MIDTERM EXAM 1

MATH 312, SECTION 001

Name:

The use of calculators, computers and similar devices is neither necessary nor permitted during this exam. Correct answers without proper justification will not receive full credit. Clearly highlight your answers and the steps taken to arrive at them: illegible work will not be graded. You may use both sides of one 8×11 cheat-sheet.

Problem Number	Possible Points	Points Earned
1	25	
2	40	
3	14	
4	21	
Total	100	

Problem 1

[25 points] The LU decomposition of a matrix A is given as follows:

$$
\mathrm{L}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-3 & 1 & 1
\end{array}\right] \text { and } \mathbf{U}=\left[\begin{array}{lll}
1 & 4 & 3 \\
0 & 2 & 6 \\
0 & 0 & 3
\end{array}\right] .
$$

Part a. [3 points] What is A?

Part b. [3 points] Write down the sequence of row operations which takes A to U when performing Gaussian elimination.

Part c. [10 points] Describe how you would solve $A x=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ as two triangular systems ${ }^{1}$. Can we solve these two triangular systems in any order, or must one of them be solved before the other? Explain your answer.

Part d. [5 points] Compute the inverse of U using Gauss-Jordan elimination.

[^0]Part e. [4 points] Compute A^{-1}, or explain why A is not invertible.

Problem 2

[40 Points] The matrix B equals MR, where

$$
M=\left[\begin{array}{lll}
2 & 2 & 0 \\
0 & 2 & 2 \\
2 & 0 & 2
\end{array}\right] \text { and } R=\left[\begin{array}{llll}
1 & 0 & 3 & 2 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

You may also use the fact that

$$
M^{-1}=\left[\begin{array}{ccc}
1 / 4 & -1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & -1 / 4 \\
-1 / 4 & 1 / 4 & 1 / 4
\end{array}\right]
$$

Part a. [5 points] Find a basis for the row space $C\left(B^{\top}\right)$.

Part b. [10 points] Find a basis for the column space C(B).

Part c. [10 points] Find a basis for the null space $N(B)$.

Part d. [10 points] Find a basis for the left null space $N\left(B^{\top}\right)$. Hint: you might need M^{-1} for this part.

Part e. [5 points] State the fundamental theorem of linear algebra, and show that B satisfies it.

Problem 3

[14 Points] Let $B=M R$ be the matrix from Problem 2 .
Part a. [7 points] Find all solutions to $\mathrm{B} x=v$ when $v=\left[\begin{array}{c}2 \\ 0 \\ -2\end{array}\right]$. Hint: you don't have to compute the RREF of $[\mathrm{B} \mid v]$ from scratch: you can just use $\left[\mathrm{R} \mid \mathrm{M}^{-1} v\right]$.

Part b. [7 points] Find all solutions to $\mathrm{B} x=v$ when $v=\left[\begin{array}{l}2 \\ 0 \\ 2\end{array}\right]$. Hint: see the hint given for Part a.

Problem 4

[21 points, 3 points each] In each of the following cases, clearly mark the statement as true or false. Please also explain your answers in order to receive credit for this problem! a. If a 3×4 matrix has a RREF with only three pivots, then its rows are linearly dependent.
b. If a 3×4 matrix has a RREF with three pivots, then its columns must span \mathbb{R}^{3}.
c. If a matrix A satisfies $A x=0$ for some $x \neq 0$ then A cannot be invertible.
d. The set \mathcal{A} consisting of the X axis, the Y axis, the line $y=x$ and the line $y=-x$ forms a subspace of \mathbb{R}^{2}.
e. If a vector k lies in the nullspace of A^{\top} and if $A x=b$ then $A(x+k)$ also equals b.
f. The product of three invertible 3×3 matrices is always invertible.
g. If E is the elementary matrix which adds 3 times Row 1 to Row 2, then E^{2} adds 9 times Row 1 to Row 2.

For Scratchwork

[^0]: ${ }^{1}$ You don't actually have to solve anything: just explain how you'd set up the two triangular systems

