HOMEWORK ASSIGNMENT 5

Name:

Due: Wednesday Mar 26

PROBLEM 1: STRANG 5.1 #3 and #28 page 251, 254

State true or false, giving a reason when the statement is true and a counterexample when the statement is false. All matrices involved are $n \times n$ where n > 1.

(1) $\det(I + A) = 1 + \det(A)$.

(2) $\det(ABC) = \det(A) \det(B) \det(C)$.

 $(3) \det(4\mathbf{A}) = 4 \det(\mathbf{A}).$

(4) $\det(\mathsf{A}\mathsf{B} - \mathsf{B}\mathsf{A}) = 0.$

(5) If A is not invertible, AB is not invertible.

- (6) det(A) always equals the product of its pivots.
- (7) $\det(A B) = \det(A) \det(B).$
- (8) $\det(AB) = \det(BA)$.

Ans:

Problem 2: Strang 5.1 #8 page 252

Prove that every orthogonal $n \times n$ matrix Q has determinant equal to 1 or -1. Hint: Use the fact that $QQ^T = I$, the product formula for determinants. Ans:

Problem 3: Strang 5.1 #24 page 254

The matrix A has the following LU factorization:

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix}, \text{ and } U = \begin{bmatrix} 3 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & -1 \end{bmatrix}.$$

Doing as little computation as possible, find the determinants of L, U, A, U^{-1} , L^{-1} and $U^{-1}L^{-1}A$.

Problem 4: Strang 5.1 #27 Page 254

Given

$$C = \begin{bmatrix} a & a & a \\ a & b & b \\ a & b & c \end{bmatrix},$$

use row operations to compute $\det(C)$.

Ans:

Problem 5: Strang 5.2 #12 Page 264

Given

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0\\ -1 & 2 & 1\\ 0 & -1 & 2 \end{bmatrix}$$

find the cofactor matrix C and compute the matrix product AC^{T} . Use this product to find det(A). Ans: