HOMEWORK ASSIGNMENT 3

Name:
Due: Monday Feb 24
Problem 1: Strang $3.1 \# 9$, \#10 Page 128
This problems tests your understanding of vector spaces and subspaces.
(1) Find a set of vectors in \mathbb{R}^{2} for which $x+y$ stays in the set but $\frac{1}{2} x$ may be outside for some x in the set.
(2) Find a set of vectors in \mathbb{R}^{2} (other than two quarter-planes) for which every cx stays in the set but $x+y$ may be outside.
(3) Is the set of vectors $\left(b_{1}, b_{2}, b_{3}\right)$ with $b_{1}=b_{2}$ a subspace of \mathbb{R}^{3} ? Briefly explain why or why not.
(4) Same as above, the set of vectors with $b_{1} b_{2} b_{3}=0$.
(5) Same as above, the set of vectors with $b_{1} \leqslant b_{2} \leqslant b_{3}$.

Ans:

Problem 2: Strang 3.4 \#1 page 163
Describe the column space and null space of A. Also compute the complete solution to $A x=b$

$$
\mathrm{A}=\left[\begin{array}{llll}
2 & 4 & 6 & 4 \\
2 & 5 & 7 & 6 \\
2 & 3 & 5 & 2
\end{array}\right], \mathrm{b}=\left[\begin{array}{l}
4 \\
3 \\
5
\end{array}\right] .
$$

Ans:

Problem 3: Strang 3.4 \#8 Page 164

Which vectors $\left[b_{1}, b_{2}, b_{3}\right]$ are in the column space of A ? Which combinations of rows of \mathcal{A} give the zero row? Answer these questions separately for these two choices of A :

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 6 & 3 \\
0 & 2 & 5
\end{array}\right], \quad A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
2 & 4 & 8
\end{array}\right] .
$$

Ans:

Problem 4: Strang 3.4 \#18 Page 165
Compute the ranks of A and A^{\top} (these might depend on q). Show your work!

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 2 \\
1 & 1 & \mathrm{q}
\end{array}\right]
$$

Ans:

Problem 5: Strang 3.5 \#2 Page 178
Find the largest possible number of linearly independent vectors among

$$
v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right], \quad v_{4}=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right], v_{5}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right], v_{6}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right] .
$$

Explain how you found this number.
Ans:

Problem 6: Strang 3.5 \# 25 Page 179
Decide the dependence or independence of
(1) the vectors $(1,3,2),(2,1,3)$ and $(3,2,1)$,
(2) the vectors $(1,-3,2),(2,1,-3)$ and $(-3,2,1)$.

Again, explain your answers.
Ans:

The vector $\mathbf{b}=(4,20,14)$ equals $-3 \mathbf{u}+\boldsymbol{v}+5 \boldsymbol{w}$ where $\boldsymbol{u}=(2,4,1), \boldsymbol{v}=(0,2,2)$ and $\boldsymbol{w}=(2,6,3)$. Can we do any better? Does b lie in the span of u and v alone? Explain why or why not.

Ans:

Problem 7: Strang 3.5 \#20 Page 180
Find a basis for the plane $x-2 y+3 z=0$ in \mathbb{R}^{3}. Then find a basis for the intersection of that plane with the $x y$ plane. (Hint: both problems can be expressed in terms of finding nullspaces of certain matrices).
Ans:

Problem 8: Not in Strang

All you know about a 3×5 matrix A is that it has rank 2 . Compute $\operatorname{dim} N(A)-\operatorname{dim} N\left(A^{\top}\right)+$ $\operatorname{dim} C(A)-\operatorname{dim} C\left(A^{\top}\right)$. Explain how you got your answer.

Problem 9: Strang 3.6 \#3 Page 191
Find bases for each of the four fundamental subspaces associated with A.

$$
A=\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 4 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Ans:

