MIDTERM EXAM 2 SOLUTIONS

Problem 1

[25 points] Consider the linear differential system

$$x' = x + 3y$$
$$y' = 2x + 2y$$

Part a. [4 points] For which matrix A can we rewrite this system as $\begin{bmatrix} x \\ y \end{bmatrix}' = A \begin{bmatrix} x \\ y \end{bmatrix}?$

Ans. Clearly, if $A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$ then $\begin{bmatrix} x \\ y \end{bmatrix}' = A \begin{bmatrix} x \\ y \end{bmatrix}$.

Part b. [9 points] Find an invertible matrix S and a diagonal matrix D so that $A = SDS^{-1}$.

Ans. This is a diagonalization problem, so we compute eigenvalues and eigenvectors: solving $det(A - \lambda I) = 0$ gives the polynomial

$$(1-\lambda)(2-\lambda)-6=0,$$

which reduces to $\lambda^2 - 3\lambda - 4 = 0$ and hence $(\lambda - 4)(\lambda + 1) = 0$. So the two eigenvalues are $\lambda_1 = 4$ and $\lambda_2 = -1$. An eigenvector ν_1 for $\lambda_1 = 4$ is just something nonzero in the null space of (A - 4I), i.e., of $\begin{bmatrix} -3 & 3\\ 2 & -2 \end{bmatrix}$; for instance $\nu_1 = \begin{bmatrix} 1\\ 1 \end{bmatrix}$ will do the job. Similarly, an eigenvector ν_2 for $\lambda_2 = -1$ must be chosen from the null space of $\begin{bmatrix} 2 & 3\\ 2 & 3 \end{bmatrix}$. A fine choice would be $\nu_2 = \begin{bmatrix} -3\\ 2 \end{bmatrix}$. Putting all of this together, we get

$$\mathsf{D} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix} \text{ and } \mathsf{S} = \begin{bmatrix} \nu_1 & \nu_2 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 1 & 2 \end{bmatrix}.$$

Part c. [4 points] Write the matrix exponential e^{At} as a single matrix.

Ans. We will use the formula that comes from diagonalization: $e^{At} = Se^{Dt}S^{-1}$. We need to compute S^{-1} first, but this is easy because S is only 2×2 :

$$S^{-1} = \frac{1}{2 - (-3)} \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$$

Now, we have a product of three matrices (and a scalar that can be pulled out):

$$e^{At} = Se^{Dt}S^{-1} = \begin{bmatrix} 1 & -3\\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} e^{4t} & 0\\ 0 & e^{-t} \end{bmatrix} \cdot \frac{1}{5} \begin{bmatrix} 2 & 3\\ -1 & 1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 2e^{4t} + 3e^{-t} & 3e^{4t} - 3e^{-t}\\ 2e^{4t} - 2e^{-t} & 3e^{4t} + 2e^{-t} \end{bmatrix}.$$

Part d. [8 points] Find the solutions $\mathbf{x}(t)$ and $\mathbf{y}(t)$ to this linear differential system subject to the initial conditions $\mathbf{x}(0) = -5$ and $\mathbf{y}(0) = 5$.

Ans. The key is to realize $\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = e^{At} \begin{bmatrix} x(0) \\ y(0) \end{bmatrix}$. The exponential e^{At} has been computed in the previous part while the values of x(0) and y(0) are given in the question – in fact, they conveniently help us to get rid of that annoying $\frac{1}{5}$ scalar. So,

$$\begin{bmatrix} \mathbf{x}(t) \\ \mathbf{y}(t) \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 2e^{4t} + 3e^{-t} & 3e^{4t} - 3e^{-t} \\ 2e^{4t} - 2e^{-t} & 3e^{4t} + 2e^{-t} \end{bmatrix} \begin{bmatrix} -5 \\ 5 \end{bmatrix} = \begin{bmatrix} e^{4t} - 6e^{-t} \\ e^{4t} + 4e^{-t} \end{bmatrix}.$$

Problem 2

[40 Points] The matrix A is given by

$$\mathsf{A} = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 1 & 1 \end{bmatrix}.$$

Part a. [6 points] Find the eigenvalues and each corresponding **unit** eigenvector for $A^{T}A$.

Ans. We have

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix},$$

so its eigenvalues are given by solutions to $(2 - \lambda)^2 - 1 = 0$, or $\lambda^2 - 3\lambda + 3 = 0$. Factoring this polynomial leads to eigenvalues $\lambda_1 = 3$ and $\lambda_2 = 1$. Now, a unit eigenvector ν_1 for $\lambda_1 = 3$ comes from the null space of $\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$, so let's choose $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Similarly, a unit eigenvector ν_2 for $\lambda_2 = 1$ is just $\nu_2 = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ chosen from the null space of $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ chosen from the null space of $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. So,

$$\lambda_1 = 3$$
 has unit eigenvector $\nu_1 = 1/\sqrt{2} \begin{bmatrix} 1\\1 \end{bmatrix}$ and $\lambda_2 = 1$ has unit eigenvector $\nu_2 = 1/\sqrt{2} \begin{bmatrix} 1\\-1 \end{bmatrix}$.

Part b. [3 points] What are the eigenvalues of AA^{T} ?

Ans. The nonzero eigenvalues of AA^{T} must coincide with those of $A^{\mathsf{T}}A$; but since AA^{T} is 3×3 rather than 2×2 , it has one extra eigenvalue. Therefore the eigenvalues of AA^{T} must be $\lambda_1 = 3, \lambda_2 = 1$ and $\lambda_3 = 0$

Part c. [8 points] Find **unit** eigenvectors of AA^{T} corresponding to each eigenvalue found in **Part b** above.

Ans. Note that

$$A^{\mathsf{T}}A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix},$$

and we want to find three eigenvectors u_1, u_2 and u_3 chosen from $N(A^T A - \lambda I)$ for $\lambda = 3, 1$ and 0 respectively. Let's find the eigenvector for $\lambda = 3$ here – the others can be found in a similar manner. So, we examine the matrix $A^T A - 3I$ which looks like

$$\begin{bmatrix} -2 & 0 & 1 \\ 0 & -2 & 1 \\ 1 & 1 & -1 \end{bmatrix}.$$

We perform the following row operations: interchange rows 1 and 3, then add twice row 1 to row 3, then add row 2 to row 3. This looks like:

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & -2 & 1 \\ -2 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & -2 & 1 \\ 0 & 2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

We could work further and get this thing down to reduced row echelon form, but that won't be necessary – a triangular system suffices if all we want is a basis vector for the null space. For instance, $\begin{bmatrix} 1\\2\\2 \end{bmatrix}$ will do nicely. To make this a unit vector, let's divide by the length to get the first eigenvector: $\mathbf{u}_1 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\2\\2 \end{bmatrix}$.

Performing similar calculations with $\lambda_2 = 1$ and $\lambda_3 = 0$ gives us the other two eigenvectors as well:

$$\begin{split} \lambda_1 &= 3 \text{ has unit eigenvector } \mathfrak{u}_1 &= \frac{1}{\sqrt{6}} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \\ \lambda_2 &= 1 \text{ has unit eigenvector } \mathfrak{u}_2 &= \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{1}{-1} \\ 0 \end{bmatrix}, \text{ and} \\ \lambda_3 &= 0 \text{ has unit eigenvector } \mathfrak{u}_3 &= \frac{1}{\sqrt{3}} \begin{bmatrix} \frac{1}{-1} \\ 1 \\ -1 \end{bmatrix}. \end{split}$$

Part d. [15 points] Find orthogonal matrices U, V and a diagonal matrix D so that $A = UDV^{T}$ is the **singular value decomposition** of A. Please explain clearly how you obtain these matrices.

Ans. The SVD of A is given by $A = UDV^{T}$, where

$$\mathsf{D} = \begin{bmatrix} \sqrt{3} & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix}$$

has the same shape as A but contains square-roots of the common eigenvalues – that is, $\lambda_1 = 3$ and $\lambda_2 = 1$ – of AA^T and A^TA in descending order along its main diagonal. Now, U contains the unit eigenvectors of AA^T in the same order as the eigenvalues – so, u_1, u_2 and u_3 become the three columns of U:

$$\mathbf{U} = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \end{bmatrix}$$

And finally, V inherits its columns from the eigenvectors of AA^T again in the same order v_1, v_2 :

$$\mathbf{V} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Part e. [8 points] Use the SVD from **Part d** to find orthonormal bases for the null space N(A), the left nullspace $N(A^{T})$, the column space C(A) and the row space $C(A^{T})$ of A. Clearly describe which parts of the SVD matrices you are using to extract which basis.

Ans. A basis for N(A) would be given by columns of V associated to the zero eigenvalues – but of course, there are no such columns. The null space is therefore trivial (i.e., it is the zero vector space) and has no basis whatsoever. The two columns of V in fact produce a basis $\{1/\sqrt{2} \begin{bmatrix} 1\\1 \end{bmatrix}, v_1 = 1/\sqrt{2} \begin{bmatrix} 1\\-1 \end{bmatrix}\}$ for C(A^T), which must equal all of \mathbb{R}^2 .

The matrix **U**, on the other hand, does have its last column corresponding to the zero eigenvalue λ_3 of AA^T , so this column $\frac{1}{\sqrt{3}}\begin{bmatrix}1\\1\\-1\end{bmatrix}$ is a basis of $N(A^T)$. The first two columns $\left\{\frac{1}{\sqrt{6}}\begin{bmatrix}1\\1\\2\end{bmatrix}, \frac{1}{\sqrt{2}}\begin{bmatrix}-1\\-1\\0\end{bmatrix}\right\}$ of **U** correspond to nonzero eigenvalues and hence form a basis of C(A).

Problem 3

[20 Points] A subspace V of \mathbb{R}^3 is spanned by the columns of

$$\mathbf{A} = \begin{bmatrix} 1 & 1\\ -1 & 0\\ 1 & 1 \end{bmatrix}.$$

Part a. [5 points] Apply the **Gram-Schmidt process** to find two **orthonormal** vectors u_1 and u_2 which also span V.

Let u_1 and u_2 be the two columns of A. We apply Gram-Schmidt in two stages: first, we only produce orthogonal vectors w_1 and w_2 which span V, not caring about their lengths. Next, we will divide w_1 and w_2 by their respective lengths to get u_1 and u_2 . With this in mind, note that the first step of Gram-Schmidt is easy:

$$w_1 = v_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix},$$

no work needed. The next step involves finding w_2 , which is a bit harder. Recall that

$$w_2 = v_2 - \operatorname{Proj}_{v_1} v_2,$$

so we must subtract from v_2 its orthogonal projection onto v_1 . But this projection is given by

$$\operatorname{Proj}_{\nu_{1}}\nu_{2} = \frac{\nu_{1}^{\mathsf{T}}\nu_{2}}{\nu_{1}^{\mathsf{T}}\nu_{1}}\nu_{1} = \frac{\begin{bmatrix} 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

So, we have

$$w_2 = \begin{bmatrix} 1\\0\\1 \end{bmatrix} - \begin{bmatrix} 2/3\\-2/3\\2/3 \end{bmatrix} = \begin{bmatrix} 1/3\\2/3\\1/3 \end{bmatrix}.$$

Now all we have to do is divide w_1 and w_2 by their lengths, so the desired orthonormal vectors are:

$$\mathfrak{u}_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} \text{ and } \mathfrak{u}_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}.$$

Part b. [5 points] Find an orthogonal matrix Q so that QQ^{T} is the matrix which orthogonally projects vectors onto V .

Ans. We just want $Q = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$ where u_1 and u_2 are the orthonormal vectors from the previous answer. Since V is the column space C(A) which equals C(Q) by the basic property of Gram-Schmidt, the matrix which projects onto V is given by

$$\mathsf{P}_{\mathsf{V}} = \mathsf{Q}(\mathsf{Q}^{\mathsf{T}}\mathsf{Q})^{-1}\mathsf{Q}^{\mathsf{T}},$$

but by orthogonality of Q that $(Q^TQ)^{-1}$ bit in the middle is just the identity, so the projection matrix becomes QQ^T .

Part c. [10 points] Find the best possible (i.e., least squared error) solution to the linear system

$$\mathbf{Q}\begin{bmatrix}\mathbf{x}\\\mathbf{y}\end{bmatrix} = \begin{bmatrix}1\\1\\2\end{bmatrix}$$

Ans. The least-squared error would be given by solutions to the normal equations

$$\mathbf{Q}^{\mathsf{T}}\mathbf{Q}\begin{bmatrix}\mathbf{x}\\\mathbf{y}\end{bmatrix} = \mathbf{Q}^{\mathsf{T}}\begin{bmatrix}\mathbf{1}\\\mathbf{1}\\\mathbf{2}\end{bmatrix},$$

but since $Q^{\mathsf{T}}Q$ is just the identity, our solution is just $Q^{\mathsf{T}}\begin{bmatrix}1\\1\\2\end{bmatrix}$, or

$$\begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{6} & 2/\sqrt{6} & 1/\sqrt{6} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{3} \\ 5/\sqrt{6} \end{bmatrix}.$$

Problem 4

[15 points] Decide whether each of the following five statements is **true** or **false**. In order to receive full credit, you must provide clear and correct justification for your answers.

Part a. [3 points] If A is a 3×3 matrix with determinant 1, then 2A has determinant 6.

Ans. This is false. Scaling A by 2 scales each of the three rows of A by 2, which scales the determinant by $2^3 = 8$, not 6.

Part b. [3 points] If ν and w are eigenvectors of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 7 \end{bmatrix}$ corresponding to distinct eigenvalues, then $\nu^{\mathsf{T}}w = 0$.

Ans. This is true by the spectral theorem: our matrix A is symmetric.

Part c. [3 points] If A is a square matrix, and if we obtain B from A via the row operation $R'_2 = R_2 + 3R_1$ then B has exactly the same eigenvalues as A.

Ans. This is false: just look at $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

Part d. [3 points] If $A^2 = 0$ for some square matrix A then all eigenvalues of A must be zero. **Hint:** Start with $Av = \lambda v$.

Ans. This is **true**. If λ is an eigenvalue of A, then $A\nu = \lambda\nu$ for some nonzero vector ν . But then, $A^2\nu = A(\lambda\nu) = \lambda(A\nu) = \lambda^2\nu$. Since $\lambda^2\nu = 0$ for some nonzero ν , we must have $\lambda = 0$.

Part e. [3 points] If det(A) = -1 for some square matrix A, then there is some b for which Ax = b has infinitely many solutions.

Ans. This is false. Since the determinant is nonzero, A is invertible. So, $x = A^{-1}b$ is the unique solution to Ax = b.