HOMEWORK ASSIGNMENT 7

Name:
Due: Friday Apr 25

Problem 1

Only one of the following two statements is true. Identify that statement and prove it. Then provide a counter-example to the false statement.
(1) if A is a stochastic matrix, then so is A^{k} for any $k>1$.
(2) if \mathcal{A} is a stochastic matrix, then so is $k A$ for any $k>1$.

Ans:

Problem 2: Strang 8.3 \#3 Page 437
Find the eigenvalues of the following stochastic matrix:

$$
A=\left[\begin{array}{lll}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 2 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right] .
$$

What is the steady-state of the Markov chain of \mathcal{A} starting at $p_{0}=\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ 0\end{array}\right]$?
Ans:

Problem 3

If $\mathcal{A}>0$ is an $\mathfrak{n} \times \mathfrak{n}$ symmetric stochastic matrix, show that the steady state for all its Markov chains is $p_{\infty}=\left[\begin{array}{c}1 / n \\ \vdots \\ 1 / n\end{array}\right]$.

Problem 4

Remember that the Perron-Frobenius theorem states that if a square matrix A has strictly positive entries, then we may derive the following four consequences:
(1) A has a non-repeated eigenvalue λ_{1} which equals the spectral radius $\rho(A)>0$,
(2) all other eigenvalues λ of A satisfy the strict inequality $|\lambda|<\lambda_{1}$,
(3) an eigenvector v_{1} of λ_{1} may be chosen to have strictly positive entries, and
(4) no other eigenvector of A can be chosen to have strictly positive entries.

Verify that the PF theorem holds for the matrix $A=\left[\begin{array}{ll}3 & 1 \\ 2\end{array}\right]$. In particular, identify λ_{1} and $v_{1}>0$, then show that $\left|\lambda_{2}\right|<\lambda_{1}$ and that no scalar multiple of v_{2} is strictly positive.

Ans:

Problem 5

The following matrix gives partial information about weather in Pennsylvania. There are only three types: rain, cloud and snow.

$$
\left.\mathrm{A}=\begin{array}{c}
\mathrm{r} \\
\mathrm{r} \\
\mathrm{c} \\
\mathrm{~s}
\end{array} \begin{array}{cc}
\mathrm{c} & \mathrm{~s} \\
.1 & .2 \\
.8 \\
.3 & .6 \\
\mathrm{a} & \mathrm{~b} \\
\hline
\end{array}\right] .
$$

The columns contain probabilities as usual: if it rains today, then the probability of rain tomorrow is 0.1 , and of cloudy skies is 0.3 . Find $\mathfrak{a}, \boldsymbol{b}$ and \boldsymbol{c} to complete the matrix. Then, determine the long-term probabilities of having rainy, cloudy and snowy weather by computing a suitable steadystate vector for A.
Ans:

