HOMEWORK ASSIGNMENT 4

Name:
Problem 1: Strang 4.1 \#6 Page 203
This system of equations $A x=b$ has no solutions.

$$
\begin{array}{r}
x+2 y+2 z=5 \\
2 x+2 y+3 z=5 \\
3 x+4 y+5 z=9
\end{array}
$$

(1) Find numbers y_{1}, y_{2} and y_{3} so that scaling the first equation by y_{1}, the second by y_{2} and the third by y_{3} before adding them all up leads to the contradiction $0=1$.
(2) Which of A's four fundamental subspaces contains the vector $y=\left(y_{1}, y_{2}, y_{3}\right)$?

Ans:

Problem 2: Strang 4.1 \#11 Page 203
Draw and label the four fundamental subspaces for

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]
$$

Draw the row and null space in one figure and the column and left null space in another.
Ans:

Problem 3: Strang 4.1 \#22 Page 204

Suppose V is spanned by the vectors $(1,2,2,3)$ and $(1,3,3,2)$. Find a basis for V^{\perp}. This is the same as solving $A x=0$ for which matrix A ?

Problem 4: Strang 4.2 \#10 Page 215
Given

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
$$

(1) Find the matrix P which projects onto the column space of A,
(2) Compute the projection p of b onto this column space,
(3) Find the error $e=b-p$ and show that it lies in the left nullspace of A.

Ans:

Problem 5: Strang 4.2 \#17 Page 215
If P is a square matrix with $P^{2}=P$, show that $(I-P)^{2}=(I-P)$ where I is the identity matrix. Hint: just multiply out $(I-P)(I-P)$ and use the information given already.
Ans:

Problem 6: Strang 4.2 \#19 Page 216
Choose two independent vectors lying on the plane $x-y-2 z=0$ and make them the columns of a matrix A. Then compute the matrix $A\left(A^{\top} A\right)^{-1} A^{\top}$: this matrix projects onto our plane!
Ans:

Problem 7: Strang 4.3 \#6 Page 227

Compute the projection of $\mathbf{b}=(0,8,8,20)$ onto the line through $\mathbf{a}=(1,1,1,1)$ by first finding the scalar $c=\frac{a^{\top} b}{a^{\top}}$.
Ans:

Problem 8: Strang 4.3 \#9 Page 227
Use the method of least squares to find the parabola $y=C+D x+E x^{2}$ which best approximates the four data points given in (x, y) format by $(0,0),(1,8),(3,8)$ and $(4,20)$.
Ans:

Problem 9: Strang 4.4 \#6 Page 240
If Q_{1} and Q_{2} are orthogonal matrices, show that their product $\mathrm{Q}_{1} \mathrm{Q}_{2}$ is also orthogonal. Hint: use the fact that $Q^{\top} Q$ is the identity whenever Q is orthogonal.
Ans:

Problem 10: Similar to Strang 4.4 \#11 page 240
Use the Gram-Schmidt method to find orthonormal vectors q_{1} and q_{2} in the plane spanned by $(1,0,-1,1,3)$ and (2, 3, 2, 0, 1).

Ans:

Given the matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
2 & -1 \\
-2 & 4
\end{array}\right]
$$

(1) Find three orthonormal vectors q_{1}, q_{2} and q_{3} so that q_{1} and q_{2} span the column space of A.
(2) Which of the four fundamental subspaces contains q_{3} ?
(3) Solve $A x=\left[\begin{array}{c}1 \\ 2 \\ 7\end{array}\right]$ by least squares. Hint: it will greatly simplify computations if you use the orthonormal basis for $C(A)$!

Ans:

Problem 12: Strang 4.4 \#31 Page 243
Consider the matrix

$$
\mathrm{Q}=\mathrm{c}\left[\begin{array}{cccc}
1 & -1 & -1 & -1 \\
-1 & 1 & -1 & -1 \\
-1 & -1 & 1 & -1 \\
-1 & -1 & -1 & 1
\end{array}\right]
$$

(1) Choose \mathbf{c} so that Q becomes an orthogonal matrix.
(2) Project $\mathrm{b}=(1,1,1,1)$ onto the line spanned by the first column of Q .
(3) Project b onto the plane spanned by the first two columns of Q .

