
Lecture 11: Graphs and their Adjacency Matrices

Vidit Nanda

The class should, by now, be relatively comfortable with Gaussian elimination. We have also successfully
extracted bases for null and column spaces using Reduced Row Echelon Form (RREF). Since these spaces
are defined for the transpose of a matrix as well, we have four fundamental subspaces associated to each
matrix.

Today we will see an interpretation of all four towards understanding graphs and networks.

1. Recap

Here are the four fundamental subspaces associated to each m× n matrix A : Rn → Rm:

(1) The null space N(A) is the subspace of Rn sent to the zero vector by A,
(2) The column space C(A) is the subspace of Rm produced by taking all linear combinations of columns

of A,
(3) The row space C(AT ) is the subspace of Rn consisting of linear combinations of rows of A, or the

columns of its transpose AT , and finally,
(4) The left nullspace N(AT ) is the subspace of Rm consisting of all vectors which AT sends to the zero

vector.

By the Fundamental Theorem of Linear Algebra from Lecture 9 it turns out that knowing the
dimension of one of these spaces immediately tells us about the dimensions of the other three. So, if the
rank – or dimC(A) – is some number r, then immediately we know:

• dimN(A) = n− r,
• dimC(AT ) = r, and
• dimN(AT ) = m− r.

And more: we can actually extract bases for each of these subspaces by using the RREF as seen in Lecture
10.

2. Graphs

A graph – not to be confused with the graph of a function – is a collection of nodes and edges (ar arrows)
between nodes; here’s an example:

Let’s call this graph G and note that it has 6 nodes (labeled a throught f) and 5 edges. Convention
dictates that we denote an edge from a to b simply by ab. So, the edges of G are ab,ac,bd, cd and ef. If
we stare at the graph a little longer, we might even notice that it has two “pieces” and one “loop”.

1



2 VIDIT NANDA

It turns out that graphs have infested just about every field of science and engineering these days:
they are extremely convenient and intuitive models for encoding various structures, data types and their
interrelations. Once you start thinking in terms of graphs, you start seeing them everywhere.

Here are a few concrete examples of graph-based models that are all actually used in modern research:

(1) Computer Science: There’s always the internet! Give each website a node, and throw in an edge
from one website to another whenever the first links to the second.

(2) Electrical Engineering: It doesn’t take too much imagination to see that any electrical circuit is
a graph.

(3) Finance and Economics: Each company is a node, and an edge from one to another indicates
that the first company bought products from the second one.

(4) Biology: Nodes represent habitats while edges are migration paths of a given species.
(5) Navigation: Nodes are major cities while edges are the interconnecting roads.

Okay, so this list could get much longer. Let’s try to see what on earth linear algebra has to do with graphs,
and in particular, how the four fundamental subspaces show up.

3. Adjacency Matrices

When a graph is tiny (like our friend G with only 6 nodes and 5 edges), it is really easy to visualize.
Let’s say it was the graph of the internet: you’d know immediately that there are two pages (e and f) that
would be impossible to reach from a,b, c and d if all you were allowed to do was click links and the back
button on your browser. Unfortunately for those wishing to analyze the structure of internet1, the actual
graph corresponding to the internet is enormous and can barely be stored on a single machine, let alone be
visualized. It is in the context of massive graphs that linear algebra becomes extremely useful.

So here’s the first bit of “cleverness”. Let’s see G again:

We will construct (surprise, surprise) a matrix AG which faithfully encodes the structure of G as follows:
each column is a node, each row is an edge; the entry in the i-th row and j-th column is given as follows. If
the corresponding node is the source of the edge, then we put in −1. If it is the target, we put in +1. And
if that node misses the edge completely, we put in a zero.

Maybe the easiest way to get a handle on this stuff is to see a toy example. Here is AG in all its glory,
with rows and columns decorated by corresponding edges and nodes respectively:

AG =



a b c d e f

ab −1 1 0 0 0 0

ac −1 0 1 0 0 0

bd 0 −1 0 1 0 0

cd 0 0 −1 1 0 0

ef 0 0 0 0 −1 1


This is not a square matrix in general! There are as many columns as nodes and as many rows as edges, so
we only get a square matrix when the number of nodes equals the number of edges.

Before moving on to the four subspaces of AG, I want to re-emphasize: a lot of what we conclude today
will be obvious from just a simple glance at the graph G. But the whole point of developing these tools is

1but fortunately for millions of cat video afficionados



LECTURE 11: GRAPHS AND THEIR ADJACENCY MATRICES 3

that there are tons of interesting examples (see above) of graphs that we have absolutely no hope of being
able to visualize with any degree of efficiency. On the other hand, the linear algebra still works!

4. Null Spaces of the Adjacency Matrix

We begin with the two null spaces N(AG) and N(AT
G): these two are the easiest to interpret in the context

of graphs. At the end of each calculation, I will place a moral which explains precisely the connection
between a fundamental subspace of the adjacency matrix and its interpretation in the world of graphs.

4.1. The Null Space. N(AG) is precisely the subspace of R5 consisting of precisely those vectors which
AG annihilates2. Without resorting to any Gaussian elimination, we can already tell that the null space will
at least have dimension 1: since any given edge contributes a −1 and a +1 to each row, adding up all the
columns produces the zero vector, so there is definitely some linear dependence here!

But let’s be more systematic and get as much of the full picture as possible: we should solve for
x1, x2, . . . , x6 in the following linear system:

−1 1 0 0 0 0
−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 1 0 0
0 0 0 0 −1 1




x1
x2
x3
x4
x5
x6

 =


0
0
0
0
0

 .

Look carefully at how matrix multiplication is working! Each row (i.e., edge in our graph) multiplies across
our variables, picking out two with opposite signs and zeroing out everything else. We now want to solve
the really easy system of equations: 

−x1 + x2
−x1 + x3
−x2 + x3
−x3 + x4
−x5 + x6

 =


0
0
0
0
0

 .

The first component forces x1 = x2, the second forces x2 = x3 and so forth. If we consider the obvious
correspondence of nodes in our graph and these variables – a and x1, b and x2, etc., up to x6 and f – then
we see that whenever there is a path connecting one node to another (regardless of the arrow directions),
their corresponding variables must be equal.

In our case, we have x1 = x2 = x3 = x4 coming from the first four components of the vector equation
above (i.e., the first piece of the graph consisting of nodes a through d). Separately, we also get x5 = x6 from
the fifth component of the vector equation which corresponds to the second piece of the graph containing
e and f. Of course, this describes the entire null space N(AG): it is two dimensional and the following two
vectors in R6 form a basis: 

1
1
1
1
0
0

 and


0
0
0
0
1
1

 .

This is cool: the fact that the first basis vector assigns equal nonzero values to the first four components
means that a, b, c and d form a single piece of G and also that this piece does not contain e and f! Similarly,
the second basis vector tells us that e and f are in the same piece as each other.

Moral: The dimension of the null space of an adjacency matrix counts the number of pieces in the
underlying graph. Even better, if you have an explicit basis for the null space as shown above then you can
also immediately tell which nodes belong to which piece.

2All jokes aside, this is actually a technical term in abstract algebra, meaning sends to zero. Sometimes mathematicians
like to pretend that they can be menacing: see also Killing form and monster group.



4 VIDIT NANDA

4.2. The Left Nullspace. Again, in order to compute the left nullspace N(AT
G) of A one might be

tempted to start quickly doing row operations on AG (or AT
G) in RREF. And for the types of gigantic graphs

which arise in actual scientific models, this sort of brute-fource computation is the only strategy! But our
toy example G is small enough that we can actually see what the row space means! In order to see this, we
take a short walk.

So, imagine you are at node a in G, and you are allowed to start walking on the graph along or against
the edges. You can never reach e and f this way, they are not connected to a by a path consisting of edges,
but you can reach b, c and d. Let’s go clockwise around the loop: a to b to d to c and then back to a. In
order to keep track of whether the edge is going with us or against us, we will assign a negative sign to any
edge that is pointed against us in our walk: so ab and bd gets plus signs since they are aligned with us on
the clockwise walk, but cd and ac are pointed against us so we get zeros. Here is the result of our clockwise
walk which takes us from a to a clockwise around the loop:

ab+ bd− cd− ac.

If we decided to walk counterclockwise, we’d get the same thing but with all the signs flipped.
Our walk on G actually becomes a row operation on AG! Remember,

AG =



a b c d e f

ab −1 1 0 0 0 0

ac −1 0 1 0 0 0

bd 0 −1 0 1 0 0

cd 0 0 −1 1 0 0

ef 0 0 0 0 −1 1


So the clockwise walk corresponds to a linear combination of the first four rows: Row 1 plus Row 3 minus
Row 4 minus Row 2. You can crunch through the computation and check that this combination is in fact
the zero row. In fact, there’s no need to compute anything – look at node b for instance. It shows up twice
in this row sum (once in ab and once in bd). When we enter b via ab, it has a coefficient of +1 and when
we leave it via bd we get −1, so the column corresponding to b cancels out to give 0. Similar arguments
show that the columns corresponding to a, c and d are also zero.

It is important to note that the zeroing out happens only for loops. If instead of the entire loop we only
traverse along ab, bd and then against cd, the coefficients for a and d do not zero out. In any case, we have
found a linear dependence among the rows so the left nullspace is at least one dimensional, since it includes
the span of the following vector in R5 

1
−1
1
−1
0

 .

Thus, dimN(AT
G) equals the number of genuine loops in G. If you go through the trouble of producing an

RREF of AG, then you’d discover that in fact N(AT
G) has dimension one3. So the vector mentioned above

forms a complete basis for this space, and more importantly, by looking at the columns of this vector as
representatives of the edges, you can actually extract information about the loop: the unique loop can be
produced by going forwards (i.e., coefficient +1) along ab and bd, then backwards (coefficient −1) along cd
and ac.

Moral: The dimension of the left nullspace of an adjacency matrix counts the number of loops in the
underlying graph. And if you produce a basis for this subspace using the method above, you can actually
identify the relevant loops in your graph!

3Of course, there are two easier ways of checking this when the graph is G: we already know that N(AG) has dimension 2,
so by the fundamental theorem we know that the rank of AG is 6− 2 = 4, and so the dimension of the left nullspace is 5− 4 = 1.
Even better, you can look at G and easily check that it has only one loop!



LECTURE 11: GRAPHS AND THEIR ADJACENCY MATRICES 5

5. The Column and Row Spaces of the Adjacency Matrix

What we should already know by the fundamental theorem is that both Column and Row spaces of AG

have dimension 4. But these subspaces are slightly trickier to interpret than the null spaces! The null spaces
of AG gave us geometric information about G (i.e., number of pieces and number of loops) but the column
and row space are more about structures built on top of G.

For now, the easiest structure to keep in mind is an electric circuit. So at each node, we have a
voltage and across each edge we have a current. We will see that the row and column spaces of AG give
us information about such circuits built on top of G. The input space R6 of AG now consists of vectors
x = (x1, . . . , x6), where the components are assignments of voltages to a,b, . . . , f. The output space R5 will
now be thought of as assignments of currents b = (b1, . . . ,b5) to the edges ab,ac, . . . , ef. The adjacency
matrix now takes voltage-space to current-space. It’s transpose does the opposite thing: it takes in currents
and spits out voltages.

The basic physical principles governing electrical circuits are the entirely reasonable Kirchoff’s Laws.
The net current across each node is the sum of outgoing currents minus the sum of incoming currents.
Similarly, the voltage differential across each edge equals the voltage at its target minus the voltage across
its source. Kirchoff’s laws are about these two quantities:

(1) Kirchoff’s Current law (abbreviated KCL) requires the net current across each node to be zero.
(2) Kirchoff’s Voltage law (henceforth KVL) requires that the sum of voltage differentials of edges in

a loop is zero.

Even if you have never heard of these laws before, they really should appeal to your physical intuition. If
the KCL doesn’t hold at some node, then that node will either be accumulating or leaking current without
restraint. And if the KVL doesn’t hold across some loop, then the total energy (change in voltage per unit
charge) is not conserved.

5.1. The Column Space. Going back to the definition of column space, we’d like to somehow interpret
the set of all current assignments b in R5 which can be the output of some voltage assignment x in R6 when
we multiply by the adjacency matrix AG. This means, we must have

−x1 + x2
−x1 + x3
−x2 + x3
−x3 + x4
−x5 + x6

 =


b1

b2

b3

b4

b5

 .

So the basic translation of the column space C(AG) in circuit-speak becomes: which assignment of edge-
currents can arise as differences of node-voltages? Actually, we’ve kind of already solved this problem when
dealing with the left nullspace N(AT

G)! The relation that the edge currents must satisfy is precisely the one

which comes from the basis vector (1,−1, 1,−1, 0) of N(AT
G): all we really need is b1 − b2 + b3 − b4 = 0.

This is one equation among 5 variables, so it defines a 4-dimensional subspace of the current-space R5. But
look: b1 is just −x1 + x2, which equals the voltage drop across ab as we move from a to b! Similarly, b2

is just the voltage drop across edge bc, and so forth. So, the column space of AG consists of all current
assignments which respect KVL.

Moral: The column space of AG consists precisely of those current assignments which come from voltages
satisfying Kirchoff’s Voltage Law!

5.2. The Row Space. The row space C(AT
G) of AG can be determined by looking directly at the

transpose:

AT
G =



ab ac bd cd ef

a −1 −1 0 0 0
b 1 0 −1 0 0
c 0 1 0 −1 0
d 0 0 1 1 0
e 0 0 0 0 1
f 0 0 0 0 −1





6 VIDIT NANDA

This matrix takes currents as inputs and produces voltages as their linear combinations, so of course we now
want to ask which voltages one might expect to see in the output space. More precisely, we want to see which
voltage vectors x = (x1, . . . , x6) in R6 can be produced by the matrix product AT

Gb where b = (b1, . . . ,b5)

is a vector of current assignments in R5. Going through the matrix multiplication gives us the following
system of equations: 

−b1 − b2

b1 − b3

b2 − b4

b3 + b4

b5

−b5

 =


x1
x2
x3
x4
x5
x6

 .

Let’s examine node b more closely: it is assigned voltage x2, and the net current across node b is given by
b3 − b1. The second components of the vector equation above say that these two quantities add to zero:
x2+b3−b1 = 0. This should not be surprising: it is just KCL in action! If x2 was zero, then we’d be forced
to have b1 = b3 by KCL applied to node b. So, the row space of AG consists of all node-voltages which arise
from edge-currents which respect KCL.

Why is this a four dimensional subspace of R6, by the way? Again, the basic insight comes from the two
basis vectors of N(AG) that we have already computed. Here they are:

1
1
1
1
0
0

 and


0
0
0
0
1
1

 .

These vectors give us those linear combinations of our voltages which must give zero: the sums x1+x2+x4+x4
(from the first vector) and x5+x6 (from the second vector) must equal zero, and hence there are two equations
in six variables. These equations must be independent (they have no variables in common!), so the row space
is 4-dimensional.

Moral: The row space of the adjacency matrix corresponds to those voltage assignments at nodes which
come from edge currents which respect KCL.


