CAT 2019

Problem Sheet 2

Homology

- (1) Find the smallest open cover of the circle with contractible intersections. What is the nerve of this good cover? Find a cover of the circle containing at least two open sets which violates the hypotheses of the nerve lemma. What is the nerve of this bad cover?
- (2) Let *K* be a simplicial complex. Show that for any oriented *n*-simplex $\sigma = (v_0, \ldots, v_n)$ in *K*, the squared algebraic boundary $\partial_{n-1}^K \circ \partial_n^K(\sigma)$ is the zero chain in C_{n-2}^K .
- (3) Show that the Euler characteristic of a finite simplicial complex, usually defined as the alternating count of simplices, also equals the alternating sum of dimensions of homology groups:

$$\chi(K) = \sum_{i=0}^{\dim K} (-1)^i \dim H_i(K)$$

(You can use \mathbb{R} coefficients for the homology).

(4) A simplicial complex is *connected* if any two vertices *u* and *v* can be connected by a path of consecutive edges, i.e.,

 $u \leftrightarrow w_0 \leftrightarrow w_1 \leftrightarrow \cdots \leftrightarrow w_k \leftrightarrow v$

Show that $H_0(K)$ has dimension one whenever *K* is connected.

- (5) Show that for any simplicial map $f : K \to L$, the induced linear maps $C_i f : C_i^K \to C_i^L$ constitute a chain map.
- (6) Compute the homology of a 2-sphere modelled as the boundary ∂K of a 3-simplex *K*.
- (7) Let *K* and *L* be simplicial complexes. Identify a vertex *v* of *K* with a vertex *w* of *L* to create a new simplicial complex $K \wedge L$. Prove that $H_i(K \wedge L) \simeq H_i(K) \oplus H_i(L)$ for all i > 0. Hint: Mayer-Vietoris.