MIDTERM EXAM 1

MATH 312, SECTION 001

Problem 1

[$\mathbf{2 5}$ points] The LU decomposition of a matrix A is given as follows:

$$
\mathrm{L}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-3 & 1 & 1
\end{array}\right] \text { and } \mathrm{U}=\left[\begin{array}{lll}
1 & 4 & 3 \\
0 & 2 & 6 \\
0 & 0 & 3
\end{array}\right] .
$$

Part a. [3 points] What is A?
Answer. \mathcal{A} is just the matrix product of L and U , so

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-3 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 4 & 3 \\
0 & 2 & 6 \\
0 & 0 & 3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 4 & 3 \\
-2 & -6 & 0 \\
-3 & -10 & 0
\end{array}\right] .
\end{aligned}
$$

Part b. [3 points] Write down the sequence of row operations which takes A to U when performing Gaussian elimination.

Answer. Since $A=L U$, we must have $L^{-1} A=U$ so the matrix which accomplishes our row operations is L^{-1}. One could compute this inverse via Gauss-Jordan elimination and so forth, but there is an easier way: we can just look at what L does to U and reverse that. Looking at the entries below the diagonal in L, we see L performs the following three operations:

$$
\mathrm{R}_{2}^{\prime}=\mathrm{R}_{2}-2 \mathrm{R}_{1}, \quad \mathrm{R}_{3}^{\prime}=\mathrm{R}_{3}-3 \mathrm{R}_{1} \text { and } \mathrm{R}_{3}^{\prime \prime}=\mathrm{R}_{3}^{\prime}+\mathrm{R}_{2}^{\prime} .
$$

So, the sequence of row operations which takes us from A to U will be:

$$
R_{2}^{\prime}=R_{2}+2 R_{1}, \quad R_{3}^{\prime}=R_{3}+3 R_{1} \text { and } R_{3}^{\prime \prime}=R_{3}^{\prime}-R_{2}^{\prime} .
$$

That's it, we're done!
Part c. [10 points] Describe how you would solve $A x=\left[\begin{array}{c}1 \\ 2 \\ 3\end{array}\right]$ as two triangular systems ${ }^{1}$. Can we solve these two triangular systems in any order, or must one of them be solved before the other? Explain your answer.

Answer. Well, $A x=\left[\begin{array}{c}1 \\ 2 \\ 3\end{array}\right]$ means LUx $=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. So if we set $\mathrm{Ux}=\mathrm{y}$, then we are solving the two triangular systems

$$
\mathrm{L} y=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { and } \mathrm{U} x=y .
$$

Of course, we must solve the L-system first to get \mathbf{y}, otherwise there will be no right hand side to solve the U system!

[^0]Part d. [5 points] Compute the inverse of U using Gauss-Jordan elimination.
We have

$$
[\mathrm{U} \mid \mathrm{Id}]=\left[\begin{array}{ccc:ccc}
1 & 4 & 3 & 1 & 1 & 0 \\
0 & 2 & 6 & 0 & 1 & 0 \\
0 & 0 & 3 & & 0 & 0
\end{array}\right]
$$

Perform the following operations: $R_{1}^{\prime}=R_{1}-2 R_{2}$ and then $R_{2}^{\prime}=R_{2}-2 R_{3}$ to get

$$
\left[\begin{array}{ccc:ccc}
1 & 0 & -9 & 1 & -2 & 0 \\
0 & 2 & 0 & 0 & 1 & -2 \\
0 & 0 & 3 & 0 & 0 & 1
\end{array}\right]
$$

Finally, $R_{1}^{\prime}=R_{1}+3 R_{3}$ gives us

$$
\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & \mid c c c & -2 & 3 \\
0 & 2 & 0 & 0 & 1 & -2 \\
0 & 0 & 3 & 0 & 0 & 1
\end{array}\right]
$$

and all that remains to do is scale R_{2} by $1 / 2$ and R_{3} by $1 / 3$. Now U^{-1} is the right hand side of the following.

$$
\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & 1 & -2 & 3 \\
0 & 1 & 0 & \mid 0 & 1 / 2 & -1 \\
0 & 0 & 1 & 0 & 0 & 1 / 3
\end{array}\right] .
$$

Part e. [4 points] Compute A^{-1}, or explain why \mathcal{A} is not invertible.
Answer. Note that L is always invertible, being a product of elementary matrices; and from Part d we know that U is invertible as well. Since $A=L U$, not only must A be invertible, but we must also have $A^{-1}=\mathrm{U}^{-1} \mathrm{~L}^{-1}$. We already have U^{-1} from Part d, so it remains to compute L^{-1}. We multiply the matrices corresponding to the row operations in Part b:

$$
\begin{aligned}
\mathrm{L}^{-1} & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & -1 & 1
\end{array}\right] .
\end{aligned}
$$

So, we now have

$$
A^{-1}=\mathrm{U}^{-1} \mathrm{~L}^{-1}=\left[\begin{array}{ccc}
1 & -2 & 3 \\
0 & 1 / 2 & -1 \\
0 & 0 & 1 / 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & -1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
0 & -5 & -3 \\
0 & -3 / 2 & -1 \\
1 / 3 & -1 / 3 & 1 / 3
\end{array}\right] .
$$

Problem 2
[40 Points] The matrix B equals MR, where

$$
M=\left[\begin{array}{lll}
2 & 2 & 0 \\
0 & 2 & 2 \\
2 & 0 & 2
\end{array}\right] \text { and } R=\left[\begin{array}{llll}
1 & 0 & 3 & 2 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

You may also use the fact that

$$
M^{-1}=\left[\begin{array}{ccc}
1 / 4 & -1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & -1 / 4 \\
-1 / 4 & 1 / 4 & 1 / 4
\end{array}\right]
$$

Part a. [5 points] Find a basis for the row space $C\left(B^{\top}\right)$.
The pivoted rows of R provide a basis for the row space of B, so a basis for $C\left(B^{\top}\right)$ is $\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]$.
Part b. [10 points] Find a basis for the column space $C(B)$.
Answer. A basis for the column space of R is given by the pivot columns $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$; the matrix M takes this to a basis for the column space of B. But the multiplication of M with these vectors only extracts the corresponding columns from M, so one basis for $C(B)$ is $\left[\begin{array}{l}2 \\ 0 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]$.
Part c. [10 points] Find a basis for the null space N(B).
Answer. If we label the variables of \mathbb{R}^{4} by w, x, y and z then we see in R that the columns corresponding to y and z are free whereas those corresponding to w and x are not. Expressing w and x in terms of the free variables (using the first two - pivoted rows of R) gives

$$
w=-3 y-2 z \text { and } x=-y
$$

Therefore, a basis for $N(B)$ is given by $\left[\begin{array}{c}-3 \\ -1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-2 \\ 0 \\ 0 \\ 1\end{array}\right]$.
Part d. [10 points] Find a basis for the left null space $N\left(B^{\top}\right)$. Hint: you might need M^{-1} for this part.

A basis for $N\left(B^{\top}\right)$ is given by extracting those rows of M^{-1} which correspond to the zero rows of R. Since only the third row of R is zero, our basis is given by the third row of M^{-1}, i.e., $\left[\begin{array}{c}-1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right]$.
Part e. [5 points] State the fundamental theorem of linear algebra, and show that B satisfies it.

The FTLA states the following: let \mathcal{A} be any $\mathfrak{m} \times \mathfrak{n}$ matrix whose rank (or $\operatorname{dim} \mathbf{C}(\mathcal{A})$) equals r. Then, $\operatorname{dim} N(A)=n-r, \operatorname{dim} C\left(A^{\top}\right)=r$ and $\operatorname{dim} N\left(A^{\top}\right)=m-r$. In our case, B is a 3×4 matrix with rank 2 (from Part b), and the corresponding dimensions are

- $\operatorname{dim} \mathrm{N}(\mathrm{B})=4-2=2$ from Part \mathbf{c},
- $\operatorname{dim} C\left(B^{\top}\right)=2$ from Part a, and
- $\operatorname{dim} N\left(B^{\top}\right)=3-2=1$ from Part d.

Thus, B satisfies the FTLA.

Problem 3

[14 Points] Let $B=M R$ be the matrix from Problem 2.
Part a. [7 points] Find all solutions to $\mathrm{B} x=v$ when $v=\left[\begin{array}{c}2 \\ 0 \\ -2\end{array}\right]$. Hint: you don't have to compute the RREF of $[B \mid v]$ from scratch: you can just use $\left[R \mid M^{-1} v\right]$. Answer. The vector $M^{-1} \boldsymbol{v}$ equals $1 / 4\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1\end{array}\right]\left[\begin{array}{c}2 \\ 0 \\ -2\end{array}\right]$ or $\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$. The augmented RREF $[B \mid v]$ is therefore $\left[R \mid M^{-1} v\right]$, or

$$
\left[\begin{array}{cccc:c}
1 & 0 & 3 & 2 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & -1
\end{array}\right] .
$$

It is clear from the last row that this system has no solutions: no linear combination of zeros can produce that minus one.

Part b. [7 points] Find all solutions to $\mathrm{B} x=v$ when $v=\left[\begin{array}{l}2 \\ 0 \\ 2\end{array}\right]$. Hint: see the hint given for Part a.
Answer. This time the vector $M^{-1} v$ equals $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, which is much more promising. The augmented RREF $[B \mid v]$ is $\left[\mathrm{R} \mid \mathrm{M}^{-1} v\right]$, or

$$
\left[\begin{array}{llll:l}
1 & 0 & 3 & 2 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Labeling the variables as w, x, y and z as in Part \mathbf{b} of Problem 2, we have to satisfy the following two equations which express the pivot variables in terms of the free ones:

$$
w=1-3 y-2 z \text { and } x=-y .
$$

So, the general solution is given by all choices of y and z in the following sum:

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right] y+\left[\begin{array}{c}
-2 \\
0 \\
0 \\
1
\end{array}\right] z
$$

As you might expect, the last two terms are exactly the null space of B!

Problem 4

[21 points, 3 points each] In each of the following cases, clearly mark the statement as true or false. Please also explain your answers in order to receive credit for this problem!
a. If a 3×4 matrix has a RREF with only three pivots, then its rows are linearly dependent.
False. There are three rows with three pivots, so they can't be dependent.
b. If a 3×4 matrix has a RREF with three pivots, then its columns must span \mathbb{R}^{3}. True. The pivot columns must be exactly the standard basis vectors for \mathbb{R}^{3}.
c. If a matrix A satisfies $A x=0$ for some $x \neq 0$ then A cannot be invertible.

True. If A were invertible, then A^{-1} would send 0 to $x \neq 0$.
d. The set A consisting of the X axis, the Y axis, the line $y=x$ and the line $y=-x$ forms a subspace of \mathbb{R}^{2}.

False. This set contains $(1,0)$ and $(0,2)$ but not the sum $(1,2)$.
e. If a vector k lies in the null space of A^{\top} and if $A x=b$ then $A(x+k)$ also equals b.

False. This would be true if k was in the null space of A, not A^{\top}. If A is not a square matrix, then we may not even be able to add x and k because the dimensions won't match up.
f. The product of three invertible 3×3 matrices is always invertible.

True. If $M=A B C$ and all the matrices on the right side are invertible, then $M^{-1}=$ $C^{-1} B^{-1} A^{-1}$.
g. If E is the elementary matrix which adds 3 times Row 1 to Row 2 , then E^{2} adds 9 times Row 1 to Row 2.

False. The matrix E^{2} just performs this operation twice, with the end result of adding 6 (not 9) times Row 1 to Row 2.

[^0]: ${ }^{1}$ You don't actually have to solve anything: just explain how you'd set up the two triangular systems

