MIDTERM EXAM 2 SOLUTIONS

Problem 1

[25 points] Consider the linear differential system

$$
\begin{aligned}
& x^{\prime}=x+3 y \\
& y^{\prime}=2 x+2 y
\end{aligned}
$$

Part a. [4 points] For which matrix A can we rewrite this system as $\left[\begin{array}{l}x \\ y\end{array}\right]^{\prime}=A\left[\begin{array}{l}x \\ y\end{array}\right]$?
Ans. Clearly, if $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]$ then $\left[\begin{array}{l}x \\ y\end{array}\right]^{\prime}=A\left[\begin{array}{l}x \\ y\end{array}\right]$.
Part b. [9 points] Find an invertible matrix S and a diagonal matrix D so that $A=S^{-1}$.
Ans. This is a diagonalization problem, so we compute eigenvalues and eigenvectors: solving $\operatorname{det}(A-\lambda I)=0$ gives the polynomial

$$
(1-\lambda)(2-\lambda)-6=0,
$$

which reduces to $\lambda^{2}-3 \lambda-4=0$ and hence $(\lambda-4)(\lambda+1)=0$. So the two eigenvalues are $\lambda_{1}=4$ and $\lambda_{2}=-1$. An eigenvector v_{1} for $\lambda_{1}=4$ is just something nonzero in the null space of $(A-4 I)$, i.e., of $\left[\begin{array}{cc}-3 & 3 \\ 2 & -2\end{array}\right]$; for instance $v_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ will do the job. Similarly, an eigenvector v_{2} for $\lambda_{2}=-1$ must be chosen from the null space of $\left[\begin{array}{ll}2 & 3 \\ 2\end{array}\right]$. A fine choice would be $v_{2}=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$. Putting all of this together, we get

$$
\mathrm{D}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
0 & -1
\end{array}\right] \text { and } S=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & -3 \\
1 & 2
\end{array}\right]
$$

Part c. [4 points] Write the matrix exponential $e^{A t}$ as a single matrix.
Ans. We will use the formula that comes from diagonalization: $e^{A t}=S e^{D t} S^{-1}$. We need to compute S^{-1} first, but this is easy because S is only 2×2 :

$$
\mathrm{S}^{-1}=\frac{1}{2-(-3)}\left[\begin{array}{cc}
2 & 3 \\
-1 & 1
\end{array}\right]=\frac{1}{5}\left[\begin{array}{cc}
2 & 3 \\
-1 & 1
\end{array}\right] .
$$

Now, we have a product of three matrices (and a scalar that can be pulled out):

$$
e^{\mathrm{At}}=S e^{\mathrm{Dt}} S^{-1}=\left[\begin{array}{cc}
1 & -3 \\
1 & 2
\end{array}\right] \cdot\left[\begin{array}{cc}
e^{4 \mathrm{t}} & 0 \\
0 & e^{-\mathrm{t}}
\end{array}\right] \cdot \frac{1}{5}\left[\begin{array}{cc}
2 & 3 \\
-1 & 1
\end{array}\right]=\frac{1}{5}\left[\begin{array}{ll}
2 e^{4 \mathrm{t}}+3 e^{-\mathrm{t}} & 3 e^{4 \mathrm{t}}-3 e^{-\mathrm{t}} \\
2 e^{4 \mathrm{t}}-2 e^{-\mathrm{t}} & 3 e^{4 \mathrm{t}}+2 e^{-\mathrm{t}}
\end{array}\right]
$$

Part d. [8 points] Find the solutions $x(t)$ and $y(t)$ to this linear differential system subject to the initial conditions $x(0)=-5$ and $y(0)=5$.
Ans. The key is to realize $\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]=e^{A t}\left[\begin{array}{l}x(0) \\ y(0)\end{array}\right]$. The exponential $e^{A t}$ has been computed in the previous part while the values of $x(0)$ and $y(0)$ are given in the question - in fact, they conveniently help us to get rid of that annoying $\frac{1}{5}$ scalar. So,

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\frac{1}{5}\left[\begin{array}{ll}
2 e^{4 t}+3 e^{-t} & 3 e^{4 t}-3 e^{-t} \\
2 e^{4 t}-2 e^{-t} & 3 e^{4 t}+2 e^{-t}
\end{array}\right]\left[\begin{array}{c}
-5 \\
5
\end{array}\right]=\left[\begin{array}{c}
e^{4 t}-6 e^{-t} \\
e^{4 t}+4 e^{-t}
\end{array}\right]
$$

Problem 2

[40 Points] The matrix A is given by

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]
$$

Part a. [6 points] Find the eigenvalues and each corresponding unit eigenvector for $A^{\top} A$.
Ans. We have

$$
A^{\top} A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

so its eigenvalues are given by solutions to $(2-\lambda)^{2}-1=0$, or $\lambda^{2}-3 \lambda+3=0$. Factoring this polynomial leads to eigenvalues $\lambda_{1}=3$ and $\lambda_{2}=1$. Now, a unit eigenvector v_{1} for $\lambda_{1}=3$ comes from the null space of $\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]$, so let's choose $1 / \sqrt{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Similarly, a unit eigenvector v_{2} for $\lambda_{2}=1$ is just $v_{2}=1 / \sqrt{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]$ chosen from the null space of $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. So,

$$
\begin{aligned}
& \lambda_{1}=3 \text { has unit eigenvector } v_{1}=1 / \sqrt{2}\left[\begin{array}{c}
1 \\
1
\end{array}\right] \text { and } \\
& \lambda_{2}=1 \text { has unit eigenvector } v_{2}=1 / \sqrt{2}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
\end{aligned}
$$

Part b. [3 points] What are the eigenvalues of $A A^{\top}$?
Ans. The nonzero eigenvalues of $A A^{\top}$ must coincide with those of $A^{\top} A$; but since $A A^{\top}$ is 3×3 rather than 2×2, it has one extra eigenvalue. Therefore the eigenvalues of $A A^{\top}$ must be $\lambda_{1}=3, \lambda_{2}=1$ and $\lambda_{3}=0$

Part c. [8 points] Find unit eigenvectors of $A A^{\top}$ corresponding to each eigenvalue found in Part b above.

Ans. Note that

$$
A^{\top} A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

and we want to find three eigenvectors $\mathfrak{u}_{1}, \mathfrak{u}_{2}$ and \boldsymbol{u}_{3} chosen from $N\left(A^{\top} A-\lambda I\right)$ for $\lambda=3,1$ and 0 respectively. Let's find the eigenvector for $\lambda=3$ here - the others can be found in a similar manner. So, we examine the matrix $A^{\top} A-3 I$ which looks like

$$
\left[\begin{array}{ccc}
-2 & 0 & 1 \\
0 & -2 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

We perform the following row operations: interchange rows 1 and 3 , then add twice row 1 to row 3 , then add row 2 to row 3. This looks like:

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & -2 & 1 \\
-2 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & -2 & 1 \\
0 & 2 & -1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & -2 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

We could work further and get this thing down to reduced row echelon form, but that won't be necessary - a triangular system suffices if all we want is a basis vector for the null space. For instance, $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ will do nicely. To make this a unit vector, let's divide by the length to get the first eigenvector: $\mathfrak{u}_{1}=1 / \sqrt{6}\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$.

Performing similar calculations with $\lambda_{2}=1$ and $\lambda_{3}=0$ gives us the other two eigenvectors as well:

$$
\begin{aligned}
& \lambda_{1}=3 \text { has unit eigenvector } \mathfrak{u}_{1}=1 / \sqrt{6}\left[\begin{array}{c}
1 \\
1 \\
2
\end{array}\right], \\
& \lambda_{2}=1 \text { has unit eigenvector } \mathfrak{u}_{2}=1 / \sqrt{2}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \text { and } \\
& \lambda_{3}=0 \text { has unit eigenvector } \mathfrak{u}_{3}=1 / \sqrt{3}\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] .
\end{aligned}
$$

Part d. [15 points] Find orthogonal matrices U, V and a diagonal matrix D so that $A=U D V^{\top}$ is the singular value decomposition of A. Please explain clearly how you obtain these matrices.

Ans. The SVD of A is given by $A=U D V^{\top}$, where

$$
\mathrm{D}=\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

has the same shape as A but contains square-roots of the common eigenvalues - that is, $\lambda_{1}=3$ and $\lambda_{2}=1-$ of $A A^{\top}$ and $A^{\top} A$ in descending order along its main diagonal. Now, U contains the unit eigenvectors of $A A^{\top}$ in the same order as the eigenvalues - so, $\mathfrak{u}_{1}, \mathfrak{u}_{2}$ and u_{3} become the three columns of U :

$$
\mathrm{U}=\left[\begin{array}{ccc}
1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\
1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3} \\
2 / \sqrt{6} & 0 & -1 / \sqrt{3}
\end{array}\right]
$$

And finally, V inherits its columns from the eigenvectors of $A A^{\top}$ again in the same order v_{1}, v_{2} :

$$
V=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

Part e. [8 points] Use the SVD from Part d to find orthonormal bases for the null space $N(A)$, the left nullspace $N\left(A^{\top}\right)$, the column space $C(A)$ and the row space $C\left(A^{\top}\right)$ of A. Clearly describe which parts of the SVD matrices you are using to extract which basis.
Ans. A basis for $N(A)$ would be given by columns of V associated to the zero eigenvalues - but of course, there are no such columns. The null space is therefore trivial (i.e., it is the zero vector space) and has no basis whatsoever. The two columns of V in fact produce a basis $\left\{1 / \sqrt{2}\left[\begin{array}{l}1 \\ 1\end{array}\right], v_{1}=1 / \sqrt{2}\left[{ }_{-1}^{1}\right]\right\}$ for $C\left(A^{\top}\right)$, which must equal all of \mathbb{R}^{2}.

The matrix U , on the other hand, does have its last column corresponding to the zero eigenvalue λ_{3} of $A A^{\top}$, so this column $1 / \sqrt{3}\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$ is a basis of $N\left(A^{\top}\right)$. The first two columns $\left\{1 / \sqrt{6}\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right], 1 / \sqrt{2}\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]\right\}$ of U correspond to nonzero eigenvalues and hence form a basis of $C(A)$.

Problem 3

[20 Points] A subspace V of \mathbb{R}^{3} is spanned by the columns of

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
1 & 1
\end{array}\right]
$$

Part a. [5 points] Apply the Gram-Schmidt process to find two orthonormal vectors \mathfrak{u}_{1} and \mathfrak{u}_{2} which also span V .

Let u_{1} and u_{2} be the two columns of A. We apply Gram-Schmidt in two stages: first, we only produce orthogonal vectors w_{1} and w_{2} which span V , not caring about their lengths. Next, we will divide w_{1} and w_{2} by their respective lengths to get \mathfrak{u}_{1} and \mathfrak{u}_{2}. With this in mind, note that the first step of Gram-Schmidt is easy:

$$
w_{1}=v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

no work needed. The next step involves finding w_{2}, which is a bit harder. Recall that

$$
w_{2}=v_{2}-\operatorname{Proj}_{v_{1}} v_{2},
$$

so we must subtract from v_{2} its orthogonal projection onto v_{1}. But this projection is given by

$$
\operatorname{Proj}_{v_{1}} v_{2}=\frac{v_{1}^{\top} v_{2}}{v_{1}^{\top} v_{1}} v_{1}=\frac{\left[\begin{array}{lll}
1 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
1
\end{array}\right]}{\left[\begin{array}{lll}
1 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=\frac{2}{3}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] .
$$

So, we have

$$
\boldsymbol{w}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{c}
2 / 3 \\
-2 / 3 \\
2 / 3
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right] .
$$

Now all we have to do is divide w_{1} and w_{2} by their lengths, so the desired orthonormal vectors are:

$$
\mathbf{u}_{1}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \text { and } \mathbf{u}_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

Part b. [5 points] Find an orthogonal matrix Q so that QQ^{\top} is the matrix which orthogonally projects vectors onto V .
Ans. We just want $\mathrm{Q}=\left[\begin{array}{ll}\mathfrak{u}_{1} & \mathfrak{u}_{2}\end{array}\right]$ where \mathfrak{u}_{1} and \mathfrak{u}_{2} are the orthonormal vectors from the previous answer. Since V is the column space $C(A)$ which equals $C(Q)$ by the basic property of Gram-Schmidt, the matrix which projects onto V is given by

$$
P_{V}=Q\left(Q^{\top} Q\right)^{-1} Q^{\top}
$$

but by orthogonality of Q that $\left(\mathrm{Q}^{\top} \mathrm{Q}\right)^{-1}$ bit in the middle is just the identity, so the projection matrix becomes QQ^{\top}.
Part c. [10 points] Find the best possible (i.e., least squared error) solution to the linear system

$$
\mathrm{Q}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

Ans. The least-squared error would be given by solutions to the normal equations

$$
Q^{\top} Q\left[\begin{array}{l}
x \\
y
\end{array}\right]=Q^{\top}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

but since $\mathrm{Q}^{\top} \mathrm{Q}$ is just the identity, our solution is just $\mathrm{Q}^{\top}\left[\begin{array}{c}1 \\ 1 \\ 2\end{array}\right]$, or

$$
\left[\begin{array}{ccc}
1 / \sqrt{3} & -1 / \sqrt{3} & 1 / \sqrt{3} \\
1 / \sqrt{6} & 2 / \sqrt{6} & 1 / \sqrt{6}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 / \sqrt{3} \\
5 / \sqrt{6}
\end{array}\right]
$$

Problem 4

[15 points] Decide whether each of the following five statements is true or false. In order to receive full credit, you must provide clear and correct justification for your answers.
Part a. [3 points] If A is a 3×3 matrix with determinant 1 , then $2 A$ has determinant 6 .
Ans. This is false. Scaling \mathcal{A} by 2 scales each of the three rows of \mathcal{A} by 2 , which scales the determinant by $2^{3}=8$, not 6 .
Part b. [3 points] If v and w are eigenvectors of $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & 1 \\ 3 & 5 & 7\end{array}\right]$ corresponding to distinct eigenvalues, then $v^{\top} w=0$.

Ans. This is true by the spectral theorem: our matrix A is symmetric.

Part c. [3 points] If \mathcal{A} is a square matrix, and if we obtain B from \mathcal{A} via the row operation $R_{2}^{\prime}=R_{2}+3 R_{1}$ then B has exactly the same eigenvalues as A.

Ans. This is false: just look at $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$.
Part d. [3 points] If $A^{2}=0$ for some square matrix A then all eigenvalues of A must be zero. Hint: Start with $A v=\lambda v$.

Ans. This is true. If λ is an eigenvalue of A, then $A v=\lambda \nu$ for some nonzero vector v. But then, $A^{2} v=A(\lambda v)=\lambda(A v)=\lambda^{2} v$. Since $\lambda^{2} v=0$ for some nonzero v, we must have $\lambda=0$.

Part e. [3 points] If $\operatorname{det}(A)=-1$ for some square matrix A, then there is some b for which $A x=b$ has infinitely many solutions.

Ans. This is false. Since the determinant is nonzero, \mathcal{A} is invertible. So, $x=A^{-1} b$ is the unique solution to $A x=b$.

