1 + ε)ε)(˙̀σ2
i + S) for i = 1, . . . , n.

For simplicity, we rewrite the inequalities using a suitable constant c′′(≈ c) as

(4.34) exp(c′′ε)−1
√

˙̀σ2
i + S ≤

√
΅σ2
i + S ≤ exp(c′′ε)

√
˙̀σ2
i + S for i = 1, . . . , n.

Combining (4.31), (4.33), and (4.34) we get

(4.35) exp((3k2+6k+c′′)ε)−1
√
σ̀2
i + S ≤

√
σ́2
i + S ≤ exp((3k2+6k+c′′)ε)

√
σ̀2
i + S

for i = 1, . . . , n.

Finally, we bound the relative error caused in step (c) of Figure 4.1. Let
˙́
B2 be

a bidiagonal matrix satisfying
˙́
BT

2
˙́
B2 =

˙̆
BT

2
˙̆
B2 + sI in exact arithmetic (note that we

have exactly
˙́
B2 = ¨̃B2). We have the following lemma comparing B́2 and

˙́
B2.

Lemma 4.7. q́n−k+i differs from ˙́qn−k+i by 4iε and én−k+i differs from ˙́en−k+i

by 4(i+ 1)ε for i = 1, . . . , k.
Proof. By Lemma 4.3 we have

(1 + ε)−1q̆i ≤ ˙̆qi ≤ (1 + ε)q̆i,

(1 + ε)−3ĕi ≤ ˙̆ei ≤ (1 + ε)3ĕi.

Therefore, similar to (4.21), we have

(4.36) (1 + ε)−4id́n−k+i ≤ ˙́
dn−k+i ≤ (1 + ε)4id́n−k+i.

The same argument as in Lemma 4.4 completes the proof.
From this lemma, we get

exp((2k2 + 4k)ε)−1σ́i ≤ ˙́σi ≤ exp((2k2 + 4k)ε)σ́i for i = 1, . . . , n,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

38 Y. NAKATSUKASA, K. AISHIMA, AND I. YAMAZAKI

with the aid of Demmel–Kahan’s result. Moreover, using Lemma 4.3 we get

exp(2kε)−1 ˙́σi ≤ σ̃i ≤ exp(2kε) ˙́σi for i = 1, . . . , n.

Therefore, we obtain

(4.37) exp((2k2 + 6k)ε)−1σ́i ≤ σ̃i ≤ exp((2k2 + 6k)ε)σ́i

for i = 1, . . . , n.
Now we present the main result of this subsection. Note that B̃ is the output of

Aggdef(2) (recall that B̃ is obtained by replacing the lower right k × k part of B by

B̃2).
Theorem 4.8. Aggdef(2)-1 preserves high relative accuracy. The singular values

σ1 > · · · > σn of B and σ̃1 > · · · > σ̃n of B̃ and the sum of previous shifts S satisfy

(4.38) exp((7k2+18k+C)ε)−1
√
σ2
i + S ≤

√
σ̃2
i + S ≤ exp((7k2+18k+C)ε)

√
σ2
i + S

for i = 1, . . . , n, where C = c′ + c′′, where c′(≈ c/2) and c′′(≈ c) are constants as
defined in (4.26) and (4.34).

Proof. Combine (4.27), (4.35), and (4.37).
We note that in practice we always let the window size k be k ≤ √n (see sec-

tion 6.2), so the bound (4.38) gives a relative error bound of order O(nε), which has
the same order as the bound for one dqds iteration derived in [11]. Also note that in
our experiments we let c = 1.0 so C � 1.5. We conclude that executing Aggdef(2)-1
does not affect the relative accuracy of dqds.

As discussed below, in Aggdef(2) we execute Aggdef(2)-1 repeatedly to deflate
�(> 1) singular values. In this case we have

exp((7k2 + 18k + C)�ε)−1
√
σ2
i + S ≤

√
σ̃2
i + S ≤ exp((7k2 + 18k + C)�ε)

√
σ2
i + S

for i = 1, . . . , n, where � is the number of deflated singular values by Aggdef(2).

4.5. Overall algorithm Aggdef(2). As mentioned above, Aggdef(2)-1 deflates
only one singular value. To deflate �(> 1) singular values we execute Aggdef(2), which
is mathematically equivalent to � runs of Aggdef(2)-1, but is cheaper saving � calls of
dstqds. Algorithm 4 is its pseudocode.

Algorithm 4. Aggressive early deflation—version 2: Aggdef(2).

Inputs: Bidiagonal B, window size k, sum of previous shifts S
1: C = B2, � = 0.
2: Compute s�+1 = (σmin(C))

2
.

3: Compute B̂2 such that B̂T
2 B̂2 = CTC − s�+1I by dstqds. Set B̂2(end, end)← 0 if

(4.7) holds, otherwise go to line 6.

4: Compute B̆2 = B̂2

∏i0
i=1 GR(k− i, k) for i0 = 1, . . . , k− 2 until (4.9) holds. Go to

line 6 if (4.9) never holds.
5: C := B̆2(1 : end− 1, 1 : end− 1), �← �+ 1, k ← k − 1, go to line 2.

6: Compute B̃2 such that B̃T
2 B̃2 = CTC +

∑�
i=1 siI by dstqds and update B by

replacing B2 with diag(B̃2, diag(
√∑�

j=1 sj , . . . ,
√∑2

j=1 sj ,
√
s1)).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

dqds WITH AGGRESSIVE DEFLATION 39

4.6. Relation between Aggdef(2) and other methods. In this subsection,
we examine the relation between Aggdef(2) and previously proposed methods includ-
ing Aggdef(1).

4.6.1. Comparison with Aggdef(1). First, it should be stressed that Ag-
gdef(2) is computationally more efficient than Aggdef(1). Specifically, in contrast to
Aggdef(1), which always needs O(k2) flops, Aggdef(2) requires O(k�) flops when it
deflates � singular values. Hence, even when only a small number of singular values
are deflated (when �
 k), Aggdef(2) wastes very little work. In addition, as we saw
above, unlike Aggdef(1), Aggdef(2) preserves high relative accuracy of the computed
singular values, regardless of the window size k.

However, it is important to note that Aggdef(1) and Aggdef(2) are not mathe-
matically equivalent, although closely related. To see the relation between the two,
let us define the k × k unitary matrices Qi =

∏i
j=1 GR(k − j, k) for i = 1, . . . , k − 2.

After i Givens transformations are applied on line 4 of Aggdef(2), Qi(k − i : k, k)
(the i + 1 bottom part of the last column) is parallel to the corresponding part of

v = [v1, . . . , vk]
T , the null vector of B̂2. This can be seen by recalling that B̂2 is

upper-bidiagonal and the bottom i+1 elements of B̂2Qi(:, k) are all zeros. Note that
v is also the right-singular vector corresponding to σmin(B2).

Hence in particular, after k − 2 (the largest possible number) Givens transfor-
mations have been applied we have Qk−2(2 : k, k) = v(2 : k)/

√
1− v21 . It follows

that w in (4.1) is w =
√
ên−k+1v2/

√
1− v21 = −√q̂n−k+1v1/

√
1− v21 , where we

used the fact
√
q̂n−k+1v1 +

√
ên−k+1v2 = 0. Hence recalling (4.9) and x = w2, we

conclude that Aggdef(2) deflates
√
S + s as a converged singular value if |v1|√

1−|v1|2
<

min{Sε/√q̂n−k+1(q̂n−k+1 + ên−k+1),
√
Sε/q̂n−k+1}. On the other hand, as we dis-

cussed in section 3.1, Aggdef(1) deflates
√
S + s if |v1| <

√
Sε/
√
en−k+1. We conclude

that Aggdef(1) and Aggdef(2) are similar in the sense that both deflate the smallest
singular value of B2 when the first element of its right-singular vector v1 is small
enough, albeit with different tolerances.

The fundamental difference between Aggdef(1) and Aggdef(2) is that Aggdef(1)
deflates all the deflatable singular values at once, while Aggdef(2) attempts to deflate
singular values one by one from the smallest ones. As a result, Aggdef(2) deflates only
the smallest singular values of B2, while Aggdef(1) can detect the converged singular
values that are not among the smallest. Consequently, sometimes fewer singular
values are deflated by Aggdef(2). However, this is not a serious defect of Aggdef(2),
since, as we show in section 5.1, smaller singular values are more likely to be deflated
via aggressive early deflation. The numerical results in section 6 also show that the
total numbers of singular values deflated by the two strategies are typically about the
same.

4.6.2. Relation with Sorensen’s deflation strategy. A deflation strategy
closely related to Aggdef(2) is that proposed by Sorensen ([32], [4, sect. 4.5.7]) for
restarting the Arnoldi or Lanczos algorithm. Just like Aggdef(2), the strategy at-
tempts to deflate one converged eigenvalue at a time. Its idea can be readily applied
for deflating a converged eigenvalue in a k × k bottom-right submatrix A2 of an
n × n symmetric tridiagonal matrix A as in (2.6). An outline of the process is as
follows: Let (λ, v) be an eigenpair of A2 with v(k) �= 0. Sorensen defines the spe-
cial k × k orthogonal matrix QS = L + vuT

k , where uk = [0, . . . , 1] and L is lower
triangular with nonnegative diagonals except L(k, k) = 0 (see [32, 4] for a precise

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

40 Y. NAKATSUKASA, K. AISHIMA, AND I. YAMAZAKI

formulation of L). L also has the property that for i = 1, . . . , k − 1, the below-
diagonal part of the ith column L(i + 1 : k, i) is parallel to v(i + 1 : k). In [32]

it is shown that diag(In−k, Q
T
S)Adiag(In−k, QS) =

[
A1 tT

t ̂A2

]
for Â2 = diag(T, λ) and

t = [̂bn−k, 0, . . . , 0, bn−kv(1)]
T , where T is a (k − 1) × (k − 1) tridiagonal matrix.

Therefore, λ can be deflated if bn−kv(1) is negligibly small.
Now we discuss the close connection between Sorensen’s deflation strategy and

Aggdef(2). Recall the definition Qi =
∏i

j=1 GR(n − j, n). We shall see that Qk−2

and QS are closely related. To do so, we first claim that a unitary matrix with the
properties of QS is uniquely determined by the vector v. To see this, note that [16]
shows that for any vector v there exists a unique unitary upper Hessenberg matrix
expressed as a product of n − 1 Givens transformations, whose last column is v.
We also note that such unitary Hessenberg matrices is discussed in [26]. Now, by
permuting the columns of QS by right-multiplying the permutation matrix P such
that P (i, i+ 1) = 1 for i = 1, . . . , k − 1 and P (k, 1) = 1, and taking the transpose we
get a unitary upper Hessenberg matrix PTQT

S whose last column is v. Therefore, we
conclude that such QS is unique. Recalling that for i = 1, . . . , k − 2 the last column
of Qi is parallel to [0, . . . , 0, v(k − i : k)T]T , and noting that the irreducibility of B2

ensures v(k) �= 0 and that the diagonals of Qi are positive (because the diagonals of
(4.1) are positive), we conclude that QS = Qk−2 ·GR(n− k+ 1, n). Here, the Givens
transformation GR(n − k + 1, n) zeros the top-right w if applied to the last matrix
in (4.1).1 Conversely, Qi can be obtained in the same way as QS , by replacing v
with a unit vector parallel to [0, 0, . . . , 0, vk−i, . . . , vk]

T . Therefore, recalling (4.6), we
see that performing Aggdef(2) can be regarded as successively and implicitly forming
diag(In−k, Q

T
i)B

TB diag(In−k, Qi), where Qi is a truncated version of QS .
Table 4.1 summarizes the relation between aggressive early deflation (AED) as in

[5], Sorensen’s strategy, Aggdef(1), and Aggdef(2).

Table 4.1

Summary of deflation strategies.

Hessenberg Bidiagonal

Deflate all at once AED [5] Aggdef(1)
Deflate one at a time Sorensen [32] [18], Aggdef(2)

While being mathematically nearly equivalent to Sorensen’s strategy, Aggdef(2)
achieves significant improvements in both efficiency and stability. To emphasize
this point, we compare Aggdef(2) with another, more straightforward extension of
Sorensen’s deflation strategy for the bidiagonal case, described in [18]. The authors
in [18] use both the left and right singular vectors of a target singular value to form
two unitary matrices QS and PS (determined by letting y be the singular vectors
that determines the unitary matrix) such that diag(In−k, P

T
S) · B · diag(In−k, QS) is

bidiagonal except for the nonzero (n − k, n)th element, and its bottom diagonal is
“isolated.” Computing this orthogonal transformation requires at least O(k2) flops.
It can also cause loss of relative accuracy of the computed singular values. In contrast,
Aggdef(2) completely bypasses PS (whose effect is implicitly “taken care of” by the
two dstqds transformations) and applies the truncated version of QS without forming
it. The resulting rewards are immense: the cost is reduced to O(k) and high relative
accuracy is guaranteed.

1We do not allow applying the transformation GR(n − k + 1, n) in Aggdef(2) for the reason
mentioned in section 4.2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

dqds WITH AGGRESSIVE DEFLATION 41

5. Convergence analysis. In this section we develop convergence analyses of
dqds with aggressive early deflation. Specifically, we derive convergence factors of
the x elements in (4.2), which explain why aggressive early deflation improves the
performance of dqds. Our analyses also show that aggressive early deflation makes
a sophisticated shift strategy less vital for convergence speed, making the zero-shift
variant dqd a competitive alternative to dqds.

Our analysis focuses on Aggdef(2), because it is more efficient and always stable,
and outperforms Aggdef(1) in all our experiments. In addition, as we discussed in
section 4.6.1, the two strategies are mathematically closely related. We start by
estimating the value of the x elements as in (4.2) in Aggdef(2). Then in section 5.2
we study the impact on x of one dqds iteration.

5.1. Bound for x elements. As reviewed in section 2.1, in the dqds algorithm
the diagonals

√
qi of B converge to the singular values in descending order of mag-

nitude, and the ith off-diagonal element
√
ei converge to zero with the convergence

factor σi+1
2−S

σi
2−S [1]. In view of this, here we assume that qi are roughly ordered in de-

scending order of magnitude, and that the off-diagonals ei are small so that ei
 qi.
Under these assumptions we claim that the dstqds step changes the matrix B2

only slightly, except for the bottom element
√
qn which is mapped to 0. To see this,

note that since s < qn, we have q̂n−k+1 = qn−k+1 − s � qn−k+1, which also implies
ên−k+1 � en−k+1. Now since by assumption we have ei
 qi � q̂i, so d � −s
throughout the dstqds transformation. Therefore, the claim follows.

Now consider the size of the x element in Aggdef(2)-1 when it is chased up to the
top, (n− k+1, n) element. For definiteness here we denote by xi the value of x after
i transformations are applied. Initially we have x0 = ên−1 � en−1. Then the Givens
transformations are applied, and as seen in (4.3), the ith transformation reduces x by

a factor ên−i−1

q̂n−i+xi
. Therefore, after the application of k− 2 transformations x becomes

(5.1) x = ên−1

k−2∏
i=1

ên−i−1

q̂n−i + xi
≤ ên−1

k−2∏
i=1

ên−i−1

q̂n−i
� en−1

k−2∏
i=1

en−i−1

qn−i
.

This is easily seen to be small when qn−i � en−i−1 for i = 1, . . . , k − 2, which nec-
essarily holds in the asymptotic stage of dqds convergence. Note that asymptotically
we have xi
 q̂n−i, so that q̂n−i + xi � q̂n−i for i = 1, . . . , k − 2, and so all the
inequalities and approximations in (5.1) become an equality.

Now we consider deflating the �(≥ 2)th smallest singular value of B2 via the �th
run of Aggdef(2)-1 in Aggdef(2), assuming that the smallest �−1 singular values have
been deflated. Here we denote by x� the x element after the Givens transformations.
Under the same asymptotic assumptions as above we see that after the maximum
(k − �− 1) transformations the x� element is

(5.2) x� = ên−�

k−�−1∏
i=1

ên−i−�

q̂n−i−�+1 + xi
≤ ên−�

k−�−1∏
i=1

ên−i−�

q̂n−i−�+1
� en−�

k−�−1∏
i=1

en−i−�

qn−i−�+1
.

Several remarks regarding (5.2) are in order.
• While the analyses in [5, 19] are applicable to the more general Hessenberg
matrix, our result exhibits several useful simplifications by specializing in the
bidiagonal case. Our bound (5.2) on x� involves only the elements of B2.
On the other hand, the bound (2.5) in [5], which bound the spike vector

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

42 Y. NAKATSUKASA, K. AISHIMA, AND I. YAMAZAKI

elements in Aggdef(1) (after interpreting the problem in terms of computing
the eigenvalues of BTB), is difficult to use in practice because it requires
information about the eigenvector.
• By (5.2) we see that x� is typically larger for large �. This is because for large �,
fewer Givens transformations are applied, and en−� tends to be smaller for
small �, because as can be seen by (2.2), en−i typically converges via the
dqds iterations with a smaller convergence factor for small i. This suggests
that Aggdef(2) detects most of the deflatable singular values of B2, because it
looks for deflatable singular values from the smallest ones. Together with the
discussion in section 4.6.1, we argue that the numbers of singular values de-
flated by Aggdef(1) and Aggdef(2) are expected to be similar. Our numerical
experiments confirm that this is true in most cases.
• Equation (5.2) indicates that x� can be regarded as converged when

en−�

∏k−�−1
i=1

en−i−�

qn−i−�+1
is small. This is essentially proportional to the product

of the off-diagonal elements en−i−� for i = 0, 1, . . . , k − � − 1, because once
convergence reaches the asymptotic stage the denominators qn−i−�+1 con-
verge to the constants σn−i−�+1. Hence, (5.2) shows that x� can be deflated

when the product
∏k−�−1

i=0 en−i−� is negligibly small, which can be true even
if none of en−i−� is.

5.2. Impact of one dqd iteration. Here we study the convergence factor of
x� when one dqd (without shift; we discuss the effect of shifts shortly) iteration is
run. As we reviewed in the introduction, in the asymptotic stage we have qi � σ2

i and
ei → 0 with the convergence factor σ2

i+1/σ
2
i [1]. This is an appropriate measure for

the convergence factor of the dqd(s) algorithm with a conventional deflation strategy.
On the other hand, when Aggdef(2) is employed, the convergence factor of x� is a
more natural way to measure convergence. In this section, we discuss the impact of
running one dqd iteration on x�.

In this subsection we denote by B̃ the bidiagonal matrix obtained by running one
dqd step on B, and let q̃i, ẽi be the bidiagonal elements of B̃. Similarly denote by
x̃ the value of x when Aggdef(2) is applied to B̃. Then, in the asymptotic stage we

have q̃i � qi � σ2
i and ẽi � σ2

i+1

σ2
i
ei. Then by the estimate (5.2) we have

x̃� � ẽn−�

k−�−1∏
i=1

ẽn−i−�

q̃n−i−�+1
.

It follows that

x̃�

x�
�

∏k−�−1
i=0 ẽn−i−�∏k−�−1
i=0 en−i−�

·
∏k−�−1

i=1 q̃n−i−�+1∏k−�−1
i=1 q̃n−i−�+1

�
∏k−�−1

i=0 en−i−�(σ
2
n−i−�+1/σ

2
n−i−�)∏k−�−1

i=0 en−i−�

·
∏k−�−1

i=1 q̃n−i−�+1∏k−�−1
i=1 q̃n−i−�+1

=

k−�−1∏
i=0

σ2
n−i−�+1

σ2
n−i−�

=
σ2
n−�+1

σ2
n−k+1

.(5.3)

The estimate (5.3) suggests that asymptotically one dqd iteration reduces the mag-

nitude of x� by an approximate factor
σ2
n−�+1

σ2
n−k+1

. This is generally much smaller than

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

dqds WITH AGGRESSIVE DEFLATION 43

σ2
n−�+1

σ2
n−�

, the asymptotic convergence factor of en−� (which needs to be small to deflate

� smallest singular values by a conventional deflation strategy). We note that the
estimate (5.3) is still sharp in the asymptotic sense.

Simple example. The following example illustrates the sharpness of the conver-
gence estimate (5.3). Consider the bidiagonal matrix B of size n = 1000, defined by
qi = n+ 1− i, ei = 0.1 for i = 1, . . . , n− 1, that is,

(5.4) B = bidiag

(√
0.1 . .

√
0.1

√
0.1√

1000 . . .
√
2

√
1

)
.

To see the sharpness of the estimate (5.3), we set the window size to k = 30, and
ran a dqd iteration (without shifts; an experiment with shifts will appear shortly) on

B, then computed x̂�

x�

/
σ2
n−�+1

σ2
n−k+1

. We observed that2

(5.5) 1 + 6.79× 10−3 ≤ x̂�

x�

/
σ2
n−�+1

σ2
n−k+1

≤ 1 + 5.996× 10−2

for � = 1, . . . , k − 2. This suggests that (5.3) is a sharp estimate of the convergence
factor x̂�/x�. This behavior is not specific to the particular choice of B, and simi-
lar results were obtained generally with any graded diagonally dominant bidiagonal
matrix.

5.3. Effect of shifts and motivations for dqd. The estimate of x̃�/x� in
(5.3) suggests that the introduction of shifts may have little effect on the number
of deflatable eigenvalues in dqds with aggressive early deflation. Specifically, when
a shift s (< σ2

n) is applied to dqds, the convergence factor estimate (5.3) becomes
σ2
n−�+1−s

σ2
n−k+1

−s
. When a conventional deflation strategy is used, we can regard k = 2 and

� = 1, in which case this factor is greatly reduced with an appropriate shift s � σ2
n.

In fact, the zero-shift strategy dqd results in prohibitively slow convergence of the
bottom off-diagonal element, so a sophisticated shift strategy is imperative. However,
when aggressive early deflation is adopted so that k > 2, we see that the estimate
(5.3) is close to that of dqd, that is,

(5.6)
σ2
n−�+1 − s

σ2
n−k+1 − s

� σ2
n−�+1

σ2
n−k+1

for � = 2, 3, . . . , k− 2, because during a typical run of dqds we have σn−�+1 � σn > s
for such �. Hence, when dqds is equipped with aggressive early deflation, shifts may
not be essential for the performance. This observation motivates the usage of dqd
instead of dqds.

Using dqd instead of dqds has many advantages: dqd has a smaller chance of an
overflow or underflow [30] and smaller computational cost per iteration, not to mention
the obvious fact that computing the shifts is unnecessary.3 Furthermore, because the
shifts are prescribed to be zero, dqd can be parallelized by running multiple dqd in

2Assuming S = 1, about ten singular values were deflated by Aggdef(2), so only � ≤ 10 will
appear in actual computation. To fully investigate the convergence behavior of x here, we kept
running Aggdef(2) regardless of whether (4.9) was satisfied.

3Choosing the shift is a delicate task because a shift larger than the smallest singular value
results in breakdown of the Cholesky factorization that is implicitly computed by dqds. In DLASQ,
whenever a shift violates the positivity, the dqds iteration is rerun with a smaller shift.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

44 Y. NAKATSUKASA, K. AISHIMA, AND I. YAMAZAKI

a pipelined manner, just as multiple steps of the QR algorithm can be executed in
parallel when multiple shifts are chosen in advance [3, 34, 24]. We note that it has
been difficult to parallelize dqds in such a way, since an effective shift usually cannot
be determined until the previous dqds iteration is completed.

Simple example. To justify the above observation, we again use our example
matrix (5.4), and run five dqds iterations with the Johnson shift [17] to obtain B̃,

and compute the values x̃� by running Aggdef(2). Similarly we obtain B̂ by running
five dqd iterations and compute x̂�. Figure 5.1 shows plots of x�, x̂� and x̃� for � =
1, . . . , 15.

0 5 10 15

-70

-60

-50

-40

-30

-20

�

lo
g

x
� x�

x̂�

x̃�

Fig. 5.1. �-log x� plots for matrix B in (5.4). x̂� and x̃� are obtained from matrices after
running five dqd and dqds iterations, respectively.

We make two remarks on Figure 5.1. First, running Aggdef(2) on the original
B already lets us deflate about nine singular values (since we need x� � 10−30 to
satisfy (4.9)). This is because B has a graded and diagonally dominant structure that
typically arises in the asymptotic stage of dqds convergence, which is favorable for
Aggdef(2). Running dqd (or dqds) iterations generally reduces the magnitude of x�,

and for B̂ and B̃ we can deflate one more singular value by Aggdef(2).
Second, the values of x̂� and x̃� are remarkably similar for all � but � = 1. This

reflects our above estimates (5.3) and (5.6), which suggest shifts can help the conver-
gence only of the smallest singular value. Furthermore, as can be seen in Figure 5.1,
the smallest singular value tends to be already converged in the context of Aggdef(2),
so enhancing its convergence is not necessary. Therefore, we conclude that shifts may
have little or no effect on the overall deflation efficiency of Aggdef(2), suggesting that
a zero shift is sufficient and preferred for parallelizability.

6. Numerical experiments. This section shows results of numerical experi-
ments to compare the performance of different versions of dqds.

6.1. Pseudocodes. Algorithm 5 shows the pseudocode of dqds with aggressive
early deflation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

dqds WITH AGGRESSIVE DEFLATION 45

Algorithm 5. dqds with aggressive early deflation.

Inputs: Bidiagonal matrix B ∈ R
n×n, deflation frequency p

1: while size of B is larger than
√
n do

2: run p iterations of dqds
3: perform aggressive early deflation
4: end while
5: run dqds until all singular values are computed

On the third line, either Aggdef(1) or Aggdef(2) may be invoked. After the
matrix size is reduced to smaller than

√
n we simply use the standard dqds algorithm

because the remaining part needs only O(n) flops, the same as one dqds iteration for
the original matrix. Along with aggressive early deflation we invoke the conventional
deflation strategy after each dqds iteration, just like in the Hessenberg QR case [5].

As motivated in the previous section, we shall also examine the performance of the
zero-shift version, dqd with aggressive early deflation. Algorithm 6 is its pseudocode.

Algorithm 6. dqd with aggressive early deflation.

Inputs: Bidiagonal matrix B ∈ R
n×n, deflation frequency p

1: while size of B is larger than
√
n do

2: run one iteration of dqds, followed by p− 1 iterations of dqd
3: perform aggressive early deflation
4: end while
5: run dqds until all singular values are computed

Note that on line 2 of Algorithm 6, one dqds iteration is run prior to the dqd
iterations. This can be done even if we run the p iterations (1 dqds and p − 1 dqd)
in parallel, because this requires only the first shift. The single dqds iteration is
important for efficiency because typically a large shift s can be taken after a significant
number of singular values are deflated by aggressive early deflation.

6.2. Choice of parameters. Two parameters need to be specified when exe-
cuting Aggdef in Algorithm 5 or 6: the frequency p with which we invoke Aggdef, and
the window size k.

We first discuss our choice of the frequency p. It is preferable to set p small enough
to take full advantage of aggressive early deflation. This is the case especially for
Aggdef(2), because each execution requires only O(n�) flops, and experiments indicate
that the execution of Aggdef(2) typically takes less than 4% of the overall runtime.
In our experiments we let p = 16. This choice is based on the fact that when we run
dqd iterations in parallel, we need p ≥ np, where np is the number of processors run
in a pipelined fashion. Experiments suggest that setting p too large (say p > 300) can
noticeably deteriorate the performance on a sequential implementation, especially for
Algorithm 6 (dqd with Aggdef). For example, for the twelve test matrices described in
the next subsection, the runtime of dqd with Aggdef(2) with p = 300 was on average
almost twice that of p = 16. When shifts are used (dqds) the performance depends
less on p; dqds with Aggdef(2) with p = 300 was about just 10% slower than choosing
p = 16. More study is needed for a good choice of p on a parallel implementation of
dqd with Aggdef(2).

In practice, when a significant number of singular values are deflated by Aggdef,
the performance can often be further improved by performing another aggressive early

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

46 Y. NAKATSUKASA, K. AISHIMA, AND I. YAMAZAKI

deflation before starting the next dqds iteration. In our experiments we performed
another aggressive early deflation when three or more singular values were deflated
by Aggdef. A similar strategy is suggested in [5] for the Hessenberg QR algorithm.

We now discuss our choice of the window size k. The idea is to choose k flexibly,
using the information of the bottom-right part of B. From the estimate of x� in (5.1)
we see that increasing k reduces the size of x as long as en−k+1 < qn−k+2 holds. Hence
we compare en−i+1 and qn−i+2 for i = 1, 2, . . . , and set k to be the largest i such that
en−i+1 < qn−i+2. When this results in k ≤ 10, we skip Aggdef and go on to the next
dqds iteration to avoid wasting effort. The choice sometimes makes k too large (e.g.,
k = n when B is diagonally dominant), so we set a safeguard upper bound k ≤ √n.
In addition, from (4.9) and (5.1) we see that a singular value can be deflated once∏k−2

i=1
en−i−1

qn−i
is negligible, so we compute the products

∏k−2
i=11

en−i−1

qn−i
(we start taking

the product from i = 11 because we want to deflate more than one singular value; in
view of (5.2), with i = 11 we can expect � 10 deflations to occur) and decide to stop
increasing k once the product becomes smaller than ε2.

Through experiments we observed that the above choice of p and k is effective,
achieving speedups of on average about 25% for matrices n ≥ 10000, compared with
any static choice such as p = k =

√
n.

6.3. Experiment details. We compare the performance of the following four
algorithms.4

1. DLASQ: dqds subroutine of LAPACK version 3.2.2.
2. dqds+agg1: Algorithm 5, call Aggdef(1) on line 3.
3. dqds+agg2: Algorithm 5, call Aggdef(2) on line 3.
4. dqd+agg2: Algorithm 6, call Aggdef(2) on line 3.

We implemented our algorithms in FORTRAN by incorporating our deflation strate-
gies into the LAPACK routines dlasqx.f (x ranges from 1 to 6). Hence, our codes
perform the same shift and splitting strategies implemented in DLASQ.5 When run-
ning dqds+agg1, we used the LAPACK subroutine DBDSQR to compute the singular
values of B2 and the spike vector t in (3.1). All experiments were conducted on a
single core of a desktop machine with a quad core, Intel Core i7 2.67GHz Proces-
sor and 12GB of main memory. For compilation we used the f95 compiler and the
optimization flag −O3, and linked the codes to BLAS and LAPACK.

Table 6.1 gives a brief description of our test matrices. Matrix 1 is “nearly di-
agonal,” for which aggressive early deflation is particularly effective. Matrix 2 is a
“nicely graded” matrix [11], for which DLASQ needs relatively few (
 4n) iterations.
Matrix 3 is a Toeplitz matrix [11], which has uniform diagonals and off-diagonals. Ma-
trix 4 has highly oscillatory diagonal entires. Matrix 5 is a perversely graded matrix,
designed to be difficult for DLASQ. Matrices 6–10 are the Cholesky factors of test
tridiagonal matrices taken from [22]. For matrices 8–10, we applied an appropriate
shift to make the tridiagonal matrix positive definite before computing the Cholesky
factor. Matrices 11 and 12 have the property that some of the singular values are
tightly clustered.

6.4. Results. Results are shown in Figures 6.1–6.4, which compare the total
runtime, number of dqds iterations, percentage of singular values deflated via aggres-

4dqd with Aggdef(1) can be implemented, but we do not present its results because dqd+agg2
was faster in all our experiments.

5It is possible that when equipped with aggressive early deflation, a different shift strategy for
dqds is more efficient than that used in DLASQ. This is a possible topic of future study.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

dqds WITH AGGRESSIVE DEFLATION 47

Table 6.1

Test bidiagonal matrices.

n Description of the bidiagonal matrix B Source

1 30000
√
qi = n+ 1− i,

√
ei = 1

2 30000
√
qi−1 = β

√
qi,

√
ei =

√
qi, β = 1.01 [11]

3 30000 Toeplitz:
√
qi = 1,

√
ei = 2 [11]

4 30000
√
q2i−1 = n+ 1− i,

√
q2i = i,

√
ei = (n− i)/5 [28]

5 30000
√
qi+1 = β

√
qi (i ≥ n/2),

√
qn/2 = 1,√

qi−1 = β
√
qi (i ≤ n/2),

√
ei = 1, β = 1.01

6 30000 Cholesky factor of tridiagonal (1, 2, 1) matrix [22, 30]
7 30000 Cholesky factor of Laguerre matrix [22]
8 30000 Cholesky factor of Hermite recurrence matrix [22]
9 30000 Cholesky factor of Wilkinson matrix [22]
10 30000 Cholesky factor of Clement matrix [22]
11 13786 matrix from electronic structure calculations [31]
12 16023 matrix from electronic structure calculations [31]

sive early deflation, and the percentage of the time spent performing aggressive early
deflation relative to the overall runtime. We executed ten runs and took the aver-
age. The numbers in parentheses show the performance of DLASQ for each matrix:
the runtime in seconds in Figure 6.1 and the iteration counts divided by the matrix
size n in Figure 6.2. Although not shown in the figures, in all our experiments we
confirmed the singular values are computed to high relative accuracy. Specifically,
the maximum elementwise relative difference of the singular values computed by our
algorithms from those computed by DLASQ was smaller than both 1.5 × 10−13 and
nε for each problem.

Matrices (seconds)

T
im

e
ra

ti
o

1
(2
0.
7)

2
(2
.0
)

3
(2
3.
8)

4
(3
6.
6)

5
(1
5.
0)

6
(2
6.
9)

7
(2
2.
7)

8
(2
2.
8)

9
(3
5.
8)

10
 (
30
.2
)

11
 (
5.
2)

12
 (
11
.8
)0

0.5

1

1.5

2 dqds+agg1

dqds+agg2

dqd+agg2

Fig. 6.1. Ratio of time/DLASQ time.

The results show that aggressive early deflation, particularly Aggdef(2), can signif-
icantly reduce both the runtime and iteration count of DLASQ. We obtained speedups
of up to a factor 50 with dqds+agg2 and dqd+agg2.

dqds+agg2 was notably faster than DLASQ in most cases, and never slower.
There was no performance gain for the “difficult” matrix 5, for which many dqds
iterations are needed before the iteration reaches the asymptotic stage where the
matrix is graded and diagonally dominant, after which Aggdef(2) becomes effective.
dqds+agg2 was also at least as fast as dqds+agg1 in all our experiments. This is
because as discussed in section 4.1, Aggdef(1) requires at least O(k2) flops, while
Aggdef(2) needs only O(k�) flops when it deflates � ≤ k singular values.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

48 Y. NAKATSUKASA, K. AISHIMA, AND I. YAMAZAKI

Matrices (Iterations/n)

It
er

at
io

n
ra

ti
o

1
(3
.0
6)

2
(0
.1
0)

3
(3
.9
6)

4
(4
.5
1)

5
(1
7.
6)

6
(4
.0
0)

7
(3
.4
6)

8
(3
.8
7)

9
(5
.3
0)

10
 (
4.
00
)

11
 (
3.
63
)

12
 (
5.
68
)0

0.5

1

1.5

2

dqds+agg1

dqds+agg2

dqd+agg2

Fig. 6.2. Ratio of iteration/DLASQ iteration.

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Matrices

σ
i
de

fla
te

d
by

ag
gd

ef
(%

)

dqds+agg1

dqds+agg2

dqd+agg2

Fig. 6.3. Percentage of singular values deflated by aggressive early deflation.

We see from Figures 6.2 and 6.3 that dqds+agg1 and dqds+agg2 usually require
about the same number of iterations and deflate similar numbers of singular values
by Aggdef. The exception in matrix 2 is due to the fact that the safe window size
enforced in Aggdef(1) (described in section 3.1) is often much smaller than k (de-
termined as in section 6.2), making Aggdef(1) less efficient. For dqd+agg2, usually
most of the singular values are deflated by Aggdef(2). This is because with zero shifts
the bottom off-diagonal converges much slower, making the conventional deflation
strategy ineffective.

Finally, in many cases dqd+agg2 was the fastest algorithm requiring comparable
numbers of iterations to dqds+agg2, except for problems that are difficult (iteration
≥ 5n) for DLASQ. As we mentioned earlier, this is in major contrast to dqd with a
conventional deflation strategy, which is impractical due to the slow convergence of
each off-diagonal element. Furthermore, as can be seen in Figure 6.4, with Aggdef(2)
the time spent executing aggressive early deflation is typically less than 4%.6 This
observation makes the parallel implementation of dqd+agg2 particularly promising
since it is already the fastest of the tested algorithms in many cases, and its parallel
implementation is expected to speed up the dqd runs, which are essentially taking up

6Exceptions are in “easy” cases, such as matrices 1 and 2, where dqd+agg2 requires many
fewer iterations than 4n. In such cases dqd+agg2 spends relatively more time executing Aggdef(2)
recursively. This is by no means a pathological case, because dqd+agg2 is already very fast with a
sequential implementation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

dqds WITH AGGRESSIVE DEFLATION 49

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Matrices

T
im

e
sp

en
t

ru
nn

in
g

ag
gd

ef
(%

)

dqds+agg1

dqds+agg2

dqd+agg2

Fig. 6.4. Percentage of time spent executing aggressive early deflation.

more than 95% of the time.
We also tested with more than 500 other bidiagonal matrices, including the

405 bidiagonal matrices from the tester in the development of DLASQ [21], nine test
matrices from [30], and six matrices that arise in electronic structure calculations [31].
We show in Figure 6.5 a scatter plot of the runtime ratio over DLASQ against the
matrix size for dqds+agg2 and dqd+agg2. To keep the plot simple we do not show
dqds+agg1, which was never faster than dqds+agg2. Also, to ensure that the com-
puted time is measured reliably, we show the results only for 285 matrices for which
DLASQ needed more than 0.01 second.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.5

1

1.5

2

Matrix size

T
im

e
ra

ti
o

dqds+agg2

dqd+agg2

Fig. 6.5. Ratio of time/DLASQ time for test matrices.

We note that many of these matrices represent “difficult” cases (DLASQ needs
more than 5n iterations), as they were generated for checking the algorithm robustness.
In such cases, many dqd(s) iterations are needed for the matrix to reach the asymptotic
graded structure, during which using Aggdef(2) may not be of much help. Nonethe-
less, dqds+agg2 was always at least as fast as DLASQ for all matrices larger than
3000. Moreover, dqds+agg2 was never slower than DLASQ by more than 0.016 sec-
ond, so we argue that in practice it is never slower. The speed of dqd+agg2 varied
more depending on the matrices, taking up to 0.15 second more than or 1.9 times as
much time as DLASQ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

50 Y. NAKATSUKASA, K. AISHIMA, AND I. YAMAZAKI

7. Conclusion. We proposed two algorithms dqds+agg1 and dqds+agg2 to in-
corporate aggressive early deflation into dqds for computing the singular values of
bidiagonal matrices to high relative accuracy. We presented numerical results to
demonstrate that aggressive early deflation can significantly speed up dqds. In par-
ticular, dqds+agg2 is at least as fast as the LAPACK implementation of dqds, and
is often much faster. The zero-shifting strategy exhibits even more promising results
with the potential to be parallelized. We plan to report the implementation and
performance of a parallel version of dqd+agg2 in a future work.

Acknowledgments. We are extremely grateful to Professor Beresford Parlett
for his numerous and insightful comments. His suggestions inspired us to look into a
root-free deflation strategy (which led to Aggdef(2)), and let us realize the connection
between Aggdef(2) and Sorensen’s deflation strategy. We thank Dr. Osni Marques
and Matthias Petschow for providing the test matrices. We thank the referees for
their helpful suggestions, which helped us improve this paper considerably.

REFERENCES

[1] K. Aishima, T. Matsuo, K. Murota, and M. Sugihara, On convergence of the DQDS algo-
rithm for singular value computation, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 522–537.

[2] K. Aishima, T. Matsuo, K. Murota, and M. Sugihara, Superquadratic convergence of
DLASQ for computing matrix singular values, J. Comput. Appl. Math., 234 (2010),
pp. 1179–1187.

[3] Z. Bai and J. Demmel, On a block implementation of Hessenberg multishift QR iteration, Int.
J. High Speed Comput., 1 (1989), pp. 97–112.

[4] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.

[5] K. Braman, R. Byers, and R. Mathias, The multishift QR algorithm. II. Aggressive early
deflation, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 948–973.

[6] J. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[7] J. Demmel and W. Kahan, Accurate singular values of bidiagonal matrices, SIAM J. Sci.

Statist. Comput., 11 (1990), pp. 873–912.
[8] I. S. Dhillon, A New O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector

Problem, Ph.D. thesis, University of California, Berkeley, CA, 1997.
[9] I. S. Dhillon and B. N. Parlett, Multiple representations to compute orthogonal eigenvectors

of symmetric tridiagonal matrices, Linear Algebra Appl., 387 (2004), pp. 1–28.
[10] I. S. Dhillon and B. N. Parlett, Orthogonal eigenvectors and relative gaps, SIAM J. Matrix

Anal. Appl., 25 (2004), pp. 858–899.
[11] K. V. Fernando and B. N. Parlett, Accurate singular values and differential qd algorithms,

Numer. Math., 67 (1994), pp. 191–229.
[12] J. G. F. Francis, QR transformation: A unitary analogue to the LR transformation. I, Com-

put. J., 4 (1961), pp. 265–271.
[13] J. G. F. Francis, The QR transformation. II, Comput. J., 4 (1962), pp. 332–345.
[14] G. H. Golub and G. Meurant, Matrices, Moments and Quadrature with Applications, Prince-

ton Ser. Appl. Math., Princeton University Press, Princeton, NJ, 2010.
[15] G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp., 23

(1969), pp. 221–230.
[16] W. B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math.,

16 (1986), pp. 1–8.
[17] C. R. Johnson, A Gersgorin-type lower bound for the smallest singular value, Linear Algebra

Appl., 112 (1989), pp. 1–7.
[18] E. Kokiopoulou, C. Bekas, and E. Gallopoulos, Computing smallest singular triplets with

implicitly restarted Lanczos bidiagonalization, Appl. Numer. Math., 49 (2004), pp. 39–61.
[19] D. Kressner, The effect of aggressive early deflation on the convergence of the QR algorithm,

SIAM J. Matrix Anal. Appl., 30 (2008), pp. 805–821.
[20] C.-K. Li and R.-C. Li, A note on eigenvalues of perturbed Hermitian matrices, Linear Algebra

Appl., 395 (2005), pp. 183–190.
[21] O. A. Marques, private communication, 2010.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

dqds WITH AGGRESSIVE DEFLATION 51

[22] O. A. Marques, C. Voemel, J. W. Demmel, and B. N. Parlett, Algorithm 880: A testing
infrastructure for symmetric tridiagonal eigensolvers, ACMTrans. Math. Softw., 35 (2008),
8.

[23] R. Mathias, Quadratic residual bounds for the Hermitian eigenvalue problem, SIAM J. Matrix
Anal. Appl., 19 (1998), pp. 541–550.

[24] T. Miyata, Y. Yamamoto, and S.-L. Zhang, A fully pipelined multishift QR algorithm for
parallel solution of symmetric tridiagonal eigenproblems, IPSJ Trans. Advanced Comput-
ing Systems, 1 (2008), pp. 14–27.

[25] S. Oliveira, A new parallel chasing algorithm for transforming arrowhead matrices to tridi-
agonal form, Math. Comp., 67 (1998), pp. 221–235.

[26] B. Parlett and E. Barszcz, Another orthogonal matrix, Linear Algebra Appl., 417 (2006),
pp. 342–346.

[27] B. N. Parlett, The Symmetric Eigenvalue Problem, SIAM, Philadelphia, 1998.
[28] B. N. Parlett, private communication, 2010.
[29] B. N. Parlett and J. Le, Forward instability of tridiagonal QR, SIAM J. Matrix Anal. Appl.,

14 (1993), pp. 279–316.
[30] B. N. Parlett and O. A. Marques, An implementation of the dqds algorithm (positive case),

Linear Algebra Appl., 309 (2000), pp. 217–259.
[31] M. Petschow, private communication, 2010.
[32] D. Sorensen, Deflation for Implicitly Restarted Arnoldi Methods, Technical Report 98-12,

CAAM, Rice University, Houston, TX, 1998.
[33] G. W. Stewart, Matrix Algorithms. Vol. I: Basic Decompositions, SIAM, Philadelphia, 1998.
[34] R. A. van de Geijn, Deferred shifting schemes for parallel QR methods, SIAM J. Matrix Anal.

Appl., 14 (1993), pp. 180–194.
[35] P. Willems, On MR3-type Algorithms for the Tridiagonal Symmetric Eigenproblem and the

Bidiagonal SVD, Ph.D. thesis, University of Wuppertal, Wuppertal, Germany, 2010.
[36] H. Zha, A two-way chasing scheme for reducing a symmetric arrowhead matrix to tridiagonal

form, J. Numer. Linear Algebra Appl., 1 (1992), pp. 49–57.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

