HOMEWORK ASSIGNMENT 2

Name:
Due: Monday Feb 10
Problem 1: Strang 2.3 \#3 Page 63
Which three matrices E_{21}, E_{31} and E_{32} put A into (upper) triangular form U ? Here,

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
4 & 6 & 1 \\
-2 & 2 & 0
\end{array}\right]
$$

and we want $E_{32} E_{31} E_{21} A=U$. Multiply these three E matrices to get a single matrix M that does the elimination: $M A=U$.

Ans:

Problem 2: Strang 2.3 \#10 Page 64
Answer the three questions below:
(a) What 3 by 3 matrix will add row 3 to row 1 ?
(b) What matrix adds row 1 to row 3 and at the same time row 3 to row 1?
(c) What matrix adds row 1 to row 3 and then adds row 3 to row 1?
(Additional Question): Which of the matrices from (a), (b) and (c) are not invertible? Explain.
Ans:

Problem 3: Strang $2.4 \# 5$ Page 76

Compute A^{2} and A^{3} in each of the following two cases, and then make predictions for A^{5} and A^{n} :

$$
A=\left[\begin{array}{ll}
1 & \mathbf{b} \\
0 & 1
\end{array}\right] \text { and } A=\left[\begin{array}{ll}
2 & 2 \\
0 & 0
\end{array}\right]
$$

Ans:

Problem 4: Strang 2.4 \#32 Page 80
Suppose you solve $\mathrm{Ax}=\mathrm{b}$ for three special right sides b :

$$
A x_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { and } A x_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { and } A x_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

If the three solutions x_{1}, x_{2} and x_{3} are the columns of a matrix X, what is the matrix product AX?

Ans:

Problem 5: Strang 2.5 \#25 Page 91
Find A^{-1} and B^{-1} (if they exist!) by using Gauss-Jordan elimination. Otherwise, explain why the matrix is not invertible.

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

Ans:

Problem 6: Strang 2.5 \#9 Page 89
Suppose that the matrix \mathcal{A} is invertible and you exchange its first two rows to get B. Is the new matrix B also invertible? If yes, explain how you would find B^{-1} from A^{-1} and if no, give an example that shows B need not be invertible.
Ans:

Problem 7: Strang 2.6 \#7 Page 103

What three elimination matrices E_{21}, E_{31} and E_{32} put \mathcal{A} into upper triangular form? Multiply by $\mathrm{E}_{32}^{-1}, \mathrm{E}_{31}^{-1}$ and E_{21}^{-1} to factor A into $\mathrm{LU}=\left(\mathrm{E}_{21}^{-1} \mathrm{E}_{31}^{-1} \mathrm{E}_{32}^{-1}\right) \mathrm{U}$.

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 2 & 2 \\
3 & 4 & 5
\end{array}\right]
$$

Ans:

Problem 8: Strang 2.6 \#16 Page 105
The LU decomposition of an unknown matrix \mathcal{A} is

$$
\mathrm{L}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \text { and } \mathrm{U}=\mathrm{L}^{\top}
$$

Here, U is the transpose of L . First solve the matrix equation $A x=b$ for $b=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$ as two triangular systems. Then, compute the original matrix A.
Ans:

