HOMEWORK ASSIGNMENT 8

Name: Due: Never!

PROBLEM 1

Find the maximum value taken by f(x, y) = 2x + 3y for positive x and y subject to the three constraints $x \le 4, x + y \le 10$ and $y \le 6$ using only geometric techniques. More precisely,

- (1) Draw the feasible region D as a subset of \mathbb{R}^2
- (2) Identify the five corner points of D: what are the (x, y) values of these corner points?
- (3) Evaluate f at each of the corner points and find the maximum.

Problem 2

Now we will solve the optimization problem from **Problem 1** using the *Simplex method*.

- (1) Express the optimization problem in standard form: meaning, find A, b and c so that we are being asked to maximize $c^T \begin{bmatrix} x \\ y \end{bmatrix}$ subject to $A \begin{bmatrix} x \\ y \end{bmatrix} \leq b$ and $\begin{bmatrix} x \\ y \end{bmatrix} \geq 0$.
- (2) Write down the augmented block matrix

$$B = \begin{bmatrix} 1 & -c^{\mathsf{T}} & 0 & \vdots & 0 \\ 0 & A & \mathrm{Id} & \vdots & b \end{bmatrix}.$$

The penultimate three columns correspond to slack variables $r, s, t \ge 0$. At this initial stage, these three are pivot variables while x and y are not.

(3) On B, perform the row operations needed by the simplex algorithm of B. Carefully explain how you are selecting each column and row to produce a new pivot.

Problem 3

Throughout this problem, assume that N = 6.

- (1) What is the primitive N-th root ω_N of 1?
- (2) Write down the discrete Fourier matrix D_N in terms of negative powers of ω_N . Simplify so that no power is smaller than -5. (So it is okay to populate the matrix with entries like ω_6^{-2} but not something like ω_6^{-9} and definitely not something awful like $\left(\frac{1-\sqrt{3}i}{2}\right)^{-2}$.
- (3) Write down the 6×6 matrices A_N and B_N so that

$$D_{N} = A_{N} \begin{bmatrix} D_{N/2} & 0 \\ 0 & D_{N/2} \end{bmatrix} B_{N},$$

which come from the Cooley-Tukey fast Fourier transform algorithm.

Problem 4

In this problem, we have N = 4.

- (1) Write down the discrete Fourier matrix D₄ and explain how you have obtained its entries.
- (2) There are only two distinct columns of D_4 which don't contain exclusively real numbers. Identify these two columns, and check that they are orthogonal.
- (3) What is the inverse matrix D_4^{-1} ?

PROBLEM 5

Given the matrix

$$A = \begin{bmatrix} 5 & -2 & -3 \\ -1 & 4 & -3 \\ 1 & -4 & 3 \end{bmatrix},$$

- (1) Compute all the eigenvalues of A and write down their algebraic multiplicities.
- (2) Compute eigenvectors corresponding to the eigenvalues of A: what are the geometric multiplicities of the eigenvalues?
- (3) Is A diagonalizable? If yes, write it as SDS^{-1} . Otherwise, explain why we can't find S and D.
- (4) Compute the Jordan decomposition of A that is, find matrices S and J so that S is invertible, J is in Jordan form, and $A = SJS^{-1}$.

PROBLEM 6

Consider a $k \times k$ Jordan block

$$M = \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \lambda & 1 \\ 0 & \cdots & \cdots & 0 & \lambda \end{bmatrix}.$$

Show that if $M^2 = M$ then k must equal 1, and λ must be either 0 or 1. (**Hint:** Assume k = 2 and compute M^2 for an arbitrary λ , and set it equal to M. The argument for general k is quite similar!).