HOMEWORK ASSIGNMENT 5

Name:
Due: Wednesday Mar 26
Problem 1: Strang 5.1 \#3 and \#28 page 251, 254
State true or false, giving a reason when the statement is true and a counterexample when the statement is false. All matrices involved are $\mathrm{n} \times \mathrm{n}$ where $\mathrm{n}>1$.
(1) $\operatorname{det}(I+A)=1+\operatorname{det}(A)$.
(2) $\operatorname{det}(A B C)=\operatorname{det}(A) \operatorname{det}(B) \operatorname{det}(C)$.
(3) $\operatorname{det}(4 A)=4 \operatorname{det}(A)$.
(4) $\operatorname{det}(A B-B A)=0$.
(5) If A is not invertible, $A B$ is not invertible.
(6) $\operatorname{det}(A)$ always equals the product of its pivots.
(7) $\operatorname{det}(A-B)=\operatorname{det}(A)-\operatorname{det}(B)$.
(8) $\operatorname{det}(A B)=\operatorname{det}(B A)$.

Ans:

Problem 2: Strang 5.1 \#8 Page 252
Prove that every orthogonal $n \times n$ matrix Q has determinant equal to 1 or -1 . Hint: Use the fact that $\mathrm{QQ}^{\top}=\mathrm{I}$, the product formula for determinants.

Ans:

Problem 3: Strang 5.1 \#24 Page 254
The matrix \mathcal{A} has the following LU factorization:

$$
\mathrm{L}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right] \text {, and } \mathrm{U}=\left[\begin{array}{ccc}
3 & 3 & 4 \\
0 & 2 & -1 \\
0 & 0 & -1
\end{array}\right]
$$

Doing as little computation as possible, find the determinants of $\mathrm{L}, \mathrm{U}, \mathrm{A}, \mathrm{U}^{-1}, \mathrm{~L}^{-1}$ and $\mathrm{U}^{-1} \mathrm{~L}^{-1} \mathrm{~A}$.

Problem 4: Strang 5.1 \#27 Page 254

Given

$$
\mathrm{C}=\left[\begin{array}{lll}
\mathrm{a} & \mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{~b} & \mathrm{~b} \\
\mathrm{a} & \mathrm{~b} & \mathrm{c}
\end{array}\right]
$$

use row operations to compute $\operatorname{det}(\mathrm{C})$.

Ans:

Problem 5: Strang 5.2 \#12 Page 264
Given

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & 1 \\
0 & -1 & 2
\end{array}\right]
$$

find the cofactor matrix C and compute the matrix product $A C^{\top}$. Use this product to find $\operatorname{det}(A)$. Ans:

