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1.1 COMBINATORICS

Let V be a finite nonempty set whose elements we will call vertices.

DEFINITION 1.1. A simplicial complex on V is a collection K of nonempty subsets of V
subject to two requirements:

• for each vertex v in V, the singleton {v} is in K, and
• if τ is in K and σ ⊂ τ then σ must also be in K.

The nonempty subsets which lie in a simplicial complex K are called the simplices of K. The
dimension of a simplex σ in K is defined to be

dim σ = #σ− 1,

where #σ denotes the cardinality of (or, the number of vertices contained in) σ. Thus, the sin-
gletons {v} all lie in K and have dimension zero, all pairs {v, v′} which happen to lie in K have
dimension one, and so forth. The dimension of K itself is given by taking a maximum over
constituent simplices, i.e.,

dim K = max{dim σ | σ ∈ K}.

We will write Ki to denote the set of all i-dimensional simplices in K; the first requirement of
Definition 1.1 guarantees that K0 equals the vertex set V. The figure below contains cartoon
depictions of a vertex set V with four elements, a simplicial complex K and a non-simplicial
complex K′ — the fact that the set {1, 2, 3} is present in K′ but the subset {1, 3} is not disqualifies
K′ from being a simplicial complex.

Here are some more exciting examples of simplicial complexes.

• Graphs: a (finite, undirected, simple) graph is a pair G = (V, E) consisting of a finite
set V (whose elements are called vertices as before) and a set E ⊂ V × V consisting
of distinct vertex-pairs, usually called edges. Every graph automatically forms a one-
dimensional simplicial complex K with V = K0 and E = K1.
• Solid Simplices: for each integer k ≥ 0, the solid k-simplex is the simplicial complex

∆(k) defined on the vertex set {0, 1, . . . , k} whose simplices are all possible subsets of
vertices.
• Hollow simplices: the hollow k-simplex (for each integer k ≥ 1) is denoted ∂∆(k) and

defined exactly like a solid k-simplex, except that we discard the unique top-dimensional
simplex {v0, . . . , vk}. Thus, ∂∆(k) has dimension k− 1.

The figure below illustrates a graph, a solid 2-simplex and a hollow 2-simplex respectively.
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So far, the structure of a simplicial complex appears to be purely combinatorial — we are given
a universal finite set V of vertices, and we may select any collection K of subsets of V provided
that the two constraints of Definition 1.1 are satisfied. The first step towards expanding this
perspective beyond combinatorics is to formally relate simplices with their subsets.

DEFINITION 1.2. Given two simplices σ and τ of a simplicial complex K, we say that σ is a
face of τ, denoted σ ≤ τ, whenever every vertex of σ is also a vertex of τ.

Given a pair σ ≤ τ of simplices of a simplicial complex K, we call the difference dim τ−dim σ
the codimension of σ as a face of τ; note that the codimension is always a non-negative integer.

1.2 SUBCOMPLEXES, CLOSURES AND FILTRATIONS

Knowledge of face relations between simplices allows us to define subsets of simplicial com-
plexes which are simplicial complexes in their own right.

DEFINITION 1.3. Let K be a simplicial complex. A subset L ⊂ K of simplices is called a
subcomplex of K if it satisfies the following property: for each simplex τ in L, if σ is a face of τ
in K, then σ also belongs to L.

In general, for a subcomplex L ⊂ K, we do not require every vertex of K to be a vertex of L.

EXAMPLE 1.4. Each hollow k-simplex ∂∆(k) naturally forms a subcomplex of the corre-
sponding solid k-simplex ∆(k); each vertex of a given simplicial complex is automatically a
subcomplex.

If you are handed a collection K′ of simplices in some simplicial complex K, it is often desirable
to check how far K′ is from being a subcomplex of K. The following notion is often helpful when
performing such checks.

DEFINITION 1.5. The closure of a collection of simplices K′ in a simplicial complex K is de-
fined to be the smallest subcomplex L ⊂ K satisfying K′ ⊂ L.

Evidently, a nonempty subcollection K′ ⊂ K of simplices forms a subcomplex if and only if it
equals its own closure. It should be noted that the closure of a given collection K′ of simplices
can be much larger than K′. The following exercise is highly recommended: if σ is a single k-
dimensional simplex in a simplicial complex K, show that the closure of σ in K contains 2k − 1
simplices. Of particular interest to us here are ascending chains of subcomplexes.

DEFINITION 1.6. Let K be a simplicial complex; a filtration of K (of length n) is a nested
sequence of subcomplexes of the form

F1K ⊂ F2K ⊂ · · · ⊂ Fn−1K ⊂ FnK = K.
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In general, the dimensions of the intermediate FiK are not constrained by i. On the other hand,
in order to have a well-defined notion of length, we require FiK 6= Fi+1K for all i.

The figure below depicts a filtration of length four of the simplicial complex in the right-most
panel; the things to check are that each panel contains a genuine simplicial complex, and that
these simplicial complexes are getting strictly larger as we scan from left to right.

1.3 GEOMETRIC REALIZATION

The geometric simplex spanned by a collection of points {x0, x1, . . . , xk} in Rn is the closed
subset of Rn given by {

k

∑
i=0

tixi

∣∣∣ where ti ≥ 0 and
k

∑
i=0

ti = 1

}
.

These points {x0, . . . , xk} are said to be affinely independent if the collection of vectors

{(x1 − x0), (x2 − x0), . . . , (xk − x0)}
is linearly independent. There can, therefore, be at most (n + 1) affinely independent points in
Rn; the canonical example of such a set has x0 as the origin while xi for 0 < i ≤ n is the standard
basis vector with 1 in the i-th coordinate and zeros elsewhere.

DEFINITION 1.7. Let φ : K0 → Rn be any function that sends the vertices of K to points in
Rn. The geometric realization of K with respect to φ is the union

|K|φ =
⋃

σ∈K
|σ|φ,

where for each σ = {v0, . . . , vk} in K, the set |σ|φ ⊂ Rn is the geometric simplex spanned by the
points {φ(v0), . . . , φ(vk)}.

If we use a particularly degenerate φ : K0 → Rn, such as the map sending every vertex
to the origin, then the topological space |K|φ ⊂ Rn might be quite uninteresting and bear no
resemblance with K. We call φ : K0 → Rn an affine embedding of K in Rn if φ is injective (i.e.,
it sends different vertices to different points) and if its image φ(K0) is affinely independent. It
turns out that the topology of |K|φ is independent of the choice of φ provided that we stay within
the realm of affine embeddings.

PROPOSITION 1.8. For any two affine embeddings φ, ψ : K0 → Rn, there is a homeomorphism
|K|φ ' |K|ψ between the corresponding geometric realizations.

PROOF. Let K0 = {v0, . . . , vk} be the vertex set of K; for each i in {1, . . . k} define the following
sets of vectors in Rn

xi = φ(vi)− φ(v0) and yi = ψ(vi)− ψ(v0).
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Since the vectors {xi} and {yi} are linearly independent by our assumption on φ and ψ, they
each span (possibly distinct) k-dimensional subspaces of Rn. Thus, there is an invertible n× n
matrix M sending xi to yi for each i, and this M maps |K|φ to |K|ψ homeomorphically. �

In light of the preceding result, we will usually write the geometric realization of a simplicial
complex K as |K|, and omit any mention whatsoever of the affine embedding φ. It is often
convenient to use the endpoints of standard basis vectors in Rn as targets of the vertices — this
ensures, for instance, that every simplicial complex K has a geometric realization embeddable in
Rn for n = #K0. The figure below depicts the geometric realizations of the solid simplices ∆(1)
and ∆(2) with respect to this standard basis embedding.

The geometric realization |∆(k)| is homeomorphic to a k-dimensional disk while the real-
ization of ∂∆(k) is a homeomorphic to the (k − 1)-dimensional sphere. Geometric realizations
allow us to look beyond the combinatorial aspects of simplicial complexes and seek structure in
the geometry and topology of their realizations. They also provide a rigorous justification for
depicting simplices of dimension 0, 1, 2, 3, . . . as points, lines, triangles, tetrahedra, and so forth.

1.4 SIMPLICIAL MAPS

Let K and L be simplicial complexes.

DEFINITION 1.9. A simplicial map f : K → L is an assignment K0 → L0 of vertices to
vertices which sends simplices to simplices. So for each simplex σ = {v0, . . . , vk} of K, the
image f (σ) = { f (v0), . . . , f (vk)}must be a simplex of L.

It is important to note that f as defined above may not be injective, so in general we allow
f (vi) = f (vj) even when vi 6= vj. Thus, we only have an inequality dim f (σ) ≤ dim σ.

EXAMPLE 1.10. Whenever L ⊂ K is a subcomplex, the inclusion map K ↪→ L sends each
simplex of L to the same simplex in K. In the special case L = K, this inclusion is called the
identity map of K. All such inclusion maps are injective by definition. At the other end of
the spectrum, there is a unique surjective simplicial map K � •, where • denotes the trivial
simplicial complex with only one vertex — so every simplex of K is sent to this single vertex!

One can compose simplicial maps in a straightforward way — given f : K → L and g : L →
M, the composite g ◦ f : K → M sends each simplex σ of K to the simplex g( f (σ)) of L. We call
the simplicial map f : K → L an isomorphism if there exists an inverse, i.e., a simplicial map
g : L → K so that the composites g ◦ f and f ◦ g are the identity maps of K and L respectively.
Simplicial maps induce honest continuous maps between geometric realizations, which behave
as well as one might expected, as described in the following result.

PROPOSITION 1.11. For any simplicial map f : K → L,
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(1) there is an indued continuous function | f | : |K| → |L| between geometric realizations so that
for each simplex σ in K, the geometric simplex | f (σ)| ⊂ |L| is exactly the image under | f | of
the geometric simplex |σ| ⊂ |K|; and moreover,

(2) if we have a second simplicial map g : L→ M, then |g ◦ f | and |g| ◦ | f | coincide as continuous
maps |K| → |M|.

The proof of both statements is a reasonable exercise once we explain how to construct | f |
from f . Let φ : K0 → Rm and ψ : L0 → Rn be any affine embeddings. Now each point x in
|K| = |K|φ can be uniquely written as a linear combination x = ∑i ti · φ(vi) where vi ranges over
all the vertices of K and the ti are non-negative real numbers satisfying ∑i ti = 1. The image
| f |(x) of this point in |L| = |L|ψ is then given by the formula

| f |(x) = ∑
i

ti · ψ ◦ f (vi). (1)

If you restrict this map to the realization of a single simplex |σ|φ ⊂ |K|φ, you will discover that
| f | is an honest linear map onto the realization of the image simplex | f (σ)|ψ ⊂ |L|ψ. For this
reason, such continuous maps are called piecewise-linear, and their study forms a rich subject
in its own right.

One natural question that you might ask is when two simplicial complexes K and L produce
homeomorphic geometric realizations |K| and |L|. It is a consequence of Proposition 1.8 that any
simplicial isomorphism f : K → L induces a homeomorphism | f | between |K| and |L|— but in
general |K| and |L| can be homeomorphic even if there is no simplicial isomorphism relating K
to L. We will describe examples of this phenomenon in the next section.

1.5 BARYCENTRIC SUBDIVISION

Let K be a simplicial complex.

DEFINITION 1.12. The barycentric subdivision of K is a new simplicial complex Sd K defined
as follows; for each dimension i ≥ 0, the i-dimensional simplices are given by all sequences

σ0 < σ1 < · · · < σi−1 < σi

of (distinct) simplices in K ordered by the face relation.

This definition is liable to cause confusion until we see what barycentric subdivision looks
like geometrically. The figures below depict (some) barycentric simplices within the geometric
realizations of the solid simplices ∆(1) and ∆(2) as well as the hollow 3-simplex ∂∆(3).

In light of these figures, it is clear that the geometric realizations |K| and |Sd K| agree for
every simplicial complex K; we record this not-too-surprising fact below.

PROPOSITION 1.13. For any simplicial complex K, there is a homeomorphism between geometric
realizations |K| and |Sd K|.
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You can check just by counting simplices across various dimensions that for non-trivial K
there can be no simplicial isomorphism K → Sd K. Since Sd K is itself a simplicial complex, it can
be further barycentrically subdivided. We refer to this second barycentric subdivision as Sd2 K =
Sd(Sd K), and similarly define Sdn K for all larger n. By Proposition 1.13, all the geometric
realizations |Sdn K| are homeomorphic regardless of n ≥ 1, even though there are no simplicial
isomorphisms which induce these homeomorphisms.

1.6 FILTRATIONS FROM DATA

By data here we mean a finite set of observations with a well-defined notion of pairwise dis-
tance, with the typical example being a finite collection of points in Rn equipped with the stan-
dard Euclidean distance. But in general such observations might not come with any embedding
into Euclidean space. One common example is furnished by dissimilarity matrices — given a
set of observations O1, . . . , Ok, one can often build a k× k symmetric matrix whose entry in the
(i, j)-th position measures the difference between Oi and Oj. Here is a convenient mathematical
framework which encompasses all notions of datasets that are relevant to us here.

DEFINITION 1.14. A metric space (M, d) is a pair consisting of a set A and a function

d : M×M→ R,

called the metric, satisfying four properties:
(1) identity: d(x, x) = 0 for each x in M,
(2) positivity: d(x, y) > 0 for each x 6= y in M,
(3) symmetry: d(x, y) = d(y, x) for all x, y in M, and most importantly,
(4) triangle inequality: d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z in M.

When the metric is clear from context, we will denote the metric space simply by M; this hap-
pens, for instance, when M is a a subset of some Euclidean space Rn. In this case, d(x, y) is
understood to be the Euclidean distance ‖x− y‖ for all x and y in M. In fact, any subset A ⊂ M
of an ambient metric space (M, d) is automatically given the structure of a metric space in its
own right, since we can simply restrict d to A× A.

One fundamental idea behind topological data analysis is best viewed by considering the
special case where M is a finite collection of points in the Euclidean space Rn. For such point
clouds, there is a well-defined notion of thickening by any scale ε > 0 — namely, M+ε is the union
of ε-balls in Rn around the points of M. Various thickenings are illustrated in the figure below.
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The hope is to better understand the geometric structure of M across various scales. One ob-
stacle in this quest is that the union of balls M+ε is a remarkably inconvenient object from the
perspective of designing algorithms — for instance, if you were given a set of points M ⊂ R2

and a scale ε > 0, how would you program a computer to determine whether or not M+ε was
connected? To address such questions, one replaces unions of balls by filtrations of simplicial
complexes (which we encountered in Definition 1.6). There are two common choices of filtra-
tions — Vietoris-Rips and Čech.1

DEFINITION 1.15. Let (M, d) be a finite metric space. The Vietoris-Rips filtration of M is an
increasing family of simplicial complexes VRε(M) indexed by the real numbers ε ≥ 0, defined
as follows:

a subset {x0, x1, . . . , xk} ⊂ M forms a k-dimensional simplex in VRε(M) if and
only if the pairwise distances satisfy d(xi, xj) ≤ ε for all i, j.

The astute reader may have noticed that we are indexing the simplicial complexes in this fil-
tration by real numbers ε ≥ 0 rather than finite subsets of the form {1, 2, . . . , n} as demanded
by Definition 1.6. The disparity between the two scenarios is artificial — since we have assumed
that M is finite, there are only finitely many pairwise distances d(x, y) encountered among the el-
ements of M, so there are only finitely many ε values where new simplices are added to VRε(M).
Those who have not met Vietoris-Rips filtrations before can get better acquainted by verifying
the following facts:

(1) the set VRε(M) is a simplicial complex for each ε > 0,
(2) the elements of M are vertices of each such VRε(M), and
(3) for any pair 0 ≤ ε ≤ ε′ of real numbers, VRε(M) is a subcomplex of VRε′(M).

We will see an example of a Vietoris-Rips filtration shortly; first let us examine the Čech alterna-
tive.

DEFINITION 1.16. Let M be a finite subset of a metric space (Z, d). The Čech filtration of M
with respect to Z is the increasing family of simplicial complexes Cε indexed by ε ≥ 0 defined :

a subset {x0, x1, . . . , xk} ⊂ M forms a k-dimensional simplex in Cε(M) if and
only if there exists some z in Z satisfying d(z, xi) ≤ ε for all i.

Although the larger metric space Z plays a starring role in deciding when a simplex lies inside
Cε(M), it is customary to suppress it from the notation (in any case the typical scenario is Z = Rn

with the Euclidean metric). This blatant dependence on Z is the biggest immediate difference
between Čech filtrations and Vietoris-Rips filtrations — the Vietoris Rips filtration can be defined
directly from knowledge of the metric on M whereas the Čech filtration can not.

To examine the key differences between these two filtrations, consider the three-element met-
ric space (M, d) illustrated below.

1This is pronounced “check”.



1. BONUS: LOCAL GEOMETRY 12

The Vietoris Rips filtration of M at all scales ε ≥ 0 is given by the following lists of simplices:

VRε(M) =


{x0, x1, x2} 0 ≤ ε < 1
{x0, x1, x2, x0x1} 1 ≤ ε < 2
{x0, x1, x2, x0x1, x0x2} 2 ≤ ε < 2.5
{x0, x1, x2, x0x1, x0x2, x1x2, x0x1x2} ε ≥ 2.5

It is crucial to note that the edge x0x2 and the 2-simplex x0x1x2 enter the filtration at exactly the
same scale, i.e., ε = 2.5. Let us now contrast this with the Čech filtration for the same M, but
now viewed as a subset of three points in the Euclidean plane R2. Here, the edge x0x2 and the
2-simplex x0x1x2 will not appear simultaneously. Let r > 0 be the radius of the smallest ball
which encloses all three points, like so:

The Čech filtration of M as a subset of R2 is given by

Cε(M) =



{x0, x1, x2} 0 ≤ ε < 0.5
{x0, x1, x2, x0x1} 0.5 ≤ ε < 1
{x0, x1, x2, x0x1, x0x2} 1 ≤ ε < 1.25
{x0, x1, x2, x0x1, x0x2, x1x2} 1.25 ≤ ε < r
{x0, x1, x2, x0x1, x0x2, x1x2.x0x1x2} ε ≥ r

Determining the radii of smallest enclosing balls (such as r above) is quite challenging algo-
rithmically, which is why Vietoris-Rips filtrations are substantially easier to compute. On the
other hand, the advantage of the Čech filtration is that it happens to be far more faithful to the
underlying geometry of the union of balls M+ε which we sought to approximate in the first
place. For instance, given the union of ε-balls shown below, the Vietoris-Rips complex at scale
2ε is the solid 2-simplex (which fails to detect the hole) whereas the Čech filtration at scale ε
equals the far more appropriate hollow 2-simplex.

We will study this phenomenon much more carefully in the next Chapter.



1. BONUS: LOCAL GEOMETRY 13

1.7 BONUS: LOCAL GEOMETRY

The three notions introduced in this section (stars, links and cones) appear in the exercises of this Chapter and
are invoked frequently in subsequent Chapters; but Theorem 1.20 below is not used anywhere else in this text.

Throughout this section, we fix a simplicial complex K as in Definition 1.1; our goal here is to
describe the neighborhood of a given simplex σ in (the geometric realization of) K. The first step
is to identify all the simplices which admit σ as a face.

DEFINITION 1.17. The open star of σ in K is the collection of simplices

stK(σ) = {τ in K | σ ≤ τ} .

When the ambient simplicial complex K is clear from context (as it should be here), we simply
denote the open star of each simplex σ by st(σ) rather than dragging K around in the subscript.
The first panel below depicts (a part of) the geometric realization of a 2-dimensional simplicial
complex; the open stars of the highlighted vertex v and edge e are shown in the next two panels
(hollow vertices and dashed edges are not included).

Clearly, the open star of σ describes a small simplicial neighborhood of σ in the geometric
realization of K. Since st(σ) always contains σ, it is guaranteed to be non-empty — but as visible
even in the simple examples drawn above, open stars are rarely subcomplexes of K since they
tend to contain simplices without containing all of their faces. Passing to the closure of st(σ) as
described in Definition 1.5 produces a bona fide subcomplex st(σ) ⊂ K, called the closed star of
σ. Another useful subset of K that describes the local geometry of σ is called the link.

DEFINITION 1.18. The link of σ in K is the collection lkK(σ) of all simplices τ in K which
simultaneously satisfy both τ ∪ σ ∈ K and τ ∩ σ = ∅.

Unlike open stars, links of simplices in K might be empty (for example, the link of a top-
dimensional simplex is always empty). But if the link of σ is non-empty, then it must be a
subcomplex of K. Here are the links of the vertex v and edge e whose open stars we examined
in the previous figure.

The final piece of the puzzle is the notion of a cone over a simplicial complex.
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DEFINITION 1.19. The cone over K is a simplicial complex Cone(K) defined on the vertex set
K0 ∪ v∗, where v∗ is a new vertex not already present in K0. For d > 0, a d-simplex of Cone(K)
is either a d-simplex of K itself, or it is v∗ adjoined with a (d− 1)-simplex of K.

The reason this is called a cone becomes evident if one tries to draw
the geometric realization of Cone(K) whenever |K| is homeomorphic
to a cicle, as shown here. Although we have banned empty simplicial
complexes in Definition 1.1, it is convenient to adopt the convention
that the cone over the empty set is just the one vertex v∗, i.e., the solid
zero-simplex. It follows immediately from the definition of cones that
dim Cone(K) is always 1 + dim K.

The following result describes the smallest possible closed neigh-
borhood of every d-dimensional simplex in an arbitrary simplicial
complex: any such neighborhood decomposes into a product of the
cone over the link of that simplex with the d-dimensional cube [0, 1]d.

THEOREM 1.20. For any simplex σ in a simplicial complex K, there is a homeomorphism

|stK(σ)| ' |Cone(lkK(σ))| × [0, 1]dim σ.

The left side here is the geometric realization of σ’s closed star in K while the right side is a product
of the geometric realization of σ’s link with the closed unit cube in Rdim σ.

Here is an illustration of this product decomposition in the special case where σ is a 1-simplex
that happens to be a face of three 2-simplices.

EXERCISES

EXERCISE 1.1. For each pair i ≤ k of non-negative integers, how many faces of codimension
i does the solid k-simplex ∆(k) have?

EXERCISE 1.2. Show that the face relations between simplices in a finite simplicial complex
satisfy the axioms of a partially ordered set.

EXERCISE 1.3. Show that the set of all subcomplexes of a finite simplicial complex K satisfy
the axioms of a partially ordered set when ordered by containment L ⊂ L′.
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EXERCISE 1.4. Either prove the following, or find a counterexample: if K is a simplicial com-
plex and L ⊂ K a subcomplex with L 6= K, then the complement K − L is also a subcomplex
of K.

EXERCISE 1.5. Assume that L, L′ are two subcomplexes of a simplicial complex K with a
nonempty intersection. Show that this intersection L ∩ L′ is also a subcomplex of K.

EXERCISE 1.6. Let K be a k-dimensional simplicial complex, and for each dimension i in
{0, 1, . . . , k} let ni be the number of i-simplices in K. How many i-simplices does the barycen-
tric subdivision Sd K have for each dimension i?

EXERCISE 1.7. Let M be a finite metric subspace of an ambient metric space (Z, d). Show,
for each ε > 0, that the associated Čech complex Cε(M) is a subcomplex of the Vietoris-Rips
complex VR2ε(M). Then, show that – no matter what Z we had chosen – this VR2ε(M) is itself
a subcomplex of C2ε(M).

EXERCISE 1.8. Consider any homeomorphism from |∆(k)| to a closed k-dimensional disk
for k ≥ 1; where must this homeomorphism send the subspace |∂∆(k)|?

EXERCISE 1.9. Let M be a finite subset of points in Euclidean space Rn (with its standard
metric). As a function of n, can you find the smallest δ so that VRε(M) is always a subcomplex
of Čδ(M)? [Here the Čech complex has been constructed with respect to the ambient Euclidean
space Rn]

EXERCISE 1.10. If σ and τ are a pair of simplices in a simplicial complex K satisfying σ ≤ τ,
show that st(σ) ⊃ st(τ) and lk(σ) ⊃ lk(τ).

EXERCISE 1.11. Show that if the link lk(σ) of a simplex σ in a simplicial complex K is non-
empty, then lk(σ) is a subcomplex of K.

EXERCISE 1.12. Let σ be a simplex in a simplicial complex K. Show that a simplex τ lies in
lkK(σ) if and only if the following condition holds: the open stars of σ and τ have a non-trivial
intersection and σ and τ have no common faces.
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2. HOMOTOPY
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2.1 BASIC DEFINITIONS

Given topological spaces X and Y, the set of all continuous functions from X to Y is typically
quite large and complicated even in relatively simple cases (e.g., when both X and Y are the unit
circle in R2). In order to study such functions, we are compelled to define interesting equivalence
relations on them and restrict attention to equivalence classes. Among the deepest and most
fruitful equivalence relations between functions X → Y is the notion of a homotopy.

DEFINITION 2.1. Two continuous functions F, G : X → Y between topological spaces X and
Y are homotopic if there is a third continuous function

θ : X× [0, 1]→ Y

(called a homotopy) so that for all x in X, we have θ(x, 0) = F(x) and θ(x, 1) = G(x).

The requirement that θ also be continuous is absolutely essential here, since it is always possi-
ble to find discontinuous θ satisfying the requirements of this definition. Thus, the fundamental
idea behind this definition is to put two functions in the same equivalence class whenever you
can continuously interpolate from one to the other as a parameter t ∈ [0, 1] slides from 0 to 1.
The picture below illustrates the homotopy equivalence of two maps F, G when X is a circle and
Y is R3. These are homotopic if we can find a continuous θ from the cylinder X × [0, 1] to R3

whose restriction to the lower boundary X × {0} coincides with F and restriction to the upper
boundary X× {1} coincides with G.

Homotopies between functions can be used in order to produce an equivalence relation on
topological spaces as well.

DEFINITION 2.2. Two topological spaces X and Y are homotopy equivalent if there are con-
tinuous maps F : X → Y and G : Y → X so that

(1) the composite F ◦ G is homotopic to the identity map on Y, while
(2) the composite G ◦ F is homotopic to the identity map on X.

A pair of continuous maps F and G satisfying the two conditions above are often called homo-
topy inverses of each other, although it is important to note that in general there is no uniqueness
of such inverses — the set of homotopy inverses for a given F might contain several maps.
Homotopy equivalence is a topological property that tends to be largely agnostic to metric infor-
mation. The two panels below are designed to illustrate this phenomenon: in the first case, the
2-dimensional thickened figure-8 is homotopy equivalent to the thinner 1-dimensional figure-8
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in its interior. But if we perturb this thinner curve ever so slightly to create a single loop, then
homotopy equivalence no longer holds.

Two simplicial complexes K and L are said to be homotopy equivalent, or have the same ho-
motopy type, whenever their geometric realizations |K| and |L| are homotopy equivalent in the
sense of the definition above. It may not be immediately obvious that homotopy is an important
equivalence relation between topological spaces — absorbing this fact takes time and experi-
ence. What should be clearer even at this early stage is that homotopy equivalence is far less
rigid than homeomorphism: homeomorphic spaces are always homotopy equivalent, but the
converse does not hold.

2.2 CONTRACTIBLE SPACES

The quest to study topological spaces up to homotopy equivalence has a natural starting point
— we begin by asking which spaces are the least complicated from a homotopical perspective.

DEFINITION 2.3. A topological space X is contractible if it is homotopy equivalent to the
one-point space.

You should check that X is contractible if and only if there exists some point p ∈ X so that the
identity map on X is homotopic to the constant map sending every point of X to p. In particular,
the empty set ∅ is not contractible.

EXAMPLE 2.4. Here are several families of contractible simplicial complexes:
(1) Solids: for each k ≥ 0 the solid k-simplex ∆(k) is contractible.
(2) Cones: the cone over any simplicial complex K (see Definition 1.19) is contractible.
(3) Trees: a tree is a connected graph with no cycles; these are all contractible.

We will prove the contractibility of these after developing some helpful machinery. For now,
it is important to start building a mental database which contains as many contractible spaces as
possible. The next few sections contain a suite of extremely powerful tools for detecting homo-
topy equivalence, and all of these tools rely in one way or another on your ability to recognize
contractible spaces. The underlying reason for this dependence is the following vital result.

LEMMA 2.5. Let X be a topological space and k ≥ 1 an integer. If X is contractible, then any
continuous map F : |∂∆(k)| → X from the hollow k-simplex to X can be extended to a continuous map
F+ : |∆(k)| → X from the solid k-simplex.

PROOF. Even the case k = 1 is quite insightful, so we will go over it carefully. Since |∆(1)|
is homeomorphic to the unit interval [0, 1] and |∂∆(1)| consists of the endoints {0, 1}, we must
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show that X is path-connected, i.e., given any pair of points F(0) = x0 and F(1) = x1 in X, there
is a continuous path in X from x0 to x1.

From Definition 2.3, we know that X is contractible if and only if there is some point p ∈ X
so that the identity map on X is homotopic to the constant map X → p. Thus, there exists a
homotopy θ : X × [0, 1] → X satisfying θ(x, 0) = x and θ(x, 1) = p for all x in X. As we vary t
from 0 to 1 for any given x in X, we obtain a continuous path θ(x, t) from x to our special point p
— in particular both x0 and x1 admit paths to p. Thus, we can concatenate these two paths to get
a path from x0 to x1 that passes through p; more explicitly, the desired extension F+ : [0, 1]→ X
is given in terms of θ by the piecewise-formula

F+(t) =

{
θ(x0, 2t) t ≤ 1/2
θ(x1, 2t− 1) t > 1/2.

This extension is continuous because at t = 1/2 both pieces are guaranteed to equal p. The
following picture may help if the numerology of this formula is mysterious.

The argument for k ≥ 2 is more technical and subscript-infested, but the basic principle remains
the same — homotopies to constant maps allow us to “fill in” the F-images of hollow simplices
to produce F+-images of the corresponding solid simplices. �

In the argument above, we used a homotopy θ to define an extension map without ever hav-
ing an explicit formula for θ; this is quite typical because in general homotopies can get quite
complicated even when relating simple maps between benign spaces. One refreshing exception
to this unfortunate state of affairs is provided by the class of straight-line homotopies: given maps
f , g : X → Y with Y ⊂ Rn, one often attempts to use θ(x, t) = t · f (x) + (1− t) · g(x). Of course,
there is no guarantee that the image of such a θ will actually lie in Y. Our next result highlights
an important instance where this straight-line strategy succeeds.

PROPOSITION 2.6. For each dimension k ≥ 0, the solid k-dimensional simplex ∆(k) is contractible.

PROOF. Let {x0, . . . , xk} ⊂ Rn be any set of affinely independent points, so the geometric
realization of ∆(k) is given (up to homeomorphism) by

|∆(k)| =
{

k

∑
i=0

tixi | ti ≥ 0 and
k

∑
i=0

ti = 1

}
.
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Now consider the continuous map θ : |∆(k)| × [0, 1] → ∆(K) that sends each x = ∑k
i=0 tixi in

|∆(k)| and t in [0, 1] to the point

θ(x, t) = [1− t(1− t0)] · x0 + t ·
k

∑
i=1

tixi.

This formula prescribes a straight-line homotopy between the identity map (at t = 1) and the
constant map (at t = 0) sending everything to x0. Three routine verifications have been left as
exercises: to complete the proof, one must show that θ(x, t) lies in |∆(k)| for all t, that θ(x, 0) is
just the constant map to x0, and that θ(x, 1) is the identity map on |∆(k)|. �

Armed with knowledge of many contractible spaces, we are ready to explore a suite of homo-
topy equivalence detectors.

2.3 CARRIERS

Let K be a simplicial complex and X a topological space.

DEFINITION 2.7. A carrier C for K in X is an assignment of a subset C(σ) ⊂ X to every
simplex σ of K so that C(σ) ⊂ C(τ) holds whenever σ is a face of τ.

We say that C carries a continuous map F : |K| → X if for each simplex σ ∈ K we have
F(|σ|) ⊂ C(σ). Similarly, we say that C carries a homotopy θ : |K| × [0, 1] → Y if for each
intermediate t in [0, 1] the map θt : |K| → X given by

θt(x) = θ(x, t)

is carried by C in the sense described above. The next result is among the most powerful and
widely-applicable tools for testing whether two maps |K| → X are homotopic.

LEMMA 2.8. (The Carrier Lemma) Let C be a carrier for K in X. If the subset C(σ) ⊂ X is
contractible for each simplex σ ∈ K, then (a) there exists a continuous map F : |K| → X carried by
C; (b) any two continuous maps F, G : |K| → X carried by C are homotopic; and (c) in fact, we can
always choose a homotopy θ : |K| × [0, 1]→ X between F and G that is also carried by C.

PROOF. Index the simplices of K as {σ1, σ2, . . . , σm} so that the faces of each simplex have
lower indices than that simplex itself — this can be ensured for instance by indexing all the
0-dimensional simplices before all the 1-dimensional simplices, and so forth. There is now a
filtration {SiK | 1 ≤ i ≤ m} of K (see Definition 1.6) obtained by setting

SiK =
⋃
j≤i

σj.

We will show (b) and (c) by induction on i; the argument for (a) is eerily similar and has been
assigned as an exercise.

Base case: When i = 1 we must have a simplex σ1 of minimum dimension, i.e., a vertex. By
the hypotheses of this Theorem, the maps F and G send our vertex σ1 to possibly distinct points
(let’s call them x0 and x1) in the contractible set C(σ1) ⊂ X. The points x0 and x1 are evidently
the image of a map |∂∆(1)| → C(σ), so by Lemma 2.5 there is a path lying in C(σ1) from x0 to x1.
This path prescribes a homotopy carried by C between the restrictions of F and G to S1K = σ1.

Inductive step, part 1: Now let us assume that for some i > 1 the restrictions of F and G
to Si−1K ⊂ K admit a homotopy θ : |Si−1K| × [0, 1] → X carried by C. We must extend this θ
continuously to the larger space |SiK| × [0, 1]; thus it suffices to define θ on the subset |σi| × [0, 1],
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where σi is the unique simplex satisfying Si = Si−1 ∪ σi. Let B ⊂ |Si−1| be the union of geometric
realizations of all the faces τ ≤ σi other than σi itself. Since all the C(τ) are subsets of C(σi) by
Definition 2.7, we note that the image θ(B× [0, 1]) is entirely contained within C(σi). Moreover,
by the requirement that C carries F and G, both F(|σi|) and G(|σi|) also lie inside C(σi).

Inductive step, part 2: The key observation here is as follows: writing d = dim σi, the product
|σi| × [0, 1] is homeomorphic to |∆(d)| × [0, 1], which in turn is homeomorphic to |∆(d + 1)|.
Consequently, the boundary1 of |σi| × [0, 1] is homeomorphic to the subset

|∂∆(d + 1)| '
(
|∂∆(d)| × [0, 1]

)
∪
(
|∆(d)| × {0, 1}

)
.

Here is a figure illustrating these spaces for d = 2:

Now the first piece of this union |∂∆(d)| × [0, 1] is homeomorphic to B× [0, 1] while the second
piece is homeomorphic to two disjoint copies of |σi|. Our homotopy θ sends the first piece to
C(σi) by part 1 of the inductive step. As for the second piece, we know that

θ(|σi|, 0) = F(|σi|) ⊂ C(σi).

Here the equality follows from Definition 2.1 while the containment is a consequence of the
assumption that C carries F. Similarly, we also have θ(|σi|, 1) = G(|σi)| ⊂ C(σi). So up to
homeomorphism, θ constitues a map from the entire boundary ∂∆(d + 1) to the contractible set
C(σi) ⊂ X. Lemma 2.5 guarantees a continuous extension θ+ : |∆(d + 1)| → C(σi), and using
the homeomorphism ∆(d + 1) ' |σi| × [0, 1] gives us the desired continuous extension of θ to
|σi| × [0, 1]. �

The utility of the Carrier lemma in homotopically-oriented problems is difficult to overstate.
Here is a simple consequence designed to work directly with simplicial maps. We say that two
simplicial maps f , g : K → L are contiguous if for any simplex σ of K, the union f (σ) ∪ g(σ) is a
simplex of L.

COROLLARY 2.9. If f , g : K → L are contiguous, then they must be homotopic.

PROOF. For each simplex σ in K, let C(σ) ⊂ |L| be the geometric realization of the union-
simplex f (σ) ∪ g(σ). This assignment C prescribes a carrier for K in |L|; clearly, C carries both f
and g. And finally, since solid simplices are contractible by Proposition 2.6, the desired conclu-
sion follows from Lemma 2.8 (b). �

1Here we have used the fact that the boundary of a product bd(P×Q) is the union (P× bd Q) ∪ (bd P×Q).
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This result has satisfying and immediate applications: for instance, we can now easily show
that Cone(K) is contractible for any simplicial complex K. Writing v∗ for the additional vertex as
in Definition 1.19, apply Corollary 2.9 to the case where f is the identity map on Cone(K) while
g is the map sending every vertex to v∗.

2.4 FIBERS

Let f : K → L be a simplicial map; for each simplex τ in L, the fiber of f under τ is the
collection of simplices in K given by

τ/ f = {σ ∈ K | f (σ) ≤ τ} . (2)

Each such fiber is a subcomplex of K; and moreover, τ/ f is a subcomplex of τ′/ f whenever
τ ≤ τ′ in L. We will use the Carrier lemma three times below to show that simplicial maps
with contractible fibers induce homotopy equivalences — this forms a special case of a far more
general result called Quillen’s Theorem A.

THEOREM 2.10. (Quillen’s Fiber Theorem) Let f : K → L be a simplicial map. If the fiber
τ/ f is contractible for every simplex τ in L, then the induced continuous map | f | : |K| → |L|
admits a homotopy inverse G : |L| → |K|; and in particular, K and L are homotopy equivalent.

PROOF. For each simplex τ of L, let C(τ) ⊂ |K| be the geometric realization of the fiber τ/F;
this provides a carrier for L in |K| with each C(τ) contractible, so by Lemma 2.8 (a) we know
that there exists a continuous G : |L| → |K| satisfying G(|τ|) ⊂ C(τ) = |τ/ f | for all τ in L. We
will confirm that any such G is a homotopy inverse for | f |.

1. | f | ◦G is homotopic to the identity on L: for each simplex τ in L, we have the containment

| f | ◦ G(|τ|) ⊂ |τ|,

simply because G(|τ|) is contained in |τ/ f |. Therefore, the assignment CL(τ) = |τ| prescribes
a carrier (for L in |L|) which carries both | f | ◦ G and the identity map on L. Since each |τ| is
contractible by Proposition 2.6, we have from Lemma 2.8 (b) that | f | ◦ G is homotopic to the
identity on L as desired.

2. G ◦ | f | is homotopic to the identity on K: for each simplex σ in K, we know from Proposi-
tion 1.11 that the | f |-image of |σ| is exactly | f (σ)| ⊂ |L|. Recall that by our construction of G, we
have the containment

G(| f (σ)|) ⊂ C( f (σ)) = | f (σ)/ f |.

So if we define CK to be the carrier for K in |K| given by CK(σ) = | f (σ)/ f |, we know that CK
carries G ◦ | f |. Note also that σ automatically lies in f (σ)/ f by (2), so CK also carries the identity
map on K. Since each CK(σ) is contractible by our assumption on the fibers of f , a final appeal
to Lemma 2.8 (b) concludes the argument. �

The strength of Quillen’s fiber theorem lies in the fact that it allows us to conclude homotopy
equivalence of simplicial complexes K and L given only a one-way simplicial map f : K → L.
As long as this f has contractible fibers, one is not required to painstakingly construct an explicit
homotopy inverse |L| → |K|.



2. NERVES 24

2.5 NERVES

A finite open cover U• of a topological space X is a collection of open subsets Uα ⊂ X (here α
ranges over some finite index set A) satisfying

X =
⋃

α∈A
Uα.

By keeping track of how the different Uα intersect one another, we can build a simplicial com-
plex on the vertex set A; the hope is to appropriately constrain the cover so that this simplicial
complex is homotopy equivalent to X.

DEFINITION 2.11. The nerve N(U•) of an open cover {Uα | α ∈ A} of a topological space X
is the simplicial complex whose i-simplices are given by all subsets σ ⊂ A of cardinality (i + 1)
for which the intersection

Supp(σ) :=
⋂

α∈σ

Uα

is nonempty.

This intersection Supp(σ) ⊂ X is called the support of the simplex
σ, and those encountering this notion for the first time should beware
that σ ≤ τ in N(U•) means Supp(σ) ⊃ Supp(τ) as subsets of X. In
particular, the vertices of |N(U•)| have larger supports than the edges
which admit them as faces, and so on.

Having gone through the effort of finding an open cover U• of a
topological space X, one wonders to what extent the homotopy type
of X is captured by the geometric realization |N(U•)| of the associ-
ated nerve. The task appears absolutely hopeless at first glance —
for instance, we could always choose U• to consist of a single subset
U1 = X, in which case its nerve is just ∆(0) regardless of X. As with
most of the other results described here, the key to solving this problem is contractibility. If we
require all nonempty supports to be contractible subsets of X, then the following miracle occurs.

THEOREM 2.12. (The Nerve theorem) Let {Uα | α ∈ A} be a finite open cover of a topological
space X. If each simplex σ ∈ N(U•) has contractible support Supp(σ) ⊂ X, then |N(U•)| is
homotopy equivalent to X.

PROOF. Let X(U•) be the subset of the product X × |N(U•)| containing all pairs (x, u) for
which there is a simplex σ in N(U•) satisfying both x ∈ Supp(σ) and u ∈ |σ|. There are natural
projection maps from X(U•) to both X and |N(U•)|:

X(U•) q
** **

p

uuuuX |N(U•)|

In particular, p(x, u) = x and q(x, u) = u for every (x, u) in X(U•). Next, we show that for each
point x in X and u in |N(U•)|, the fibers p−1(x) and q−1(u) are contractible subsets of X(U•).

1. Fibers of p: For each point x in X, the fiber p−1(x) ⊂ X(U•) is homeomorphic to the set
of all u ∈ |N(U•)| lying in the realizations of simplices σ whose supports contain x. But all
such σ must be faces of the single simplex σx in N(U•) whose support is the intersection of all
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Uα satisfying x ∈ Uα. Thus, p−1(x) is homeomorphic to the geometric realization of |σx|, which
must be contractible by Proposition 2.6.

2. Fibers of q: Given u in |N(U•)|, let σu ∈ N(U•) be the unique simplex containing u
in the interior of its realization. The fiber q−1(u) ⊂ X(U•) is homeomorphic to the support
Supp(σu) ⊂ X, which is contractible by assumption.

3. Finale: There is a variant of Theorem 2.10 which applies to a large class of continuous
(not necessarily simplicial) maps between metric spaces (not necessarily simplicial complexes).
In particular, this result implies that sufficiently well-behaved maps — such as our p and q —
induce homotopy equivalences if their fibers over all points of their codomains are contractible2.
An appeal to this modified fiber theorem establishes that X and |N(U•)| are both homotopy
equivalent to X(U•) via p and q respectively, so the desired conclusion follows. �

There are at least three things to be noted about the Nerve theorem and its proof. First, it was
really convenient to have a fiber theorem at our disposal — not only did we avoid having to
build any homotopic inverses, but we even managed to avoid building a one-way map relating
X to |N(U•)|. Second, the Nerve theorem gives us a mechanism for going back from topolog-
ical spaces to simplicial complexes; in that sense, it constitutes a sort of converse to geometric
realizations from Definition 1.7. And third, this theorem guarantees that Čech filtrations from
Definition 1.16 accurately capture the homotopy type of the underlying union of balls at each
scale.

COROLLARY 2.13. Let M ⊂ Rn be a finite set of points. For each radius ε > 0, the union
M+ε ⊂ Rn of radius ε Euclidean balls around the points of M is homotopy equivalent to the geometric
realization of the Čech complex Cε(M).

PROOF. For each point x in M, let Bε(x) be the open ball of radius ε around x. By definition
of M+ε, we have

M+ε =
⋃

x∈M
Bε(x),

so the collection {Bε(x) | x ∈ M} constitutes an open cover of M+ε. The Čech complex Cε(M) is
precisely the nerve of this cover, so the desired conclusion follows from the Nerve theorem if we
can show that nonempty intersections of Euclidean balls are contactible. Such intersections are
always convex subsets of Rn, and their contractibility will be established in one of the Exercises
of this Chapter. �

There are no homotopical guarantees analogous to the above result which apply to the Vietoris-
Rips filtration.

2.6 ELEMENTARY COLLAPSES

There is a simple combinatorial operation on simplicial complexes which allows us to find
homotopy-equivalent subcomplexes by performing a series of moves; each such move removes
two adjacent simplices (σ < τ) at a time, and has a very concrete and algorithmic flavor. For
instance, one can show that ∆(2) is contractible simply by drawing the following diagram:

2For details, see the main result of S Smale’s 1957 paper A Vietoris Mapping Theorem for Homotopy.
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Our goal in this section is to describe these homotopy-preserving moves.
Let K be a simplicial complex. We call two distinct simplices (σ < τ) of K a free face pair if

the open star of σ (see Definition 1.17) satifies stK(σ) = {σ, τ}. For such a pair we immediately
have dim τ = dim σ + 1; moreover, there can be no other simplices in K (besides σ and τ) which
admit σ as a face.

PROPOSITION 2.14. If (σ < τ) is a free face pair in K, then the collection K′ = K− {σ, τ} forms
a subcomplex of K, and in fact K′ is homotopy equivalent to K.

PROOF. Assume for the sake of contradiction that some simplex γ in K′ is missing a face;
such a γ would have to satisfy γ > σ in K; this forces stK(σ) to contain γ and violates our free
face assumption. Thus, K′ ⊂ K is a subcomplex. To see the desired homotopy equivalence to K,
consider the following figure:

There is a map r : |K| → |K′| which is the identity away from |τ| and sends all points of
|τ| along straight line segments to points in the union

⋃
σ 6=η<τ |η| of realizations of all faces of

τ except σ. This map serves as a homotopy inverse to the inclusion i : K′ ↪→ K; on the one
hand, the composite r ◦ |i| is the identity map on |K′|. And on the other hand, these straight line
segments generate a homotopy from |i| ◦ r to the identity map on K. �

The removal of a free face pair (σ < τ) from K is called an elementary collapse. These can be
iterated, as shown in our diagrammatic reduction of ∆(2) to ∆(0) drawn above. One important
point to note, visible already in the figure above, is that the subcomplex K′ = K − {σ, τ} might
contain free face pairs that were unavailable in K: when we remove the pair (12 < 012) from
∆(2), the pairs (1 < 01) and (2 < 02) become free and can be safely removed in the second step.
We say that K collapses onto a subcomplex L if there is a filtration (as in Definition 1.6) of the
form

L = F1K ⊂ F2K ⊂ · · · ⊂ FnK = K

where each FiK is obtained by removing a single free-face pair from the subsequent Fi+1K. By
Proposition 2.14, all the FiK are homotopy equivalent to each other in this case. Thanks to



2. BONUS: SIMPLICIAL APPROXIMATION 27

their simple combinatorial nature, elementary collapses can be algorithmically implemented on
a computer.

2.7 BONUS: SIMPLICIAL APPROXIMATION

The contents of the section are not used elsewhere in this text; they have been included here because Theorem
2.15 described below is a foundational result in simplicial algebraic topology. It allows us to study homotopy classes
functions between (geometric realizations of) simplicial complexes using only simplicial maps rather than arbitrary
continuous ones.

Here is a fairly natural challenge in light of our quest to understand simplicial complexes up
to homotopy equivalence.

Assume that F : |K| → |L| is a continuous map between the geometric realizations of
two simplicial complexes K and L. Does there exist a simplicial map f : K → L so that
| f | is homotopic to F?

Unfortunately, the answer to this question as stated is no. One way to see why (without doing
any heavy computations) is to note that the set of all simplicial maps K → L is always finite,
so it is unreasonable to expect simplicial maps to attain all possible homotopy types achievable
by the (typically very infinite) set of continuous maps |K| → |L|. The good news, however, is
that the answer to our challenge becomes yes if we give ourselves the ability to barycentrically
subdivide the domain K finitely many times (as described in Definition 1.12). The following
result is called the simplicial approximation theorem.

THEOREM 2.15. Let F : |K| → |L| be a continuous map between the geometric realizations of
two simplicial complexes. There exists an integer n ≥ 0 and a simplicial map f : SdnK → L so that
| f | is homotopic to F.

In general there is no known bound on how many barycentric subdivisions of K might be
required to build the simplicial approximation f for a given F.

EXERCISES

EXERCISE 2.1. Prove that homotopy equivalence is an equivalence relation on the class of
all topological spaces.

EXERCISE 2.2. Show that if two topological spaces X and Y are homeomorphic, then they
must also be homotopy equivalent.

EXERCISE 2.3. Show that if Y is a contractible space, then then for any topological space X
the product X×Y is homotopy equivalent to X.

EXERCISE 2.4. Show that if Y is contractible then any pair of maps f , g : X → Y are homo-
topic.

EXERCISE 2.5. A subset P ⊂ Rn is said to be convex if for every pair of points x, y in P the
line segment {tx + (1− t)y | 0 ≤ t ≤ 1} lies inside P. Show that every nonempty convex set
is contractible.

EXERCISE 2.6. Show that the subspaces X = {0} and Y = {0, 1} of the real line R are not
homotopy equivalent.
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EXERCISE 2.7. Prove the assertion (a) from Lemma 2.8. [Hint: the filtration SiK, the induc-
tive strategy and Lemma 2.5 are all useful here].

EXERCISE 2.8. Consider two simplicial maps from ∂∆(2) to the illustrated simplicial com-
plex described as follows. The first one sends vertices {0, 1, 2} to {a0, a1, a2} in order, while the
second one sends the same vertices to {b0, b1, b2} respectively. Show that these two maps are
homotopic, keeping in mind that the left-most edge in the figure is identified with the right-
most edge. [Hint: first show that the unit square [0, 1]× [0, 1] is contractible by Proposition 2.6
plus Exercise 2.3, and then apply Lemma 2.8]

EXERCISE 2.9. Given a simplicial map f : K → L, show that for each simplex τ in L the
fiber τ/ f as defined in (2) is a subcomplex of K; also show that τ/ f is a subcomplex of τ′/ f
whenever τ ≤ τ′ holds in L.

EXERCISE 2.10. Find the smallest open cover of the circle with contractible supports. What
is the nerve of this cover?

EXERCISE 2.11. Find a cover of the circle containing at least two open sets which violates
the hypotheses of the nerve lemma. What is the nerve of this bad cover?

EXERCISE 2.12. Show that trees (connected graphs with no cycles) are simple homotopy-
equivalent to ∆(0), and hence contractible. [Hint: induction on edges plus Proposition 2.14].

EXERCISE 2.13. Use a suitable sequence of elementary collapses to show that the simplicial
complex drawn in Exercise 2.8 is homotopy-equivalent to the subcomplex consisting of the
simplices {b0, b1, b2, b0b1, b1b2, b0b2}.
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3.1 EULER CHARACTERISTIC

Despite all the lemmas and theorems described in the previous Chapter, it remains difficult
to explicitly compute – by hand or machine – whether two simplicial complexes are homotopy
equivalent or not. As a consequence, we are forced to seek computable homotopy invariants;
these are assignments K 7→ I(K) sending each simplicial complex K to some algebraic object
I(K) so that the following crucial property is satisfied. If K is homotopy equivalent to some
other simplicial complex L, then I(K) is equal (or at least isomorphic in a suitable sense) to I(L).
This invariance is necessarily a one-way street: we can not require I(K) = I(L) to imply that K
and L are homotopy equivalent, otherwise I-equivalence would be just as difficult to compute as
homotopy equivalence. The oldest and simplest homotopy invariant is the Euler characteristic,
defined as follows.

DEFINITION 3.1. The Euler characteristic of a simplicial complex K is the integer χ(K) ∈ Z

given by the alternating sum of cardinalities

χ(K) =
dim K

∑
i=0

(−1)i · #Ki.

(Here #Ki indicates the number of all i-dimensional simplices in K).

Reducing an entire simplicial complex to a single integer might seem absurd at first glance,
but this simple definition conceals several interesting mysteries. For one thing, it will turn out
that χ is a homotopy invariant: if K and L are homotopy equivalent simplicial complexes, then
χ(K) = χ(L). This fact is by no means obvious, and even verifying it in the case where L = Sd K
from the above definition appears painful. Algebraic topology was created to explain why so
crude a summary of K should remain entirely unaffected by (combinatorially) enormous per-
turbations of K which lie within the same homotopy class. For instance, a simple computation
reveals that the solid 0-simplex satisfies χ(∆(0)) = 1, so by homotopy invariance we can imme-
diately conclude that all contractible simplicial complexes (including ∆(k) for other choices of
k > 0) also have χ = 1.

Setting aside this mystery of homotopy invariance for the moment, one may wish to take a
moment to marvel at how easily we can compute χ(K) for a single K. But even here, there are
good reasons to tread with caution as described below.

EXAMPLE 3.2. Let S ⊂ N denote the set of all square-free natural numbers — this consists
of all those n > 1 which can be expressed as a product of distinct prime numbers. Thus, the
first few numbers in S are (2, 3, 5, 6 = 2× 3, . . .); note that 4 is excluded because it equals 22.

For each n ≥ 1, let K(n) be the simplicial complex defined on the vertex set V(n) =
{s ∈ S | s ≤ n} by the following rule: the k-simplices for k > 0 are all subsets {s0, . . . , sk} ⊂
V(n) of vertices so that each si divides the subsequent si+1. This is clearly a simplicial com-
plex for each integer n, since the divisibility property is preserved when passing to subsets.
Moreover, we have an inclusion K(n) ⊂ K(n + 1) for all n, so these simplicial complexes K(n)
constitute a filtration of unbounded length. The statement

lim
n→∞

|χ(K(n))|
n1/2+ε

= 0 for all ε > 0

is equivalent to the Riemann hypothesis. For more information on these simplicial complexes
K(n), see A. Bjorner’s 2011 paper A Cell Complex in Number Theory.
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The best way to see that χ is homotopy invariant is to recast it as a numerical reduction of a
richer homotopy invariant; this richer invariant is called homology, and it forms the main theme
of this Chapter.

3.2 ORIENTATIONS AND BOUNDARIES

An orientation of a simplicial complex K is an injective function o : K0 → N which assigns
unique natural numbers to vertices. The number assigned to each vertex will not be as important
as the relative ordering of vertices induced by o, so we may as well require o to take values in the
first #K0 natural numbers. Given an orientation of K, we will always write simplices as ordered
subsets of K0 — rather than writing each k-simplex as an unstructured set of vertices, we can
uniquely write it as a tuple (v0, v1, . . . , vk) inside K0 × · · · × K0 satisfying

o(v0) < o(v1) < · · · < o(vk).

We call this ordered-tuple of vertices an oriented simplex.

DEFINITION 3.3. Let K be an oriented simplicial complex and let σ = (v0, . . . , vk) be an ori-
ented k-simplex in K. For each i in {0, 1, . . . , k}, the i-th face of σ is the (k − 1)-dimensional
simplex

σ−i = (v0, . . . , vi−1,@@vi, vi+1, . . . , vd)

obtained by removing the i-th vertex.

In the absence of an orientation, there is no coherent way to identify the i-the vertex of σ, so σ−i is
not a well-defined simplex — when being explicit about the choice of orientation, one may wish
to write the i-th face of σ as σo

−i. Here are the ordered faces of the top-dimensional simplices of
∆(1) and ∆(2) if we assume the standard orientation on the vertices, i.e., 0 < 1 < 2:

Oriented simplicial complexes form higher-dimensional generalizations of certain types of
directed graphs — recall that a graph G = (V, E) is directed if each edge comes with a preferred
direction, usually indicated as an arrow from one vertex (the source) to the other (the target).
The incidence matrix I = I(G) of such a graph has the vertices V indexing its rows and edges E
indexing its columns; the entry in row v and column e of I is given by the pleasant rule

Iv,e =


−1 if u is the source of e,
+1 if u is the target of e,
0 otherwise.

Thus, each column of I contains exactly one +1 and one −1, with all other entries necessarily
being zero. In contrast, the rows of I are far less structured; the number of ±1 entries in each
rows depends on the number of edges for which the associated vertex forms a source or target.
If we label the vertices of an undirected graph by distinct natural numbers, we automatically
induce a directed structure on the edges by forcing sources to have smaller values than targets.
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A small example of a directed graph constructed via this vertex-labelling method is depicted
below along with its adjacency matrix.

At first glance, the matrix I appears to simply be an alternate way to encode the structure
of G in a manner that is specifically tailored to the needs of computers (or equivalently, alge-
braists). The advantages of this encoding become clearer when I is treated as a linear map — if
we let R[V] and R[E] be the real vector spaces obtained by treating the vertices and edges of G
respectively as orthonormal bases, then I prescribes a linear map R[E] → R[V] defined by the
following action on every basis edge e. If e has source vertex u and target vertex v, then

I(e) = v− u.

Algebraic properties of I : R[E] → R[V] reflect geometric properties of the graph G — for in-
stance, the number of connected components of G is #V− rank(I), and the number of undirected
cycles in G is #E− rank(I).

With a simplicial complex, it becomes necessary to define an incidence matrix not only from
1-dimensional simplices to vertices as described above, but from k-dimensional simplices to
(k− 1)-dimensional simplices for every dimension k in {1, 2, . . . , dim K}. We therefore require a
formula sending each k-simplex to a ±1 linear combination of its codimension one faces.

DEFINITION 3.4. Let σ be a k-dimensional oriented simplex. The algebraic boundary of σ is
the linear combination

∂kσ =
k

∑
i=0

(−1)iσ−i,

where σ−i denotes the i-th face of σ as in Definition 3.3.

Since zero-dimensional simplices have no lower-dimensional faces, we require by convention
that ∂0 of every vertex is 0. The following figure illustrates algebraic boundaries for oriented
simplices of dimension one and two:

It will be convenient for the moment to not dwell too much on where these ±1 coefficients are
supposed live — we do not demand to know whether they are integers, rational numbers, real
numbers, etc. For now we seek solace in the fact that ±1 are defined in every unital ring (i.e.,
ring with a multiplicative identity). We will simply treat the algebraic boundary of each simplex
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σ as a formal sum of its faces. The first purely algebraic miracle of this subject occurs when we
try to compute boundaries of boundaries under the assumption that each ∂k is a linear map.

PROPOSITION 3.5. For any oriented simplex σ of dimension k ≥ 0, we have

∂k−1 ◦ ∂kσ = 0.

PROOF. The proof of the full statement has been assigned as an exercise, but let’s at least
compute everything in the case k = 2. Consider an oriented 2-simplex σ = (v0, v1, v2) and note
by Definition 3.4 that

∂2σ = (σ−0)− (σ−1) + (σ−2)

= (v1, v2)− (v0, v2) + (v0, v1).

Assuming linearity of ∂1, we have

∂1 ◦ ∂2σ = ∂1(v1, v2)− ∂1(v0, v2) + ∂1(v0, v1)

= [(v2)− (v1)]− [(v2)− (v0)] + [(v1)− (v0)].

Now the desired conclusion follows by noticing that every vertex has appeared twice, but with
opposite signs. �

Since ∂0 is identically zero, the proposition above has non-trivial content only when k ≥ 2;
thus, this miraculous cancellation remains entirely un-witnessed in the realm of graphs and their
incidence matrices.

3.3 CHAIN COMPLEXES

In order to take full advantage of Proposition 3.5, we must fix a coefficient ring to give precise
meaning to the formal sums obtained when we take algebraic boundaries of simplices. The
simplest choice, in terms of computation, is to work with a field F — typical choices include

• F = Q, the rational numbers;
• F = Z/p, integers modulo a prime number p, (often p = 2), and
• F = R, the real numbers.

The main advantage when using field coefficients is that we get to work with vector spaces
and matrices, so all the standard machinery of linear algebra is at our disposal. With non-field
coefficients (even the ring Z of integers), the algebraic objects at hand become considerably more
intricate.

Let K be an oriented simplicial complex and F a field; both will remain fixed throughout this
section.

DEFINITION 3.6. For each dimension k ≥ 0, the k-th chain group of K is the vector space
Ck(K) over F generated by treating the k-simplices of K as a basis.

Thus, every element γ in Ck(K) – which is called a k-chain of K – can be uniquely expressed
as a linear combination of the form

γ = ∑
σ

γσ · σ,

where σ ranges over the k-simplices of K while the coefficients γσ are chosen from F. Each k-
simplex σ in K constitutes a basis vector in Ck(K), namely the chain γ whose coefficients are all
zero except γσ, which equals the multiplicative identity 1 ∈ F. When k exceeds dim X, there
are no simplices to serve as basis elements, so Ck(X) is the trivial (i.e., zero-dimensional) vector
space for all large k.
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Having described chains as linear combinations of simplices, we are able to reinterpret the
algebraic boundaries of Definition 3.4 as linear maps between consecutive chain groups.

DEFINITION 3.7. For each dimension k ≥ 0, the k-th boundary operator of K is the F-linear
map ∂K

k : Ck(K)→ Ck−1(K) which sends each basis k-chain σ to the (k− 1)-chain

∂K
k (σ) =

k

∑
i=0

(−1)i · σ−i.

In contrast to the formal sums of Definition 3.4, the (−1)i coefficients appearing in the bound-
ary operator formula above do have a precise meaning — they are simply coefficients chosen
from the field F. Note that each σ−i is a (k − 1)-simplex of K, so the boundary ∂K

k (σ) of each
k-simplex σ is automatically a (k− 1)-chain as expected. To evaluate ∂K

k on an arbitrary k-chain
γ rather than a basis simplex, one simply exploits linearity:

∂K
k (γ) = ∑

σ

γσ · ∂K
k (σ).

Here is an immediate consequence of Proposition 3.5

COROLLARY 3.8. For every dimension k ≥ 0, the composite

∂K
k ◦ ∂K

k+1 : Ck+1(K)→ Ck−1(K)

is the zero map. In other words, for each dimension k the image of ∂K
k+1 lies in the kernel of ∂K

k .

Thus, we now have the ability to build (starting from an oriented simplicial complex K and a
coefficient field F) a sequence of finite-dimensional vector spaces connected by linear maps:

· · ·
∂K

k+1
// Ck(K)

∂K
k
// Ck−1(K)

∂K
k−1
// · · ·

∂K
2
// C1(K)

∂K
1
// C0(K) // 0

And moreover, this sequence has the magic property that whenever we compose two adjacent
maps, the result is always zero. Such sequences play an enormous role in homology theory and
beyond, so they have a special name.

DEFINITION 3.9. A chain complex (C•, d•) over the field F is a collection of F-vector spaces
Ck (indexed by integers k ≥ 0) and F-linear maps dk : Ck → Ck−1 which satisfy the condition
dk ◦ dk+1 = 0 for all k.

Chain complexes of the form (C•(K), ∂K
• ) which arise from a simplicial complex K will be called

simplicial chain complexes in order to distinguish them from the arbitrary chain complexes (C•, d•)
of Definition 3.9.

REMARK 3.10. Definition 3.9 works verbatim when we replace the field F with a commu-
tative, unital ring. For many reasons, the most common choice of non-field coefficients is the
ring of integers Z. When working with Z coefficients, the chain groups Ck are abelian groups
rather than vector spaces, and the boundary operators dk are abelian group homomorphisms;
the chain complex condition dk ◦ dk+1 = 0 makes sense in this context. But now one finds a
stark difference between simplicial chain complexes and arbitrary ones: in a simplicial chain
complex, each chain group Ck is always free, i.e., it has the form Zn for some n ≥ 0. On
the other hand, arbitrary chain complexes over Z can have torsion in their chain groups, e.g.,
Ck = Z⊕ Z/2 is allowed. Torsion plays no role whatsoever in chain complexes (simplicial or
otherwise) when we work with field coefficients.
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3.4 HOMOLOGY

Fix a chain complex (C•, d•) of vector spaces and linear maps over some field F:

· · ·
dk+1

// Ck
dk
// Ck−1

dk−1
// · · · d2

// C1
d1
// C0

d0
// 0

We recall from Definition 3.9 that dk ◦ dk+1 is always the zero map from Ck+1 to Ck−1, which
means that the kernel ker dk admits the image img dk+1 as a subspace for each k ≥ 0.

DEFINITION 3.11. For each dimension k ≥ 0, the k-th homology group of (C•, d•) is defined
to be the quotient vector space

Hk(C•, d•) = ker dk/img dk+1

It is customary to refer to ker dk ⊂ Ck as the subspace of k-cycles and to img dk+1 as the subspace
of k-boundaries, so the mantra to chant is

Homology is cycles modulo boundaries.
The best way to become familiar with cycles and boundaries (and hence, with homology

groups) is to try drawing them as subsets of simplicial complexes. One can avoid algebraic
impediments when building geometric intuition by using F = Z/2 coefficients, so that it suffices
to highlight which simplices have coefficient 1 in a given chain. Illustrated below are two 1-
cycles γ and γ′ in a triangulated annulus — the key point is that each vertex in sight must be a
face of an even number of edges lying in γ (otherwise it will appear with a nonzero coefficient
when we take the boundary ∂1γ). The cycles γ and γ′ represent the same element in the first
homology group since they differ only by the boundary of the 2-simplex which has been shaded
in the right panel.

When (C•, d•) = (C•(K), ∂K
• ) is the chain complex associated to a simplicial complex K, the

associated homology groups are called the simplicial homology groups of K and denoted either
Hk(K) or Hk(K; F) depending on how emphatically one is trying to showcase the choice of co-
efficient field. Simplicial homology groups are always finite-dimensional (since we require K to
be finite), and for each k ≥ 0 the dimension

βk(K; F) = dim Hk(K; F)

is called the k-th Betti number of K. As we have chosen to work with field coefficients, this single
number completely determines Hk(K; F) up to isomorphism as a vector space, but it doesn’t
actually give us a basis of k-chains which generate Hk(K; F) as a vector space.

EXAMPLE 3.12. The Betti numbers of the solid 0-simplex over any field F are

βk(∆0) =

{
1 k = 0
0 k > 0.
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This can be seen by directly building the simplicial chain complex, which only admits a non-
trivial chain group Ck for k = 0:

· · · → 0→ 0→ F→ 0;

so all the homology groups are trivial except H0 which equals F. On the other hand, the
hollow 2-simplex has Betti numbers

βk(∂∆(2)) =

{
1 k ∈ {0, 1}
0 k > 1.

This time the chain complex is non-trivial in dimensions 0 and 1:

· · · → 0→ F3 → F3 → 0;

and the only non-trivial boundary map d1 : F3 → F3 has rank 2. Thus, its kernel has dimen-
sion 1 while its image has dimension 2, which means β0 = 3− 2 = 1 and β1 = 1− 0 = 1.

As suggested by these computations, the Betti numbers of K can be determined entirely by
the ranks of boundary operators ∂K

k which appear in the simplicial chain complex.

PROPOSITION 3.13. Let K be a simplicial complex with Kk denoting the set of all k-dimensional
simplices in K. Writing rk for the rank of the boundary map ∂K

k : Ck(K) → Ck−1(K) from Definition
3.7, for each dimension k ≥ 0 we have

βk(K) = #Kk − (rk + rk+1)

PROOF. Since βk(K) is the dimension of the quotient ker dk/ img dk+1, we have

βk(K) = dim(ker dk)− dim(img dk+1)

= dim(ker dk)− rk+1

By the rank-nullity theorem from linear algebra, we have dim(ker dk) = dim Ck(K)− rk, and
from Definition 3.6 we know dim Ck(K) is precisely the number of k-simplices in K. �

In order to go beyond Betti numbers and actually extract basis elements for the vector spaces
Hk(K; F), we require more serious linear algebra than the rank-nullity theorem. Before delving
into algebraic manipulations, it will be helpful to have the following pictures firmly in mind.
The first depicts a simplicial chain complex: for each dimension k ≥ 0 we have a vector space
generated by simplices of dimension k:

The dotted lines in this picture describe nonzero entries in matrix representations of the
boundary operators: each basis 1-simplex has exactly two such nonzero entries under its col-
umn in ∂K

1 ; these lie in the rows corresponding to the two 0-simplices which form its faces.
Similarly, each basis 2-simplex has three nonzero entries in its ∂K

2 column, and so on. In this
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picture, the vector spaces Ck(K) have a very convenient and geometric description — basis ele-
ments are simplices σ, and these clearly form subspaces |σ| of the geometric realization |K|. But
the matrix representations of the boundary operators are a mess — there are lots of dotted lines
flying around all over the place, linking each simplex to all of its faces. The key to computing the
homology groups of K is to change the bases of all chain groups so that there is at most one in-
coming or one outgoing dotted line. This produces the following new picture of the same chain
complex:

Now the basis elements which generate the chain groups do not have a convenient geomet-
ric description — they are weird linear combinations of simplices, and it is not clear how to
attach a coherent geometric interpretation within |K| to a linear combination γ = 3σ− 5τ of k-
dimensional simplices. On the other hand, the boundary matrices have now become gloriously
straightforward — there is a trichotomy for each basis element γ of Ck(K): either

(1) there is a single incoming dotted line to γ from a unique basis element of Ck+1(K), or
(2) there is a single outgoing dotted line from γ to a basis element of Ck−1(K), or
(3) γ remains entirely untouched by dotted lines.

In the first case, γ lies in the image of ∂K
k+1 while in the second case γ lies outside the kernel of

∂K
k . The third case is the most interesting to us, since the basis elements which miss the dotted

arrows entirely will simultaneously lie inside the kernel of ∂K
k and outside the image img ∂K

k+1 —
these are the desired generators of the homology group Hk(K).

In the next section, we will describe the algebraic operations which diagonalize the boundary
matrices, thus turning the first chain complex picture into the second chain complex picture.

3.5 THE SMITH DECOMPOSITION

Fix a field F and consider a linear map A : Fm → Fn for some integers m, n ≥ 0. We fix bases
for the domain and codomain so that A has an explicit representation as an n× m matrix with
each entry Aij an element of F.

THEOREM 3.14. [Smith Normal Form] If A : Fm → Fn has rank r, then there exist invertible
matrices P : Fn → Fn and Q : Fm → Fm satisfying the matrix equation

D = PAQ,

where D is an n×m diagonal matrix whose entries are given by

Dij =

{
1 if i = j ≤ r,
0 otherwise.

(This matrix D is called the Smith normal form of A.)

It takes very little imagination (or computation) to produce the matrix D from A, since it only
makes use of the numbers m, n and r — one simply creates an n×m matrix whose leading r× r



3. THE SMITH DECOMPOSITION 39

minor is the identity matrix Idr×r and every other entry is zero. The information that we seek to
extract from the Smith decomposition D = PAQ is hidden in the invertible matrices P and Q: the
first r columns of the inverse P−1 form a basis for img A ⊂ Fn while the last (m− r) columns of
Q form a basis of ker A ⊂ Fm:

The good news is that computing these matrices P and Q from A requires nothing more
sophisticated than the sorts of (hopefully familiar) row and column operations which one might
use to put matrices in echelon form, namely: (1) add an F-multiple of one row to another row,
(2) scale a row by some nonzero element of F, and (3) interchange two rows, plus the three
corresponding operations for columns. You can compute everything at once by starting with
the block matrix

[
Idn×n A
0m×n Idm×m

]
. As we perform row and column operations to diagonalize A,

the identity matrices below and to the left will evolve accordingly, but the zero block remains
unmolested. When A is fully diagonalized, we are conveniently left with

[
P D

0m×n Q

]
. Here are the

first two moves of this computation for the matrix A =
[

1 2 3
4 5 6

]
, assuming that F is the field of

rational numbers:

Let (C•, d•) be a chain complex over F so that each Ck is finite-dimensional. Knowledge of
the Smith decomposition of all the boundary operators dk allows us to find basis vectors for the
homology groups Hk(C•, d•) as follows.

PROPOSITION 3.15. For each dimension k ≥ 0, let Dk = PkdkQk be the Smith decomposition of
the boundary operator dk : Ck → Ck−1. For nk = dim Ck and rk = rank dk, let Gk be the matrix of
size (rk+1 + nk − rk)× nk given by the block decomposition

Gk = [Bk | Zk],
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where Bk equals the first rk+1 columns of P−1
k+1 while Zk equals the last (nk − rk) columns of Qk. If

Ek = [B′k | Z′k] is the reduced row echelon form of Gk obtained by performing row (but not column)
operations over F, then the columns of Zk corresponding to the pivot columns of Z′k form a basis for
Hk(C•, d•).

PROOF. As discussed above, for each k ≥ 0 the matrix Bk contains a basis for img dk+1, and
so every column in the left block B′k of Ek is guaranteed to have a pivot. Recall that img dk+1
is a subspace of ker dk by Definition 3.9, and that the right block Zk contains a basis for ker dk.
Thus, there will be exactly (nk − rk − rk+1) pivot columns in Z′k once we are in row echelon
form, and the corresponding columns of Zk provide a basis for the quotient ker dk/ img dk+1 =
Hk(C•, d•). �

There is nothing unique about bases obtained via the procedure above — for one thing, we
can always add vectors from img dk+1 to a basis vector to get a new basis vector. More se-
riously, we could take interesting linear combinations, e.g., replace basis vectors {γ1, γ2} by
{γ1 + γ2, γ1 − γ2}.

REMARK 3.16. Theorem 3.14 also holds when A is an integer matrix Zm → Zn; in this
case, both P and Q will be invertible integer matrices. But here the Smith normal form D has
a more interesting structure; instead of a leading r × r identity matrix, we have a diagonal
matrix populated by positive integers a1 ≤ · · · ≤ ar, called the invariant factors of A. Each ai
divides the subsequent ai+1, and whenever ai 6= 1 we obtain torsion of the form Z/ai in the
integral homology groups.

We have not yet explained what homology groups have to do with the fact that the Euler
characteristic is homotopy invariant. But we are able to take the first steps in the right direction:
one of the exercises below asks you to confirm that χ(K) for a simplicial complex K can be
completely recovered from its rational Betti numbers {βk(K; Q) | k ≥ 0}. In the next Chapter,
we will develop enough machinery to see that homology groups, and hence Betti numbers, are
themseleves homotopy invariant.

EXERCISES

EXERCISE 3.1. What is the Euler characteristic χ(∂∆(k)) of the hollow k-simplex as a func-
tion of the dimension k ≥ 1?

EXERCISE 3.2. For any sequence a = (a0, a1, . . .) of real numbers and simplicial complex K,
define the real number χa(K) by

χa(K) =
dim K

∑
i=0

ai · #Ki.

Show that if χa(∆(k)) is constant for all k ≥ 0 then there exists some real number λ satisfying
ai = λ · (−1)i, so χa must be a scalar multiple of the Euler characteristic.

EXERCISE 3.3. Show that the Euler characteristic of a simplicial complex equals the alter-
nating sum of its Betti numbers over Q, i.e.,

χ(K) =
dim K

∑
i=0

βi(K; Q).

[Hint: use Proposition 3.13]
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EXERCISE 3.4. Prove Proposition 3.5 by extending the argument for k = 2 to arbitrary k.
[Hint: evaluate ∂k−1 ◦ ∂kσ as follows:

∂k−1

(
k

∑
i=0

(−1)iσ−i

)
=

k

∑
i=0

(−1)i · ∂k−1σ−i =
k

∑
i=0

(−1)i ·
k−1

∑
j=0

(−1)j(σ−i)−j.

Now decompose the double-sum into the parts where j > i and j < i.]

EXERCISE 3.5. Let K be a one-dimensional oriented simplicial complex (i.e., a directed
graph). Describe the simplicial chain complex of K in terms of its incidence matrix I.

EXERCISE 3.6. For K a one-dimensional oriented simplicial complex and coefficients in F =
Z/2, show that ker ∂K

1 must consist entirely of cycles, i.e., paths which start and end at the
same vertex.

EXERCISE 3.7. Let K be a simplicial complex and L a subcomplex so that K− L only contains
simplices of dimension k or above. Prove that βi(K) = βi(L) for all i < k− 1.

EXERCISE 3.8. Write down the simplicial chain complex for the solid simplex ∆(2). Deter-
mine the ranks of the boundary operators and hence the Betti numbers of ∆(2).

EXERCISE 3.9. Compute the Smith decomposition D = PAQ for the matrix A =
[ 1 2 1
−2 −4 −2

]
over Q; use this to write down basis vectors for its kernel and image.

EXERCISE 3.10. Find bases for H0 and H1 of the hollow 2-simplex ∂∆(2) with F = Z/2.

EXERCISE 3.11. A simplicial complex is connected if any two vertices u and v can be joined
by a path of consecutive edges, i.e.,

u↔ w0 ↔ w1 ↔ · · · ↔ wk ↔ v

Show that β0(K; Q) = 1 whenever K is connected.
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4.1 CATEGORIES

When first meeting a new class of mathematical objects – such as topological spaces or abelian
groups – it is natural to try and learn about the underlying structures (open sets, commutative
multiplication laws) which characterize each object, and to carefully describe a reasonable no-
tion of functions (continuous maps, group homomorphisms) which preserve that structure. In
almost all cases of interest, it turns out that composing two such structure-preserving functions
produces another such function. The following definition provides a convenient umbrella under
which such (structure, function) pairs reside.

DEFINITION 4.1. A category C consists of
(1) a collection C0 whose elements are called objects,
(2) for every pair of objects x, y in C a set C (x, y) of morphisms from x to y, whose elements

we denote f , g, . . . : x → y, and
(3) for each triple x, y, z of objects a composition law C (x, y) × C (y, z) → C (x, z) sending

f : x → y and g : y→ z to some g ◦ f : x → z,
subject to the identity and associativity axioms.

Our definition remains incomplete until we spell out these two axioms; here they are:

(1) for each x in C0, there is a distinguished identity morphism 1x : x → x satisfying both

g ◦ 1x = g and 1x ◦ h = h

for any object y and morphisms g : y→ x and h : x → y;
(2) given any triple of morphisms of the form

x
f
// y

g
// z h

// w,

the associativity condition h ◦ (g ◦ f ) = (h ◦ g) ◦ f holds.

Instances of (object, morphism) pairs in mathematics which satisfy these two axioms are ubiqui-
tous — consider, for instance:

• the category Set of (sets, functions),
• the category Grp of (groups, group homomorphisms),
• its subcategory AbGrp of (abelian groups, abelian group homomorphisms),
• the category SC of (simplicial complexes, simplicial maps),
• the category VectF of (F-vector spaces, F-linear maps) over a field F, etc.

One can encode the associativity axiom in the form of a commuting square, like so:

C (x, y)× C (y, z)× C (z, w)
( f ,g,h) 7→(g◦ f ,h)

//

( f ,g,h) 7→( f ,h◦g)
��

C (x, z)× C (z, w)

(g◦ f ,h) 7→h◦(g◦ f )

��

C (x, y)× C (y, w)
( f ,h◦g) 7→(h◦g)◦ f

// C (x, w)

At first glance, this diagrammatic translation of (h ◦ g) ◦ f = h ◦ (g ◦ f ) might come across as
an elaborate crime against brevity. There are, however, several compelling reasons to become
familiar with the language of commuting diagrams — for one thing, there are many such dia-
grams in our immediate future. Another special feature of the categorical philosophy, besides
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this profusion of commuting diagrams, is that it can be turned inwards to reason about the the-
ory of categories itself. Those under its influence naturally ask what key piece of structure must
be preserved by functions which map one category C to another category C ′.

DEFINITION 4.2. A functor F : C → C ′ assigns
(1) to each object x in C0 an object Fx in C ′0, and
(2) to each morphism f : x → y in C a morphism F f : Fx → Fy in C ′,

subject to the following conditions:
(1) we have F1x = 1Fx for each x in C0, and
(2) for any pair of morphisms f in C (x, y) and g in C (y, z), we have

F(g ◦ f ) = Fg ◦ F f

(Here the composition on the left takes place in C while the composition on the right
takes place in C ′).

Thus, a functor C → C ′ sends C -objects to C ′-objects and the corresponding C -morphisms to
C ′-morphisms in a manner that duly respects composition laws of both C and C ′. One of the ex-
ercises to this Chapter asks you to define the composite of two functors and hence construct the
category Cat containing (categories, functors). We have been discussing categories and functors
because of the next result, which catalogues one of the most important properties of simplicial
homology (see Section 4).

THEOREM 4.3. For each dimension k ≥ 0, the assignment

K 7→ Hk(K; F)

constitutes a functor from the category SC of simplicial complexes and maps to the category VectF of
vector spaces over F.

We already know from Chapter 3 that every simplicial complex K can be assigned a vector
space Hk(K; F) by first building the simplicial chain complex (C•(K), ∂K) and then extracting the
relevant quotient ker ∂K

k / img ∂K
k+1. So the new content of Theorem 4.3 lies entirely on the level

of morphisms — we must first show that every simplicial map f : K → L induces a well-defined
linear map Hk f : Hk(K; F) → Hk(L; F) of homology groups; and next, we have to confirm that
given some other simplicial map g : L→ M, we have an equality

Hk(g ◦ f ) = Hkg ◦Hk f

of linear maps Hk(K; F)→ Hk(M; F). These are our goals in the next two Sections.

4.2 CHAIN MAPS

Fix simplicial complexes K and L as well we as a simplicial map f : K → L and a coefficient
field F. We will continue to write (C•(K), ∂K

• ) to indicate the simplicial chain complex of K (and
similarly for L).

DEFINITION 4.4. For each dimension k ≥ 0, let Ck f : Ck(K) → Ck(L) be the F-linear map
between chain groups defined by the following action on each basis k-simplex σ of K:

Ck f (σ) =

{
f (σ) if dim f (σ) = k
0 otherwise.
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Perhaps the most interesting aspect of this definition is its piecewise nature — some simplices
σ are faithfully mapped onto their images f (σ) while others are sent to zero, depending on
whether f is injective on their vertices or not. This is a necessary bit of book-keeping: we want
to produce a map from k-chains to k-chains for each k, and the image f (σ) of a k-simplex σ will
not be a basis element of Ck(L) unless dim f (σ) = k. Our next order of business is to see how
the linear maps C• f interact with the two boundary operators ∂K

• and ∂L
• . It turns out that the

diagram below is a commuting square (in the category VectF) for each k ≥ 0:

Ck(K)
∂K

k
//

Ck f
��

Ck−1(K)

Ck−1 f
��

Ck(L)
∂L

k

// Ck−1(L)

PROPOSITION 4.5. For each dimension k ≥ 0, and k-simplex σ in K, we have an equality

∂L
k ◦Ck f (σ) = Ck−1 f ◦ ∂K

k (σ).

PROOF. Given Definition 4.4, the argument naturally decomposes into two cases.
Case 1: dim f (σ) = k. Here Ck f (σ) = f (σ) and we have

∂L
k ◦Ck f (σ) = ∂L

k f (σ) since Ck f (σ) = f (σ),

=
k

∑
i=0

(−1)i · f (σ)−i by Definition 3.7.

On the other hand, ∂K
k (σ) equals ∑k

i=0(−1)iσ−i, and since f is injective on the vertices of σ it must
also be injective on the vertices of each face σ−i. Thus, Ck−1 f (σ−i) = f (σ−i) for each i, and we
have

Ck−1 f ◦ ∂K
k (σ) = Ck−1 f

(
k

∑
i=0

(−1)i · σ−i

)
by Definition 3.7,

=
k

∑
i=0

(−1)i f (σ)−i by Definition 4.4.

Thus, ∂L
k ◦Ck f (σ) and Ck−1 f ◦ ∂K

k (σ) coincide in this case.
Case 2: dim f (σ) < k. Here Ck f (σ) equals zero by definition, and hence so does its boundary

in L. It suffices to show that the other composite Ck−1 f ◦ ∂K
k (σ) is also zero. To this end, impose

orientations oK and oL on K and L so that f is orientation-preserving, i.e, oK(v) < oK(v′) forces
oL( f (v)) < oL( f (v′)). Writing σ as an oK-oriented simplex (v0, . . . , vk), we must have f (vp) =
f (vp+1) for some p in {0, . . . , k− 1}. Thus, f fails to be injective on the vertices of every face σ−i
of σ, with the possible exceptions of σ−p and σ−(p+1). Now,

Ck−1 f ◦ ∂K
k (σ) = Ck−1 f

(
k−1

∑
i=0

(−1)i · σ−i

)
by Definition 3.7

=
k−1

∑
i=0

(−1)iCk−1 f (σ−i) by linearity of Ck f

= (−1)p
[

f (σ−p)− f (σ−(p+1))
]

by Definition 4.4.
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Here the last step follows from our observation that Ck f evaluates to zero on all other other
faces of f (σ) since f will not be injective on their vertices. But now, f (σ−p) and f (σ−p+1) are
the same simplex in L, since both have vertices ( f (v0), . . . , f (vp), f (vp+2), . . . , f (vk)). Thus, both
∂L

k ◦Ck f (σ) and Ck−1 f ◦ ∂K
k (σ) equal zero in this case. �

As a consequence of this result, we are able to use the simplicial map f : K → L to produce
a sequence of linear maps C• f : C•K → C•L between the chain groups which form a ladder-
shaped commuting diagram:

· · ·
∂K

k+1
// Ck(K)

∂K
k
//

Ck f
��

Ck−1(K)

Ck−1 f
��

∂K
k−1
// · · ·

∂K
2
// C1(K)

C1 f
��

∂K
1
// C0(K)

C0 f
��

0
// 0

· · ·
∂L

k+1

// Ck(L)
∂L

k

// Ck−1(L)
∂L

k−1

//// · · ·
∂L

2

// C1(L)
∂L

1

// C0(L)
0
// 0

This is a standard example of a chain map, which can be used to relate arbitrary (i.e., not neces-
sarily simplicial) chain complexes.

DEFINITION 4.6. A chain map φ• from (C•, d•) to (C′•, d′•) is defined to be a sequence of
F-linear maps

{
φk : Ck → C′k | k ≥ 0

}
which satisfy

d′k ◦ φk = φk−1 ◦ dk

for each k ≥ 0.

Proposition 4.5 can be now be rephrased:

simplicial maps f : K → L induce chain maps C• f : (C•(K), ∂K
• )→ (C•(L), ∂L

•).

It turns out that chain maps form the correct notion of morphisms in the category of chain com-
plexes; their composition is not too difficult to define, and will be addressed by Exercise 4.3.

4.3 FUNCTORIALITY

To continue our proof of Theorem 4.3, we will use chain maps to construct maps of homology
groups.

PROPOSITION 4.7. Let φ• : (C•, d•) → (C′•, d′•) be a chain map. For each dimension k ≥ 0, there
is a well-defined F-linear map Hkφ : Hk(C•, d•)→ Hk(C′•, d′•) induced by φ•.

PROOF. To induce a map of quotient vector spaces ker dk/ img dk+1 → ker d′k/ img d′k+1, it
suffices to show that φk maps ker dk to ker d′k and img dk+1 to img d′k+1. First consider γ ∈ Ck
satisfying dk(γ) = 0. Using Definition 4.6, we get

d′k ◦ φk(γ) = φk−1 ◦ dk(γ) = 0,

so φk(γ) lies in ker d′k as desired. Next, if α ∈ Ck lies in img dk+1, then we have α = dk+1(β) for
some β in Ck+1. Once again, Definition 4.6 gives us,

φk(α) = φk ◦ dk+1(β) = d′k+1 ◦ φk+1(ζ),

whence φk(α) lies in img dk+1. Thus, for each γ in ker dk, our map Hkφ sends γ + img dk+1 to
φ(γ) + img d′k+1, with a guarantee that φ(γ) lies in ker d′k. �



4. FUNCTORIALITY 48

Combining Proposition 4.5 with Proposition 4.7, we see that every simplicial map f : K → L
indeed produces a well-defined linear map Hk(K; F) → Hk(L; F) for each dimension k ≥ 0. In
order to avoid writing the monstrosity HkC f every time we want to mention this induced map,
we will abbreviate it to Hk f : Hk(K; F) → Hk(L; F). It is not difficult to confirm that when f is
the identity simplicial map K → K, its induced map is the identity on Hk(K; F). The following
result (which forms one of the exercises to this Chapter) takes a bit more work.

PROPOSITION 4.8. Given chain maps φ• : (C•, d•) → (C′•, d′•) and ψ : (C′•, d′•) → (C′′• , d′′• ), we
have

Hk(ψ ◦ φ) = Hkψ ◦Hkφ

for each dimension k ≥ 0

Applying the above result to the special case where our chain maps are induced by simplicial
maps (i.e., φ• = C• f and ψ• = C•g for some f : K → L and g : L → M) completes the proof of
Theorem 4.3.

We now have the ability to study not just the homology groups of simplicial complexes but
also linear maps of homology groups induced by simplicial maps (and more generally, chain
maps); we will now examine various salient properties of such maps. A chain map φ• is called
an isomorphism if each φk : Ck → C′k is an isomorphism from Ck to C′k — for such a φ the induced
maps H•φ are also isomorphisms. But in general H•φ can be an isomorphism even if φ• is not.

DEFINITION 4.9. A chain map φ• : (C•, d•) → (C′•, d′•) is called a quasi-isomorphism if the
induced map Hkφ : Hk(C•, d•)→ Hk(C′•, d′•) is an isomorphism for each dimension k ≥ 0.

In sharp contrast to testing whether a simplicial map induces homotopy equivalence or not,
testing whether it induces a quasi-isomorphic chain map (and hence, isomorphisms of homology
groups) is algorithmic and machine-computable.

REMARK 4.10. Consider a chain map φ : (C•, d•)→ (C′•, d′•); if the dimensions of Ck and C′k
are finite, then the computation of Hkφ can be accomplished via the following linear algebraic
procedure:

(1) Extract basis vectors B and B′ for Hk(C•, d•) and Hk(C′•, d′•) via Proposition 3.15.
(2) For each basis chain b in B, write φk(b) as a linear combination of the basis chains of

B′:
φk(b) = ∑

b′
αb,b′ · b′,

where each αb,b′ lies in the coefficient field F. These α coefficients can be determined
for all b at once by row-reducing the augmented matrix [B′k | φk(B)].

(3) The coefficients {αb,b′ | b ∈ B and b′ ∈ B′} form a matrix Hk(C•, d•)→ Hk(C′•, d′•); this
matrix represents our linear map Hkφ in terms of the bases B and B′.

Computability issues aside, induced maps on homology can be somewhat subtle.

EXAMPLE 4.11. The figure below illustrates two simplicial maps f , g from the hollow 2-
simplex ∂∆(2) to another simplicial complex K. The homology groups of K and ∂∆(2) are
isomorphic as rational vector spaces, i.e.,

Hk(∂∆(2); Q) ' Hk(K; Q) =

{
Q if k ∈ {0, 1},
0 otherwise .



4. CHAIN HOMOTOPY 49

The chain map C•g is a quasi-isomorphism whereas C• f is not.

4.4 CHAIN HOMOTOPY

There is a purely algebraic version of homotopy equivalence designed to work directly with
chain complexes (rather than topological spaces). As usual, the first step is to define an equiva-
lence relation between the set of all chain maps between a fixed pair of chain complexes.

DEFINITION 4.12. A chain homotopy η• between chain maps φ•, ψ• : (C•, d•) → (C′•, d′•) is
a collection of F-linear maps ηk : Ck → C′k+1 which satisfy

φk − ψk = ηk−1 ◦ dk + d′k+1 ◦ ηk

for each k ≥ 0.

We write η• : φ• ⇒ ψ• to indicate that η• is a chain homotopy as defined above; and the maps
φ• and ψ• are said to be chain homotopic whenever such an η• exists. Chain homotopy is an
equivalence relation on the set of all chain maps between a fixed pair of chain complexes.

REMARK 4.13. It is important to note that the linear maps ηk are not required to satisfy
any relations beyond the ones in the preceding defintion — in particular, they do not have
to commute with d, d′, φ or ψ. Even so, it is good to see how they fit within the commuting
staircase diagrams that contain φ and ψ:

The following result highlights the utility of chain homotopy.

PROPOSITION 4.14. If φ•, ψ• : (C•, d•)→ (C′•, d′•) are chain homotopic, then their induced maps
on homology coincide, i.e.,

Hkφ = Hkψ

for each dimension k ≥ 0.

PROOF. Let η• : φ• ⇒ ψ• be a chain homotopy. For any chain γ ∈ ker dk, Definition 4.12
gives us

φk(γ)− ψk(γ) = ηk−1 ◦ dk(γ) + d′k+1 ◦ ηk(γ).
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But dk(γ) = 0, so the first term on the right side disappears and the difference φk(γ) − ψk(γ)
equals d′k+1 ◦ ηk(γ), which evidently lies in img d′k+1. Thus, this difference is always a k-boundary,
which is undetectable by homology. �

Chain homotopies are to chain maps what homotopies (as in Definition 2.1) are to continu-
ous maps: they provide an indirect method for establishing that two chain complexes (C•, d•)
and (C′•, d′•) are related by a quasi-isomorphism. The good news is that this method largely
circumvents the tedious algebraic manipulations of Remark 4.10 and Proposition 3.15. But the
bad news is that in order to avail of this method, we require not only a backwards chain map
ψ• : (C′•, d′•)→ (C•, d•) but also a pair of chain homotopies, described below.

DEFINITION 4.15. A pair of chain complexes is said to be chain homotopy equivalent if there
are two chain maps

φ• : (C•, d•)→ (C′•, d′•) and ψ• : (C′•, d′•)→ (C•, d•)

along with chain homotopies

η• : 1(C•,d•) ⇒ ψ• ◦ φ• and η′• : φ• ◦ ψ• ⇒ 1(C′•,d′•).

Here 1(C•,d•) is the identity chain map of (C•, d•), etc.

It follows immediately from Proposition 4.14 that if two chain complexes are chain homo-
topy equivalent, then they must be related by quasi-isomorphisms and hence have isomorphic
homology groups.

EXAMPLE 4.16. The cone Cone(K) over any simplicial complex K (see Definition 1.19) has
homology groups isomorphic to those of ∆(0), namely:

Hk(Cone(K); F) =

{
F k = 0
0 k > 0.

To see this, let f : Cone(K) → ∆(0) be the simplicial map sending every vertex of the cone to
the unique vertex 0, and let g : ∆(0)→ Cone(K) be the simplicial map sending 0 to the special
vertex v∗ which lies in Cone(K)−K. Now the composite f ◦ g equals the identity on ∆(0), and
the other composite g ◦ f sends every vertex of Cone(K) to v∗. It remains to construct a chain
homotopy from the identity chain map on C•(Cone(K)) to the composite C•(g ◦ f ). This will
be accomplished in one of the exercises to this Chapter.

4.5 THE SNAKE LEMMA

Our study of homotopy equivalence benefited greatly from a thorough analysis of contractible
spaces, i.e., the spaces which have the simplest possible homotopy type. For analogous reasons,
we ask which chain complexes have trivial homology.

DEFINITION 4.17. A sequence of vector spaces and linear maps

· · ·
ak+2

// Vk+1
ak+1

// Vk
ak
// Vk−1

ak−1
// · · ·

is said to be exact at k if ker ak equals img ak+1 as subpaces of Vk. The entire sequence is called
exact if it is exact at every k ∈N.

A casual glance at Definition 3.9 will confirm that every exact sequence is a chain complex,
and another brief look at Definition 3.11 reveals that exact sequences are precisely those chain
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complexes whose homology group is trivial in every dimension k ≥ 0. We call an exact sequence
short if all but three of the Vi (let’s say V0, V1 and V2 without loss of generality) are required to
be trivial. Short exactness relates to standard notions in linear algebra, for instance:

(1) 0→ V1 → V0 is exact at k = 1, iff V1 → V0 is injective,
(2) V2 → V1 → 0 is exact at k = 1 iff V2 → V1 is surjective,
(3) 0→ V2 → V1 → 0 is exact at k ∈ {1, 2} iff V2 → V1 is an isomorphism, and
(4) 0→ V2 → V1 → V0 → 0 is exact iff V1 = V0 ⊕V2.

The first three of these statements hold in broader contexts (i.e, we can replace the vector spaces
by abelian groups) whereas the last one is specific to vector spaces. The definition of a short
exact sequence also extends verbatim to chain complexes.

DEFINITION 4.18. A short exact sequence of chain complexes consists of three chain com-
plexes and two chain maps arranged as follows:

(C•, d•)
φ•
// (C′•, d′•)

ψ•
// (C′′• , d′′• ),

with the additional requirement that for each k ≥ 0 the chain groups

0 // Ck
φk
// C′k

ψk
// C′′k // 0

form a short exact sequence of F-vector spaces.

The following lemma is by far the most important result in this Chapter; it forms the first of
many miracles in the field of homological algebra.

LEMMA 4.19. [The Snake lemma.] For each short exact sequence of chain complexes

(C•, d•)
φ•
// (C′•, d′•)

ψ•
// (C′′• , d′′• ),

there exists a family of linear maps Dk : Hk(C′′• , d′′• )→ Hk−1(C•, d•) which fit into an exact sequence
of homology groups:

· · ·
Dk−1

// Hk(C•, d•)
Hkφ

// Hk(C′•, d′•)
Hkψ

// Hk(C′′• , d′′• )
Dk

// Hk−1(C•, d•)
Hk−1φ

// · · ·

The collection of linear maps {Dk | k ≥ 1} is called the connecting homomorphism of the
given short exact sequence. The full proof of this lemma is a tedious affair, and tends to be far
from enlightening. We will say just enough about it here to explain the serpentine etymology.
To build Dk, one starts with the piece of the short exact sequence connecting dimensions k and
k− 1:

Since both rows are exact by Definition 4.18, the φ maps are injective while the ψ maps are
surjective. We’d like Dk to send elements of the homology group Hk(C′′• , d′′• ) to elements of
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Hk−1(C•, d•), so it makes sense to start with the upper-right corner of this diagram. There are
four basic steps in the construction:

(1) Choose any γ lying in ker d′′k ⊂ C′′k .
(2) By surjectivity, there is some β in C′k satisfying ψk(β) = γ.
(3) Since ψ is a chain map, Definition 4.6 gives us

ψk−1 ◦ d′k(β) = d′′k ◦ ψk(β) = d′′k (γ) = 0;

thus, d′k(β) lies in ker ψk−1.
(4) By exactness of the bottom row, this kernel equals the image of φk−1, so there is some α

in Ck−1 satisfying φk−1(α) = d′k(β).
One defines Dk(γ) = α as the desired map. The promised snake materializes when we trace the
path taken in our short exact sequence γ 7→ β 7→ d′kβ 7→ α:

The argument is far from complete: one must show that Dk defines a well-defined map on
homology independent of our choice of β, that α lies in ker dk−1, and that the sequence involving
Hkφ, Hkψ and Dk is exact. We will only perform the second check here:

φk−2 ◦ dk−1(α) = d′k−1 ◦ φk−1(α) by Definition 4.6,

= d′k−1 ◦ d′k(β) since φk−1(α) = d′k(β),
= 0 by Definition 3.9.

But φk−2 is injective by exactness, so dk−1(α) = 0 as desired.

4.6 PAIRS AND RELATIVE HOMOLOGY

One of the first applications of Lemma 4.19 is the ability to relate the homology groups of a
simplicial complex K, a subcomplex L ⊂ K and the topological quotient |K|/|L|. This quotient
does not form a simplicial complex in any natural way, but we are still able to define its homol-
ogy by building an appropriate quotient chain complex as follows. Each chain group Ck(L) is a
subspace of the corresponding Ck(K) by Definition 3.6. And since tje faces of every simplex in L
themselves lie in L by the subcomplex property, the restriction of ∂K

k to Ck(L) coincides with ∂L
k

by Definition 3.7. Thus, ∂K
k induces a well-defined map of quotient spaces, which we denote

∂K,L
k : Ck(K)/Ck(L)→ Ck−1(K)/Ck−1(L).

Since ∂K
• is a boundary operator, it follows that ∂K,L

k ◦ ∂K,L
k+1 = 0.

DEFINITION 4.20. Let L ⊂ K be a pair of simplicial complexes; the relative homology groups
Hk(K, L) are defined to be the homology groups of the chain complex defined as follows: its
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chain groups are
Ck(K, L) = Ck(K)/Ck(L),

and the boundary operators are ∂K,L
k : Ck(K, L)→ Ck−1(K, L).

The Snake lemma enters the picture because whenever L ⊂ K is a subcomplex, we have an
apparent short exact sequence of chain complexes(

C•(L), ∂L
•
)
� � ι•

//
(
C•(K), ∂K

•
) π•

// //
(
C•(K, L), ∂K,L

•
)
.

Here the chain map ι• is given by inclusions of subspaces while the chain map π• is given by
projections to quotient spaces. Applying Lemma 4.19 to this short exact sequence, we obtain a
connecting homomorphism Dk : Hk(K, L) → Hk−1(L) and hence the following exact sequence
relating homology groups.

DEFINITION 4.21. The exact sequence of the pair L ⊂ K of simplicial complexes is given by

· · ·
Dk+1

// Hk(L)
Hk ι

// Hk(K)
Hkπ

// Hk(K, L)
Dk

// Hk−1(L)
Hk−1ι

// · · ·

The exact sequence of a pair is a wonderful tool for comput-
ing relative homology groups H•(K, L) using prior knowledge of
Hk(K) and Hk(L). Consider, for instance, the scenario where K is
any simplicial complex whose realization |K| is homeomorphic to
the 2-dimensional disk, while the subcomplex L ⊂ K consists of
n interior vertices — the case n = 5 has been illustrated. Building
the chain complex C•(K, L) which yields the relative homology is
quite a chore, but the exact sequence of a pair works remarkably
well. We know (or can compute, if asked) that the homology of K
agrees with that of ∆(2), whereas L consists of n disjoint copies of
∆(0). Putting all this known information about K and L together,
we have:

Hk(K; F) =

{
F k = 0
0 k > 0

and Hk(L; F) =

{
Fn k = 0
0 k > 0

.

All the non-trivial bits of the exact sequence of this pair concentrate in the lower dimensions
— here is the relevant piece of the sequence:

· · · // 0 // H1(K, L)
D0

// H0(L)
H0ι

// H0(K)
H0π

// H0(K, L) // 0

Everything depends on the rank of the map H0ι which is induced on 0-th homology by the
inclusion of L into K. It is straightforward to check that this is not the zero map, and hence has
rank 1. Now exactness of this sequence immediately forces the rank of D0 to be n− 1 and the
rank of H0π to be 0. But D0 is injective and H0π is surjective (because of the leading and trailing
0’s plus exactness), which gives

Hk(K, L) =

{
Fn−1 k = 1
0 k 6= 1

.

REMARK 4.22. The relative homology of a pair L ⊂ K generalizes ordinary simplicial ho-
mology of K if we allow ourselves the luxury of setting L = ∅; in this case the chain groups
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C•(K) and C•(K, L) are equal, as are the boundary operators. On the other hand, the rela-
tive homology of a pair is further generalized by that of a triple M ⊂ L ⊂ K of simplicial
complexes. Here the short exact sequence of interest is(

C•(L, M), ∂L,M
•
)
� � ι•

//
(
C•(K, M), ∂K,M

•
) π•

// //
(
C•(K, L), ∂K,L

•
)
,

Once again, the chain map ι• is an inclusion while the map π is a projection; the subcomplex
property is necessary to get well-defined boundary operators of these relative chain complexes
(as it was in Definition 4.20). The connecting homomorphisms Dk : Hk(K, L) → Hk−1(L, M)
guaranteed by Lemma 4.19 fit into an exact sequence with H•ι and H•π.

4.7 THE MAYER-VIETORIS SEQUENCE

A second enormously useful application of the Snake lemma is that it confers the ability to
compute homology of a complicated simplicial complex K in terms of a decomposition into
two (hopefully simpler) subcomplexes. Assume that L and M are subcomplexes of K satisfying
K = L ∪M, and let’s agree to write their intersection L ∩M – which must also be a subcomplex
of K – as I. There are now four chain complexes and four chain maps (all inclusions) to keep
track of; these fit into the following diamond:

(C•(I), ∂I
•)

hH

vv

v�

))

(C•(L), ∂L
•)v�

((

(C•(M), ∂M
• )

hH

uu

(C•(K), ∂K
• )

Both paths from the top to the bottom give the same chain map (the one which includes chains
of I into chains of K); thus our diamond commutes in the category ChainF. The crucial idea here
is to generate a short exact sequence by combining the two chain complexes of the middle row
into a single one.

The direct sum of (C•(L), ∂L
•) and (C•(M), ∂M

• ) is the new chain complex defined as follows:
in each dimension k ≥ 0, it has

chain groups Ck(L)⊕Ck(M) and boundary operator
[

∂L
k 0

0 ∂M
k

]
.

The k-th homology group of this direct sum is Hk(L)⊕Hk(M). More interestingly, there is an
injective chain map ιk : Ck(I) → Ck(M)⊕ Ck(L) which sends every γ to the pair (γ, γ). There
is also a second chain map πk : Ck(M) ⊕ Ck(L) → Ck(K) that sends each pair (α, β) to the
difference (β− α). This map π• is evidently surjective because K = L ∪M; thus, we obtain

(C•(I), ∂I
•)
� � ι•

// (C•(L), ∂L
•)⊕ (C•(M), ∂M

• )
π•
// // (C•(K), ∂K

• ) .

This turns out to be a short exact sequence: note that (α, β) ∈ Ck(L)∩Ck(M) lies in ker πk if and
only if α = β. But this equality holds if and only if the chain α lies in the intersection Ck(I) =
Ck(L) ∩ Ck(M), whence (α, α) lies in img ιk. Having obtained a short exact sequence of chain
complexes, we appeal once more to the Snake lemma and obtain a connecting homomorphism
Dk : Hk(K)→ Hk−1(I).
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DEFINITION 4.23. Let K = L ∪ M be a decomposition of the simplicial complex K into two
subcomplexes L and M whose intersection is denoted I. The Mayer-Vietoris exact sequence
associated to this partition is given by

· · ·
Dk−1

// Hk(I)
Hk ι

// Hk(L)⊕Hk(M)
Hkπ

// Hk(K)
Dk

// Hk−1(I)
Hk−1ι

// · · ·

This exact sequence is particularly effective when combined
with inductive arguments — we can use it to compute the i-th
homology group of every hollow k-simplex ∂∆(k) for i > 1. Con-
sider the decomposition ∂∆(k) = L∪M where L is the closed star
of the vertex 0 (see Definition 1.17) while M consists of the sim-
plex {1, 2, . . . , k} along with all its faces. This decomposition is
illustrated for k = 3 here. Note also that the intersection L ∩M is
the hollow simplex of one lower dimension, i.e., ∂∆(k− 1).

Now we claim that both L and M have the same homology as
∆(0). First note that L is clearly a cone over ∂∆(k− 1), so the con-
clusion follows from Example 4.16. And M is a solid k-simplex,
which is a cone over a solid (k− 1)-simplex, so once again Exam-
ple 4.16 does the job. Consequently, the homology groups Hi(L)
and Hi(M) are trivial for all i > 0, and hence so is their direct
sum. So for each i > 1, we obtain the following snippet of the

Mayer-Vietoris exact sequence:

0 // Hi(∂∆(k))
Di

// Hi−1(∂∆(k− 1)) // 0

Exactness forces Di to be an isomorphism for all i > 1, so it suffices to calculate the homology
groups Hi(∂∆(2); F) as a base case; we did this in Example 3.12, and can safely conclude that for
i > 0 we have:

Hi(∂∆(k); F) =

{
F i = k− 1
0 otherwise.

A separate (and somewhat easier) argument must be used to compute H0(∂∆(k)).

4.8 BONUS: HOMOTOPY INVARIANCE

Theorem 4.24 below is vital from both a theoretical and practical perspective; its proof requires techniques which
are outside our scope at the moment, but the ability to understand and apply it will be quite beneficial when
working with homology.

As mentioned at the beginning of Chapter 3, the Euler characteristic inherits its homotopy
invariance from homology.

THEOREM 4.24. Let K and L be simplicial complexes. For any choice of coefficient field F,
(1) if f , g : K → L are homotopic simplicial maps, then Hk f = Hkg for every k ≥ 0; and,
(2) if K and L are homotopy equivalent, then Hk(K) is isomorphic to Hk(L) for every k ≥ 0.

The second assertion follows from the first one if we use simplicial approximation (see The-
orem 2.15). The basic idea is to start with topology and gradually descend to algebra: Assume
that θ : |K| × [0, 1] → |L| is a homotopy from | f | to |g|. The first order of business is to build
a simplicial complex homeomorphic to |K| × [0, 1] — this is rendered difficult by the fact that
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in general the product of a simplex with [0, 1] is not itself a simplex in any natural way. Fortu-
nately, such a product can be triangulated into a union of simplices, and putting these together
produces a simplicial complex P(K) whose realization is homeomorphic to |K| × [0, 1]. Using
this homeomorphism, one approximates the homotopy θ as a simplicial map Sdn P(K) → L
(where Sd stands for barycentric subdivision). This approximated version of θ then descends to
a chain homotopy from C• f to C•g. An appeal to Proposition 4.14 completes the argument.

EXERCISES

EXERCISE 4.1. Given functors F : C → C ′ and G : C ′ → C ′′, define their composite G ◦ F
and show that this is a functor C → C ′′.

EXERCISE 4.2. Show that the collection of all simplicial complexes and simplicial maps sat-
isfies the axioms of a category SC.

EXERCISE 4.3. Consider two chain maps φ : (C•, d•)→ (C′•, d′•) and ψ : (C′•, d′•)→ (C′′• , d′′• ).
Show that the collection of maps ψk ◦ φk : Ck → C′′k prescribe a chain map from (C•, d•) to
(C′′• , d′′• ). Thus, chain maps are morphisms in the category ChainF of chain complexes over F.

EXERCISE 4.4. Given simplicial maps f : K → L and g : L → M, show that Ck(g ◦ f )
equals Ck(g) ◦ Ck( f ). This shows that C is a functor from the category SC of Exercise 4.2 to
the category ChainF of Exercise 4.3.

EXERCISE 4.5. Write down a proof of Proposition 4.8.

EXERCISE 4.6. Verify the assertions of Example 4.11.

EXERCISE 4.7. In the setting of Example 4.11, consider the simplicial map h : K → ∂∆(2)
that sends vertex a to 0, vertex d to 1 and vertex c to 2. Show that Hkh is an inverse to Hkg for
every k ≥ 1. (Note that h and g themselves are not inverse to each other as chain maps!)

EXERCISE 4.8. Prove that chain homotopy is an equivalence relation on the set of all chain
maps (C•, d•)→ (C′•, d′•).

EXERCISE 4.9. Using F = Z/2 coefficients, complete the argument of Example 4.16 as
follows. Define the linear maps ηk : Ck(Cone(K)) → Ck+1(Cone(K)) that sends each basis
k-simplex σ to

ηk(σ) =

{
σ ∪ {v∗} σ ∈ K
0 σ ∈ Cone(K)− K.

Show that η• prescribes a chain homotopy between the chain map φ• := C•(g ◦ f ) and the
identity chain map. [Hint: let d be the boundary operator for the simplicial chain complex
of Cone(K). Over F = Z/2 it suffices to show that σ + φ(σ) = d ◦ η(σ) + η ◦ d(σ) for each
simplex σ. Start with dim σ = 0 and induct upwards along dimension.]

EXERCISE 4.10. For each k ≥ 1, compute the relative homology group Hk(∆(k), ∂∆(k)).

EXERCISE 4.11. Let K and L be simplicial complexes. Identify a vertex v of K with a vertex
w of L to form a new simplicial complex K ∨ L. Prove that Hk(K ∨ L) = Hk(K)⊕Hk(L) for all
k > 0 [Hint: Mayer-Vietoris].
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5. COHOMOLOGY
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5.1 COCHAIN COMPLEXES

The dual V∗ of a F-vector space consists of all linear maps V → F. It is not too painful to
confirm that V∗ is also a vector space over F — given linear maps p, q in V∗ along with scalars
α, β in F, the linear combination α · p + β · q is evidently another linear map V → F and hence
constitutes an element of V∗. For finite-dimensional V one can describe the elements of V∗
quite explicitly — every basis {e1, . . . , ek} ⊂ V has a corresponding dual basis {e∗1 , . . . , e∗k} ⊂ V∗
prescribed by the following action on the V-basis:

e∗i (ej) =

{
1 i = j
0 i 6= j

.

Thus, we can transport any basis for V to a basis for V∗ and express all the elements of V∗ in
terms of this dual basis.

Life gets considerably more interesting when one similarly attempts to dualize a linear map
A : V → W of F-vector spaces. Now A does not give us any straightforward way of sending
V∗-elements to W∗-elements — every p : V → F fits into an awkward zigzag with A:

W VA
oo

p
// F,

In sharp contrast, if we start with q : W → F, then there is an obvious map V → F:

V A
// W

q
// F.

Thus, for every A : V →W we get a dual map A∗ : W∗ → V∗ which acts as q 7→ q ◦ A. Our goal
here is to investigate some of the homological consequences of this dramatic reversal of domain
and codomain that occurs when we dualize linear maps.

Let’s start with a chain complex (C•, d•) over F

· · ·
dk+1

// Ck
dk
// Ck−1

dk−1
// · · · d2

// C1
d1
// C0 // 0

and dualize everything in sight:

· · · C∗k
d∗k+1
oo C∗k−1

d∗k
oo · · ·

d∗k−1
oo C∗1

d∗2
oo C0

d∗1
oo 0oo

The important fact from out perspective is that even in this dualized form, adjacent maps com-
pose to give zero; given any dimension k ≥ 0 and linear map ζ : Ck → F, we have d∗k+2 ◦
d∗k+1(ζ) = ζ ◦ dk+1 ◦ dk+2, which must equal zero regardless of ζ by the defining property of a
chain complex. If we write this dualized chain complex from left to right and shift the indexing
of the dual boundary maps by 1, then we arrive at the following definition.

DEFINITION 5.1. A cochain complex (C•, d•) over F is a sequence of vector spaces and linear
maps of the form

0 // C0 d0
// C1 d1

// C2 d2
// · · · dk−1

// Ck dk
// Ck+1 dk+1

// · · ·
satisfying dk−1 ◦ dk = 0 for every k ≥ 1.

Aside from the fact that the maps are going up the indexing rather than down, cochain com-
plexes are not very different from the chain complexes of Definition 3.9. We call Ck the k-th
cochain group and dk : Ck → Ck+1 the k-th coboundary map of (C•, d•).



5. COHOMOLOGY 60

5.2 COHOMOLOGY

Let (C•, d•) be a cochain complex over a field F.

DEFINITION 5.2. For each dimension k ≥ 0, the k-th cohomology group of (C•, d•) is the
quotient vector space

Hk(C•, d•) = ker dk/img dk−1

Elements of ker dk are called k-cocycles while elements of img dk−1 are the k-coboundaries. To
acquire geometric intuition for cohomology, we will retreat to the relative comfort of simplicial
complexes.

Let K be a simplicial complex, so that each chain group Ck(K) is generated by treating the k-
simplices as basis elements. Thus, each k-simplex σ in K corresponds to a distinguished cochain
σ∗ : Ck(K)→ F, defined by (linearity and) the following action on any given k-simplex τ:

σ∗(τ) =

{
1 τ = σ

0 τ 6= σ

The collection of such cochains {σ∗ : Ck(K) → F | dim(σ) = k} forms a basis for the group of
k-cochains of K. It is customary to write Ck(K) rather than the cumbersome Ck(K)∗ to denote
this simplicial cochain group of K — there is a long-standing convention in algebraic topology to
index homology with subscripts and cohomology with superscripts.

The k-th simplicial coboundary operator is (unsurprisingly) denoted ∂k
K : Ck(K) → Ck+1(K); by

definition, this is the dual to the boundary operator ∂K
k+1 : Ck+1(K)→ Ck(K), and hence satisfies

∂k
K(σ

∗) = σ∗ ◦ ∂K
k+1 for each σ∗ in Ck(K). It follows that for each general cochain ξ in Ck(K) and

oriented (k + 1)-simplex σ = (v0, . . . , vk+1), we have the wonderfully convenient formula

∂k
Kξ(σ) =

k

∑
i=0

(−1)i · ξ(σ−i), (3)

where σ−i is the face of σ obtained by deleting the vertex vi. Thus, with respect to our choice of
basis elements, ∂k

K is simply the transpose1 of the boundary matrix ∂K
k+1 for each k ≥ 0; we will

discuss three advantages of adopting this perspective shortly. In any event, the k-th cohomology
group of the simplicial cochain complex (C•(K), ∂•K) is called the k-th simplicial cohomology
group of K and denoted by the shorthand Hk(K; F) or simply Hk(K).

The first advantage of realizing that coboundary operators are transposes of boundary op-
erators (with respect to our simplex-induced basis) is the ability to visualize low-dimensional
simplicial cocycles at least over F = Z/2:

1When working with F = C coefficients, this becomes a conjugate transpose.
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To the left is a 1-cycle γ in a triangulated annulus, which we last saw when studying homology
in Definition 3.11; and to the right we have a 1-cocycle ξ in the same annulus. All the edges
being sent to 1 by ξ have been highlighted. On the left, every vertex had to be the face of an
even number of edges in γ (otherwise the boundary ∂1(γ) would be nonzero). On the right,
every 2-simplex must contain an even number of edges from ξ in its boundary (otherwise the
coboundary ∂1(ξ) will be nonzero).

A second advantage is that we can also see in small examples when two cocycles lie in the
same cohomology class; our 1-cocycle ξ represents the same cohomology class as new cocycle ξ ′

shown on the right, since they differ only by the coboundary of the highlighted vertex:

The third advantage of realizing that ∂k
K is the transpose of ∂K

k+1 is the knowledge that they must
have the same ranks as linear maps.

PROPOSITION 5.3. Let (C•, d•) be a chain complex over a field F so that dim Ck is finite for all
k ≥ 0, and let (C•, d•) be its dual cochain complex. Then, we have

dim Hk(C•, d•) = dim Hk(C•, d•)

in each dimension k ≥ 0.

PROOF. This follows from the fact that dim Ck = dim Ck and rank dk+1 = rank dk for all k:

dim Hk(C•, d•) = dim ker dk − dim img dk+1

= (dim Ck − rank dk)− rank dk+1

= (dim Ck − rank dk−1)− rank dk

= (dim Ck − rank dk)− rank dk−1

= dim ker dk − dim img dk−1 = dim Hk(C•, d•).

In particular, we have dim Hk(K; F) = dim Hk(K; F) for every simplicial complex K. �

The machinery developed for homology in the previous two chapters is readily translatable
to work for cohomology, with the standard caveat that duality will force various maps to point
in the opposite direction. For instance, every simplicial map f : K → L induces cochain maps
C• f : (C•(L), ∂•L)→ (C•(K), ∂•K), which in turn yield well-defined linear maps

Hk f : Hk(L; F)→ Hk(K; F)

between cohomology groups. There is an avatar of Proposition 3.15 which allows us to ex-
tract bases of all the cohomology groups using Smith decompositions of coboundary matrices.
Similarly, one can define cochain homotopies, relative cohomology groups and Mayer-Vietoris
sequences for cohomology. This is a worthy endeavour, strongly recommended for all those who
are encountering cohomology for the first time. Instead of reinventing that wheel here, we will
focus on those aspects of cohomology which are new and different.
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5.3 THE CUP PRODUCT

The remarkable benefit of cochains over chains is that they are functions taking values in a
field F, so we can multiply them with each other. Fix an oriented simplicial complex K, so that
each k-simplex σ can be uniquely written as an increasing list of vertices (v0, . . . , vk). It will be
convenient henceforth to write, for each i in {0, . . . , k} the i-th front face of σ is the i-dimensional
simplex σ≤i = (v0, . . . , vi), and similarly the i-th back face of σ is the (k− i)-dimensional simplex
σ≥i = (vi, . . . , vk).

DEFINITION 5.4. Let ξ ∈ Ck(K) and η ∈ C`(K) be two simplicial cochains of K. Their cup
product is a new cochain ξ ^ η in Ck+`(K) defined by the following action on each (k + `)-
dimensional simplex σ:

ξ ^ η(σ) = ξ(σ≤k) · η(σ≥k).
(Here the multiplication on the right side takes place in the underlying field F.)

Having obtained a new cochain ξ ^ η by suitably multiplying ξ with η, we should lay to rest
any curiosity regarding its coboundary.

PROPOSITION 5.5. For any ξ in Ck(K; F) and η in C`(K; F), we have

∂k+`
K (ξ ^ η) = [∂k

K(ξ) ^ η] + (−1)k · [ξ ^ ∂`K(η)].

PROOF. Let τ be a (k + ` + 1)-dimensional oriented simplex with vertices (v0, . . . , vk+`+1).
We evaluate the two terms on the right side of the desired equality separately on τ. First,

[∂k
K(ξ) ^ η](τ) = ∂k

K(ξ)(τ≤k+1) · η(τ≥k+1) by Definition 5.4,

=

(
k+1

∑
i=0

(−1)i · ξ((τ≤k+1)−i) · η(τ≥k+1)

)
by (3).

And similarly,

(−1)k · [ξ ^ ∂`K(η)](τ) =

(
`+1

∑
j=0

(−1)k+j · ξ(τ≤k) · η((τ≥k)−j)

)
.

When we add these two expressions, the i = k + 1 term of the first sum cancels the j = 0 term of
the second; the terms which survive are exactly ∂k+`

K (ξ ^ η)(τ) by (3). �

Using the above formula for the coboundary of ξ ^ η, one can confirm that the cup product
of two cocycles is again a cocycle:

∂k+`
K (ξ ^ η) = [∂k

K(ξ) ^ η] + (−1)k[ξ ^ ∂`K(η)] by Proposition 5.5,

= [0 ^ η] + (−1)k[ξ ^ 0] since ξ and η are cocycles,
= 0 by (3).

Now if ξ = ∂k−1
K (ξ ′) is a coboundary while and η is a cocycle as before, then their cup product is

a coboundary:

ξ ^ η = ∂k−1
K (ξ ′) ^ η

= [∂k−1(ξ ′) ^ η] + (−1)k · [ξ ′ ^ ∂`K(η)] since ∂`K(η) = 0

= ∂k+`
K (ξ ′ ^ η). by Proposition 5.5.
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Similarly, if ξ is a cocycle and η a coboundary, then again their cup product is a coboundary. We
have arrived at the following result.

PROPOSITION 5.6. For each simplicial complex K and dimensions k, ` ≥ 0, the cup product map
^: Ck(K; F)×C`(K; F)→ Ck+`(K; F) induces a well-defined bilinear map of cohomology groups.

It is customary to use the same notation when describing the cup product on cohomology
groups rather than cochains, i.e.,

^: Hk(K; F)×H`(K; F)→ Hk+`(K; F).

The direct sum
⊕

k≥0 Hk(K; F) is evidently a vector space over F; writing its elements as

ξ = (ξ1, ξ2, . . . , ξk, . . .),

we say that ξ has grade k if all the ξi for i 6= k are zero. The cup product gives us a bilinear
multiplication law on this direct sum which is additive on grades, i.e., the cup product of a
grade-k element with a grade-` element is a grade-(k + `) element. A graded F-vector space
equipped with such a graded bilinear multiplication is called a graded algebra over F. While
the direct sum of homology groups

⊕
k≥0 Hk(K; F) also forms a graded vector space, there is no

multiplication law analogous to the cup product. It is in this sense that cohomology is considered
a richer algebraic invariant than homology, even though the dimensions of cohomology groups
agree with those of homology groups when working over a field.

EXAMPLE 5.7. By a torus we mean any simplicial complex T whose geometric realization
is homeomorphic to the product ∂∆(2)× ∂∆(2). Consider also the simplicial complex W ob-
tained by first taking the disjoint union ∂∆(3) t ∂∆(2) t ∂∆(2), and then identifying the ver-
tices labelled {0} of all three pieces to create a single connected simplicial complex. Now one
can check that T and W have isomorphic homology groups over any field F, namely

Hk(T) = Hk(W) =


F k ∈ {0, 2}
F2 k = 1
0 k > 2

.

Let α and β denote any two 1-cycles which span H1 and examine their cup product α ^ β. In
T, this will be (a nonzero multiple of) the unique cycle generating H2, whereas in W this cup
product will equal zero.

The cup product α ^ β in the torus is nontrivial for a viscerally geometric reason; one can
choose α to be a cochain that runs along the equator while β runs along the meridian. Now there
will be at least one 2-simplex whose 1-dimensional faces are all sent to nonzero elements of F by
either α or β. We highlight such a 2-simplex for the illustrated α and β below:

The miracle here is that no matter how much we perturb α and β within their respective coho-
mology classes, we will always have at least one such 2-simplex.
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REMARK 5.8. There are no obstacles to defining cohomology with non-field coefficients,
e.g., by using coefficients sourced from the ring of integers Z. However, various subtleties
arise from the fact that in general an abelian group G is not isomorphic to its dual group G∗; here
G∗ consists of all abelian group homomorphisms G → Z. In particular, G∗ is blind to torsion
in G and there is no analogue of Proposition 5.3 when using Z coefficients. Similarly, in this
case the cup product prescribes the structure of a graded ring on the direct sum

⊕
k≥0 Hk(K; Z)

rather than a graded algebra.

5.4 THE CAP PRODUCT

There is a second (far stranger) product that mixes homology and cohomology. As before, let
K be an oriented simplicial complex; each oriented k-simplex σ therefore has a front face σ≤i and
a back face σ≥i for i in {0, . . . , k}. Our new product arises from taking an i-cochain ξ for some
i ≤ k and letting it act on σ by

σ 7→ ξ(σ≤i) · σ≥i.
That is, we evaluate σ on the front face of the appropriate dimension, and multiply the resulting
scalar with the back face to produce a chain of dimension (k− i). More formally, note that each
k-chain γ in Ck(K) is uniquely expressible as a linear combination γ = ∑σ γσ · σ where σ ranges
over oriented k-simplices and each γσ is an element of the coefficient field F.

DEFINITION 5.9. The cap product of an i-cochain ξ with a k-chain γ = ∑σ γσ · σ is the new
(k− i)-chain ξ _ γ defined by

ξ _ γ = ∑
σ

γσ · ξ(σ≤i) · σ≥i.

(For i > k this sum is automatically zero).

The first thing to confirm about the cap product formula from the definition above is that the
expression on the right side is a (k− i)-chain — each σ≥i is a (k− i)-simplex obtained by deleting
the first i vertices of the k-simplex σ, and the product γσ · ξ(σ≤i) of two F-elements clearly lies
in F. By definition, the cap product gives us bilinear maps Ci(K)×Ck(K) → Ck−i(K) for every
pair of dimensions i ≤ k. Since ξ _ γ is a chain, it has a boundary rather than a coboundary.

PROPOSITION 5.10. For each ξ in Ci(K) and γ in Ck(K), we have

∂K
k−i(ξ _ γ) = (−1)i · [(ξ _ ∂K

k (γ))− (∂i
K(η) _ γ)]

The above result follows from a calculation which has a very similar structure to the one
which we used when proving Proposition 5.5. This has been assigned as an exercise, unlike the
the following corollary.

PROPOSITION 5.11. For each simplicial complex K and dimensions i ≤ k, the cap product _:
Ci(K; F)×Ck(K; F)→ Ck−i(K; F) induces a well-defined bilinear map of cohomology groups.

PROOF. The desired result follows from the three claims described below, each of which is
proved using the boundary formula from Proposition 5.10.
1. cocycle _ cycle is a cycle: if ∂i

K(ξ) = 0 and ∂K
k (γ) = 0, then we get

∂K
k−i(ξ _ γ) = (−1)i · [(ξ _ 0)− (0 _ γ)] = 0,

as desired.
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2. cocycle _ boundary is a boundary: if ∂i
K(ξ) = 0 and β is any (k + 1)-chain, then by Proposi-

tion 5.10, we have
±(ξ _ ∂K

k+1(β)) = ∂K
k (ξ _ β)∓ (∂i

K(η) _ β);
now the second term on the right side vanishes because η is a cocycle. Thus, up to a choice of
sign, ξ _ ∂K

k+1(β) equals ∂K
k (ξ _ β) which is evidently a boundary.

3. coboundary _ cycle is a boundary: this is very similar to the previous claim, and has there-
fore been assigned as an exercise. �

As with the cup product, it is standard to use the same notation for the cap product map on
(co)homology groups as on (co)chain groups:

_: Hi(K; F)×Hk(K; F)→ Hk−i(K; F).

The geometry of the cap product is all about intersections. If we choose a meridinal 1-cycle γ and
an equatorial 1-cocycle ξ on a torus as drawn below, then there will necessarily be at least one
edge with a nonzero coefficient in γ that is sent to a nonzero element of F by ξ; and the 0-chain
ξ _ γ will have a nonzero coefficient on one of the two vertices lying in the boudnary of that
edge:

The power of the algebraic formulation of the cap product lies in the fact that the cycle ξ _ γ is
well-defined on the level of homology even when ξ and γ are perturbed within their respective
(co)homology classes.

5.5 POINCARÉ DUALITY

The cap product becomes extremely potent when applied to the study of manifolds. Through-
out this section, we fix the following assumption:

M is a simplicial complex whose geometric realization |M| is a compact and
connected n-dimensional manifold.

(The compactness requirement is overkill since we require simplicial complexes to be finite).
The fact that every point on an n-manifold admits a local neighborhood homeomorphic to
Rn forces every (n − 1)-dimensional simplex of M to lie in the boundary of exactly two n-
simplices.

DEFINITION 5.12. We say that M is orientable over the field F if there exists a function

ω : {n− simplices of M} → {±1}
assigning {±1} ⊂ F to each top-dimensional simplex so that the chain [M] = [M]ω given by

[M] = ∑
dim σ=n

ω(σ) · σ

is an n-cycle in Cn(M; F).
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(It should be noted that any M satisfying our assumption above is automatically orientable in
this sense over F = Z/2.) There is an unfortunate historical conflation of terminology here
between orientability as defined above and the orderings of vertices which played a role in
Definition 3.3. At any rate, if such a map ω exists then [M] is called the fundamental class of M,
and it generates all of Hn(M; F) which must necessarily be a one-dimensional vector space.

THEOREM 5.13. [Poincaré duality.] Assume that M is a simplicial complex whose geometric
realization is compact, connected and orientable over F. For each i in {0, 1, . . . , n}, the linear map

Di : Hi(M; F)→ Hn−i(M; F)

given by Di(ξ) = ξ _ [M] is an isomorphism of F-vector spaces.

It is quite challenging to prove this result entirely within the realm of simplicial complexes, so
we will not make any such attempts here. But it should be noted that Poincaré duality has strong
consequences for even the simplest homotopy invariants of manifolds. Combining Theorem 5.13
with Proposition 5.3 produces the following suite of results for Euler characteristics and Betti
numbers of manifolds (see Sections 1 and 4 of Chapter 3).

COROLLARY 5.14. Let M be a simplicial complex satisfying the hypotheses of Theorem 5.13. The
following assertions hold.

(1) The Betti numbers β0(M), β1(M), . . . , βn(M) are palindromic, i.e., βk = βn−k for all k.
(2) If n is odd, then the Euler characteristic χ(M) is zero.
(3) If n = 2i is even, then the Euler characteristic χ(M; F) is odd if and only if the middle Betti

number βi(M) is odd.

PROOF. For the first assertion, note that

βk(M) = dim Hk(F) by definition,

= dim Hn−k(F) by Theorem 5.13,

= dim Hn−k(F) by Proposition 5.3,

= βn−k(M) again by definition.

The second assertion now follows from the first one by using (from Exercise 3.3) the fact that the
Euler characteristic is the alternating sum of the Betti numbers:

χ(M) =
n

∑
k=0

(−1)k · βk(M).

If n is odd, then βk and βn−k will appear with opposite signs and hence cancel. The third asser-
tion follows from the same alternating sum — but for even n = 2i all the βk appear twice (with
the same signs) except for βi, which only appears once. Thus, the expression χ(M)± βi(M) is
always an even number. �

5.6 BONUS: THE KÜNNETH FORMULA

Let K and L be simplicial complexes. We have already lamented (in Section 8 of Chapter 4)
that the product of simplicial complexes does not canonically have the structure of a simplicial
complex. Even so, it is possible to find a simplicial complex P whose geometric realization is
homeomorphic to |K| × |L|, so it makes sense to define Hk(K × L; F) as the usual homology
groups of any such P, and similarly for cohomology groups. One naturally wonders how these
product (co)homology groups of P relate to the (co)homology groups of the factors K and L.
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Variants of the following result are called Künneth formulas.

THEOREM 5.15. Let K and L be simplicial complexes and F a field. For each dimension k ≥ 0
there is an isomorphism

Hk(K× L; F) '
k⊕

i=0

Hi(K; F)×Hk−i(L; F).

As a consequence of the Künneth formula and Proposition 5.3, one can compute Betti numbers
of simplicial products via

βk(K× L) =
k

∑
i=0

βi(K) · βk−i(L).

There are several ways of proving Theorem 5.15; one strategy makes essential use of the cup
product. Given a simplicial complex P whose realization is |K| × |L|, assume that we have
managed to simplicially approximate the natural projection maps from K× L to K and L, i.e.,

K P
f

oooo
g

// // L

The goal now becomes to produce k-cochains in P from pairs of the form (ξ, η) where ξ is an
i-cochain in K while η is a (k− i)-cochain in L. And the map which accomplishes this task is

(ξ, η) 7→ Ci f (ξ) ^ Ck−ig(η).

EXERCISES

EXERCISE 5.1. Given a simplicial map f : K → L, define the associated cochain maps
Ck f : Ck(L; F) → Ck(K; F) and show that they commute with the coboundary operators (i.e.,
state and prove a cohomological version of Proposition 4.5).

EXERCISE 5.2. State a version of Definition 4.18 (short exact sequences) and Lemma 4.19
(the Snake lemma) that works for cochain complexes and cohomology.

EXERCISE 5.3. Show that the cup product is associative, i.e., for cochains ξ, η and ζ of a
simplicial complex K, prove that

(ξ ^ η) ^ ζ = ξ ^ (η ^ ζ)

[Hint: by linearity, it suffices to evaluate both sides on a single simplex σ.]

EXERCISE 5.4. Let f : K → L be a simplicial map and consider a pair of cochains ξ in
Ck(L) and η in C`(L). Prove that Ck f (ξ) ^ C` f (η) = Ck+` f (ξ ^ η). [Thus, we have
Hk f (ξ) ^ H` f (η) = Hk+`(ξ ^ η) whenever ξ and η lie in Hk(L) and H`(L) respectively.]

EXERCISE 5.5. Prove Proposition 5.10.

EXERCISE 5.6. Prove the third claim of Proposition 5.11.
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EXERCISE 5.7. Let f : K → L be a simplicial map. There is a diagram of F-vector spaces, a
part of which is shown below:

Hi(K) × Hj(K)
_−→ Hj−i(K)

Hi(L) × Hj(L) _−→ Hj−i(L)

(1) draw three vertical arrows representing maps induced by f which connect the top
row to the bottom row. What are the natural candidates for these maps?

(2) formulate an identity relating cap products and these three induced maps. You do not
have to prove that this identity holds (but it is a good exercise to meditate on).

EXERCISE 5.8. Use the Künneth formula (Theorem 5.15) to find an expression for the k-
th Betti number of the n-dimensional torus Tn obtained by taking the n-fold product of the
hollow simplex ∂∆(2).
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6.1 PERSISTENT HOMOLOGY

Consider a filtration F•K of a simplicial complex K (as in Definition 1.6):

F0K ⊂ F1K ⊂ · · · ⊂ Fn−1K ⊂ FnK = K,

and denote the inclusion simplicial maps by gi : FiK ↪→ Fi+1K. Here is one such filtration:

There are induced linear maps on homology Hkgi : Hk(FiK) → Hk(Fi+1K) in every dimension
k ≥ 0 (see Sections 2 and 3 of Chapter 4). For a fixed k, these linear maps fit together into a
sequence of vector spaces:

Hk(F0K)
Hkg0

// Hk(F1K)
Hkg1

// · · ·
Hkgn−2

// Hk(Fn−1K)
Hkgn−1

// Hk(FnK).

There are several other induced maps on homology hiding in plain sight — for instance,
we have said nothing about the inclusion g1 ◦ g0 : F0K ↪→ F2K. Fortunately for us, homology
is functorial (see Proposition 4.8); so the missing map Hk(g1 ◦ g0) is easily reconstructed by
composing the available maps Hkg1 and Hkg0.

More generally, for any pair i < j of filtration indices in {0, . . . , n}, the map induced on ho-
mology by the inclusion gi→j : FiK ↪→ FjK is the composite Hk(FiK) → Hk(FjK) in our diagram
of vector spaces, i.e.,

Hkgi→j = Hkgj−1 ◦Hkgj−1 ◦ · · · ◦Hkgi+1 ◦Hkgi.

Such maps Hkgi→j contain crucial information which allows us to coherently connect the k-th
homology groups of all the subcomplexes which appear in the filtration F• of K. The key point
is that in order to extract this information, we must study sequences of vector spaces; thus, we
are inexorably led to the following definition.

DEFINITION 6.1. An N-indexed persistence module over F is a sequence (V•, a•) of F-vector
spaces Vk and linear maps ak defined for k ≥ 0 which fit into a diagram

V0
a0

// V1
a1

// V2
a2

// · · ·
ak−1

// Vk
ak

// Vk+1
ak+1

// · · ·

The maps a• are not required to satisfy ak ◦ ak−1 = 0, so persistence modules need not be cochain
complexes (compare Definition 5.1); conversely, every cochain complex is automatically a per-
sistence module. In any event, for every pair i ≤ j in N we will write the composite map
aj−1 ◦ aj−2 ◦ · · · ◦ ai via the shorthand ai→j : Vi → Vj, with the implicit understanding that ai→i is
just the identity map on Vi.

REMARK 6.2. We say that a persistence module (V•, a•) is of finite type if dim Vi < ∞ for
all i ≥ 0 and if the maps ai : Vi → Vi+1 are isomorphisms for all i � 0. Both these conditions
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are satisfied by persistence modules obtained from homology groups of filtered simplicial
complexes.

We now turn to the objects of interest.

DEFINITION 6.3. For each pair i ≤ j of integers, the associated persistent homology group
of a persistence module (V•, a•) is the subspace of Vj given by

PHi→j(V•, a•) = img(ai→j).

It is not too difficult to check that PHi→j(V•, a•) is a subset of PHi′→j(V•, a•) whenever i′ ≥ i.
We say that a vector v in Vi is born at filtration index i if v does not lie in img ai−1; similarly, v
is said to die at filtration index j ≥ i whenever j is the smallest number satisfying ai→j(v) = 0;
by convention, the death index of v equals +∞ no such j exists, i.e., if ai→j(v) is nonzero for all
j ≥ i. The persistence of v is defined to be death minus birth, i.e., (j− i).

REMARK 6.4. In the special case where our persistence module arises from taking the k-
th homology groups of a filtered simplicial complex as described above, we will denote the
persistent homology groups as PHkgi→j(F•K) for all i ≤ j. The group PHkgi→j(F•K) consists of
precisely those homology classes in Hk(FiK) which continue to generate nontrivial homology
in the larger complex FjK — geometrically, these are precisely those (equivalence classes of)
k-cycles in FiK which do not become k-boundaries in FjK. Writing ∂i

k for the k-th boundary
operator of each simplicial complex FiK, we have

PHkgi→j(F•K) = Hkgi→j(ker ∂i
k)/[Hkgi→j(ker ∂i

k) ∩ img ∂
j
k+1].

And in particular, PHkgi→i(F•K) is just the k-th homology group of FiK.

The study of persistence modules is greatly facilitated by two miracles — an inherently alge-
braic structure theorem and a viscerally geometric stability theorem. The first of these allows
us to represent every persistence module using the combinatorial data called its barcode. And
the stability theorem asserts that the assignment of barcodes to modules is an isometry under
certain natural metrics. We will describe the structure theorem in the next section

6.2 BARCODES

The quest to understand persistent homology groups begins, like many good quests, with the
establishment of a categorical framework.

DEFINITION 6.5. A morphism between persistence modules (V•, a•) and (W•, b•) is a family
of linear maps φk : Vk →Wk which satisfy

bi ◦ φi = φi+1 ◦ ai

for every i ≥ 0

This definition amounts to requiring the commutativity of all squares in the following dia-
gram of vector spaces:

V0
a0

//

φ0
��

V1

φ1
��

a1
// · · ·

ak−1
// Vk

φk
��

ak
// Vk+1

φk+1
��

ak+1
// · · ·

W0 b0

// W1 b1

//// · · ·
bk−1

// Wk bk

// Wk+1 bk+1

// · · ·
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The pair (persistence modules, their morphisms) forms a category in the sense of Definition 4.1.
We call φ• : (V•, a•) → (W•, b•) an isomorphism if every φi is an invertible linear map of vector
spaces in the usual sense. If such an isomorphism exists, we write (V•, a•) ' (W•, b•).

DEFINITION 6.6. The direct sum of two persistence modules (V•, a•) and (W•, b•) is a new
persistence module (V• ⊕W•, a• ⊕ b•) defined as follows: its k-th vector space is the direct sum
Vi ⊕Wi, while the linear map ai ⊕ bi has matrix representation

[
ai 0
0 bi

]
.

Persistent homology groups of direct sums are direct sums of persistent homology groups (see
Exercise 6.1 of this Chapter for a precise statement.) We say that a persistence module (I•, c•)
is indecomposable if it does not admit any interesting direct sum decompositions — in other
words, anytime we have an isomorphism

(I•, c•) ' (V•, a•)⊕ (W•, b•),

of persistence modules, one of the factors on the right side will be isomorphic to (I•, c•), while
the other one will be zero everywhere. The following result highlights a particularly important
class of indecomposable persistent modules.

PROPOSITION 6.7. Let (I•, c•) be a nonzero N-indexed persistence module over a field F. Assume
that there exist indices i ≤ j with i in N and j in N∪ {∞} so that

dim Ip =

{
1 i ≤ p ≤ j
0 otherwise

, and rank (cp : Ip → Ip+1) =

{
1 i ≤ p < j
0 otherwise

.

Then, (I•, c•) is indecomposable.

PROOF. Consider any direct sum decomposition (I•, c•) ' (V•, a•)⊕ (W•, b•). For each p in
{i, i + 1, . . . , j} we have dim Vp + dim Wp = dim Ip = 1; let’s assume without loss of generality
that dim Vi = 1 and dim Wi = 0. This forces the map bi to be zero, and by Definition 6.5 we now
have a commutative diagram which looks like:

F
'

//

'
��

F

'
��

F⊕ 0 [
ai 0
0 0

] // Vi+1 ⊕Wi+1

with all arrows labelled ' being vector space isomorphisms. It follows that ai has rank one,
dim Vi+1 = 1, and dim Wi+1 = 0. Continuing onwards by induction on i, we see that (V•, a•) is
isomorphic to (I•, c•) while (W•, b•) is trivial; thus, (I•, c•) is indecomposable as desired. �

Up to isomorphism, every indecomposable module of the form described in the proposition
above is completely characterized by knowledge of the pair of integers i ≤ j (allowing for the
fact that j might equal ∞).

DEFINITION 6.8. For each pair 0 ≤ i ≤ j ≤ ∞ (with i 6= ∞), the N-indexed interval module
(Ii,j
• , ci,j

• ) over F is given by

Ii,j
p =

{
F i ≤ p ≤ j
0 otherwise

, and ci,j
p =

{
idF i ≤ p < j
0 otherwise

.

(Here idF denotes the identity map F→ F).
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The first miracle of persistent homology is the following result, which allows us to uniquely
express any N-indexed persistence module of finite type as a direct sum of finitely many interval
modules. Please do not panic (yet) if various terms in the proof appear intimidating — clarifying
remarks and concrete computations will follow.

THEOREM 6.9. [Structure Theorem] For any finite type N-indexed persistence module (V•, a•)
over F, there exists a set Bar(V•, a•) of integer pairs 0 ≤ i ≤ j ≤ ∞ (with i 6= ∞) and a function
µ : Bar(V•, a•) → N>0 to the nonzero natural numbers with the following property: there is a
direct sum decomposition

(V•, a•) '
⊕
[i,j]

(Ii,j
• , ci,j

• )
µ(i,j).

Here the indices [i, j] range over elements of Bar(V•, a•). Moreover, this direct sum decomposition is
unique (up to isomorphism of persistence modules).

PROOF. Since (V•, a•) is of finite type, there is some n ≥ 0 so that every ai : Vi → Vi+1 is an
isomorphism for i > n. Consider the vector space V =

⊕n
0 Vi and the linear map t : V → V

sending each vector v = (v0, v1, . . . , vn) to the shifted vector

t(v) =
(
0, a0(v0), a1(v1), . . . , an−1(vn−1)

)
.

This gives V the structure of a finitely generated F[t]-module where F[t] is the polynomial ring
over F in a single variable t. Since F[t] is a principal ideal domain whenever F is a field, every
finitely generated F[t]-module decomposes uniquely as a direct sum into two parts

V = F⊕ T,

where F is called free while T is torsion. Moreover, F is a direct sum of F[t]-modules of the form
ti ·F[t] for some i ≥ 0; each such free summand is isomorphic to an interval module of the form
(Ii,∞
• , ci,∞

• ). Similarly, the torsion part T is a direct sum of modules of the form ti · F[t]/(tj), i.e.,
a free module quotient by an ideal (tj)CF[t] with 0 ≤ i < j; each such summand is isomorphic
to the interval module (Ii,j

• , ci,j
• ). These (free and torsion) interval modules might occur in the

decomposition with any multiplicities ≥ 1, which are catalogued by the function µ. �

While quite miraculous in its outcomes, this argument has two serious drawbacks arising
from the fact that it invokes the classification of finitely generated F[t]-modules. First, this proof
strategy will not survive if we attempt something similar with Z[t]-modules or even F[t1, t2]-
modules. Second, the deus ex machina nature of appealing to this classification renders life some-
what difficult for those who seek to understand the decomposition of (V•, a•) on a more concrete
level. There is no remedy for the first problem, but we can offer some solace to those afflicted by
the second malady. The next Section contains a very concrete algorithm for computing interval-
decompositions in the case of maximal interest to us, i.e., where (V•, a•) arises from the homol-
ogy groups of a filtered simplicial complex.

DEFINITION 6.10. For each (N-indexed, finite type) persistence module (V•, a•) over F, the
collection Bar(V•, a•) of intervals [i, j] and their multiplicities µ(i, j) ≥ 1 (whose existence and
uniqueness is guaranteed by Theorem 6.9) is called the barcode of (V•, a•).

The content of Theorem 6.9 is that every finite type persistence module is uniquely determined
up to isomorphism by the combinatorial data consisting of intervals [i, j] in Bar(V•, a•) and their
multiplicities µ(i, j). For brevity, we will denote multiplicities as superscripts, so [1, 4]3 means
that the bar [1, 3] occurs with multiplicity µ(1, 4) = 3 in a given barcode.
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6.3 ALGORITHM (FOR FILTRATIONS)
Let F•K be a filtered simplicial complex

F0K ⊂ F1K ⊂ · · · ⊂ Fn−1K ⊂ FnK = K,

and for each simplex σ of K let b(σ) denote the smallest index i in {0, . . . , n} for which σ lies in
FiK. Since each FiK forms a subcomplex of K, it follows that b is an order preserving map on the
simplices of K, i.e., σ ≤ τ in K implies b(σ) ≤ b(τ). In more prosaic terms, a simplex can only
enter the filtration at index i if all of its faces are already present. Writing gi→j for the inclusion
map FiK ↪→ FjK for i ≤ j, here we will describe an efficient algorithm which computes all the
persistent homology groups PHkgi→j(F•K) at once by exploiting Theorem 6.9.

0. Setup: Order the simplices of K as {σ1, σ2, . . . , σN} so that σ precedes τ in this ordering
when either on of the following conditions holds:

• we have b(σ) ≤ b(τ), or
• we have b(σ) = b(τ) and σ is a face of τ in K.

Aside from these two constraints, the simplices of K may be ordered arbitrarily.

1. Input: The input to the algorithm is an N× N matrix D described as follows. For each pair
(p, q) in {1, . . . , N}2, the entry of D in the p-th row and q-th column is given by

Dpq =

{
±1 if σp ≤ σq with dim σq − dim σp = 1
0 otherwise

.

Here the sign±1 depends on an ordering of K’s vertices; in particular, this is the same sign as the
one used in the algebraic boundary operator of Definition 3.4. We will indicate the q-th column
of D by col(q) and write low(q) to indicate the largest p satisfying Dpq 6= 0, with the explicit
understanding that low(q) = 0 whenever the col(q) is entirely zero.

2. Procedure: The entire routine can be described with only six lines of pseudocode.

01 For q = 1 to N
02 Set p = low(q)
03 While some r < q satisfies low(r) = p 6= 0
04 Add (−Dpq/Dpr)·col(r) to col(q)
05 End While
06 End For

3. Output: This procedure modifies the matrix D to produce a new matrix D′ — this matrix
D′ is related to D by a change of basis since we only used column operations. In particular,
lines 03-05 attempt to incrementally zero out the q-th column of D by adding preceding columns
whose lowest nonzero entry coincides with that of col(q). Thus, when the algorithm terminates,
the p-th row of D′ can be the lowest nonzero entry low(q) of at most one column q — if there is
such a q, then the entry D′pq is said to form a pivot in the output matrix D′.

4. The Barcodes: For each k ≥ 0, let’s write Bark(F•K) to indicate the barcode of the per-
sistence module obtained by taking the k-th homology groups of F•K. We can read off such
barcodes (and hence determine these persistence modules thanks to Theorem 6.9) by traversing
the columns of D′ and applying this handy flow-chart:
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5. Example: When this algorithm is run on the filtration depicted in Section 1 (reproduced
below), it will output the barcode

{
[0, ∞], [0, 1]2, [1, 2]

}
for 0-dimensional persistent homology

and the barcode {[1, ∞], [2, 3]} for 1-dimensional persistent homology, perfectly capturing the
evolution of connected components and loops at various stages in the filtration:

The starting point of the algorithm for this filtration is the following matrix D as described in the
Input step above — all unlabelled entries are zero:
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No operations are performed on ab’s column, so the 1 in that column (in b’s row) serves as a
pivot. This pivot will contribute one of the two [0, 1] bars in the 0-dimensional barcode of this
filtration. The first interesting column operation occurs when the 1 in ac’s column is used to
clear out the 1 in bc’s column (both corresponding to c’s row). This changes the lowest entry in
bc’s column to the −1 in b’s row, and we then use our pivot 1 in ab’s column to cancel this new
lowest entry. This will completely clear out bc’s column, and contribute the [1, ∞] bar in to the
1-dimensional barcode.

REMARK 6.11. Even on the small example described above, it is difficult to carry out the
entire algorithm by hand. Fortunately, there are several good software packages available
for computing persistent homology of filtered simplicial complexes arising in practice. In
particular, one can find many implementations of this algorithm which will compute barcodes
of Vietoris-Rips filtrations built around finite metric spaces (see Definition 1.15).

6.4 INTERLEAVING DISTANCE

Having witnessed the algebraic miracle of Theorem 6.9, we now turn to the geometric miracle,
which takes the form of a stability result. Roughly, the set of finite type persistence modules
admits the structure of a metric space, as does the set of barcodes; and with respect to the two
chosen metrics, the assignment of a barcode to a module is an isometry. Here we will describe
the desired metric on persistence modules after suitably upgrading them (and their barcodes) to
be indexed by real numbers rather than natural numbers.

DEFINITION 6.12. An R+-indexed persistence module over F is a pair (V•, a•) consisting of
an F-vector space Vt for each real number t ≥ 0 and a linear map as≤t : Vs → Vt for each pair
s ≤ t of non-negative real numbers; these maps must satisfy

(1) at≤t is the identity map on Vt for each t ≥ 0, and
(2) as≤t ◦ ar≤s = ar≤t for every triple 0 ≤ r ≤ s ≤ t of real numbers.

Put more succintly, these new persistence modules are functors of the form (R+,≤) → VectF

(see Definition 4.2). Here (R+,≤) is the category whose objects are all non-negative real num-
bers, with a unique morphism s → t whenever s ≤ t; and the codomain is the usual category of
(vector spaces, linear maps) over F.

These persistence modules are more general than the N-indexed ones from Definition 6.1: we
can always replace an N-indexed (V•, a•) by an equivalent R+-indexed (V′•, a′•) by interpolation
as follows. Writing btc for the largest integer smaller than each t in R+, define

V′t = Vbtc and a′s≤t = absc→btc. (4)

Henceforth, by persistence module we will mean the R+-indexed version defined above. For
numerous reasons, it will be extremely convenient to visualize these as a continuum of of vector
spaces living along a semi-infinite line segment connected by linear maps going from left to
right, like so:

In order to guarantee barcodes for these new persistence modules a la Theorem 6.9, one must
impose some finiteness constraints.
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DEFINITION 6.13. A persistence module (V•, a•) is called tame if two properties hold:
(1) the vector spaces Vt are finite-dimensional for all t ≥ 0, and
(2) there are only finitely many t ≥ 0, called critical values, for which the map at−ε≤t+ε :

Vt−ε → Vt+ε fails to be an isomorphism for arbitrarily small ε > 0.

Tameness allows us to use Theorem 6.9 with impunity even with the R+-indexing — each
tame persistence module (V•, a•) can be reduced to a finite type N-indexed persistence mod-
ule (V′•, a′•) as follows: let 0 ≤ t1 < t2 < · · · < tn ≤ ∞ be the critical values of (V•, a•) and
set

V′i = Vti and a′i = ati≤ti+1 . (5)

The barcode of (V′•, a′•) can now be reinterpreted as the barcode of (V•, a•) by sending each
interval [i, j] to the corresponding [ti, tj]. The interval module (I

ti,tj
• , c

ti,tj
• ) supported on [ti, tj] has

the obvious definition:

I
ti,tj
t =

{
F ti ≤ t ≤ tj

0 otherwise
and c

ti,tj
s≤t =

{
idF [s, t] ⊂ [ti, tj]

0 otherwise
.

We have arrived at the following Corollary of Theorem 6.9; to fully appreciate its content, one
should define (iso)morphisms and direct sums of tame persistence modules (as we did for their
N-indexed cousins).

COROLLARY 6.14. For every tame persistence module (V•, a•), there is a finite set Bar(V•, a•) of
intervals of the form [s, t] ⊂ R+ (possibly with t = ∞) and a multiplicity µ : Bar(V•, a•) → N>0 so
that we have a unique direct sum decomposition into interval modules

(V•, a•) '
⊕
[s,t]

(Is,t
• , cs,t

• )
µ(s,t),

with [s, t] ranging over the intervals in Bar(V•, a•).

We now seek to measure distances between persistence modules. The following notion plays
a central role.

DEFINITION 6.15. For each ε ≥ 0, an ε-interleaving between persistence modules (V•, a•)
and (W•, b•) consists of two families of linear maps

{Φt : Vt →Wt+ε | t ≥ 0} and {Ψt : Wt → Vt+ε | t ≥ 0} ,

which satisfy four criteria. First, there are two parallelogram relations:
(1) for all s ≤ t, we have Φt ◦ as≤t = bs+ε≤t+ε ◦Φs, and
(2) for all s ≤ t, we have Ψt ◦ bs≤t = as+ε≤t+ε ◦Ψs.

And second, there are two triangle relations:
(1) for all t, we have Ψt+ε ◦Φt = at≤t+2ε, and
(2) for all t, we have Φt+ε ◦Ψt = bt≤t+2ε.

These four criteria might appear opaque at a first reading; the best method of acquiring an
intuitive grasp on interleavings is to draw the commutative diagrams implied by the parallelo-
gram and triangle relations. This will require us to visualize both V• and W• along line segments
as suggested before, so that the maps Φt and Ψt connect each point t ≥ 0 on one of these lines to
the point t + ε on the other. Here, for instance, is the commuting diagram which represents the
first parallelogram relation:
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Of course, we have one such commuting diagram for every choice of s ≤ t. Similarly, here is an
illustration of the first triangle relation (there is one such commuting triangle for every t).

It might also be helpful to verify that 0-interleavings are isomorphisms of persistence modules
— this is one of the Exercises. Finally, here is the promised metric on persistence modules.

DEFINITION 6.16. The interleaving distance dInt((V•, a•), (W•, b•)) between persistence mod-
ules (V•, a•) and (W•, b•) is the infimum over all ε ≥ 0 for which there exists an ε-interleaving
between them. If no such interleaving exists, then dInt(V•, W•) = ∞.

6.5 THE STABILITY THEOREM

The barcodes Bar(V•, a•) whose existence and uniqueness is guaranteed by Corollary 6.14 for
each tame persistence module (V•, a•) are finite multi-sets of intervals [s, t] ⊂ R+ ∪∞. Here by
multi-set we simply mean that each interval [s, t] might have several copies within the barcode,
the precise number being given by the function µ(s, t). Our next goal is to impose a metric on
the set of all such multi-sets of intervals.

DEFINITION 6.17. For ε ≥ 0, an ε-matching between two multi-sets B and B′ of intervals
is a bijection ρ : B0 → B′0 between a pair of multi-subsets B0 ⊂ B and B′0 ⊂ B′ subject to the
following constraints:

(1) Every [s, t] in (B− B0) ∪ (B′ − B′0) has length t− s ≤ 2ε, and
(2) If ρ[s, t] = [s′, t′] for some [s, t] in B0, then |s− s′| ≤ ε ≥ |t− t′|.

Thus, if ρ is an ε-matching between multi-sets B and B′, then it must pair all intervals of length
exceeding 2ε of B with those of B′. And moreover, if ρ pairs [s, t] with [s′, t′], then we can obtain
s′ and t′ by perturbing s and t respectively by no more than ε:
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DEFINITION 6.18. The bottleneck distance dBot(B, B′) between multi-sets of intervals B and
B′ is the infimum over all ε ≥ 0 for which there exists an ε-matching between them.

Here is the geometric miracle of persistence modules.

THEOREM 6.19. [Stability Theorem] For every pair (V•, a•) and (W•, b•) of tame persistence
modules, we have

dInt((V•, a•), (W•, b•)) = dBot(Bar(V•, a•), Bar(W•, b•)).

Thus, the assignment of a barcode to a tame persistence module constitutes an isometry from
the metric space of tame persistence modules (with interleaving distance) to the metric space of
multi-sets of intervals (with bottleneck distance). All known proofs of the stability theorem are
too technical to be included here1. The key advantage of the stability theorem is that it confers a
certain geometric robustness to the following topological data analysis pipeline:

The first step describes the passage from a finite metric space to a filtered simplicial complex
(as in Section 6 of Chapter 1). From there we compute persistent homology barcodes as described
in Section 3 above. Since barcodes are combinatorial (rather than algebraic) objects, they can

1See Bauer and Lesnick’s 2015 paper Induced Matchings and the Algebraic Stability of Persistence Barcodes for the
most elementary proof known at present.
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easily be vectorized and fed as input into neural networks or other statistical inference tools.
The stability theorem enters the picture due to the following result.

PROPOSITION 6.20. Let P and Q be two finite point-sets in Rn which are close in the following
sense: there is some ε > 0 so that

(1) there is a point of Q within distance ε of any point of P, and
(2) there is a point of P within distance ε of every point of Q.

Then for each dimension k ≥ 0, the k-th persistent homology modules of the Vietoris-Rips filtrations
VR•(P) and VR•(Q) are 2ε-interleaved.

PROOF. Let α : P→ Q and β : Q→ P be any pair of functions guaranteed by the ε-closeness
of P and Q; thus, the Euclidean distance ‖p− α(p)‖ is no larger than ε for all p in P (and similarly
for β). Now α induces simplicial maps {αt : VRt(P)→ VRt+2ε(Q) | t ≥ 0} — to see why, note
that if ‖p − p′‖ ≤ t then ‖α(p) − α(p′)‖ ≤ t + 2ε by the triangle inequality. Similarly, we get
simplicial maps βt : VRt(Q) → VRt+2ε(P) for every t ≥ 0. For each dimension k ≥ 0, there are
induced maps on homology Hkαt and Hkβt. We will now confirm that these induced maps Hkαt
and Hkβt satisfy the requirements of a 2ε-interleaving (Definition 6.15) between the persistence
modules PHk(VR•P) and PHk(VR•Q).
1. Parallelogram Relations: For each s ≤ t, let’s denote the Vietoris-Rips inclusion maps as

is≤t : VRs(P) ↪→ VRt(P) and js≤t : VRs(Q) ↪→ VRt(Q).

By definition, we have αt ◦ is≤t = js+2ε≤t+2ε ◦ αs; now functoriality (i.e., Theorem 4.8) guarantees
that the maps induced on k-th homology by αs and αt satisfy the parallelogram relation (see
Definition 6.15).

Hkαt ◦Hkis≤t = Hk js+2ε≤t+2ε ◦Hkαs

An eerily similar argument establishes the parallelogram relation for Hkβt.
2. Triangle Relations: For each t ≥ 0, note that the composite simplicial map

βt+2ε ◦ αt : VRt(P)→ VRt+4ε(P)

sends each vertex p to the vertex p′ = β ◦ α(p); by the triangle inequality we have ‖p− p′‖ ≤ 4ε.
If σ = (p0, . . . , pm) is any m-simplex in VRt(P), then the inclusion map it≤t+4ε sends σ to σ,
while the composite βt+2ε ◦ αt sends it to σ′ = (p′0, . . . , p′m), with p′i = β ◦ α(pi) for all i. It
is easily confirmed that σ ∪ σ′ is a simplex in VRt+4ε(P) by the triangle inequality. Thus, the
simplicial maps it≤t+4ε and βt+2ε ◦ αt are contiguous (in the sense of Corollary 2.9) and hence
homotopic. By the homotopy invariance of homology (Theorem 4.24), their induced maps on
homology coincide, and we obtain the desired triangle relation

Hkβt+2ε ◦Hkαt = Hkit≤t+4ε.

A similar argument (with the roles of α and β interchanged) establishes the second triangle
relation as well, and yields the desired result. �

As a consequence of the stability theorem, we see that for any P, Q ⊂ Rn satisfying the hy-
potheses of the above result, the k-th Vietoris-Rips persistent homology barcodes of P and Q
must have the same number of sufficiently long bars, i.e., there is a bijection between bars of
length ≥ 4ε between the two barcodes in every homological dimension k. In this sense, the
longer bars are stable to the sorts of perturbations which would replace P with Q. On the other
hand, persistent homology is not stable to egregious outliers. In other words, if one obtains Q
from P by adding just one point very far away from the existing points of P, then there is no
relationship in general between the barcodes of P and those of Q.
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EXERCISES

EXERCISE 6.1. Let (V•, a•) and (W•, b•) be N-indexed persistence modules over a field F.
Show that for all i ≤ j, there is an isomorphism

PHi→j
(
(V•, a•)⊕ (W•, b•)

)
' PHi→j(V•, a•)⊕ PHi→j(W•, b•)

of persistent homology groups.

EXERCISE 6.2. Let L ⊂ K be a two-step filtration of a simplicial complex K. Describe how
to extract the dimension of the relative homology group Hk(K, L) for each k ≥ 0 given the
barcodes (with multiplicity) of this filtration.

EXERCISE 6.3. Let F•K be a filtration of a simplicial complex K. For each dimension k ≥ 0
and filtration index i, describe how to compute the k-th Betti number of FiK from the barcode
PHk(F•K).

EXERCISE 6.4. Show that the interpolation of (4) produces an R+-indexed persistence mod-
ule from an N-indexed one.

EXERCISE 6.5. Describe a notion of morphisms which turn R+-indexed persistence mod-
ules into a category (if this is done correctly, the N-indexed persistence modules will form a
subcategory via (4)). What are the isomorphisms?

EXERCISE 6.6. Show that every R+-indexed interval module is tame.

EXERCISE 6.7. Show that sending a finite type N-indexed persistence module (V•, a•) to a
tame R+-indexed one via (5), and then going back via (4), gives us (V•, a•) back.

EXERCISE 6.8. Show that two (R+-indexed) persistence modules are isomorphic if and only
if they admit a 0-interleaving.

EXERCISE 6.9. Draw commuting diagrams which represent the second parallelogram rela-
tion and the second triangle relation from Definition 6.15.

EXERCISE 6.10. Show that the interleaving distance satisfies the triangle inequality. [Hint:
show that an ε-interleaving between (U•, a•) and (V•, b•) can always be combined with an ε′-
interleaving between (V•, b•) and (W•, c•) to produce an (ε+ ε′)-interleaving between (U•, a•)
and (W•, c•).]

EXERCISE 6.11. Let a < a′ < b < b′ be four positive real numbers. What is the interleaving
distance between the two R+-indexed interval modules (Ia,b

• , ca,b
• ) and (Ia′,b′

• , ca′,b′
• )?

EXERCISE 6.12. Show that the bottleneck distance satisfies the triangle inequality.

EXERCISE 6.13. State and prove a variant of Proposition 6.20 for Čech filtrations.

EXERCISE 6.14. Let S be a sheaf over a simplicial complex K and Σ an S -compatible acyclic
partial matching. Mimic the argument from Proposition 8.8 to show that the Morse complex
of Σ with coefficients in S (see Definition 8.17) is a cochain complex.
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7.1 FIBERS AND PERSISTENCE

Let f : K → R+ be a function that assigns a non-negative
real number f (σ) to every simplex σ of a simplicial complex
K. We call f monotone if it satisfies f (σ) ≤ f (τ) whenever
σ is a face of τ in K. Specifying a monotone f is equivalent
to imposing an R+-indexed filtration F• on K — to discover
this filtration, one uses the rule FtK = {σ ∈ K | f (σ) ≤ t}.
We call F the sublevelset filtration of K with respect to f .
Conversely, if we are given a filtration F• of K, then the cor-
responding monotone function f : K → R+ is given by
f (σ) = inf {t ∈ R+ | σ ∈ FtK}. Thus, much of persistent ho-
mology (particularly its application to the study of filtered
simplicial complexes) can be interpreted as the systematic analysis of homology groups associ-
ated to certain fibers of f — for each t ∈ R+, the fiber of interest is a subcomplex of K:

{ f ≤ t} := {σ ∈ K | 0 ≤ f (σ) ≤ t}
Thanks to the finiteness of K, taking the k-th homology of sublevelset filtrations always pro-

duces tame persistence modules (in the sense of Definition 6.13); thus these modules admit a
barcode decomposition as guaranteed by Corollary 6.14. These barcodes satisfy two special
properties: first, they allow us to combinatorially describe the homology of each fiber { f ≤ t}
and the rank of the linear maps

Hk
(
{ f ≤ t}

)
→ Hk

(
{ f ≤ s}

)
induced on k-th homology by inclusion of fibers for all pairs t ≤ s. Second, if we have a another
monotone function f ′ : K → R that is ε-close to our f , i.e., if we have

| f (σ)− f ′(σ)| < ε for every σ in K,

then the barcodes for f ′ will be no more than ε-apart from those of f with respect to the bot-
tleneck distance (see Definition 6.18 and Exercise 7.1). Thus, all intervals longer than 2ε in the
barcode of f correspond to fiber homology classes that are stable with respect to ε-perturbations
of f .

Card-carrying mathematicians will immediately wonder whether similar stability results can
be obtained for maps K → X when X is more complicated than R+: ars gratia artis. Those with
the ability to withstand this temptation to generalize might instead be compelled by more practi-
cal considerations. A monotone map f : K → R+ associates a (real-valued) measurement to each
simplex, and we are often interested in several such measurements { fi : K → R+ | 1 ≤ i ≤ n}
and wish to study (the homology of) their common sublevelsets

⋂n
i=1 { fi ≤ ti} simultaneously.

Thus, we may as well assign
σ 7→

(
f1(σ), . . . , fn(σ)

)
and study the fibers of this single vector-valued map K → Rn

+.
Even more interesting from a topological viewpoint is the scenario where the fi associate

angles in [0, 2π) to simplices; in this case, we have a map f : K → Tn to the n-torus (i.e., the
product of n circles). Now it no longer makes sense to seek monotonicity or ask about fibers of
the form { fi ≤ ti}, since there is no natural partial order on points of the n-torus. On the other
hand, we can certainly triangulate the torus so that f becomes a simplicial map and study the
fiberwise homology of f over simplices (or subcomplexes) of Tn. It is, therefore, in our interest
to understand the (co)homology groups of fibers of simplicial maps f : K → L. The optimal data
structure which coherently organizes these fiber homology groups is called a sheaf.
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7.2 SHEAVES

Let L be a simplicial complex and F a field. We write (L,≤) to denote the poset of simplices
in L ordered by the face relation.

DEFINITION 7.1. A sheaf over L is a functor S : (L,≤)→ VectF. In other words, S assigns
(1) to each simplex τ of L an F-vector space S (τ) called the stalk, and
(2) to each τ ≤ τ′ in L a linear map S (τ ≤ τ′) : S (τ)→ S (τ′) called the restriction map,

subject to the usual (identity and associativity) categorical axioms:
(1) for every simplex τ in L, the map S (τ ≤ τ) is the identity on S (τ), and
(2) for every triple τ ≤ τ′ ≤ τ′′ in L, we have S (τ′ ≤ τ′′) ◦S (τ ≤ τ′) = S (τ ≤ τ′′).

We call L the base space of the sheaf S . From a
purely algebraic perspective, S is an arrangement of
F-vector spaces and linear maps parametrized by the
simplices of L and their face relations. Alternately,
one may view S as a gadget which weights these
simplices and face relations by vector spaces and lin-
ear maps respectively. Although the stalks of a sheaf
can vary drastically from simplex to simplex, the as-
sociativity requirement places severe constraints on
restriction maps. For instance, both composite paths
from S (τ) to S (τ′′) in the accompanying figure
must evaluate to S (τ ≤ τ′′). On the other hand,
if L is one-dimensional then associativity holds automatically because there are no ascending
triples τ < τ′ < τ′′ of simplices.

EXAMPLE 7.2. Here are three examples of sheaves on a simplicial complex L, in increasing
order of complexity.

(1) The zero sheaf 0L, as suggested by its name, assigns the trivial (i.e., zero-dimensional)
F-vector space to every simplex. This forces all the restriction maps to also be zero.

(2) Given a simplex τ of L, the associated skyscraper sheaf Skτ over L assigns the triv-
ial vector space to every simplex except τ, whose stalk is the one-dimensional vector
space F. The restriction map associated to τ ≤ τ is the identity, while all other restric-
tion maps must be zero.

(3) The constant sheaf FL assigns the one-dimensional stalk F to every simplex of L and
the identity restriction map F→ F to every face relation in sight.

More interesting examples will become available later.

As mentioned in the previous Section, our main interest in sheaves comes from their remark-
able ability to encode the homology groups of fibers of simplicial maps. Recall from (2) that the
fiber of a simplicial map f : K → L under a simplex τ of L is the subcomplex of K given by

τ/ f = {σ ∈ K | f (σ) ≤ τ} .

And moreover, for any pair τ ≤ τ′ in L there is an obvious inclusion of fibers τ/ f ↪→ τ′/ f
because any σ in K satisfying f (σ) ≤ τ automatically satisfies f (σ) ≤ τ′. Thus, fitting the
homology groups Hk(τ/ f ; F) into a sheaf over L becomes a matter of invoking the functoriality
of homology with respect to inclusion maps.
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PROPOSITION 7.3. Let f : K → L be a simplicial map. For each dimension k ≥ 0, the assignments

τ 7→ Hk(τ/ f ), and

(τ ≤ τ′) 7→ Hk(τ/ f ↪→ τ′/ f )

constitute a sheaf over L, which we denote F k
f and call the k-th fiber homology sheaf of f .

The proof is not complicated — for any triple of simplices τ ≤ τ′ ≤ τ′′ in L, the inclusion
τ/ f ↪→ τ′′/ f factors through τ′/ f ; the identity and associativity axioms of Definition 7.1 are
satisfied simply because homology is functorial. It should also be noted that in general some
fiber τ/ f might be empty, in which case we would have F k

f (τ) = Hk(τ/ f ) = 0 for all k.

EXAMPLE 7.4. Fiber homology sheaves of the identity simplicial map id : L→ L are already
familiar to us — for each simplex τ of L, the fiber τ/id is the subcomplex τ consisting of the
single simplex τ along with all of its faces. Each such fiber is contractible by Proposition 2.6,
and hence has the homology of a point ∆(0). Consequently,

F k
id(τ) =

{
F k = 0
0 k 6= 0

Thus, F k
id is the zero sheaf 0L whenever k > 0. With a bit of effort, one can discover that the

restriction maps of F 0
id are all identities F→ F, and so F 0

id is the constant sheaf FL.

Those experiencing nostalgia for persistent homology have no cause for concern: every sheaf
S is filled to the brim with persistence modules. Take any ascending sequence

τ0 ≤ τ1 ≤ · · · ≤ τn

of simplices in the base space L, and note that the restriction maps produce a persistence module

S (τ0)
S (τ0≤τ1)

// S (τ1)
S (τ1≤τ2)

// · · ·
S (τn−1≤τn)

// S (τn).

It follows from the associativity axiom of Definition 7.1 that the number of intervals [i, j] in the
barcode of this persistence module must equal the rank of S (τi ≤ τj).

7.3 SHEAF COHOMOLOGY

Taking the perspective of sheaves as algebraic weights on simplices seriously produces a suite of
new cohomology theories for simplicial complexes. To define these sheaf-infused cohomology
groups, we must first build a suitable cochain complex using the data of a sheaf; to this end, fix
a sheaf S on a simplicial complex L.

DEFINITION 7.5. For each dimension k ≥ 0, the vector space of k-cochains of L with S -
coefficients is the product

Ck(L; S ) = ∏
dim τ=k

S (τ)

of the stalks of S over all the k-dimensional simplices of L.

Depending on which sheaf S is being used as the coefficient system in the definition above, the
cochain groups C•(L; S ) might be quite different from the familiar simplicial cochain groups
C•(L; F) of Definition 5.1 — for instance, when S = 0L, we obtain trivial cochain groups in all
dimensions regardless of L. But for S = FL, we recover the usual simplicial cochain groups of
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L. The key point is that while the constant sheaf identifies a unique one-dimensional subspace of
Ck(L) with every k-simplex of L, using a different sheaf S allows us to upgrade the contribution
of some simplices (by assigning them stalks of dimension > 1) and diminishing the contribution
of others (by assigning them zero stalks).

Let’s assume that the vertices of L are ordered so that each k-simplex τ has a well-defined i-th
face τ−i for i in {0, . . . , k} (see Definition 3.4). For each pair of simplices τ, τ′ in L we write

[τ : τ′] :=


+1 τ = τ′−i for i even,
−1 τ = τ′−i for i odd,
0 otherwise.

Thus, [τ : τ′] ∈ F is precisely the coefficient of τ′ in the simplicial coboundary of τ, or equiva-
lently, the coefficient of τ in the simplicial boundary of τ′.

DEFINITION 7.6. For each k ≥ 0, the k-th coboundary map of L with S -coefficients is the
linear map

∂k
S : Ck(L; S )→ Ck+1(L; S )

defined via the following block-action: for each pair of simplices τ ≤ τ′ with dim τ = k and
dim τ′ = k + 1, the S (τ)→ S (τ′) component of ∂k

S is given by

∂k
S |τ,τ′ = [τ : τ′] ·S (τ ≤ τ′) (6)

From a computational perspective, it often helps to view ∂k
S as an enormous block-matrix whose

columns are indexed by (stalks of) all the k-simplices in L and rows are indexed by (stalks of) all
the (k + 1)-simplices; the component ∂k

S |τ,τ′ is the block in the column of τ and the row of τ′:

The expression (6) for ∂k
S |τ,τ′ involves a restriction map, but note that it makes sense even when

τ is not a face of τ′: in this case, the scalar [τ : τ′] is zero, so the entire block is zero.

REMARK 7.7. If S is the constant sheaf FL, then all the rows and columns have width one
(since all the stalks are one-dimensional); and since the restriction maps in this case are all
identities, the entry ∂k

S |τ,τ′ lies in {0,±1} depending on whether or not τ is a face of τ′. Thus,
both Ck(L; S ) and ∂k

S reduce to the familiar objects from Definition 5.1 when S = FL.

The harsh constraints placed on restriction maps of S by the associativity axiom of Defini-
tion 7.1 will now start yielding rich dividends. The following result establishes that the choice
of terminology (cochains and coboundary operators) for the objects Ck(L; S ) and ∂k

S is appo-
site.
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PROPOSITION 7.8. The sequence

0 // C0(L; S )
∂0
S
// C1(L; S )

∂1
S
// · · ·

∂k−1
S
// Ck(L; S )

∂k
S
// Ck+1(L; S )

∂k+1
S
// · · ·

forms a cochain complex over F. In other words, ∂k
S ◦ ∂k−1

S equals zero for all k ≥ 1.

PROOF. It suffices to verify that the composite of two adjacent coboundary operators equals
zero block-wise. Namely, for each (k− 1)-simplex τ and (k + 1)-simplex τ′′ we will show that
the F (τ) → F (τ′′) block of this composite is the zero map, from which the desired conclusion
immediately follows. For any vector v in F (τ), we calculate

∂k
S ◦ ∂k−1

S (v) = ∑
dim τ′=k

∂k
S |τ′,τ′′ ◦ ∂k−1

S |τ,τ′(v) by Definition 7.6

= ∑
τ<τ′<τ′′

∂k
S |τ′,τ′′ ◦ ∂k−1

S |τ,τ′(v) eliminating zero terms

= ∑
τ<τ′<τ′′

[τ′ : τ′′] · [τ : τ′] ·S (τ′ ≤ τ′′) ◦S (τ ≤ τ′)(v) by (6)

= ∑
τ<τ′<τ′′

[τ′ : τ′′] · [τ : τ′] ·S (τ ≤ τ′′)(v) associativity axiom!

=

(
∑

τ<τ′<τ′′
[τ′ : τ′′] · [τ : τ′]

)
·S (τ ≤ τ′′)(v) collecting scalars

But now the scalar in parentheses is zero because it equals the coefficient of τ′′ in the composite
∂k

L ◦ ∂k−1
L (τ). Since our choice of v was arbitrary, the composite ∂k

S ◦ ∂k−1
S is identically zero as

desired. �

Having produced a cochain complex from S , we can safely define the associated cohomology
groups in the usual fashion.

DEFINITION 7.9. For each dimension k ≥ 0, the k-th cohomology group of L with coeffi-
cients in S is the quotient vector space

Hk(L; S ) = ker ∂k
S/img ∂k−1

S .

At the moment, this definition is simply a way of producing cohomology groups from sheaves.
We know, based on the discussion above, that this sheaf cohomology agrees with standard coho-
mology whenever S is the constant sheaf FL. It is challenging to visualize sheaf cohomology for
more general choices of S ; but in the next Section, we will provide a topological interpretation
for the simplest sheaf cohomology group H0(L; S ) for arbitrary S .

7.4 THE ÉTALE SPACE AND SECTIONS

Let L be a simplicial complex and S a sheaf on L; both will remain fixed throughout this
section. We recall that the geometric realization of every simplex τ in L is denoted |τ| ⊂ |L| (see
Definition 1.7) and its open star (from Definition 1.17) is denoted st(τ) ⊂ L. The realization of
this open star is

| st(τ)| =
⋃

τ≤τ′
|τ′|◦,
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where |τ′|◦ stands for the interior of |τ′| in |L|. For each x ∈ |L| there is a unique simplex τ ∈ L
with x ∈ |τ|◦, which we will denote by τx throughout this section.

DEFINITION 7.10. The étale space of a sheaf S on L is the topological space ES defined as
follows. Its underlying set consists of pairs

ES = {(x, v) | v ∈ S (τx)} .

A basis for the topology is prescribed by open sets Uτ,v ⊂ ES indexed by pairs (τ, v) where
τ ∈ L is a simplex and v ∈ S (τ) is a vector lying in its stalk. Each such basic open set is:

Uτ,v = {(x, w) | τx ≥ τ and w = S (τ ≤ τx)(v)} .

There is a natural projection πS : ES � |L| sending each (x, v) to x; this is called the étale
map of S and it satisfies two strong properties. First, its restriction to each basic open Uτ,v is a
homeomorphism onto | st(τ)|. And second, for each x in L we have

π−1
S (x) = {x} ×S (τx).

Thus, π−1
S (x) has the structure of a vector space for each x in |L|. The étale space is is home to

some very special subspaces; these can be discovered by attempting to find right-inverses for
the affiliated étale map.

DEFINITION 7.11. Let L′ ⊂ L be any subcollection of simplices (which do not necessarily
form a subcomplex). A section of S over L′ is any continuous map h : |L′| → ES for which
the composite πS ◦ h equals the identity map on |L′|. The set of all such sections is denoted
Γ(L′; S ).

The case L = L′ is of particular interest — we call Γ(L; S ) the set of global sections of S . Since
any section h in Γ(L′, S ) satisfies πS ◦ h = id, it must at least send each point x of |L′| to a vector
h(x) in the stalk S (τx). Since h is also continuous, we can make two stronger claims.

PROPOSITION 7.12. For any subcollection L′ ⊂ L of simplices,
(1) each section h in Γ(L′; S ) is constant on |τ|◦ for each τ in L′; moreover,
(2) the set Γ(L′; S ) has the structure of a vector space.

PROOF. Fix any simplex τ in L′. Since πS ◦ h is the identity, it follows that h(| st(τ)|) is a
subset of π−1

S (| st(τ)|). By definition, there is a decomposition

π−1
S (| st(τ)|) ' ä

v∈S (τ)

Uτ,v,

where each Uτ,v is a basic open set. Since h is continuous and | st(τ)| is connected, there is a
single v in S (τ) so that h(| st(τ)|) ⊂ Uτ,v. Thus, any two points x and x′ in |τ|◦ are sent by h to
the same vector S (τ ≤ τ)(v) = v, which proves the first claim. Armed with this knowledge,
we may as well view h as a function sending each simplex τ ∈ L′ to a vector h(τ) ∈ S (τ). With
this shift in perspective, the vector space structure on Γ(L′; S ) becomes obvious: for any pair
of scalars α, β in F and sections h, g in Γ(L′; S ), we can form the linear combination α · h + β · g
that sends each τ to the vector α · h(τ) + β · g(τ) in S (τ). �

Writing sections as assignments of stalk-vectors to simplices of L′ (rather than to points of
|L′|) allows us to view them as finite objects. Implicit in the proof of the above result is the
following observation, which establishes that sections correspond to choices of stalk-vectors that
are compatible with respect to the restriction maps of S .
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COROLLARY 7.13. If h is a section in Γ(L′, S ), then for every pair of simplices τ ≤ τ′ in L′ we
have the equality

S (τ ≤ τ′)(h(τ)) = h(τ′).

We have been discussing sections of sheaves because they are intimately related to the sheaf
cohomology groups from Definition 7.9.

THEOREM 7.14. For any sheaf S over a simplicial complex L, there is a vector space isomorphism

H0(L; S ) ' Γ(L; S )

between the zeroth cohomology groups of L with coefficients in S and the global sections of S .

PROOF. Although this proof has been assigned as an exercise, we show the first step of the
argument here as a (substantial) hint. The zeroth cohomology H0(L; S ) is precisely the kernel
of the coboundary map ∂0

S , whose block structure has been described in Definition 7.6. The
row-blocks are indexed by the 1-simplices, each of which contains exactly two vertices in its
boundary. The row corresponding to a 1-simplex τ = (u0, u1) can only have nonzero blocks in
the two columns corresponding to its vertices u0 and u1. Thus, a cochain v in C0(L; S ) lies in the
kernel of this coboundary matrix if and only if its components vi ∈ S (ui) for i in {0, 1} satisfy

S (u0 ≤ τ)(v0) = S (u1 ≤ τ)(v1).

This is the first step in showing that v constitutes a section. �

REMARK 7.15. When defining sections of S over subsets of L, we only used the topology of
ES and properties of the map πS : ES � |L|. In fact, one can completely recover S from its
étale map: the stalk S (τ) over each simplex τ of L is the vector space of sections Γ(| st(τ)|; S )
over its open star, and the restriction map associated to τ ≤ τ′ is obtained by using the fact
that every section | st(τ)| → ES restricts to a section over the smaller set | st(τ′)|.

7.5 PUSHFORWARDS AND PULLBACKS

There is a natural way to define maps of sheaves over a fixed simplicial complex L.

DEFINITION 7.16. A morphism of sheaves Φ• : S → S ′ over L consists of linear maps
Φτ : S (τ)→ S ′(τ) indexed by simplices τ ∈ L so that the following diagram of vector spaces
commutes for each τ ≤ τ′:

S (τ)

S (τ≤τ′)
��

Φτ
// S ′(τ)

S ′(τ≤τ′)
��

S (τ′)
Φτ′

// S ′(τ′).

These morphisms endow the set of all sheaves over L with the structure of a category, which we
will denote by Sh(L). Sheaf morphisms induce well-defined maps on sheaf cohomology (this is
an exercise to this Chapter).
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Our goal here is to show how sheaves can be transported back and forth between a pair of
simplicial complexes K and L by using a simplicial map f : K → L. Surprisingly, the easier direc-
tion is backwards: we can construct a sheaf on K from a sheaf on L in a relatively straightforward
manner.

DEFINITION 7.17. The pullback of a sheaf S over L across the simplicial map f : K → L is a
new sheaf f ∗S over K defined as follows. The stalk over every simplex σ in K is

f ∗S (σ) = S ( f (σ)),

while the restriction map for σ ≤ σ′ is

f ∗S (σ ≤ σ′) = S ( f (σ) ≤ f (σ′))

Transporting sheaves from K forwards to L along f : K → L is more intricate, because now
the direction of f works against us. For each simplex τ of L, there might be a large collection of
simplices in K which get mapped to (a co-face of) τ; we must somehow combine the T -stalks
over all these simplices in order to produce a sheaf over K. Here it helps to utilize the perspective
from Remark 7.15 and define the desired sheaf in terms of its étale space.

DEFINITION 7.18. The pushforward of a sheaf T on K along a simplicial map f : K → L is a
new sheaf f∗T on L whose étale space equals

E f∗T =
{(
| f |(x), v

)
| (x, v) ∈ ET

}
;

here | f | : |K| → |L| is the continuous map induced by f .

By our recipe for extracting sheaves from their étale spaces, it follows that the stalk f∗T (τ) for
each simplex τ of L is the vector space of sections Γ(| f /τ|; T ), where f /τ is the dual fiber

f /τ = {σ ∈ K | f (σ) ≥ τ} .

Although this dual fiber is not generally a subcomplex of K unlike τ/ f , the space of T ’s sections
over it is still well-defined.

REMARK 7.19. Pullbacks and pushforwards are functors between Sh(K) and Sh(L) — so,
we can pull and push not only sheaves but also their morphisms. Moreover, they form a dual
adjoint pair in the following sense. Given a simplicial map f : K → L along with sheaves
S ∈ Sh(L) and T ∈ Sh(K), there is a bijectionMorphisms

f ∗S → T
in Sh(K)

 '
Morphisms

S → f∗T
in Sh(L)


To prove this, one must first discover natural sheaf morphisms

S → f∗ f ∗S and f ∗ f∗T → T

in Sh(L) and Sh(K) respectively. The best way to become familiar with pushforwards and
pullbacks is to find these morphisms on your own and use them to establish this bijection.

7.6 BONUS: COSHEAVES

Sheaves come with a cohomology theory because of the directions of their restriction maps,
which point from low-dimensional simplices to high-dimensional ones. In order to produce
an equal and opposite homology theory, one requires maps going in the other direction; this is
achieved by reversing the partial order on the simplices of the base space L.
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DEFINITION 7.20. A cosheaf over L is a functor C : (L,≥)→ VectF.

Thus, C assigns an F-vector space C (τ) (called the costalk) to each simplex τ of L; and it assigns
a a linear map S (τ ≥ τ′) : S (τ) → S (τ′) (called the extension map) to each coface relation
τ ≥ τ′ in L. Moreover, we require the expected axioms to hold:

(1) the map C (τ ≥ τ) is the identity on C (τ), and
(2) the equality C (τ′ ≥ τ′′) ◦ C (τ ≥ τ′) = C (τ ≥ τ′′) holds for every triple of simplices

τ ≥ τ′ ≥ τ′′.

All of the constructions and results which have been described for sheaves in this Chapter also
admit cosheafy analogues — for instance, every cosheaf C on L induces a chain complex

· · ·
∂C

k+1
// Ck(L; C )

∂C
k
// Ck−1(L; C )

∂C
k−1
// · · ·

∂C
2
// C1(L; C )

∂C
1
// C0(L; C ) // 0

which gives rise to the homology of L with coefficients in C . Similarly, there are dual notions
of étale spaces, pushforwards and pullbacks for cosheaves.

EXERCISES

EXERCISE 7.1. Given two monotone functions f , f ′ : K → R on a simplicial complex K,
assume there exists some ε > 0 so that | f (σ) − f ′(σ)| < ε holds for every simplex σ of K.
Letting F• and F ′• denote the sublevelset filtrations of K with respect to f and f ′ respectively,
show that the barcodes of Hk(F•K) and Hk(F ′•K) have bottleneck distance at most ε for every
k ≥ 0. [Hint: find an ε interleaving of the two persistence modules and use Theorem 6.19]

EXERCISE 7.2. Describe the stalks and restriction maps of the fiber homology sheaves F k
f

for k ≥ 0 when f is the inclusion ∂∆(k) ↪→ ∆(k).

EXERCISE 7.3. Let L be a simplicial complex and τ a simplex in L of dimension k ≥ 0. What
are the cohomology groups of L with coefficients in the skyscraper sheaf Skτ?

EXERCISE 7.4. Let f : ∂∆(2) ↪→ ∆(2) be the inclusion map and F k
f the associated fiber

homology sheaf for each k ≥ 0. Compute the cohomology groups Hi(∆(2), F j
f ) for all four

pairs 0 ≤ i, j ≤ 1.

EXERCISE 7.5. Find a sheaf S on a contractible simplicial complex L for which H1(L; S ) is
nonzero.

EXERCISE 7.6. Show how Corollary 7.13 follows from the argument which was used to
prove Proposition 7.12.

EXERCISE 7.7. Show that every morphism Φ : S → S ′ of sheaves over a simplicial com-
plex L induces well-defined linear maps Hk(L; S )→ Hk(L; S ′) of sheaf cohomology groups.

EXERCISE 7.8. Show that the pullback f ∗S of a sheaf over L across a simplicial map f :
K → L is a sheaf over K
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EXERCISE 7.9. Complete the proof of Theorem 7.14.

EXERCISE 7.10. Show that for every simplicial map f : K → L and each dimension k ≥ 0,
the assignment of fiberwise cohomology groups τ 7→ Hk(τ/ f ) constitutes a cosheaf over L.
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8.1 ACYCLIC PARTIAL MATCHINGS

Let K be a simplicial complex. For any pair of simplices σ, τ in K, we write σC τ to indicate
that σ is a codimension one face of τ, i.e., that σ ≤ τ and dim τ − dim σ = 1.

DEFINITION 8.1. A partial matching on K is a collection Σ = {(σ• C τ•)} of simplex-pairs in
K subject to the following constraint: if a pair (σC τ) lies in Σ, then neither σ nor τ appear in
any other pair of Σ.

More elaborately, a partial matching Σ consists of two disjoint subsets of simplices SΣ, TΣ ⊂ K
along with a bijection µΣ : SΣ

∼−→ TΣ so that σ C µ(σ) holds for every σ in SΣ. Crucially,
we do not require K = SΣ ∪ TΣ, so there might be simplices in K which remain untouched by
the matching. These unmatched simplices lying in the complement CΣ := K − (SΣ ∪ TΣ) are
called Σ-critical. It should also be noted that none of the sets SΣ, TΣ and CΣ are required by this
definition to be subcomplexes of K.

Partial matchings are relevant to us because under certain assumptions (to be described in
gory detail below), we can compute the homology groups of K using a chain complex whose
chain groups are built using only the critical simplices of a partial matching. Thus, finding a
good partial matching with very few critical simplices makes it possible to drastically reduce the
algorithmic burden of computing homology groups. Before describing all this machinery, we
will examine some examples (and non-examples) of partial matchings.

EXAMPLE 8.2. Partial matchings are usually illustrated using arrows pointing from the
smaller simplex σ to the larger simplex τ whenever (σC τ) lies in Σ. Consider the diagrams
I-IV below:

Both I and II constitute legal partial matchings — the elements of SΣ are sources of arrows
while the elements of TΣ are targets. The simplices σ3 and τ3 in I remain untouched by arrows
and are therefore critical (but note that II has no critical simplices). Neither III nor IV are
partial matchings — in III there is a simplex with two incoming arrows whereas in IV there is
a simplex with two outgoing ones.

Fix a partial matching Σ on K.

DEFINITION 8.3. A Σ-path is a zigzag sequence of distinct simplices in K of the form

ρ = (σ1C τ1B σ2C τ2B · · ·B σm C τm), (7)

where (σiC τi) lies in Σ for all i in {1, . . . , m}. Such a path is gradient if either m = 1 or σ1 is not
a face of τm. We say that Σ is an acyclic partial matching if all of its paths are gradient.
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Of the two legal partial matchings depicted in Example 8.2 above, only I is acyclic — the non-
gradient paths in II can be discovered by starting at any vertex and following arrows until the
loop is completed. Henceforth we will only consider acyclic partial matchings; our interest in
this special subset is primarily motivated by the following result.

THEOREM 8.4. Let Σ be an acyclic partial matching on a simplicial complex K, and let F be any
coefficient field. There exists a chain complex (of F-vector spaces)

· · ·
dΣ

k+1
// CΣ

k (K; F)
dΣ

k
// CΣ

k−1(K; F)
dΣ

k−1
// · · ·

dΣ
2
// CΣ

1 (K; F)
dΣ

1
// CΣ

0 (K; F) // 0

satisfying three properties:

(1) each chain group CΣ
k (K; F) is

⊕
α F, indexed by critical k-simplices α ∈ CΣ,

(2) the boundary operators dΣ
k are explicitly determined by knowledge of Σ-paths, and

(3) the homology groups of (CΣ
• (K; F), dΣ

• ) are isomorphic to those of K.

The next two Sections are devoted to the task of
building the boundary operators dΣ

• from Σ-paths and
proving the isomorphism on homology as promised by
properties (2) and (3) respectively. If the set of critical
simplices CΣ ⊂ K forms a subcomplex of K, then the
Theorem above can be proved without much difficulty.
The illustration here contains one example of this easy
case: the complex K is a triangulation of the cylinder
∂∆(2) × [0, 1], and the critical simplices CΣ consist of
the base circle (spanned by the vertices a0, a1, a2 and the
three edges between them). In this case there is a se-
quence of elementary collapses (as in Proposition 2.14)
from K to CΣ. This establishes a homotopy equivalence,
and hence the desired isomorphisms on homology by Theorem 4.24. Thus, our challenge in
proving Theorem 8.4 stems from the fact that in general CΣ ⊂ K will not be a subcomplex.

REMARK 8.5. Acyclic partial matchings are combinatorial analogues of gradient vector fields
from differential geometry, and the main idea behind the proof of Theorem 8.4 is to deform the
original chain complex (C•(K), ∂K

• ) to the smaller chain complex (CΣ
• (K), dΣ

• ) by flowing down
along the arrows of this combinatorial gradient vector field. As such, Theorem 8.4 forms the
simplicial analogue of one of the main results from smooth Morse theory. For these historical
reasons, (CΣ

• (K), dΣ
• ) is called the Morse chain complex associated to Σ, and the study of

acyclic partial matchings is called discrete Morse theory.

8.2 THE MORSE CHAIN COMPLEX

Let K be a simplicial complex with ordered vertices. Given any simplices σ and τ in K, let
[τ : σ] ∈ {0,±1} indicate the coefficient of σ in the boundary of τ (see Definition 3.4) — this
number is nonzero if and only if σC τ. Fix an acyclic partial matching Σ on K as in Definition 8.3.
Here we will build the boundary operators dΣ

• whose existence was promised in the statement
of Theorem 8.4. The first step in this direction is to associate an algebraic contribution to each
Σ-path.
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DEFINITION 8.6. The weight w(ρ) ∈ {±1} of the Σ-path

ρ = (σ1C τ1B σ2C τ2B · · ·B σm C τm),

is defined to be the product

w(ρ) =
−1

[τ1 : σ1]
· [τ2 : σ1] ·

−1
[τ2 : σ2]

· · · [τm−1 : σm] ·
−1

[τm : σm]

One can equivalently collect numerators and denominators to express the weight of each Σ-path
ρ as a single ratio

w(ρ) = (−1)m · ∏m−1
i=1 [τi : σi+1]

∏m
i=1[τi : σi]

,

but the un-collected version will be more convenient for our purposes.
Recall (from the statement of Theorem 8.4) that the vector space CΣ

k (K) has as its basis the set
of all k-dimensional Σ-critical simplices. We will define the desired linear maps from assertion
(2) of Theorem 8.4 as matrices with respect to these chosen bases. And for each gradient path ρ
as in (7), we indicate the first simplex σ1 and last simplex τm by σρ and τρ respectively.

DEFINITION 8.7. For each dimension k ≥ 0, the k-th Morse boundary operator is the linear
map dΣ

k : CΣ
k (K) → CΣ

k−1(K) given by the following matrix representation: its entry in the
column of a critical k-simplex α and the row of a critical (k− 1)-simplex ω is given by

[α : ω]Σ = [α : ω] + ∑
ρ

[α : σρ] · w(ρ) · [τρ : ω], (8)

where ρ ranges over all the Σ-paths.

There are three aspects of the formula (8) which might merit deeper consideration. First,
the term [α : ω] on the right side is precisely the entry in ω’s column and α’s row within the
simplicial boundary matrix ∂K

k — thus, the difference between this original entry and our new
Σ-perturbed one is precisely the sum-over-paths term. Second, we don’t have to sum over all
the paths; the only paths that make a non-zero contribution are the ones which flow from α to ω
like so:

αB
(
σ1C τ1B σ2C τ2B · · ·B σm C τm

)
Bω.

And third, life gets much simpler when working over the field F = Z/2 because in this case each
path connecting α to ω has weight 1; thus, it suffices to simply count the odd/even parity of the
number of such connecting Σ-paths.

PROPOSITION 8.8. The pair (CΣ
• (K), dΣ

• ) constitutes a chain complex.

PROOF. It suffices by induction to show that the desired result holds when Σ consists of a
single pair (σC τ) of simplices in K; thus the set of critical simplices is CΣ = K− {σ, τ}, and the
only Σ-path is

ρ = (σC τ).

To show that dΣ
• is a boundary operator, we must establish that for each fixed α, ω ∈ CΣ, the sum

B = ∑
ξ

[α : ξ]Σ · [ξ : ω]Σ
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equals zero when indexed over all ξ ∈ CΣ. Using the formula (8), the contribution of each ξ to
this sum is the product

Bξ =

(
[α : ξ]− [α : σ] · [τ : ξ]

[τ : σ]

)
·
(
[ξ : ω]− [ξ : σ] · [τ : ω]

[τ : σ]

)
.

The negated term in the first factor disappears whenever dim ξ 6= dim σ, and the negated term
in the second factor disappears whenever dim ξ 6= dim τ. Thus, only three of the four terms
survive when we multiply these two factors:

Bξ = [α : ξ] · [ξ : ω]− [α : σ] · [τ : ξ] · [ξ : ω]

[τ : σ]
− [α : ξ] · [ξ : σ] · [τ : ω]

[τ : σ]

Summing over ξ ∈ CΣ, we have B = ∑ξ Bξ given by

B = ∑
ξ

[α : ξ] · [ξ : ω]− [α : σ]

[τ : σ] ∑
ξ

[τ : ξ] · [ξ : ω]− [τ : ω]

[τ : σ] ∑
ξ

[α : ξ] · [ξ : σ].

It is now straightforward to check that B = 0 because ∂K
• is a boundary operator on C•(K). In

particular, the first sum evaluates to −([α : σ] · [σ : ω] + [α : τ] · [τ : ω]), while the second term
evaluates to [α : σ] · [σ : ω] and the third term to [α : τ] · [τ : ω]. �

As mentioned before, we call (CΣ
• (K), dΣ

• ) the Morse chain complex associated to our acyclic par-
tial matching Σ; although we have not yet shown that it has the same homology as (C•(K), ∂K

• ),
this is a good time to examine a few known cases and verify this assertion experimentally. One
can build an acyclic partial matching on any simplicial complex by performing these two steps
over and over until all simplices have been classified as matched or critical — initially, all sim-
plices are unclassified:

(1) classify a simplex of lowest available dimension as critical; then,
(2) while there exist pairs (σC τ) of unclassified simplices so that σ is the only unclassified

face of τ, classify (σC τ) as matched.

Although this process is not guaranteed to produce the largest acyclic partial matching (i.e., the
one containing the fewest possible critical simplices), it is devastatingly effective in practice.

Illustrated here is the acyclic partial matching
imposed by this simple two-step algorithm on the
torus (note that the left and right edges of the fig-
ure have been identified, as have the top and bot-
tom ones). In the first stage, one classifies the ver-
tex a as critical; this creates various edges (such as
ab, ad, etc.) with only one unclassified vertex in
their boundaries — these produce the matchings
indicated by red arrows. At the end of this pro-
cess, all the vertices have been matched with edges,
but there are several 2-simplices remaining with
more than one unmatched edge in their bound-
aries. Next, we classify bc as critical and are al-
lowed to make matchings indicated by the blue ar-
rows. Next, we classify de as critical and make the
purple matchings. Finally, only the simplex f gh remains unclassified, so it becomes critical. The
critical simplices lie far away from each other, and do not form a subcomplex of the torus.
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EXAMPLE 8.9. Let K be the triangulated torus and Σ the overlaid acyclic partial matching
illustrated above. The Σ-critical simplices are {a, bc, de, f gh}, so the associated Morse chain
complex has the form

· · · // 0 // F
dΣ

2
// F2 dΣ

1
// F // 0

To really determine the boundary operators using (8) for arbitrary F, we would have to impose
an ordering on the vertices and keep careful track of minus signs. Let’s instead work over Z/2
and count gradient paths — there are two from bc to a, namely:

bcB (bC ab)B a and bcB (cC ac)B a.

Since there is an even number of connecting gradient paths, the entry dΣ
1 |bc,a equals 0. Pro-

ceeding similarly, one can check (exercise!) that both dΣ
1 and dΣ

2 are zero maps, which makes it
trivial to compute the homology of the torus.

8.3 THE EQUIVALENCE

Let Σ be an acyclic partial matching on a simplicial complex K. Our goal here is to complete
the proof of Theorem 8.4 by showing establishing the following result.

PROPOSITION 8.10. The Morse chain complex (CΣ
• (K), dΣ

• ) of Proposition 8.8 is chain homotopy
equivalent to the standard simplicial chain complex (C•(K), ∂K

• ).

In other words, we will describe two chain maps

ψ• : C•(K)→ CΣ
• (K) and φ• : CΣ

• (K)→ C•(K)

along with a pair of chain homotopies relating φ• ◦ ψ• and ψ• ◦ φ• to the identity chain maps on
C•(K) and CΣ

• (K) respectively. The best way to build ψ• and φ• is by processing the simplex-
pairs (σC τ) in Σ one at a time. Given this strategy, it is instructive to first examine the special
case where Σ contains a single pair (σC τ).

Consider the entries (in the usual matrix representation) of ∂K
dim τ corresponding not only to

our chosen pair (σC τ), but also two arbitrary simplices α and ω.

In order to algebraically disentangle σ and τ from the other simplices, we treat the ±1 entry
[τ : σ] as a pivot and seek to clear out all the other entries in both Col(τ) and Row(σ). This
requires performing row and column operations of the form

Row(ω)← Row(ω)− [τ : ω]

[τ : σ]
· Row(σ)

∣∣∣ Col(α)← Col(α)− [α : σ]

[τ : σ]
·Col(τ). (9)



8. THE EQUIVALENCE 102

After these operations have been performed, the entry in α’s column and ω’s row equals

[α : ω] + [α : σ] · −1
[τ : σ]

· [τ : ω], (10)

which agrees with the expression for [α : ω]Σ from (8) because there is only one Σ-path σC τ.
More importantly, the row and column operations of (9) suggest the structure of the desired
chain maps which take us from C•(K) to CΣ

• (K) and back. This allows us to prove Proposition
8.10 in the special case where Σ contains only one pair.

LEMMA 8.11. Let Σ be an acyclic partial matching on K containing only one pair (σC τ). Then the
simplicial chain complex (C•(K), ∂K

• ) is chain homotopy equivalent to the Morse complex (CΣ
• (K), dΣ

• ).

PROOF. For each k ≥ 0, define the linear maps ψk : Ck(K) → CΣ
k (K) by the following matrix

representation; for each pair of k-simplices (α, ω) in K × (K − {σ, τ}), the entry in α’s column
and ω’s row is

ψk
∣∣
α,ω =


− [τ:ω]

[τ:σ] α = σ

1 α = ω 6= τ

0 otherwise.

(11)

Conversely, define the linear maps φk : CΣ
k (K) → Ck(K) by placing the following entry in the

column of ω in K− {σ, τ} and the row of α in K:

φk
∣∣
ω,α =


− [ω:σ]

[τ:σ] α = τ

1 ω = α 6= σ

0 otherwise.

(12)

Checking that both ψ• and φ• are chain maps has been relegated to two of the Exercises. To ex-
tract the chain homotopies, first note that ψ• ◦ φ• equals the identity map on CΣ

• (K). Conversely,
the composite φ• ◦ ψ• is given by

φk ◦ ψk
∣∣
α,α′ =


− [τ:α′]

[τ:σ] α = τ 6= α′

− [α:σ]
[τ:σ] α 6= σ = α′

1 α = α′

0 otherwise.

One can now check that the linear maps θk : Ck(K)→ Ck+1(K) prescribed by

θ
∣∣
α,β =

{
1

[τ:σ] α = σ and β = τ

0 otherwise
(13)

furnish the desired chain homotopy between φk ◦ ψk and the identity chain map. �

The acyclicity of Σ plays an important role when attempting to iteratively apply Lemma 8.11
for the purposes of proving Proposition 8.10. Acyclicity guarantees that removing a single pair
(σC τ) ∈ Σ from K does not alter the entry [τ′ : σ′] in the boundary matrix corresponding to
another pair (σ′ C τ′) ∈ Σ. To see why, note from (10) that the difference between the old and
new entries equals

[τ′ : σ] · [τ : σ′]

[τ : σ]
.
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Assuming that the numerator is nonzero, we are forced to conclude that the the Σ-path σC τB
σ′ C τ′ is not gradient, which leads to the desired contradiction. As a consequence, the repeated
application of Lemma 8.11 correctly converges to the Morse complex regardless of the order in
which we remove the simplex-pairs lying in Σ.

8.4 FOR PERSISTENCE

The machinery of acyclic partial matchigns and Morse complexes is extremely flexible, and
admits powerful generalizations. Here we will describe how to construct filtered Morse com-
plexes for the purposes of simplifying the persistent homology computations which formed
the focus of Chapter 6. Let F•K be a (R+-indexed) filtration of a simplicial complex K, and let
b : K → R+ be the associated monotone function σ 7→ inf {t ≥ 0 | σ ∈ Ft(K)}.

DEFINITION 8.12. An acyclic partial matching Σ on K is F•-compatible if b(σ) = b(τ) holds
for every pair of simplices (σC τ) in Σ.

This compatibility requirement forces Σ-paths to be decreasing with respect to b.

PROPOSITION 8.13. Let Σ be an F•-compatible acyclic partial matching on K. For any Σ-path

ρ = σ1C τ1B · · ·B σm C τm,

we have b(σi) ≥ b(σj) for all i ≤ j.

PROOF. For each i ∈ {1, . . . , m} we have an equality b(σi) = b(τi) by the F•-compatibility of
Σ and an inequality b(τi) ≥ b(σi+1) by the monotonicity of b : K → R. �

This elementary observation has some wonderful consequences when it comes to simplifying
computations of persistent homology. For each t ∈ R+, let Σt ⊂ Σ be the restriction of Σ to
(pairs which lie in) the subcomplex FtK ⊂ K, and let (Mt

•, dt
•) be shorthand for the affiliated

Morse complex (CΣt
• (FtK), ∂Σt• ).

COROLLARY 8.14. For each pair 0 ≤ t ≤ s of real numbers, there is an inclusion (Mt
•, dt
•) ↪→

(Ms
•, ds
•) of Morse chain complexes.

PROOF. The critical simplices in FtK remain critical in FsK, so Mt
k is naturally a subspace

of Ms
k for all k ≥ 0. Thus, it suffices to check that the Morse boundary operator ds

k equals dt
k

when restricted to the subspace Mt
k. But this follows directly from the formula (8) — consider a

Σ-critical k-simplex α ∈ FtK, and a Σ-path of the form

ρ = (σ1C τ1B · · ·B σm C τm)

so that αBσ1. By the monotonicity of b, we have t ≥ b(α) ≥ σ1. Now Proposition 8.13 guarantees
that all subsequent Σ-paired simplices σiC τi appearing in ρ must have b-values bounded above
by t. In particular, adding new simplices from (Fs − Ft) can not possibly change the Σ-paths
over which we sum when evaluating the Morse boundary of α in Ms

k, whence ds
k(α) = dt

k(α) as
desired. �

Having found a nested sequence of Morse complexes, one seeks to relate persistent homology
groups of Hk(F•K) to those of Hk(M•, d•). The basic idea, as one might expect, is to unite all the
chain homotopy equivalences {ψt, φt | t ≥ 0} promised by Proposition 8.10 between C•(FtK)
and Mt for each t ≥ 0 into a single equivalence relating the two persistence modules.
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THEOREM 8.15. For each dimension k ≥ 0 and pair of real numbers 0 ≤ t ≤ s, there are
isomorphisms

PHt→sHk(F•K) ' PHt→sHk(M•, d•)
of persistent homology groups. Therefore, the barcodes of Hk(F•K) and Hk(M•, d•) are equal.

PROOF. Enumerate all the simplex-pairs in Σ according to their b-values, i.e., write

Σ = {(σ1C τ1), (σ2C τ2), . . . , (σm C τm)}

so that b(σi) ≤ b(σj) whenever i ≤ j. Applying Lemma 8.11 to the Σ-pairs in this order, we
obtain a family of chain homotopy equivalences indexed by t ≥ 0:

ψt
• : C•(FtK)→ Mt

• and φt
• : Mt

• → C•(FtK)

which fit into a commuting diagram with the natural inclusion maps. Namely, for any pair
of positive real numbers t ≤ s and dimension k ≥ 0, the following diagrams of vector spaces
commute:

Ck(FtK)

ψt
k
��

� � // Ck(FsK)

ψs
k
��

Ck(FtK) �
�

// Ck(FsK)

Mt
k
� � // Ms

k Mt
k

φt
k

OO

� � // Ms
k

φs
k

OO

Since ψt and φt form two halves of a chain homotopy equivalence, they induce isomorphisms
on k-th homology for all k ≥ 0. Thus, we obtain a 0-interleaving between the two k-th homology
persistence modules, which guarantees that all their persistent homology groups are isomorphic.

�

From the perspective of using this result to simplify computations, it is important to note that
large F•-compatible partial matchings can only be found on filtrations where lots of simplices
share the same b-values. Fortunately, this requirement is always satisfied by the Vietoris-Rips
filtration. Consider a collection of points P = {p0, . . . , pk} so that the largest pairwise distance
d(pi, pj) equals t′ > 0, corresponding to a single edge (pi, pj). Then the set of simplices born at
this scale t′ in VR•(P) include not only our edge, but also every other simplex containing this
edge in its boundary.

8.5 FOR SHEAVES

Aside from the usual cognitive dissonance caused by reversing arrows when transitioning
from homology to cohomology, there are not too many obstacles involved in using acyclic partial
matchings to simplify sheaf cohomology computations. Let S be a sheaf (see Definition 7.1) on
a simplicial complex K.

DEFINITION 8.16. An acyclic partial matching Σ on K is S -compatible if the restriction map
S (σ ≤ τ) is an isomorphism for every pair (σC τ) in Σ.

The weights of gradient paths from Definition 8.6 must now be upgraded from scalars to
linear maps. It will be convenient, for simplices α, β in K, to define the scaled restriction map
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Sα,β : S (α)→ S (β) as

Sα,β = [β : α] ·S (α ≤ β) =


+S (α ≤ β) α = β−i for even i,
−S (α ≤ β) α = β−i for odd i,
0 otherwise.

This linear map forms the block in α’s column and β’s row in the coboundary operator ∂S
• from

Definition 7.6. For each Σ-path

ρ = (σ1C τ1B σ2C τ2B · · ·B σm C τm);

define the S -weight wS (ρ) to be the composite linear map S (τm)→ S (σ1) given by

(−1)m ·
[
S −1

σ1,τ1
◦Sσ2,τ1 ◦S −1

σ2,τ2
◦ · · · ◦S −1

σm,τm

]
.

Unsurprisingly, these S -weights make an appearance when defining the Morse complex of Σ
with S -coefficients.

DEFINITION 8.17. Let S be a sheaf over the simplicial complex K and Σ an S -compatible
acyclic partial matching. The Morse complex of Σ with coefficients in S is a cochain complex(

C•Σ(K; S ), ∂•S ,Σ
)

defined as follows. For each dimension k ≥ 0,
(1) the vector space Ck

Σ(K; S ) equals the product of stalks ∏α S (α) where α ranges over
the k-dimensional Σ-critical simplices, and

(2) the linear map ∂k
S ,Σ : Ck

Σ(K; S )→ Ck+1
Σ (K; S ) is represented by a block-matrix whose

entry in α’s column and ω’s row equals

∂k
S ,Σ

∣∣∣
α,ω

= Sα,ω + ∑
ρ

Sσρ,ω ◦ wS (ρ) ◦Sα,τρ ,

where ρ ranges over all the Σ-paths.

The fact that this definition actually produces a cochain complex follows from arguments anal-
ogous to the ones which we used in the proof of Proposition 8.8; the most significant difference
is that unlike scalars of the form [α : ω] used throughout that proof, the linear maps Sα,ω do not
(necessarily) commute with each other.

Similarly, all the results of Section 3 admit direct generalizations to the sheafy context, with
two caveats. First, we are working with cohomology rather than homology, so the boundary
matrix is transposed. And second, we are working with an arbitrary sheaf, so the coboundary
matrix is populated by block sub-matrices rather than scalar entries. For each (σC τ) in Σ, the
motivating picture is provided by the usual matrix representation of the coboundary ∂dim σ

S :
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From this picture, one can discover the row and column operations that are required to turn
the (invertible!) block Sσ,τ into a pivot, and hence deduce the cochain homotopy equivalences
which form counterparts of the maps ψ and φ from Lemma 8.11. Here is the aftermath.

THEOREM 8.18. Let S be a sheaf on a simplicial complex K and let Σ be a S -compatible acyclic
partial matching on K. Then for each dimension k ≥ 0, the sheaf cohomology group Hk(K; S ) is
isomorphic to the k-th cohomology group of the Morse cochain complex (C•Σ(K; S ), ∂•S ,Σ).

The advantage of using the Morse complex in practice for computing sheaf cohomology is
that it tends to be much smaller, since the cochain groups are built using stalks of the critical
simplices (rather than all simplices). On the other hand, the compatibility requirement on Σ
is quite severe — to find large acyclic partial matchings which happen to be compatible with a
sheaf, we require the presence of many simplex-pairs (σC τ) for which the associated restriction
map is invertible.

EXERCISES

EXERCISE 8.1. Let Σ be an acyclic partial matching on a simplicial complex K. Show that
the Euler characteristic of K is given by

χ(K) =
dim K

∑
k=0

(−1)k ·mk,

where mk is the number of k-dimensional Σ-critical simplices.

EXERCISE 8.2. Write down all the gradient paths between critical simplices in Example 8.9
and confirm that the Morse chain complex has zero boundary operators over Z/2.

EXERCISE 8.3. When not functioning as an occult symbol, the Petersen graph serves as the
source of many counterexamples in graph theory.

Impose an acyclic partial matching on this graph and use it to compute the homology groups
over Z/2 without performing any matrix operations.

EXERCISE 8.4. Show that the maps ψ• : C•(K)→ CΣ
• (K) defined in (11) form a chain map .

EXERCISE 8.5. Show that the maps φ• : CΣ
• (K)→ C•(K) defined in (12) form a chain map.

EXERCISE 8.6. Show that the maps θk : Ck(K) → Ck+1(K) from (13) serve as a chain homo-
topy between φ• ◦ ψ• and the identity chain map on Ck(K).

EXERCISE 8.7. Verify that the two diagrams in the proof of Theorem 8.15 actually commute.

EXERCISE 8.8. State and prove a version of Lemma 8.11 in the context of a sheaf S on a
simplicial complex K equipped with an S -compatible acyclic partial matching Σ.
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